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Abstract. In this paper, we apply evolutionary games to non-cooperative
power control in wireless networks. Specifically, we focus our study in a
power control in W-CDMA and WIMAX wireless systems. We study
competitive power control within a large population of mobiles that in-
terfere with each other through many local interactions. Each local in-
teraction involves a random number of mobiles. An utility function is
introduced as the difference between a utility function based on SIR of
the mobile and pricing. The games are not necessarily reciprocal as the
set of mobiles causing interference to a given mobile may differ from
the set of those suffering from its interference. We show how the evolu-
tion dynamics and the equilibrium behavior (called Evolutionary Stable
Strategy - ESS) are influenced by the characteristics of the wireless chan-
nel and pricing characteristics.
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1 Introduction

The evolutionary games formalism is a central mathematical tools developed
by biologists for predicting population dynamics in the context of interactions
between populations. This formalism identifies and studies two concepts: the ESS
(for Evolutionary Stable Strategy), and the Replicator Dynamics. The ESS, first
been defined in 1972 by the biologist M. Smith [10], is characterized by a property
of robustness against invaders (mutations). More specifically, (i) if an ESS is
reached, then the proportions of each population do not change in time. (ii) at
ESS, the populations are immune from being invaded by other small populations.
This notion is stronger than Nash equilibrium in which it is only requested that
a single user would not benefit by a change (mutation) of its behavior. The ESS
concept helps to understand mixed strategies in games with symmetric payoffs.
A mixed strategy can be interpreted as a composition of the population. An
ESS can be also interpreted as a Nash equilibrium of the one-shot game but a
(symmetric) Nash equilibrium cannot be an ESS. As is shown in [13], ESS has
strong refinement properties of equilibria(proper equilibrium, perfect equilibrium
etc). Although ESS has been defined in the context of biological systems, it is
highly relevant to engineering as well (see [14]). In the biological context, the
replicator dynamics is a model for the change of the size of the population(s)
as biologist observe, where as in engineering, we can go beyond characterizing
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and modeling existing evolution. The evolution of protocols can be engineered
by providing guidelines or regulations for the way to upgrade existing ones and
in determining parameters related to deployment of new protocols and services.

There have been a lot of work on non-cooperative modeling of power con-
trol using game theory [1, 2]. There are two advantages in doing so within the
framework of evolutionary games:

– it provides the stronger concept of equilibria, the ESS, which allows us to
identify robustness against deviations of more than one mobile, and

– it allows us to apply the generic convergence theory of replicator dynamics,
and stability results that we introduce in future sections.

The aim of this paper is to apply evolutionary game models to study the
interaction of numerous mobiles in competition in a wireless environment. The
power control game in wireless networks is a typical non-cooperative game where
each mobile decides about his transmit power in order to optimize its perfor-
mance. This application of non-cooperative game theory and tools is studied in
several articles [6, 9, 7]. The main difference in this article is the use of the evolu-
tionary game theory which deals with population dynamics that is well adapted
for studying the power control game in dense wireless networks. Specifically, we
focus our first study in a power control game in a dense wireless ad hoc network
where each user transmits using orthogonal codes like in W-CDMA. In the sec-
ond scenario, we consider also uplink transmissions but inter-cell interferences
like in WiMAX cells deployment. The utility function of each mobile is based
on carrier(signal)-to-interference ratio and pricing scheme proportional to trans-
mitted power. We provide and predict the evolution of population between two
types of behaviors : aggressive (high power) and peaceful (low power). We iden-
tify cases in which at ESS, only one population prevails (ESS in pure strategies)
and others, in which an equilibrium between several population types is ob-
tained. We also provide the conditions of the uniqueness of ESS. Furthermore,
we study different pricing for controlling the evolution of population.

The paper is organized as follows: In section 3, we present the evolution-
ary game model to study the power allocation game in a dense wireless ad hoc
network. In section 4, we propose an evolutionary game analysis for the power
allocation game in a context of inter-cell interferences between WiMAX cells.
Numerical results of both wireless network architectures are proposed in sec-
tion 5. Section 6 concludes the paper.

2 Basic notions on evolutionary games

We consider the standard setting of evolutionary games: there is a large pop-
ulations of players; each member of the population has the same finite pure
strategies set S. There are many local interactions at the same time.
Mixed strategies Denote by ∆(S) the (|S| − 1)−dimensional simplex of R

|S|.
Let x(t) be the |S|− dimensional vector whose j−th element xj(t) is the

population share of action j at time t. Thus we have
∑

j∈S xj(t) = 1 and xj(t) ≥

0. We frequently use an equivalent interpretation where x(t) is a mixed strategy
used by all players at time t; by a mixed strategy we mean that a player chooses
at time t an action j with probability xj(t). With either interpretations, at each



Evolutionary power control games in wireless networks 3

local interaction occurring at time t a given player can expect that the other
player would play action j with probability xj(t). The vector x(t) will also be
called the state of the population.
Fitness The fitness for a player at a given time is determined by the action
k taken by the player at that time, as well as by the actions of the population
it interacts with. More precisely, if the player 1 chooses the action k when the
state of the population is x then player 1 receives the payoff J(k, x) (called
fitness). The function J(k, x) is not necessary linear in x. Below we denote by
F (a, x) =

∑

k∈S akJ(k, x) the fitness for an individual using the strategy a when
the state of the population is x.
ESS The mixed strategy x is an ESS if for all strategy mut 6= x there exists
ǫmut > 0 such that ∀ ǫ ∈ (0, ǫmut),

ǫ F (s, mut) + (1 − ǫ)F (s, s) > ǫ F (mut, mut) + (1 − ǫ)F (mut, s). (1)

We have a sufficient condition on the existence of the ESS. The strategy s is an
ESS if it satisfies

F (s, s) ≥ F (mut, s), ∀ mut, and (2)

∀ mut 6= s, F (s, s) = F (mut, s) ⇒ F (s, mut) > F (mut, mut). (3)

Dynamics Evolutionary game theory considers a dynamic scenario where play-
ers are constantly interacting with others players and adapting their choices
based on the fitness they receive. A strategy having higher fitness than others
tends to gain ground: this is formulated through rules describing the dynam-
ics (such as the replicator dynamics or others) of the sizes of populations (of
strategies). The replicator equation is given by

d

dt
xk(t) = xk [J(k, x) − F (x, x)] , k ∈ S. (4)

There is a large number of population dynamics other than the replicator dy-
namics which have been used in the context of non-cooperative games. Examples
are the excess payoff dynamics, the fictitious play dynamics, gradient methods
[8], Smith dynamics. Much literature can be found is the extensive survey on
evolutionary games in [5].

3 W-CDMA Wireless Network

We study in this section competitive decentralized power control in an wireless
network where the mobiles uses, as uplink MAC protocol, the W-CDMA technic
to transmit to a receiver. We assume that there is a large population of mobiles
which are randomly placed over a plane following a Poisson process with density
λ. We consider a random number of mobiles interacting locally. When a mobile i
transmits to its receiver R(i), all mobiles within a circle of radius R centered at
the receiver R(i) cause interference to the transmission from node i to receiver
R(i) as illustrated in figure 1. We assume that a mobile is within a circle of
a receiver with probability µ. We define a random variable r which will be
used to represent the distance between a mobile and a receiver. Let f(r) be the

probability density function (pdf) for r. Then we have µ =
∫ R

0
f(r)dr.
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R

Fig. 1. Interferences at the receiver in uplink CDMA transmissions.

Remark 1 If we assume that the receivers or access points are randomly dis-
tributed following a poisson process with density ν, the probability density func-
tion is expressed by f(r) = νe−νr.

For uplink transmissions, a mobile has to choose between Higher(H) power
level and Lower(L) power level. We denote by PH the higher power and PL

the lower power levels. Let s be the population share strategy H . Hence, the
signal Pr received at the receiver is given by Pr = gPil(r), where g is the gain
antenna and α > 2 is the path loss exponent. For the attenuation, the most
common function is l(t) = 1

tα , with α ranging from 3 to 6. Note that such l(t)
explodes at t = 0, and thus in particular is not correct for a small distance
r and largen intensity λ. Then, it makes sense to assume attenuation to be a
bounded function in the vicinity of the antenna. Hence the last function becomes
l(t) = max(t, r0)

−α. First we note that the number of transmission within a circle
of radius r0 centered at the receiver is λπr2

0 . Then the interference caused by all

mobiles in that circle is I0(s) = λπg(sPH+(1−s)PL)

rα−2
0

.

Now we consider a thin ring Ai with the inner radius rj = jdr and the outer
radius rj = r0 + jdr. The signal power received at the receiver from any node in

Aj is Pri
= gPi

rα
i

. Hence the interference caused by all mobiles in Aj is given by

Ij(s) =







2gλπrjdr( sPH+(1−s)PL

rα
j

) if rj < R,

2µgλπrjdr( sPH+(1−s)PL

rα
j

) if rj ≥ R.

Hence, the total interference contributed by all nodes at the receiver is

I(s) = I0(s) + 2gλπ(sPH + (1 − s)PL)

[

∫ R

r0

1

rα−1
dr + µ

∫ ∞

R

1

rα−1
dr

]

,

= gλπ(sPH + (1 − s)PL)(
α

α − 2
r
−(α−2)
0 − 2(1 − µ)R−(α−2)).

Hence the signal to interference ratio SINRi is given by

SINRi(Pi, s, r) =

{

gPi/rα
0

σ+βI(s) if r ≤ r0,
gPi/rα

σ+βI(s) if r ≥ r0,
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where σ is the power of the thermal background noise and β is the inverse of
the processing gain of the system. This parameter weights the effect of interfer-
ence, depending on the orthogonality between codes used during simultaneous
transmissions. In the sequel, we compute the mobile’s utility (fitness) depending
on his decision but also on the decision of his interferers. We assume the user’s
utility (fitness) choosing power level Pi is expressed by

J(Pi, s) = w

∫ R

0

log(1 + SINR(Pi, s, r))f(r)dr − ηPi.

The pricing function ηPi define the instantaneous ”price” a mobile pays for using
a specific amount of power that causes interference in the system. This price can
be the power cost consumption for sending packets.

The total fitness of the population is given by F (s, s) = sJ(PH , s) + (1 −
s)J(PL, s). We are now looking at the existence and uniqueness of the ESS. For
this, we need the following result.

Lemma 1 For all density function f defined on [0, R], the function h : [0, 1] →
R defined as

s 7−→

∫ R

0

log

(

1 + SINR(PH , s, r)

1 + SINR(PL, s, r)

)

f(r) dr

is continuous and strictly monotone.

proof The function s 7−→ log
(

1+SINR(PH ,s,r)
1+SINR(PL,s,r)

)

f(r) is continuous and integrable

in r on the interval [0, R]. The function h is continuous. Using derivative prop-
erties of integral with parameter, we can see that the derivative function of h is
the function h′ : [0, 1] → R defined as

s 7−→

∫ R

0

∂

∂s

[

log

(

1 + SINR(PH , s, r)

1 + SINR(PL, s, r)

)]

f(r).

We show that the term ∂
∂s

[

log
(

1+SINR(PH ,s,r)
1+SINR(PL,s,r)

)]

is negative. Let A(s) :=

1+SINR(PH ,s,r)
1+SINR(PL,s,r) . The function A can be rewritten as A(s) = 1 +

g(PH −PL)

rα

σ+βI(s)+
gPL
rα

where I(s) = (s(PH−PL)+PL)c(r) and c(r) = λπg
[

α
α−2r

−(α−2)
0 − 2(1 − µ̄)R−(α−2)

]

if r ≥ r0 and λπg

rα−2
0

otherwise. Since A satisfies A(s) > 1 and A′(s) = −c(r)β(PH−

PL)
g(PH−PL)

rα

(σ+βI(s)+
gPL
rα )2

< 0. Hence,

∂

∂s

[

log

(

1 + SINR(PH , s, r)

1 + SINR(PL, s, r)

)]

=
∂

∂s
(log A(s)) =

A′(s)

A(s)
< 0

i.e h′(s) < 0. We conclude that h is strictly decreasing.

Using this lemma, we have the following proposition which gives pure strate-
gies depending on the parameters.
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Proposition 1 For all density function f , the pure strategy PH dominates the

strategy PL if and only if η
w (PH − PL) <

∫ R

0 log
(

1+SINR(PH ,PH ,r)
1+SINR(PL,PH ,r)

)

f(r) dr =

h(1). For all density function f , the pure strategy PL dominates the strategy PH

if and only if η
w (PH − PL) >

∫ R

0 log
(

1+SINR(PH ,PL,r)
1+SINR(PL,PL,r)

)

f(r) dr = h(0).

proof We decompose the existence of the ESS in several cases.

1. PH is preferred to PL : The higher power level dominates the lower if and
only if J(PH , PH) > J(PL, PH) and J(PH , PL) > J(PL, PL). These two
inequalities implies that

η

w
(PH − PL) <

∫

R

0

log

(

1 + SINR(PH , PH , r)

1 + SINR(PL, PH , r)

)

f(r) dr.

2. PL is preferred to PH : Analogously, the lower power dominates the higher
power if and only if J(PL, PH) > J(PH , PH) and J(PL, PL) > J(PH , PL)

i.e η
w (PH − PL) >

∫ R

0 log
(

1+SINR(PH ,PL,r)
1+SINR(PL,PL,r)

)

f(r) dr.

We have this other result which gives a sufficient condition for the existence
of the ESS.

Proposition 2 For all density function f , if h(1) < η
w (PH − PL) < h(0), then

there exists an unique ESS s∗ which is given by s∗ = h−1
(

η
w (PH − PL)

)

.

proof Suppose that the parameters w, η, PH and PL satisfy the following in-
equality h(1) < η

w (PH − PL) < h(0). Then the game has no dominant strategy.
A mixed equilibrium is characterized by J(PH , s) = J(PL, s). It is easy to see
this last equation is equivalent to h(s) = η

w (PH − PL). From the lemma 1,
we have that the equation h(s) = η

w (PH − PL) has an unique solution given

by s∗ = h−1
(

η
w (PH − PL)

)

. We now prove that this mixed equilibrium is an
ESS. To prove this result, we compare s∗J(PH , mut) + (1 − s∗)J(PL, mut) and
mutJ(PH , mut)+(1−mut)J(PL, mut) for all mut 6= s∗. The difference between
to two values is exactly w(s∗ −mut)(h(mut)− h(s∗)). According to lemma 1, h
is decreasing function. Hence, (s∗ −mut)(h(mut)− h(s∗)) is strictly positive for
all strategy mut different from s∗. We conclude that the mixed equilibrium s∗

is an ESS.

From the last proposition, we can use the pricing η as a design tool for create
an incentive for the user to adjust their power control. We observe that the ESS
s∗ decreases when η increases. That means the mobiles become less aggressive
when pricing function increases and the system can limit aggressive requests for
SIR. In the numerical examples, we show how the pricing function can optimize
the overall network throughput.

In the next section we study another wireless architecture where interferences
are between mobiles which are located in different cell. This typical interference
problem occurs in WiMAX environment.
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4 OFDMA-based IEEE802.16 network

OFDMA (Orthogonal Frequency Division Multiple Access) is recognized as one
of the most promising multiple access technique in wireless communication sys-
tem. This technique is used to improve spectral efficiency and becomes an attrac-
tive multiple access technique for 4th generation mobile communication system
as WiMAX.

In OFDMA systems, each user occupies a subset of subcarriers, and each
carrier is assigned exclusively to only one user at any time. This technique has
the advantage of eliminating intra-cell interference (interference between sub-
carriers is negligible). Hence the transmission is affected by intercell interference
since users in adjacent sectors may have also been assigned to the same carrier.
If those users in the adjacent sectors transmitted with high power the inter-
cell interference may severely limit the SINR achieved by the user. Some form
of coordination between the different cells occupying the spectral resource are
studied in [4, 3]. The optimal resource allocation requires complete information
about the network in order to decide which users in which cells should transmit
simultaneously with a given power. All of these results however, rely on some
form of centralized control to obtain gains at various layers of the communica-
tion stack. In a realistic network as WiMAX, centralized multicell coordination
is hard to realize in practice, especially in fast-fading environments.

We consider an OFDMA system where radio resources are allocated to users
on their channel measures and traffic requirements. Each carrier within a frame
must be assigned to at most one user in the corresponding cell. In this way each
carrier assignment can be made independently in each cell. Hence when a user is
assigned to carrier, the mobile should determine the power transmission to the
Base station. This power should take into account the interference experienced
by the transmitted packet.

Consider the uplink of a multiple multicell system, employing the same spec-
tral resource in each cell. Power control is used in an effort to preserve power
and to limit interference and fading effects. For users located in a given cell,
co-channel interference may therefore come from only few cells as illustrated
in figure 2. Since the intra-cell interference is negligible, we focus on the users
which use a specific carrier. Consider N cells, and a large number of popula-

1

2

3

4

5

6

7

Fig. 2. Hexagonal cell configuration

tion of mobiles randomly distributed over each channel and each cell. Since in
OFDMA systems, each carrier is assigned exclusively to only one mobile at any
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time, we assume that the interactions between mobiles are manifested through
many local interactions between N ′ mobiles where N ′ is the set of neighbors of
a cell. We can ignore the interaction among more than N ′ mobiles that transmit
simultaneously and that can cause interference to each other. Hence, in each
slot, interaction occurs only between the mobiles which have been assigned to
the same carrier.

Let gij denote the average channel gain from user i to cell j. Hence, if a
user in cell i transmits with power pi, the received signal strength at cell i is
pigii, while the interference it occurs on cell j is pigij . Hence, the interference
experienced by cell i is given by SINRi(p) = giipi

σi+
∑

j 6=i gijpj
, where σi is the

power of the thermal noise experienced at cell i. The rate achieved by user i is
given by ri(p) = log(1 + SINRi(p)), where p denotes the power level vector
of mobiles choice which are assigned to a specific carrier. We assume that the
user’s utility is given by ui(p) = ri(p) − ηpi. The above utility represents the
weighted difference between the throughput that can be achieved as expressed
by Shannon’s capacity and the power consumption cost.

We assume that all mobiles perform the on-off power allocation strategy. In
this strategy, each mobile transmits with full power or remains silent. Let Ni be
the set of neighbors of a user in cell i. Hence the interference experienced by a
user in the cell i is given by SINRi(p) = giipi

σi+
∑

j∈Ni\{i} gjipj
, where pj ∈ {0, P},

P is the power level of transmission.
Let xi the proportion of transmitters in the cell i. The couple (xi, 1 − xi)

with xi ∈ (0, 1), represents the state of the cell i. We denote by x−i the vector
(x1, . . . , xi−1, xi+1, . . . , xNi

). The fitness of the cell i can be defined as follows:

fi(xi, x−i) = xifi(P, x−i) = xi

∑

a−i∈{0,P}|Ni|−1

ui(P, a−i)x−i(a−i) where

x−i(a−i) =





∏

j∈T (a−i)

xj









∏

j∈Ni\{T (a−i)
⋃

{i}}

(1 − xj)



 and

T (a−i) = {k ∈ Ni\{i}, pk = P},

is the set of neighbors transmitting. We have fi(0, x−i) = 0 for any multi-strategy
x−i.

A multi-strategy x = (xi)i=1,...N is neutrally stable if for all x′ 6= x there
exists ǫy′ > 0 such that ∀ǫ ∈ (0, ǫy′)

fi(xi, ǫx
′
−i + (1 − ǫ)x−i) ≥ fi(x

′
i, ǫx

′
−i + (1 − ǫ)x−i) (5)

for some i. The multi-strategy x is evolutionary stable if the inequality (5) is
strict. Hence, an ESS is a neutrally stable strategy but the reciprocal is not
true. See [11] for more details on neutrally stable strategy. If x is neutrally
stable strategy then x is Nash equilibrium. The best response (BR) of the user
i to x−i is given by

BRi(x−i) =







1 if fi(P, x−i) > 0,
0 if fi(P, x−i) < 0,

[0, 1] if fi(P, x−i) = 0.
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A strategy x is a Nash equilibrium is equivalent to xi ∈ BRi(x−i), i = 1, . . . , |N |.
In particular when η = 0, the strategy ON is a Nash equilibrium (ON is a
dominant strategy).

The following proposition gives necessary conditions for pure strategies and
strictly mixed strategies to be neutrally stable.

Proposition 3 We decompose the different equilibrium strategy in the following
items.

– If the strategy ON (P) is a neutrally stable equilibrium then

η ≤ ηmin where ηmin =
1

P
min

i=1,...,N
log

(

1 +
gii

σi

P +
∑

j∈Ni, j 6=i gji

)

.

Moreover, ON becomes a strictly dominant strategy if η < ηmin.
– If the strategy OFF (0) is a neutrally stable equilibrium then

η ≥
1

P
max

i
log

(

1 +
giiP

σi

)

=: ηmax.

For η > ηmax, OFF becomes a strictly dominant strategy (hence, an ESS).
– If ∀ j 6= i, gij = g, gii = ḡ, σi = σ then the game becomes a sym-

metric game. Hence, it exists a symmetric equilibrium with the proportion
x(= xi, ∀i) of transmitters, which must satisfy

Q(x) :=

n−1
∑

k=0

akxk(1 − x)n−k−1(n−1
k ) = ηP (6)

where ak = log(1+ ḡP
σ+kgP ) > 0 represents the fitness obtained by user i when

he transmits and k of the opponents of user i decided to transmit and the
n − 1 − k others stay quiet.

– Every strictly mixed equilibrium (symmetric or not) must satisfy fi(xi, x−i) =
0 for all i.

Proof The two first assertions of proposition 3 are obtained by Nash equilibrium
conditions: the strategy ON (P) is a neutrally stable equilibrium implies that
∀i, 0 ≤ fi(P, P, . . . , P ) and the strategy OFF (0) is a neutrally stable equilibrium
implies that ∀i, fi(P, 0, . . . , 0) ≤ 0. In the last assertion (symmetric case), the
fitness of user i is x(Q(x)−ηP ) where (x, 1−x) is state of the cell. Since Q(1) < 0
and Q(0) > 0 when ηmin < η < ηmax, then the equation (6) has a solution x in
(0, 1) which implies the existence of an ESS.

Remark that the strategy ON is an ESS if η < ηmin. In order to prove the
existence and uniqueness of the ESS in the symmetric case, we study roots of
the polynomial Q in the following lemma.

Lemma 1. Let 0 ≤ an−1 < an−2 < . . . < a0, η and P positive reals satisfying
ηP ∈ (an−1, a0). Then, the polynomial Q(x) − ηP has a unique root on (0, 1).
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Proof We show existence and uniqueness of the root of the polynomial Q on
(0, 1).
Existence Q is a polynomial with real coefficients. Hence, Q is continuous in
(0, 1). The image of the interval (0, 1) contains I = [an−1 − ηP, a0 − ηP ]. The
inequality an−1

P := ηmin < η < a0

P := ηmax, implies 0 ∈ I. Thus, there exists,
a ∈ (0, 1) such that Q(a) = 0.
Uniqueness We show that Q is strictly monotone on (0, 1). Let Q′ be the
derivative of Q. Q′ is given by

Q′(x) = −(n − 1)a0(1 − x)n−2 + (n − 1)an−1x
n−1 +

∑n−2
k=1 ak(n−1

k )xk(1 − x)n−1−k

The inequalities ak − ak+1 > 0, k = 0, . . . , n− 2 and x ≥ 0, 1−x ≥ 0 imply that
Q′(x) < 0 on (0, 1). Hence, Q is strictly increasing on (0, 1). We conclude that
Q is bijective from (0, 1) to I and hence, Q has a unique root on (0, 1)

Given this result, we have the following proposition given the existence and
uniqueness of the ESS in the symmetric game. The proof is immediate from the
lemma 1 and from proposition 3.

Proposition 4 The symmetric power control game has a unique strictly mixed
equilibrium.

5 Numerical examples

In this section, we first investigate the impact of the different parameters and
pricing on the ESS and the convergence of the replicator dynamic. We also
discuss the impact of the pricing function on the system capacity.
W-CDMA Wireless Networks: we show the impact of density of nodes and
pricing on the ESS and the average rate. We assume that the receivers which
are randomly placed over a plane following a Poisson process with density ν,
i.e, f(r) = νe−νr. We recall that the rate of a mobile uses power level Pi at

the equilibrium is given by thp(Pi, s) = w
∫ R

0
log(1 + SINR(Pi, s, r))f(r)dr. We

took r0 = 0.2, w = 20, σ = 0.2, α = 3, β = 0.2, R = 1. First, we show the impact
of the density of nodes λ on the ESS and the average rate. In figures 3-4, we
depict the average rate obtained at the equilibrium and the ESS, respectively
, as a function of the density λ. We recall that the interference for a mobile
increases when λ increases. We observe that the mobiles become less aggressive
when the density increases. In the figure 3, we observe that it is important to
adapt the pricing as function of the density of nodes. Indeed, we observe that for
low density of nodes, the lower pricing (η = 0.92) gives better results than higher
pricing (η = 0.97). When the density of nodes increases, the better performance
is obtained with higher pricing.

Our second experiment in W-CDMA studies convergence to the ESS of the
W-CDMA system described in section 3 under replicator dynamics. Fig. 5 and
6 represent the fraction of population using the high power level for different
initial states of the population: 0.99, 0.66, 0.25 and 0.03. We observe that the
choice of receiver distributions change the ESS.
OFDMA-based IEEE802.16 networks We consider below an numerical ex-
ample of an OFDMA system. We shall obtain the ESS for several values of η.



Evolutionary power control games in wireless networks 11

0.2 0.25 0.3 0.35 0.4 0.45 0.5
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Density of nodes

Th
rou

gh
pu

t 

η=0.92
η=0.97

Fig. 3. The average rate of a mobile at
equilibrium as function of the density of
nodes λ for η = 0.92, 0.97.
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Fig. 4. ESS versus density of nodes λ for
η = 0.92, 0.97.
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Fig. 5. Convergence to the ESS in CDMA
system: uniform distribution
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Fig. 6. Convergence to the ESS in CDMA
system: quadratic distribution

We assume that gii = g and gij = ḡ for all i 6= j and σi = σ for all i. We
consider below a numerical example for different values of N ′ (see figure 2 in
which N ′ = 7). Let the noise σ = 0.1 and the power attenuation g = ḡ/4 = 0.9.
In figure 7 (resp. 8), we plot the ESS versus η (resp. power level P ). In the both
figures, the population ratio using the strategy ON is monotone decreasing in η.
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Fig. 7. The population ratio using strategy
ON at equilibrium as a function of η for
n = 7.
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Fig. 8. The population ratio using strategy
ON as a function of power level for n =
3, 4, 5, 6, 10, 11.

We see that the parameter η which can be interpreted as the pricing per
unit of power transmitted, can determine whether the ESS is aggressive (in
pure strategies) or in mixed strategies. It can determine in the latter case what
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fraction of the population will use high power at equilibrium. Pricing can thus
be used to control interference.

6 Concluding remarks

We considered power control games with one or several populations of users
and studied evolutionary stable strategies in interaction of numerous mobiles
in competition in a wireless environment. We have modeled power control for
W-CDMA and OFDMA systems as a non-cooperative population game in which
each user needs to decide how much power to transmit over each receiver and
many local interactions between users at the same time has been considered. We
have derived the conditions for existence and uniqueness of evolutionary stable
strategies and characterize the distribution of the users over each power level.

References

1. T. Alpcan , T. Basar, R. Srikant and E. Altman, CDMA uplink power control as
a noncooperative game, Wireless Networks , Vol. 8, Issue 6, pp. 659-670, 2002.

2. Y. E. Sagduyu, A. Ephremides, ”SINR-Based MAC Games for Selfish and Mali-
cious Users,” to appear in Information Theory and Applications Workshop 2007,
San Diego, CA, Jan. 2007.

3. KIM Hoon, HAN Youngnam, KOO Jayong Optimal subchannel allocation
scheme in multicell OFDMA systems,” in Proc. IEEE VTC, May 2004.

4. G. Li and H. Liu, ”Downlink dynamic resource allocation for multi-cell OFDMA
system,” in Proc. IEEE VTC, Oct. 2003

5. J. Hofbauer and K. Sigmund. Evolutionary game dynamics. AMS, Vol 40 No. 4,
pp. 479-519, 2003.

6. F. Meshkati, H. Poor, S. Schwartz, N. Mandayam, An Energy-Efficient Approach

to Power Control and Receiver Design in Wireless Data Networks, IEEE Trans.
on Communications, vol. 52, 2005.

7. F. Meshkati, H. Poor, S. Schwartz Energy-Efficient Resource Allocation in Wire-

less Networks, IEEE Signal Processing Mag., vol. 58, 2007.
8. J. B. Rosen, Existence and uniqueness of equilibrium points for concave N-person

games, Econometrica 33, 520-534,1965.
9. C. Saraydar, N. Mandayam, D. Goodman Efficient Power Control via Pricing

in Wireless Data Networks, IEEE Trans. on Communication, vol. 50, 2002.
10. M. Smith, 1972. ”Game Theory and the Evolution of Fighting.” In John Maynard

Smith, On Evolution (Edinburgh: Edinburgh Univ. Press), pp.8-28.
11. Samuelson, L., Evolutionary Games and Equilibrium Selection, MIT Press,1997.
12. H. Tembine, E. Altman, R. ElAzouzi and Y. Hayel, ”Evolutionary games with

random number of interacting players with application to access control”, sub-
mitted, 2007.

13. Eric van Damme, Stability and perfection of Nash equilibria, Springer, Berlin,
1991.

14. T. L. Vincent and T. L. S. Vincent, “Evolution and control system design”,
IEEE Control Systems Mag., Vol 20 No. 5, pp 20-35, Oct. 2000.


