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Abstract

This paper studies distributed choice of retransmission probabilities in slotted ALOHA. Both the cooperative team

problem as well as the noncooperative game problem are considered. Unlike some previous work, we assume that

mobiles do not know the number of backlogged packets at other nodes. A Markov chain analysis is used to obtain

optimal and equilibrium retransmission probabilities and throughput. We then investigate the impact of adding re-

transmission costs (which may represent the disutility for power consumption) on the equilibrium and show how this

pricing can be used to make the equilibrium throughput coincide with the optimal team throughput.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Aloha [4] and slotted Aloha [14] have long been used as random distributed medium access protocols for
radio channels. They are in use in both satellite as well as cellular telephone networks for the sporadic

transfer of data packets. In these protocols, packets are transmitted sporadically by various users. If

packets are sent simultaneously by more than one user then they collide. After the end of the transmission

of a packet, the transmitter receives the information on whether there has been a collision (and retrans-

mission is needed) or whether it was well received. All packets involved in a collision are assumed to be

corrupted and are retransmitted after some random time. We focus in this paper on the slotted Aloha

(which is known to have a better achievable throughput than the unslotted version, [5]) in which time is
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divided into units. At each time unit a packet may be transmitted, and at the end of the time interval, the

sources get the feedback on whether there was zero, one or more transmissions (collision) during the time

slot. A packet that arrives at a source is immediately transmitted. Packets that are involved in a collision are

backlogged and are scheduled for retransmission after a random time.

The determination of the above random time can be considered as a stochastic control problem. The

information structure, however, is not a classical one: sources do not have full state information as they do
not know how many packets are backlogged. Nor do they know how many packets have been involved in a

collision.

We study this control problem in two different frameworks:

1. As a team problem, i.e. where there is a common goal to all nodes in the network (such as maximizing

the system throughput).

2. As a problem in a noncooperative framework: each node wishes to maximize its own throughput. This

gives rise to a game theoretical formulation.

Our main finding is that as the workload increases (i.e. as the packet arrival rate increases), sources

become more aggressive at equilibrium in the game setting (in comparison with the team problem) and this

results in a dramatic decrease in the total system’s throughput. To avoid this collapse of system’s

throughput, we study the effect of adding a cost for transmissions and retransmissions (which can, in

particular, represent the battery power cost). We show that this additional cost improves the system’s

performance and that an appropriate pricing can be chosen that yields an equilibrium performance that

coincides with the team one.
Previous game formulations of the slotted ALOHA have been proposed in [10–12]. In the two last

references, a full information game is considered, in which each user knows how many backlogged

packets there are in all the network. Moreover, it is assumed in [11,12] that a packet that is to be

transmitted for the first time waits for a random time in the same way as a backlogged packet. Our goal

is to study the slotted Aloha avoiding these two assumptions; relaxing the assumptions allows to model

more accurately the original versions of Aloha, and in particular, relaxing the first assumption allows

for more distributed implementations of Aloha. In [10] it is assumed that nodes have always packets to

send. Thus there is only one trivial state in the system (all nodes are backlogged) which is known to all
users.

For more background on the use of stochastic control and of game theory in communication networks,

see [1–3]. We note that the game formulation of our problem is similar to game formulation of retrial

queues, in which customers retry to make a call after some random time if they find the line busy [7,9]. The

difference is, however, that in retrial queues there are no collisions.

The structure of the paper is as follows. We begin by introducing in Section 2 the general model and

formulate the team and the game problems. We provide a Markov analysis for both the team and the game

problem. This analysis is used in Section 3 to numerically study and compare the properties of the team and
the game solutions. The model with pricing is then introduced in Section 4 and is investigated numerically

in Section 5. We end with a concluding section.
2. Model and problem formulation

We use a Markovian model based on [5]. We assume that there are a finite number of sources with-

out buffers. The arrival flow of packets to source i follows a Bernoulli process with parameter qa (i.e. at
each time slot, there is a probability qa of a new arrival at a source, and all arrivals are independent). As

long as there is a packet at a source (i.e. as long as it is not successfully transmitted) new packets to that
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source are blocked and lost. 1 The arrival processes to different sources are independent. A back-

logged packet at source i is retransmitted with probability qir. We shall restrict in our control and game

problems to simple policies in which qir does not change in time. Since sources are symmetric, we shall

further restrict to finding a symmetric optimal solution, that is retransmission probabilities qir that do not

depend on i. We assume that if more than one source attempt transmission in a time slot, all packets are

lost.
Remark 1. Other models for ALOHA have been also studied in the literature. A commonly used model

is one with infinite many sources [5] with no buffers, in which the process of total number of (non-

blocked) arrivals at a time slot is Poisson with parameter k and the process of combined transmissions

and retransmissions attempts forms a Poisson process with parameter G. Analysis of this model shows

that it has two quasi-stable operation modes (as long as k < expð�1Þ), one corresponding to a congested

system (in which there are many backlogged packets and many retransmissions) and one corresponding

to an uncongested system (with small amount of backlogged packets). In this model, both operation
points turn out to have the same throughput. In our model with finitely many sources we has also two

quasi-stable operation modes but the throughput during congestion periods is lower than in the non-

congested periods [5]. We also note that in the case of infinitely many nodes, retransmissions with a fixed

positive probability renders the system unstable [8]. Finally, we should mention that there are also

models in which not all packets involved in a collision are corrupted and lost, see [15] and references

therein.
Remark 2. Quite frequently one uses the ALOHA protocol for sporadic transmissions of signaling packets
such as packets for making reservation for a dedicated channel for other transmissions (that do not use

ALOHA), see e.g. the description of the SPADE on demand transmission protocol for satellite commu-

nications in [16]. In the context of signaling, it is natural to assume that a source does not start generating a

new signaling packet (e.g. a new reservation) as long as the current signaling packet is not transmitted. In

that case, the process of attempts to retransmit a new packet from a source after the previous packet has

been successfully transmitted coincides with our no buffer model.

We shall use as the state of the system the number of backlogged nodes (or equivalently, of backlogged
packets) at the beginning of a slot, and denote it frequently with n. For any choice of values qir 2 ð0; 1�, the
state process is a Markov chain that contains a single ergodic chain (and possibly transient states as well).

Define qr to be the vector of retransmission probabilities for all users (whose jth entry is qjr). Let pðqrÞ be the
corresponding vector of steady state probabilities where its nth entry, pnðqrÞ, denotes the probability of n
backlogged nodes. When all entries of qr are the same, say q, we shall write (with some abuse of notation)

pðqÞ instead of pðqrÞ.
We introduce further notation. Assume that there are n backlogged packets, and all use the same value qr

as retransmission probability. Let Qrði; nÞ be the probability that i out of the n backlogged packets re-
transmit at the slot. Then
1 In

packet
Qrði; nÞ ¼
n
i

� �
ð1� qrÞn�i½qr�i: ð1Þ
considering the number of packets in the system, this assumption is equivalent to saying that a source does not generate new

s as long as a previous packet is not successfully transmitted.
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Assume that m is the number of nodes and let Qaði; nÞ be the probability that i unbacklogged nodes transmit

packets in a given slot (i.e. that i arrivals occurred at nodes without backlogged packets). Then
Qaði; nÞ ¼
m� n

i

� �
ð1� qaÞm�n�i½qa�i: ð2Þ
Let Qrð1; 0Þ ¼ 0 and Qað1;mÞ ¼ 0.

In case all nodes use the same value q for qr, the transition probabilities of the Markov chain are given by

[5]:
Pn;nþiðqÞ ¼

Qaði; nÞ; 26 i6m� n;

Qað1; nÞ½1� Qrð0; nÞ�; i ¼ 1;

Qað1; nÞQrð0; nÞ þ Qað0; nÞ½1� Qrð1; nÞ�; i ¼ 0;

Qað0; nÞQrð1; nÞ; i ¼ �1:

8>>>><
>>>>:
The system throughput (defined as the sample average of the number of packets that are successfully

transmitted) is given almost surely by the constant
thpðqÞ ¼
Xm
n¼1

pnðqÞ½Pn;n�1ðqÞ þ Qað1; nÞQrð0; nÞ� þ p0ðqÞQað1; 0Þ ¼ qa
Xm
n¼0

pnðqÞðm� nÞ:
Note: the first equality follows from the fact that if the state at the beginning of the slot is n > 0 then there is

a departure of a backlogged packet during that slot with probability Pn;n�1ðqÞ, and of a new arriving packet

with probability Qað1; nÞQrð0; nÞ; Moreover, if the state is 0 then there is a departure with probability

Qað1; 0Þ. The second equality simply expresses the expected number of arrivals at a time slot (which actually

enter the system), which should equal to the expected number of departures (and thus the throughput) at
stationary regime.

The team problem is therefore given as the solution of the optimization problem:
max
q

thpðqÞ s:t:
pðqÞ ¼ pðqÞPðqÞ;
pnðqÞP 0; n ¼ 0; . . . ;m;Pm

n¼0 pnðqÞ ¼ 1:

8<
:

A solution to the team problem can be obtained by computing recursively the steady state probabilities, as
in Problem 4.1 in [5], and thus obtain an explicit expression for thpðqÞ as a function of q.

Singularity at q ¼ 0. The only point where P does not have a single stationary distribution is at q ¼ 0,

where it has two absorbing states: n ¼ m and n ¼ m� 1. All other states are transient (for any qa > 0), and

the probability to end at one of the absorbing states depend on the initial distribution of the Markov chain.

We note that if the state m� 1 is reached then the throughput is qa w.p.1, where as if the state m is reached

then the throughput equals 0. It is thus a deadlock state. For qa > 0 and qr ¼ 0, the deadlock state is

reached with positive probability from any initial state other than m� 1. We shall therefore exclude qr ¼ 0

and optimize only on the range �6 qr 6 1. We choose throughout the paper � ¼ 10�4.
Existence of a solution. The steady state probabilities pðqÞ are continuous over 0 < q6 1. Since this is not

a close interval, a solution need not exist. However, as we restrict to the closed interval q 2 ½�; 1� where
� > 0, an optimal solution indeed exists. Note also that the limit limq 0 pðqÞ exists since pðqÞ is a rational

function of q at the neighborhood of zero. Therefore for any d > 0, there exists some q > 0 which is d-
optimal. (q� > 0 is said to be d-optimal if it satisfies thpðq�ÞP thpðqÞ � d for all q 2 ð0; 1�.)

Next, we formulate the game problem. For a given policy vector qr of retransmission probabilities for all

users (whose jth entry is qjr), define ð½qr�
�i
; q̂irÞ to be a retransmission policy where user j retransmits at a slot

with probability qjr for all j 6¼ i and where user i retransmits with probability q̂ir. Each user i seeks to
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maximize his own throughput thpi. The problem we are interested in is then to find a symmetric equilibrium

policy q�r ¼ ðqr; qr; . . . ; qrÞ such that for any user i and any retransmission probability qir for that user,
thpiðq�r ÞP thpið½q�r �
�i
; qirÞ: ð3Þ
Since we restrict to symmetric q�r , we shall also identify it (with some abused of notation) with the actual

transmission probability (which is the same for all users). Next we show how to obtain an equilibrium policy.

We first note that due to symmetry, to see whether q�r is an equilibrium it suffices to check (3) for a single
player. We shall thus assume that there are mþ 1 users all together, and that the first m users retransmit with

a given probability q�ðmþ1Þr ¼ ðqo; . . . ; qoÞ and user mþ 1 retransmits with probability qðmþ1Þr . Define the set
Qmþ1ðqor Þ ¼ argmax
qðmþ1Þr 2½�;1� thpmþ1ð½qor �

�ðmþ1Þ
; qðmþ1Þr Þ

� �
;

where qor denotes (with some abuse of notation) the policy where all users retransmit with probability qor ,
and where the maximization is taken with respect to qðmþ1Þr . Then q�r is a symmetric equilibrium if
q�r 2 Qmþ1
r ðq�r Þ:
To compute thpmþ1ð½qor �
�i
; qirÞ, we introduce again a Markov chain with a two dimensional state. The first

state component corresponds to the number of backlogged packets among the users 1; . . . ;m, and the

second component is the number of backlogged packets (either 1 or 0) of user mþ 1. The transition

probabilities are given by
Pðn;iÞ;ðnþk;jÞðqor ; qðmþ1Þr Þ ¼

Qaðk; nÞ; i ¼ j ¼ 1

Qaðk; nÞð1� qaÞ; i ¼ j ¼ 0

Qaðk; nÞqa; i ¼ 0; j ¼ 1

9=
;26 k6m� n;

Qað1; nÞ½1� Qrð0; nÞð1� qðmþ1Þr Þ�; i ¼ j ¼ 1

Qað1; nÞ½1� Qrð0; nÞ�ð1� qaÞ; i ¼ j ¼ 0

Qað1; nÞqa; i ¼ 0; j ¼ 1

9=
;k ¼ 1;

ð1� qðmþ1Þr ÞZ þ qrð1� Qrð0; nÞÞQað0; nÞ; i ¼ j ¼ 1

ð1� qaÞZ þ qaQað0; nÞQrð0; nÞ; i ¼ j ¼ 0

qaQað0; nÞ½1� Qrð0; nÞ�; i ¼ 0; j ¼ 1

qðmþ1Þr Qað0; nÞQrð0; nÞ; i ¼ 1; j ¼ 0

9>>>=
>>>;
k ¼ 0;

Qað0; nÞQrð1; nÞð1� qðmþ1Þr Þ; i ¼ j ¼ 1

Qað0; nÞQrð1; nÞð1� qaÞ; i ¼ j ¼ 0

�
k ¼ �1;

0 otherwise;

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:
where Z ¼ ðQað1; nÞQrð0; nÞ þ Qað0; nÞÞ½1� Qrð1; nÞ� and where Qa and Qr are given in (1) and (2),
respectively (with qor replacing qr).

The throughput of user mþ 1 is given by
thpmþ1ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þ ¼ qa
Xm
n¼0

pn;0ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þ: ð4Þ
3. Numerical investigation

In this section we shall obtain the retransmission probabilities which solve the team and the game

problem. We investigate their dependence and the dependence of the throughput that they imply on the
arrival probabilities qa and on the number of mobiles.
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Figs. 1 and 2 provide the total throughput and optimal retransmission probabilities qr for m ¼ 2, m ¼ 10

and m ¼ 50 for the team problem, as a function of the arrival probability qa. We see that in heavy traffic, the

throughput decreases when the number of mobiles increases. Also, we observe that the optimal retrans-

mission policy is more and more small when the arrival probability increases or the number of mobiles

increases: as the system becomes more congested (larger arrival probability or large number of mobiles) the

transmission probability decreases so as to counter expected collisions. But for light traffic, we observe that
the slotted Aloha is very efficient when the number of mobiles is large: in that regime, the optimal

throughput achieved increases as the number of mobile increases.

The intuitive reason that the team optimal retransmission probabilities are close to 0 when arrival

probabilities are close to one is that if a mobile finds all other mobiles backlogged then it can transmit for

very long time all its packets at a rate of a almost one packet per slot, without fearing collisions. Since its

arrival probabilities are close to one, then throughput is not wasted during such periods. (Note however

that a throughput close to 1 cannot be achieved since with some nonnegligible probability, all mobiles will

be backlogged during long periods when retransmission probabilities are very low.) The behavior we see
could remind of CDMA systems in which best performance is sometime achieved by ‘‘time-sharing’’ the

access between users in order to decrease interference [13].

Next, we show in Figs. 3 and 4 the total optimal throughput versus the number of mobiles for some fixed

arrival probabilities (qa ¼ 0:7, 0.8, 0.9). In Fig. 3 we observe that the optimal throughput converges to some

value when the number of mobiles goes to infinity, and convergence is faster when the arrival probability qa
is larger. In fact, for heavy traffic with large number of mobiles, the optimal retransmission probability is

seen to be �. Thus, the steady steady probabilities p are then close to pm ¼ 1=2, pm�1 ¼ 1=2 and pn ¼ 0

8n < m� 1. Hence the total throughput becomes qa=2. If we look of the value of the throughput on the y-
axis of Fig. 3 we observe that the throughput indeed converges to 0:35 (resp. 0:4, 0:45) for qa ¼ 0:7 (resp.

qa ¼ 0:8, qa ¼ 0:9).
Now, we present the results we obtain when we use the game problem. Figs. 5 and 6 show total

throughput at equilibrium (obtained by multiplying the expression in Eq. (4) by the number of mobiles) and

the retransmission probability at equilibrium as a function of the arrival probability for the game scenario.

We see that for game problem, in contrast to team problem, the equilibrium retransmission becomes more

and more aggressive as the arrival probability increases or the number of mobiles increases which explains

the dramatic decrease in the system’s throughput. Moreover, the equilibrium retransmission quickly in-
creases to 1 when the number of mobiles increases. In particular the throughput is zero when m > 5 for each

arrival probability. In conclusion, the game solution is very inefficient for heavy traffic, and even for light

traffic it becomes inefficient when the number of mobiles is larger than five.

We note that a similar aggressive behavior at equilibrium has been observed in [6] in the context of flow

control by several competing users that share a common drop tail buffer. However in that context, the most

aggressive behavior (of transmission at maximum rate) is the ‘‘equilibrium’’ solution for any arrival rate,

and not just at high rates as in our case. We may thus wonder why retransmission probabilities of 1 are not

an equilibrium in our slotted Aloha problem (in the case of light traffic). An intuitive reason could be that if
a mobile deviates and retransmits with probability one, (while other continue to retransmit with the

equilibrium probability q� < 1) the total congestion in the system (i.e. the number of backlogged mobiles)

increases; this provokes more retransmissions from other mobiles which then causes sufficiently more

collisions of packets from the deviating mobile so as to cause a decrease in its throughput.
4. Adding costs for retransmissions

In this section we consider the problem where there is an extra cost h per each transmission and re-

transmission. This can represent the disutility for the consumption of battery energy, which is a scarce
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resource. For a given symmetric q for all users, the steady-state retransmission cost is hq
Pm

n¼0 pnðqÞn, where
as the transmission cost of arriving packets (i.e. packets that enter the system and are not rejected) is

hthpðqÞ. (This is because the expected number of arrival packets equals to the expected number of departing

packets at steady-state, and each time a packet arrives at the system it is immediately transmitted.)

Thus the new team problem is
max
q

thpðqÞð1
(

� hÞ � hq
Xm
n¼0

pnðqÞn
)
:

For the noncooperative problem, the retransmission cost for a symmetric retransmission policy qor of
users 1; . . . ;m and a retransmission probability qðmþ1Þr of user mþ 1 is
hqðmþ1Þr

Xm
n¼0

pn;1ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þ:
User mþ 1 is thus faced with the problem:
max
qmþ1r

Jmþ1ðqor ; qðmþ1Þr Þ
where
Jmþ1ðqor ; qðmþ1Þr Þ ¼ thpmþ1ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þð1� hÞ � hqðmþ1Þr

Xm
n¼0

pn;1ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þ:
Define as we did before
Q
mþ1
r ðqor Þ ¼ argmax

qðmþ1Þr 2½�;1� Jmþ1ð½qor �
�ðmþ1Þ

; qðmþ1Þr Þ
� �

:

Then we seek for the value q�r of retransmission probability that satisfies
q�r 2 Q
mþ1
r ðq�r Þ;
which is the Nash equilibrium for the game problem.
5. Numerical investigation

In this section we obtain the retransmission probabilities which solve the team and the game problems

with the extra transmission costs. We shall investigate the dependence of the solution on the value h.
In Figs. 7–12 we depict the throughput obtained at the optimal solution and the optimal retransmission

probabilities, respectively, as a function of the arrival probability, for the team problem with m ¼ 2, 10, 50,

for various values of h. We see that both the throughput as well as the retransmission probabilities are

monotone decreasing in the cost. This can be expected since retransmissions become more costly with
increasing h. An interesting feature is that for any fixed h 6¼ 0, the retransmission probabilities first increase

in the arrival probability and then decrease. For h ¼ 0, in contrast, the optimal retransmission probability

decreases in the arrival probability (which is natural since congestion in the system increases as qa in-

creases).

Next we consider the game problem with m ¼ 2, 10, 50 mobiles.

Figs. 13–18 show the impact of h on the total throughput and equilibrium retransmission probability qr,
as a function of the arrival qa. We see that increasing the cost h results in decreasing the retransmission

probabilities. Furthermore with extra cost, the equilibrium retransmission is more and more small when the
cost h increases. We see also that indeed the throughput is improved considerably by adding a cost on
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Fig. 12. The optimal retransmission probabilities in the team

case as a function of qa for m ¼ 50 and h ¼ 0, 0.4, 0.7, 0.9.

Fig. 10. The optimal retransmission probabilities in the team

case as a function of qa for m ¼ 10 and h ¼ 0, 0.4, 0.7, 0.9.
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Fig. 13. Total throughput for the game case as a function of the

arrival probabilities qa for m ¼ 2 (number of mobiles) and

h ¼ 0, 0.4, 0.7, 0.9.

Fig. 14. The equilibrium retransmission probabilities in the

game case as function of the arrival probabilities qa for m ¼ 2

(number of mobiles) and h ¼ 0, 0.4, 0.7, 0.9.

Fig. 15. Total throughput for the game case as a function of the

arrival probabilities qa for m ¼ 10 (number of mobiles) and

h ¼ 0, 0.4, 0.7, 0.9.

Fig. 16. The equilibrium retransmission probabilities in the

game case as function of the arrival probabilities qa for m ¼ 10

(number of mobiles) and h ¼ 0, 0.4, 0.7, 0.9.

Fig. 17. Total throughput for the game case as a function of the

arrival probabilities qa for m ¼ 50 (number of mobiles) and

h ¼ 0, 0.4, 0.7, 0.9.

Fig. 18. The equilibrium retransmission probabilities in the

game case as function of the arrival probabilities qa for m ¼ 50

(number of mobiles) and h ¼ 0, 0.4, 0.7, 0.9.
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Fig. 19. The retransmission cost h such that the optimal retransmission in the game coincides with that of the original team problem,

as function of the arrival probabilities qa for m ¼ 2, 10, 50.
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retransmission, especially for large arrival probabilities or for m > 3. However, we believe that these bad

performances of game problem can be potentially be solved by using this extra cost even with large number

of mobiles. We observe also that for different values of qa, we obtain different costs h which gives best

throughput. For example, in Fig. 13, for qa ¼ 0:4, h ¼ 0:4 gives best throughput and for qa ¼ 0:9, h ¼ 0:9
gives best throughput. We then compute the cost h that is necessary for the equilibrium retransmission

probabilities to coincide with those obtained for the team problem. This is the value of h that will yield the

optimal system throughput. The results are presented in Fig. 19 for m ¼ 2, 10 and 50.

From Fig. 19, we see that as the number of mobiles is large (P10), the value of h that gives the team
solution depends less and less on the number of mobiles. This is an appealing property since it suggests that

for a large number of mobiles (mP 10), we may have a pricing choice h that can be chosen in a robust way,

and may perform close to the team case even if the number of mobiles change.
6. Concluding remarks

We have studied three approaches for choosing retransmission probabilities in a slotted Aloha system.
First, we studied the team problem, then the noncooperative game problem. The objective was initially to

maximize the throughput. We saw that as the arrival probabilities increased, the behavior of mobiles be-

came more and more aggressive (as compared to the team problem) which resulted in a global deterioration

of the system throughput. This is in contrast to the team problem in which throughput increased with the

arrival probabilities. We also considered additional costs on transmissions and showed numerically that

pricing could be used to enforce an equilibrium whose throughput corresponds to the team optimal

solution.
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