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The form of (4) is similar to the Youla—Kigera parameterization. .
However, we note that as polynomialsigfthe numerator and the de- R. El Azouzi and E. Altman

nominator of the fraction have constant terms that are not coprime, and
the same is the case for the coefficients of

Abstract—We study noncooperative routing in which each user is
faced with a multicriterion optimization problem, formulated as the
V. CONCLUSION minimization of one criterion subject to constraints on others. We
address the questions of existence and uniqueness of equilibrium. We

All stabilizing controllers of the example given in [1] can be paramshow that equilibria indeed exist but uniqueness may be destroyed due
eterized by only one parameter even though it does not have a copriméhe multicriteria nature of the problem. We obtain unigueness in
factorization. From this result, even in the case where there is no douBfijé Weaker sense under appropriate conditions: we show that the link

coprime factorization, we observe that the controller parameterizatib]

flizations are uniquely determined at equilibrium. We further study
normalized constrained equilibrium and apply it to pricing.

may be in the form of the Youla—Kwera parameterization and that the

number of parameters may be smaller tan+ n)2. Index Terms—Nash equilibria, networking games, pricing, quality of ser-
Based on the result of this note, we need to further investiga\f'(-gfe (QosS), routing.

under what condition the parameterization adopts the form of the

Youla-KuCera parameterization as in (4). Moreover, the minimum I. INTRODUCTION

number of parameters should be explained. So far we know that the

number of parameters is less than or equahitot »)* [4], but we do
not yet have a method of determining the minimum number.

The current Internet routing is based on a single metric, related to
the delay or distance between source and destination. Consequently,
routing algorithms are used to choose routes for packets so as to mini-
mize the number of hops. For real-time traffic, however, an application
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One could try to get rid of the constraints by incorporating them into The performance objective of useis quantified by means of a cost
the main objective cost function: that function would become infiniteunction.J* (f). Useri aims to find a strategf/ that minimizes her/his
when the constraints are violated. Yet except for very special cases #ost. This optimization depends on the routing decisions of the other
will give rise to noncontinuous costs; moreover, the left limit of theisers, described by the strategy profil@, since.J is a function of
cost as we approach the boundary might be finite whereas the vallie system flow configuratiofi, and the constraints (2) are coupled.
at the boundary is infinite. This discontinuity makes the uniquenessDefinition 11.1: (Cost Functions and Nash Equilibrium)Let .J* (f)
results for routing into parallel links from [8] inapplicable here, ande the cost for userwhen the flows of all users are given bye R. A
we present an example that shows that there may be several equilitm@apled Nash equilibrium of the routing game is a strategy profile from

Our first objective is to study the existence and uniqueness of cauhich no user finds it beneficial to unilaterally deviate. Thus, we seek
pled Nash equilibria. We show in a simple example of parallel links thédr a coupled Nash equilibrium (CNE) that is anf € R satisfying
there may be several such equilibria. In the same example, in absence

of side constraints there would be a single equilibrium [8]. We estab- JiE)= min J'(ff) where;
lish existence results for a general topology, obtain a weak uniqueness (i i-Her
result for the parallel link topology, and show that although the equilib- JHETL ey = g, L e e e, (3)

rium may not be unique, the links’ utilization at equilibrium is unique

ynder some C(.)nd'.tlons' Our second object!\{e IS to ;tudy the “Or”?a'We make the following assumptions on the cost functiorior all
ized Nash equilibrium, a subclass of all equilibria which has attractlsterS]. c T

properties for pricing. The uniqueness of this equilibrium notion has P ) ; .

been established in [9] for cases in which constrained Nash equilibrieG1 7' 18 given as the sum of link costd; (fi): J'(f) =
were not unique, under conditions that turn out not to hold in general 2iee Jll(f;)- ) )

in our setting (see [8]). In spite of that, we establish the uniqueness o Ji: [0,00)" — [0, 00) is continuous.

the normalized Nash equilibrium for the case of parallel links, and we Ji is convex inf; andy;. is convex inf;. _
study its properties. We use some properties of this equilibrium to de-G4 /i are continuously differentiable iy andg; are continu-
sign an appealing pricing mechanism that would enforce a unique Nash ZUSW differentiable inf;. We seti; := 9.J;(f)/9fi.1 €
equilibrium. - ) )

The structure of the note is as follows. In the next section we intro- @3 The feasible setof (1) and (2) is nonempty. Moreover, for any
duce the model and assumptions. In Section I11, we establish existence useri and any strategy of the other users, the set of feasible
of coupled Nash equilibrium and normalized equilibrium for general strategies for playercontains a point that is strictly interior
topology and motivate its use for decentralized pricing. In Section 1V, _to every nonlinear constraint. _
we study the uniqueness of equilibria in the parallel link topology. In Functions that comply with the aforementioned assumptions shall be

Section V, we study the uniqueness of normalized Nash equilibriufgferred to asype G functions. _ _ _
and the last section concludes this note. We will use the following set of assumptions (only slightly different

from those in [8, p. 512] for all uselse T).

II. M ODEL A1 AssumptionsG are satisfied, and; depends on the vector

) o f; only through usef’s flow on link { and the total flow on

Consider a network = (', £) where\"is afinite set of nodes and that link. In other words, it can be written (with some abuse
L is a set of links. We consider an extension of directional links (see of notation) as/i (£) = Ji(fi. f1).
[2]) where a link may carry traffic in both directions, but the direction , o i
for each user is fixed. We are given a §et= {1,2,...,1} of users A3
sharing the networki. With each usef, we associate a unique source
s(i) and destinatiod(), and a throughput demand. Let f; denote
the amount of flow that usérsends over link, which is constrained to

be nonnegative, satisfy the flow conservation law, i.e., for each node

J/ is increasing in each of its arguments.
Viewing K} = Kj(fi, f;) now as a function of two argu-
ments, whenevef; is finite, K} (f;, fi).! € £, isincreasing
in each of its two arguments, and strictly increasing in the
first one.
As in [8], we refer to functions that comply with these three assump-
i i i i tions astype-A functions.
fi 20, leo%;y N U lelnz(; 9 fitre @ Remark I1.1: Cost functions used in real networks are either re-

’ ' lated to actual pricing, or they are related to some performance measure
whereOut(v, ) is the set of outgoing links from nodeavailable to such as expected delay. In the first case, a frequently used cost is that
user:, andIn(v. i) is the corresponding set of links in-going to nodeof linear link costs, i.e., for each user/'(f) = 3°, f/Ti(fi) where
vty = 1y = —r' andrl, = 0 forv ¢ {s(i).d(i)}. Further Ti(fi) = aifi +bi [7]. When the costs represent delays they typically
definefy == {fiv....fl3. fri= L, fi. £ = {fi}iec £~ = havethe same form but withi(fi) = (c1 — f1) ™" + di. d: represents

(£, L ET D) f == {fi}iec. We consider a situation the propagation delay related to linkwvhere as the first term represents

where extra side constraints are imposed. These may represent &stgueing delay. This is the delay of an M/M/1 queue operating under

straints on quality of service which may be user dependent, and & first-inputfirst-output regime (packets are served at arrival order;
given by see [8]) or of an M/G/1 queue operating under the processor sharing

regime.c; has the interpretation of the queueing capacity. Other more
gr(f) <0, kek (2) complicated costs can be found in [1].

whereK is a finite index (e.g., formed by subsets Bf\, £), and

gr: RET — R,k € K. Introduce the function: R/*" — R™ to IIl. EXISTENCE OFEQUILIBRIA AND PRICING
describe the constraints (1)-(2), whetéas the number of constraints.
Hence, the allowed strategy will be limited by the requirement that
be selected from a s&, whereR = {f, h(f) < 0}. We will say that If assumptionsG hold, it follows that the minimization in (3) is
‘R is a coupled constraint set. equivalent to the following Kuhn—Tucker conditions: for evérg 7,

A. Characterization of Equilibria and Normalized Nash Equilibria
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there exists a set of (Lagrange multipliefsy., }uen and{5: }rex Theorem IIl.1: Consider the cost function ¢ype G. There exists
such that, for every linku,v) € £ a normalized Nash equilibrium point for every specified veatgr 0
(componentwise) wher@ = (a',a?,...,a").
1 7 8(” (f) . i
uv(f"')'i'ku_A +Z 3k af O 1ffuv >O (4)
kEK IV. CNE IN A PARALLEL LINKS TOPOLOGY
K, (fuw) + Ao\ 4 Z B Og}(f) > (5) In this section, we present an example which shows that uniqueness
kEK uv of the CNE fails despite of conditioA .. We then establish the unique-
Brgr(f) =0, 8l >0, kEeK. (6) ness of the links' utilization in a parallel link topology. For the parallel

links, we impose a quality of service constraint on each link of the form
(2), whereX’ = £ andg, depends on the flows only through total flow
B. Normalized Nash Equilibrium and Pricing on link 7. Hence, the constraints can be writteryas;) < 0. ¢ is as-
Now, we define a subclass of CNE whose corresponding Lagrargjdned to be strictly increasing ja. Hencetlg 1 exists and the above
multipliers have some special properties. constraints becomeﬁ < .di, whered; = g . (0) (positive real). Note
Definition 111.1: The coupled Nash equilibriurh is a normalized that now all constraints in (1) and (2) are linear so that condiBén

Nash equilibrium [9] associated with some veafor- 0 whereg = PeCOmes trivial.

(a',...,a') and wherd is a vector of zeros, if there exist some con- Ex@mple of Nonuniqueness of Nash Equilibriuonsider a net-
stants?, > 0 & € K such that (4)(6) are satisfied where work of two parallel links connecting a common source node to a
common destination node. Link 1 has a capacity constraint of 1 and
,3;; - /3,{/@"?_, kek, ieT. 7 link 2 has capacity constraint of 10. There are two users, each with a

throughput demand' = »? = 1 between source node and destina-
Notice that if a user's weight' is greater than those of his competitorstion. Let.J*,i = 1,2 be the cost function of usérsuch that/*(f) =
then his corresponding Lagrange multipliers are smaller. Zle FiTi(f) whereTy (1) = f1 andTy(f2) = f2 + 10 (Zi is the
The normalized Nash equilibrium can be used in relation to an afink cost”).
pealing pricing scheme in which additional congestion costs are im-One first Nash equilibrium is: For the first usgh = 1, f3 = 0,
posed by the network. Congestion pricing will allow us to relax thér the second usefff = 0, f3 = 1. Anotherone isf{ =0, f3 = 1
original constraintg (f) < 0; yet the resulting equiliorium will have for the first user, and for the second usgf:= 1, f7 = 0. In fact, any
the following three appealing properties. convex combination of the equilibria is also an equilibrium. We note
1) It will be a CNE for the original problem. that the costs we chose aretgpe A and thus in absence of the side
2) Nonzero congestion prices will only be imposed for saturatég@nstraint there would be a single Nash equilibrium [8].
constraints: such constraints represent congestion, and in abIhe same result is obtained if the link costs are replaced
sence of congestion, no congestion cost is imposed. with the M/M/1 type costs plus some constants. For example,
3) The most interesting feature of this pricing is that congestidh (f1) = (2 — f1)~" andTx(f2) = (2 — f1)~' + 10 give the same
costs may be chosen to be user independent. This allows ugndltiple equilibria. ]
imp|ement them in a decentralized way without requesting aUniqUeneSS of the Utilization at Nash EqUIIIbrlun’The fO”OWing
per-flow information. result establishes under some conditions the uniqueness of the total link
More precisely, assume that the utility of usegan be written as flows for a parallel link topology: several parallel links connect two
—J'(f) = (1/a") 32, cx C(f). Ck(f) is a cost function that useris nodes: 1 and 2. ) i R
charged due to congestion related to ifik constraint. Le(3)* be  1heorem IV.1: Consider the cost functions ofpeA. Letf andf
Lagrange multipliers that correspond to a CNE induced by taking ftf two coupled Nash equilibria. Lt} } and{}} be corresponding
(M@ = (a*,...,a'). Let 3; be defined as in (7). We sét;,(f) = Lagrange multipliers. Assume that for each ling £ /5, < 61,Vi e
B - g(fh). With thls cost function we may now consider a competiI or J, > i, Vi € Z. Then, the link utilizations are the same unfler
tive routing problem in which we ignore constraints (2). The obtaine%f‘df
equilibrium is a CNE for the original constrained model, and the com-  Proof: Letf andf be two CNEs. Then, we have from (4)
plementary slackness conditions imply that at the normalized equilib-

rium, no user actually pays any congestion cost. Under various condi- Ky (ffi fl) +4i >N\ K| (ffi fl) +oi=X

tions, there is a unique Nash Equilibrium [8] to the pricing game (where >0 (8)
. . 1

constraints (2) are removed) and the corresponding Kuhn—Tucker con- PP Y i s PO

ditions obviously coincide with our original ones. We conclude that a Ki(fi.fo+5i 2 X% Kilfi, fo+0i = >‘N

simple pricing can replace the quality of service (QoS) constraints and ifff >0 (9)

yet force users to choose a CNE (so the constraints still hold). Since the , ,

pricing does not depend on the user (except for a multiplicative constaitere\’ represents\;;, — /\d( y» ands(i), d(i) € {1,2}. We begin

«; which can be chosen to be the same for all users), the charging tasshow the following relations:

be performed in a distributed way without need for per flow informa- ) {/Ql' < ,51' fi > £} = fi = f moreover ifA' > A then

tion. The existence of an equilibrium induced by such a pricing is, thus, f, > fi and the last inequality is strict it >0;

equivalent to the existence of a normalized Nash equilibrium. ii) {51 /31 fi < i} = fi = f, moreover ifA* > A then

f, < f, and the Iastlnequality is strlctyf, > 0;
C. Existence of Equilibria i) {>\ <\ /31 > 51 f, > fi} = fz < fzy

AssumptionG5 is a sufficient condition for the Kuhn—Tucker con- V) (N> NLUB < BL A< Y= > S
straint qualification [4]. Hence, the routing game (3) using the co¥¥e will show only i) and iii), since ii) and iv) are symmetric. Assume
functions oftype G is equivalent to a convex game in the sense of [ghatj; < 3; andf; > f;. Note that the last inequality implies that
and, thus the existence of a CNE as well as a normalized equilibrium
is guaranteed [9, Th. 1]. a(f) > a(f). (10)
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In other words, since?,i < (i then from (6),9:(f1) = 0 and from Theorem V.1:In a network of parallel links where the cost function
() qi(f1) < 0, thusgi(f1) > gi(f1), it follows by (10) thatg;(f;) = of each user is ofype A, the normalized Nash equilibrium for every
gi(f1) and fi = fi. Moreover if A > X’ then (i) holds trivially if ~specified® > 0 is unique.

fi = 0. Otherwise, iff{ > 0, then (8) and (9) together with our Proof: Assume that for som& > 0 we have two normalized

assumptions imply that equilibrium points andf. Then, we have from (4), forali,l) € Ix L
i (fi5)+0i =N <X < Ki (fi. 1) o Ki (£ F1) + 52 a' X'

+ i < Ki (fif) + 51 o'Ki (i f)+ 5 =a'X, i fi >0
where the last inequality follows from the monotonicity &F in its o' K; (flia fl) + 502 a'AG

second argument antf < 4;. ThusK; (f{. fi) < Ki(f{. f). Now,

sincel{; is nondecreasing in its first argument, this implies tfat>

fi. This establishes I)'n s ) By contradiction, assume that there exidts i) € L x 7 such that
Now, we assume that' < A", 3 _Zi"jl andf; > fi. Note that iii) i, # fi, and without loss of generality assume tfigt < f;, . Hence,

holds trivially if f/ = 0. Otherwise, iff; > 0, then (8) and (9) together ia |ast equations with our assumptions imply that

with our assumptions imply that

i (fi fi)+ 8 =\ <X < Ki (5i. 1)
+0i < Ki (£, £0) + 5.

o Ki (fifi)+Bi=a'X, i fi >0,

0N = 'Ky (Fiys o) + B > o' Ky (Figs fro) +
> a'N + By = By (11)

SinceY . fi = Y. fi = r', then there exist a link € £ such
where the last inequality follows from the monotonicity &f inits thatf/, > f/,. Similarly, we have

second argument antf < 4;. ThusKj (f{. fi) < Ki(f{. f). Now, i i (s s P i (i P
sincer is nondecreasing in its first argument, this implies thax @A =a' Ky, (flwfh) + 01, > o' Ky, (flu fll) + 6
fi, and iii) is established. >a' N+ 4, -5, 12)

Let£, = {I: fi > fi}. Also, denotel; = {i: \' > X'}, Lo = R R R
{t: fi < f i < BiYyandCls = {I: fi < fi;8{ > Bi}. We observe Summing (11) and (12), we gé, — 31, > Bi, — Bi,. Sincefi, =
thatL = £, U £y U L3. Assume that’, # 0, it follows by iv) that  f;, and f/, > f/,, then there exists a usgr€ 7 such thatf/ <

fori € 7, f,"l. By the same procedure we show that there eXists £ such
N Py that 3, — Bi, > Bi, — By, . Proceeding inductively, we construct a
Z fi=r - Z fi - Z fi monotonically increasing sequengsg, )»en Wherey, = 81, — 31,,,
lely €Ly €L

, ) N , L we have a contradiction since the set of links is finite. We therefore

S ==Y RS A+ (f," - f,’). conclude thaf = f. n
€L, lELs lec, €Ly

. o . . o B. Properties of the Normalized Nash Equilibrium

Noting that i) implies tha{l € £:/3; < 3;} = 0, hence, iii) implies

thatfi < fi forl € £, andi ¢ 7, it follows that We will now investigate the dependence of the normalized equilib-

rium point on the value of vectat. We will show that in a certain sense

SNa=> >3 f+> > 1 the equilibrium value off* is a monotone decreasing functioncdf
€L, I€L €T, 1€L, i@ T, Theorem V.2: Consider the cost function of typ&-and two weights
< iy P 4 i @ and¥ such that’ = +/, j # i, anda@” > o' for somei. Letf and
= zezcl 76211 hi IEZES ,ezzl (f’ f’) lezﬁl LeZIl f f, with £ # f be the corresponding unique normalized Nash equilibria.
Then, the directional derivative df along the rayf' —f') is negative.
= Z fit Z Z (fl - fl) Proof: By using the Kuhn—Tucker conditions corresponding to
lely (Sarchs o the normalized equilibriunfi, we have
= fi+ (fii—fo) - fi = fi v N o o
,ezf.:l 1621;3 ,ezga ; (= #) (o = K] (f. 1)+ 7KL (f0) + 80> 0N (19)
< (o) = VK] (F.51) + 5 K] (£, 51) + 00= 2V
lecy

) if f/ >0. (14)
The last inequality follows from ii), since fdre L3, fi = f; and for o .. . )
leLsandi ¢ T, ff > fi. Multiplying by (f/ — £{), we obtain
The inequality (11) obviously our definition af;, which implies I N AN N, P Fi i\ i
that £, is an empty set. By symmetry, it may also be concluded thgfty -7) (f‘ — /i ) i (f‘ ’f’) *7 (f‘ — i ) i
the set{li fi < fi} is empty. Thus, has been established tiat= % (-fijﬂ fl) 4 (flz _ -fij) B> al (]:lz _ f/) N, (15)
fi,vle L. |
Indeed, (15) holds trivially itf,j > 0. OtherwiseLviff," = 0, then
V. NORMALIZED NASH EQUILIBRIUM (fi — fi) is nonnegative and by multiplying (14) by — f/ we obtain
(15). Now, multiplying the Kuhn—Tucker conditions corresponding to

_ _ _ _ the normalized equilibriun by (f/ — f;), we obtain similarly
The following result establishes the uniqueness of normalized Nash

equilibrium for every giver& > 0. We note that the normalized Nash-~’ (f,J - f{) K (ﬁ,f,) + (f,J - f/) B
equilibria for a specifiedt > 0 complies with the conditions of the N -
last theorem. Thus, we have the following. >~ (ff - ff) N, (16)

A. Uniqueness of the Normalized Nash Equilibrium
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Summing (15) and (16), we now get

(o =49 (7 = 1) 2 (57, 5)
+ (7= 5) (57 (5. 5) - K7 (5.1))
+(f = 1) =50 > (F = #) (@ N =4V,

SinceI{{ is strictly increasing in the first argument, then (17) yields

(o’ —+7) (f," — fz") K (f,:’v fl) + (f;” - fz]) (B = 1)
> (f =) @N =¥ an

Recall thaty", . (f/ — f{) = v’ — v/ = 0. Thus, by summing up
overj € Z and overl € L, we obtain

S =) (7 - 1) K (12 5)

je€T leL

+3 (= B =By > 0. (18)

lel

Moreover, if fi > fi(resp fi < fi) thenf; > fi(resp B < 1),

it follows that the second term of (18) is nonpositive, hence, we have[4]

Z,’GI Zleﬁ.‘(a’j - '}j)(flj - flj)KlJ(flJ fi) > 0. Sincea’ =+ for
Jj #ianda' < «', the last inequality yields

(19)

S (fi - fi) Ki (fi.5) <o

lel

This is exactly the directional derivative #f along the rayf' — ). m

An interpretation of Theorem V.2 is obtained|fif’ — f*|| is suffi-
ciently small, then it follows from (19) thal>,. . Ji (f/, fi + fi —
1) < J*(f) and sinceJ* is continuous then foff* — £*|| sufficiently
small we havel’ (f) < J'(f).

In the sequel, we assume throughout that the costs angefA,
and that furthermorehe cost functions and weights of all users are th
samei.e., K} = K; ando’ = «, Vi € T wherea is positive real. For
simplicity of notation and without loss of generality, we assume th
a = 1.

Lemma \/.1:Assume thap"{ > flf holds for some link and users
¢ andj. Thenf > f/ foralll € £; moreover, the last inequality is
strict if £/ > 0.

Proof: Choose an arbitrary link If f/' = 0 then the implication
is trivial. Otherwise, iff{ > 0. From the Kuhn—Tucker conditions, we
have that’ = 3+ Ki(f/. fi) < %+ Ky(f}, ;) and, sincef; > f/
implies f; > 0,thenwe have' = 5;+ K;(f;, f;) < A+Ki(fi, f1)-
Thus, we havel +Ki(f7, fi) < B+ Ki(f] . fi) < ,81+Ix’i(f{, fi) <
o+ Kifi ), e, Ka(ff fi) < Ka(ff, fi) which implies ! <
fi u

Theorem V.3: Consider the identicaype A cost functions. Assume
thatr' > 7. Thenf; > f/ foralllink I € £ and we have strict
inequality of all links used by usérMoreover, ifr' = r/ thenf; = £/
foralll € L.

Proof: Follows directly from Lemma V.1. [ ]
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VI. CONCLUDING COMMENTS

We have considered in this note Nash equilibria arising in networks
with additional side constraints (CNEs). We have first shown that the
extra constraints may cause multiple equilibria in scenarios in which
a single equilibrium would exist in their absence. We then advocated
the use of the more refined equilibrium concept of normalized Nash
equilibrium and showed its usefulness for simple pricing mechanisms.
We further showed that it is unique in the parallel link topology.

The Normalized equilibrium is related to some parametéisf user
i. Suppose that thé’ represent some performance measure, say the
delay. If we go back to the pricing interpretation of the normalized Nash
equilibrium, we conclude that we can differentiate users by incorpo-
rating differentx’s in the congestion pricing scheme; by changirig
user; can receive smaller delays at equilibrium. Some insight on how
the change of¢' influences the performance follows from Theorem
V.2 (for the case of parallel links). The'’s are chosen by the network
provider and could be related to different grades of service offered to
users.

In the future, we plan to extend our results to more complex topolo-
gies and other forms of constraints.
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