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Hop Client-Side Compilation
Florian Loitsch1, Manuel Serrano1

Abstract: Hop is a new language for programming interactive Web applications.
It aims to replace HTML, JavaScript, and server-side scripting languages (such as
PHP, JSP) with a unique language that is used for client-side interactions and
server-side computations. A Hop execution platform is made of two compilers:
one that compiles the code executed by the server, and one that compiles the code
executed by the client. This paper presents the latter.
In order to ensure compatibility of Hop graphical user interfaces with popular
plain Web browsers, the client-side Hop compiler has to generate regular HTML
and JavaScript code. The generated code runs roughly at the same speed as hand-
written code. Since the Hop language is built on top of the Scheme program-
ming language, compiling Hop to JavaScript is nearly equivalent to compiling
Scheme to JavaScript. SCM2JS, the compiler we have designed, supports the
whole Scheme core language. In particular, it features proper tail recursion. How-
ever complete proper tail recursion may slow down the generated code. Despite
an optimization which eliminates up to 40% of instrumentation for tail call in-
tensive benchmarks, worst case programs were more than two times slower. As
a result Hop only uses a weaker form of tail-call optimization which simplifies
recursive tail-calls to while-loops.
The techniques presented in this paper can be applied to most strict functional
languages such as ML and Lisp.
SCM2JS can be downloaded at http://www-sop.inria.fr/mimosa/person-
nel/Florian.Loitsch/scheme2js/. It is also distributed along with Hop
which can be found at http://hop.inria.fr.

1Inria Sophia Antipolis, 2004 route des Lucioles - BP93, F-06902 Sophia Antipolis,
Cedex, France; Email: {florian.loitsch, manuel.serrano}@inria.fr
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1.1 INTRODUCTION

Hop [10] is a new functional language designed for programming Web 2.0 appli-
cations. It is tuned for programming interactive graphical user interfaces for the
Web. A Hop application executes simultaneously on two computers: one for com-
puting the logic of the application, which we refer to as the server or broker (con-
forming to existing practice [8]) and one for running the graphical user interface,
which is henceforth denoted as the client. The Hop execution model is distributed
but a Hop program is made of one unique source code. Inside that code, a syntac-
tic construction introduces server code, another one specifies client code. Com-
piling a Hop program involves two different compilation processes. The server
code is compiled to native code by a compiler that has already been described
in various papers [9, 7]. The client code is compiled to JavaScript which is the
imposed language for programming graphical user interfaces on the Web. Indeed,
JavaScript is the only language that is supported by all major Web-browsers. Hop
is an extension to the Scheme programming language [4] and this compilation is
therefore mostly equivalent to a Scheme-to-JavaScript translation.

1.1.1 Main Contributions

From a practical point of view the main contribution of this work is the creation of
SCM2JS, a fully functional efficient Scheme-to-JavaScript compiler. According
to our observations, the Scheme compliant version with proper tail-recursion gen-
erates code that is at most 2.5 times slower than hand-written JavaScript code, but
with incomplete (but usually sufficient) support for tail-recursion the compiled
code is on par with hand-written code. The latter compilation mode is used in
Hop and hence suitable for daily work.
From a technical point of view we suggest improvements to existing tail call tech-
niques. Proper tail recursion does not exist in JavaScript and must hence be coded
by hand. We advertise the use of JavaScript’s this-keyword to adapt existing
trampoline techniques so they become compatible with existing JavaScript code
(Section 1.5.1). We also propose an optimization to the tail recursion mechanism
that allowed us to remove 40% of the tail call instrumentation in some benchmarks
(Section 1.5.2).

1.1.2 Organization of the paper

We start by giving an overview of Hop in Section 1.2. Section 1.3 then shows how
SCM2JS compiles Scheme’s core language to JavaScript. In Section 1.4 we dis-
cuss function compilation. This specifically includes our while transformation
for recursive loop functions. This transformation always improves performance.
The compilation of the remaining tail calls is presented in Section 1.5. This trans-
formation has no impact on most benchmarks but, in the worst case, can slow
down the execution by more than a factor of 2. Section 1.6 shows the results of
our benchmarks. Related work is discussed in Section 1.7. We finally conclude
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this paper in Section 1.8.
Our compiler supports first-class continuations, but their compilation is too com-
plex and extensive to fit into this paper and will be the subject of another publica-
tion.

1.2 HOP

In this section we briefly present the Hop programming language by an exam-
ple (Section 1.2.1). A more thorough description and a discussion of its virtues
compared to other Web-programming languages can be found in [10]. Once Hop
has been introduced, we can then enumerate the main characteristics of the client
code compilation (Section 1.2.2).

1.2.1 Hop at a glance

The Hop server associates URLs to programs. Hence, in order to start a Hop
program one has to direct his Web browser to one of these URLs. This starts
the execution of the program on the server. In general, web based programs are
event-based, and implement the following pattern: the program is started and it
elaborates a response which is sent to the client. That response is usually made of
a data structure implementing an HTML element representing the graphical user
interface. Once the client has received its graphical user interface it interacts with
the user and, when necessary, invokes other services on the server.
The code snippet in Figure 1.1 shows a small Hop program that mimics the famous
Google suggest application: given the first characters of the entered search term
popular completions are proposed.

1: (let ((def (<DIV> ""))
2: (svc (service (w)
3: (<P> (sql-exec db
4: "SELECT * FROM dict WHERE (prefix=˜a)" w)))))
5: (<HTML> (<INPUT> :onkeyup
6: ˜(innerHTML-set! $def ($svc this.value)))
7: "The definitions are:" def))

FIGURE 1.1: Google suggest written in Hop.

When this program is invoked the server will start creating an HTML-page as
response. This page (starting at line 5) contains a <DIV> area (bound to the
variable def) and a text field, which will react on onkeyup-events. During
this elaboration stage the callback functions is compiled to JavaScript, and the
complete page is then sent to the client. There, a change to the input-field triggers
the callback, which updates the def-element. The update happens in two steps.
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First the service2 svc of line 2 is called with the input-field’s value (accessible
through this.value), and, as second step, the visible text of def is replaced
by the result returned by the server ((innerHTML-set! $def ...)). The
function svc executes a database query to find all words that with the given prefix.
Note that (except for the database query) both server and client are written in (ex-
tended) Scheme, and that switching from one to the other can be done using only
one character. Client code is introduced by a ˜ (tilde) and one can escape back to
server-code using $. This construct strongly resembles Scheme’s quasiquotes in
that $ escaped expressions are already evaluated during construction before send-
ing the page to the client. During that elaboration stage the reference to def is
transformed to JavaScript code retrieving the div, and the service is transformed
into a server call. The example in Figure 1.2 further demonstrates this property.

1: (let* ((x 0)
2: (svc (service () (set! x 1))))
3: (<HTML>
4: (<BUTTON> :onclick ˜(begin ($svc) (alert $x)))))

FIGURE 1.2: The service-call will not change the transmitted x-value.

Since the elaboration of this site has replaced x with its actual value 0, the modi-
fication in the service has no effect on the client side and the alert shows 0. Even
though the service-call in line 4 modifies the variable x the program will alert
0. During elaboration of the site, (alert $x) had already been replaced by
(alert 0) and the modification in the service is not transmitted to the client
anymore.
One should note that while server code and client code are expressed in the same
language they are intended for different purposes. The server code can access all
resources of the server computer. In particular, it can access the file system, the
network interfaces, or it can execute long lasting CPU intensive computations.
However, it is not knowledgeable of any characteristics of the graphical user in-
terface that are only known to the client code. The client code, on the other hand,
knows everything about the graphical user interface but, for security reasons, has
no access to other resources. This dichotomy between server code and client code
is reflected by two different APIs that are available to the server and to the client.
In conclusion: (i) Hop is a functional language built on top of the Scheme pro-
gramming language with which it shares most of its syntax. (ii) Server code and
client code are expressed in the same language. (iii) The tilde sign ˜ introduces
client code and the dollar sign $ inside client code escapes back to server code.
(iv) A service is a function defined on the server (Figure 1.1, line 2) that can be
invoked from the client (Figure 1.1, line 6). (v) Finally service invocations in-

2The service form creates a function that can be invoked by both client and server
code, but executes always on the server.
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volve transmitting and receiving complex values that can be any compound data
structure.

1.2.2 Compiling Hop client code: the SCM2JS compiler

1: (define (server-info)
2: (string-append (host-name) " " (date)))
3: (<HTML> (<BUTTON> :onclick ˜(f $(server-info)))
4: (<SCRIPT> ˜(define (f val) (alert val))))

FIGURE 1.3: Hop program example.

We have developed a compiler, named SCM2JS, which was needed to compile
Hop client code to JavaScript. Hop server code is compiled by another compiler
and in Figure 1.3 only the expressions starting with ˜ in line 3 and line 4 are hence
of interest. Hop extracts these lines and sends the list of expression to SCM2JS.
As can be seen, Hop client side code resembles Scheme. In fact Hop client code
is a superset of IEEE Scheme [4] with one exception: it does not support exact
arithmetic. Most Hop extensions consist of additional library functions or new
syntactic forms that are macro-expanded before the compilation takes place. The
example however demonstrates some additional difficulties: SCM2JS has to deal
with server objects (the call to the server, $(server-info), is server-code
and has to be treated as a black box), out-of-order compilation (the function f is
defined in a line following the first use of f), and the use of dynamically bound
variables (like alert).
When compiling Hop client code SCM2JS allows unbound variables, and both
symbol-related difficulties are hence avoided. Server objects are straightforward
to implement and, these requirements dealt with, Hop client-side compilation is
mostly equivalent to a Scheme-to-JavaScript compilation. In consequence, all
the techniques presented in this paper would equally apply to a pure Scheme-to-
JavaScript compiler. By extension, most of the material presented here could also
be useful for compiling other strict functional languages (e.g., ML) to JavaScript.
In the rest of this paper we will indiscriminately use the terms “Hop client code”
or “Scheme” for denoting the input language of SCM2JS.
Hop client code compilation has to fulfill two requirements:

• CPU intensive parts of Hop programs are executed on servers. However, in
order to let GUIs be as reactive as possible it is important to make the Hop
client code as efficient as possible. We consider of prime importance to guar-
antee that Hop imposes no performance penalty in comparison with traditional
Web development kits whose client code is implemented in JavaScript. That
is, the performance of compiled Hop client code must be on par with equiv-
alent handwritten JavaScript code. We consider performance as a potential
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issue even though we have noticed tremendous differences of performance
depending on the hardware architecture and the JavaScript interpreter used for
testing. For instance, we have found that, under similar conditions, Firefox
executed our benchmarks nearly ten times faster than Safari. Safari is nev-
ertheless a popular browser which tends to demonstrate that most users are
not paying much attention to performance. Developers, on the other hand, are
more concerned with performance, and noticeable slower client side code is
not acceptable.

• Scheme and JavaScript must be tightly integrated. That is, all global bindings
should be easily accessible from both languages, and data structures must be
usable indifferently in both languages. Function calls should always have the
same syntax, independently of where the targets are.

1.3 CORE COMPILATION

This section introduces the compilation of the Scheme core language. Function
compilation and proper tail call handling are discussed in Sections 1.4 and 1.5.
JavaScript has been inspired by Scheme, and both languages are hence similar in
many respects. Like Scheme, JavaScript treats functions as first class citizens and
uses automatic memory management. SCM2JS is hence freed from the burden of
implementing closures or a garbage collector. Moreover, many Scheme constructs
(in particular closures) can be naturally mapped to semantically equivalent Java-
Script counterparts. Most transformations are as simple as transforming an array
to a list. Variable argument functions, for instance, use arrays to pass the variables
in JavaScript, but expects lists in Scheme. A compiled variable argument function
simply copies the members of the given array into a list.
Despite the similarities, compiling Scheme to JavaScript can not be accomplished
by a mere source-to-source transformation. Peculiar JavaScript scoping rules3 and
the demand for optimizations require the construction of a true abstract syntax
tree.
JavaScript and Scheme do not share the same data types, either. JavaScript, for
instance, does not have any list data type, so SCM2JS compiles Scheme lists to
instances of a new class sc_Pair which is part of the SCM2JS runtime system.
In fact only Scheme’s booleans, procedures and numbers (to a certain extent4)
are semantically compatible with their respective counterparts in JavaScript. The
remaining types either behave differently or do not have any corresponding Java-
Script type:

• JavaScript strings are, contrary to Scheme strings, immutable. This restric-
tion is not very limiting and users often prefer the ease of interfacing with

3A variable declaration inside a function is valid for the whole function. This is true,
even, when the declaration is after the first use. As a consequence it is not possible to
create cheap scopes inside functions.

4JavaScript numbers are floating point only. Scheme usually offers exact numbers
(integers) too.
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JavaScript over a truly Scheme-conformant string implementation. Depend-
ing on a compiler flag SCM2JS can either directly compile Scheme strings
to JavaScript strings (thereby simplifying the interface between JavaScript
and Scheme code), or translate Scheme strings to JavaScript objects of class
sc_String. Instances of this class represent mutable strings by holding one
of JavaScript’s immutable strings and transparently replacing it when neces-
sary.

• Symbols are mapped to JavaScript strings. If SCM2JS is configured for muta-
ble strings, then JavaScript strings are unused and hence free to use as symbols
(which are also immutable). Otherwise Scheme strings and symbols are both
compiled to JavaScript strings, and symbols are prefixed by a special unused
Unicode character in order to distinguish them from strings.

• Pairs and characters are both compiled to JavaScript objects (respectively of
class sc_Pair and sc_Char). The empty list is represented by null.

• Vectors are mapped to JavaScript Arrays.5

Due to the high level of JavaScript many standard optimizations are difficult to im-
plement within SCM2JS. It is for instance not easy to take advantage of a typing
pass. JavaScript itself is dynamically typed and does not offer any means to an-
notate variables with typing information. The lack of a goto statement too, rules
out other common optimizations [5]. On the other hand, the optimizations that are
still applicable can have a big impact on performance. For instance, our inlining
pass (modeled after [7]) was able to cut the execution time of some benchmarks
in half. Inlining library functions (like +, -, etc.) proved to be even more impor-
tant. Our benchmarks were up to 25 times faster with this optimization enabled.
Other optimizations include hoisting of constant assignments (especially function
creations) or constant propagation.

1.4 FUNCTION COMPILATION

Scheme procedures and JavaScript functions are very similar and a naive com-
pilation would be straightforward. Scheme, however, makes more extensive use
of procedures than JavaScript. In particular, it promotes the use of tail-recursive
functions as loops. Using recursive tail calls as loops is only possible if they
do not consume any stack (called “proper tail recursion”). Currently all impor-
tant JavaScript interpreters are known not to perform tail call optimization. They
abort after a predefined maximum function call depth and SCM2JS hence needs
to handle tail calls by itself. A loop optimization pass transforms most recursive
tail calls into loops. It is presented in the remainder of this Section. An optional
transformation (Section 1.5) limits the call stack size for the remaining tail calls.

5Despite being called “Array”, this data-type is an object and consists, like all
JavaScript objects, of a hashtable.
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In Scheme nearly all loops are implemented as recursive tail calls. Figure 1.4a
demonstrates an example program with a common loop pattern. Parts enclosed
into < and > are not important for our discussion and may represent any valid
Scheme expression.

(let loop ((x 0)
(y 0))

(if <test>
<body1>
(begin

<body2>
(loop
(* x 2)
(+ x 1)))))

(a) a common Scheme loop
pattern.

var x = 0, y = 0;
while (true) {
if (<test>) {

<body1>;
} else {

<body2>;
var tmp = x;
x = x * 2;
y = tmp + 1;
continue;

}
break;

}

(b) unoptimized

var x = 0, y = 0;
while (!<test>) {

<body2>;
y = x + 1;
x = x * 2;

}
<body1>;

(c) optimized

FIGURE 1.4: Unoptimized and optimized while compilation of a common
Scheme loop pattern.

Whenever SCM2JS encounters a tail call to the surrounding function it compiles
this pattern into a while loop as in figure 1.4b and c. Note that the optimized ver-
sion reorders the loop-variable assignment to avoid the temporary variable (which
is compliant to Scheme’s specification).
Such naive source-to-source translations are only sufficient as long as loop vari-
ables are not captured or not mutated. As the transformation reuses loop variables
during each iteration explicit closure handling becomes necessary. For instance,
in the following code the variable x is captured by an anonymous function at each
iteration:

(let loop ((x 1))
(store! (lambda () x))
(set! x (* x 2))
(loop (+ x 1)))

As the previous transformation hoists loop variables outside the loop, all anony-
mous functions would now share the same x.
In JavaScript, locally declared variables are visible within the whole function
body as if they had been declared at the beginning of the function. The decla-
ration of a new variable within the while body would hence deliver the same
result.
SCM2JS solves the problem by pushing a new frame on the call stack (thus creat-
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1: var x = 1;
2: while (true) {
3: var stor = new Object();
4: stor.x = x;
5: store(function(stor_) {
6: return function() {
7: return stor_.x;
8: };
9: }(stor));
10: stor.x *= 2;
11: x = stor.x + 1;
12: }

var x = 1;
while (true) {
var stor = new Object();
stor.x = x;
with(stor) {
var tmp_fun =
function() {return x;};
x *= 2;
store(tmp_fun);

}
x = stor.x + 1;

}

FIGURE 1.5: Explicit closure allocation with anonymous functions on the left
and with on the right.

ing an artificial scope). This can be accomplished by either invoking a function,
or by pushing an object onto the stack (using the JavaScript with statement).
Both techniques are implemented in SCM2JS (they can be selected with a com-
piler flag). Figure 1.5 shows the result of both approaches. An object is allocated
in line 3, which will hold the captured variables. In line 5 the storage object
is pushed onto the stack. In the first case an anonymous function is executed.
The parameter stor is thereby copied and the capturing function (created in line
6) hence captures a local stor_-object. In the second case JavaScript’s with
statement pushes the stor object on the stack itself. The fields contained within
stor consequently become local variables for the enclosed statements. The cap-
turing function saves the stack during its creation and hence holds a reference to
the pushed object. In both approaches the use of x in line 7 references now a
different x for each generated function.
The impact on the performance is largely dependent on the source-program and
the target browser. Some artificial benchmarks (executed under the same condi-
tions as our other benchmarks in Section 1.6) revealed that under Firefox a very
short loop, like in our example, is the worst case and is respectively 17 (with
technique) and 28 (anonymous function technique) times slower than the same
version without explicit closure handling. Under Opera and Konqueror the im-
pact is less noticeable (about 3 times slower for with and 4-6 times slower with
anonymous functions). However, this programming pattern is rare enough not to
impact the performance of most programs (and none of our benchmarks).

1.5 TAIL CALLS

It is well known that tail calls [2] can be implemented without stack consumption
when the execution platform supports goto. In the example of Figure 1.6 the
calls at line 3, and 7 are both tail calls and could be implemented with a goto if
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compiled to assembly.

1: function even(x) {
2: if (x === 0) return true;
3: else return odd(x-1);
4: }
5: function odd(x) {
6: if (x === 0) return false;
7: else return even(x-1);
8: }
9: is2even = even(2);

FIGURE 1.6: A simple tail call intensive program.

In languages without goto, such as JavaScript, most6 tail calls can be trans-
formed into while loops (as in Section 1.4). Our example shows that this is not
always possible and there exist two other popular techniques to achieve proper tail
recursion for the remaining tail calls. The first technique, due to Henri Baker [1],
requires the program to be transformed into Continuation Passing Style (hence-
forth CPS) first. Function invocations allocate frames on the stack which are used
as the first generation of a generational garbage collector. Whenever the stack
reaches the stack limit a garbage collection is performed, and the program restarts
with an empty stack. CPS however is expensive in JavaScript and we therefore
used the second technique, trampolines[11], in our compiler.
In the rest of this section we briefly present a naive version of trampolines. Section
1.5.1 discusses a more efficient version of trampolines developed for the Funnel
compiler [6] and our modification to make this technique compatible with native
JavaScript calls. Section 1.5.2 then presents our tail call optimization.
Trampolines avoid tail calls by passing the target of tail calls to the caller waiting
for the result of the currently running function. It is then the caller’s task to in-
voke the received function (which itself could return another trampoline closure).
The code in Figure 1.7 presents a trampoline version of the previous even/odd
example. The omitted odd function would be similar to the even function.
At each tail call a new closure is allocated and returned (line 3). The caller in line 5
then needs to restart potential trampoline-closures. In this basic form trampolines
are expensive. Each tail call needs to create a closure and non tail calls have to
test for trampoline closures within a while loop.

1.5.1 Efficient trampolines

A more efficient version of trampolines has been proposed by the authors of the
Funnel-to-Java compiler [6]. They trade space for speed: instead of returning

6Except for even/odd and ewal all other benchmarks were tail-call free after the
while transformation.
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1: function even(x) {
2: if (x === 0) return true;
3: else return new Trampoline(odd, x-1);
4: }
5: res_or_tramp = even(2);
6: while (res_or_tramp instanceof Trampoline)
7: res_or_tramp = res_or_tramp.restart();
8: is2even = res_or_tramp;

FIGURE 1.7: Even/Odd with trampolines.

after each tail call, a constant number c of consecutive tail calls are allowed.
Once this limit is reached a special exception (which we will call “tail-exception”)
containing a trampoline for the not-yet executed call is returned. After the c
frames have been popped the counter is reset to zero and the trampoline closure is
invoked. If the limit is not reached (either the function returns or reaches a non tail
call), then the execution continues normally without removing the frames. Setting
c to 1 is hence equivalent to the naive trampoline technique. A higher value yields
faster programs, but consumes more memory. According to their experiments a
value of 40 seemed to be a good compromise.
SCM2JS’s tail call handling resembles this technique in that it allows more than
one consecutive tail call. Our implementation differs in the way the call counter
is passed to functions. When the counter is passed as supplementary parameter it
breaks the call convention, and interfacing with existing code becomes difficult.
The naive use of global variables has its problems too: library functions do not
modify the global variables, and instrumented functions would wrongly ignore
them. Take for instance the code in Figure 1.8, where lib_f is a library function
that comes from an existing JavaScript library and tail_f is an instrumented
function that might throw a tail-exception.

1: function lib_f(f) {
2: f(); // non-tail call
3: remaining_code;
4: }
5: function tail_f() {
6: /* tail-calls other tail-calling functions */
7: /* and will eventually reach the tail-limit. */
8: }
9: lib_f(tail_f);

FIGURE 1.8: Library-function calling a tail-calling function.

lib_f does not modify the global variables, and tail_f has hence no idea of
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the existence of the remaining continuation on the stack (the remaining_code
of lib_f). tail_fwill tail-call another tail-calling function, and execution will
eventually reach the imposed limit c. At this moment a tail-exception is thrown.
lib_f however does not know how to handle this exception and will simply
ignore it. The continuation of lib_f is lost.
SCM2JS has adopted a solution to this problem that relies on JavaScript’s method
invocation protocol. JavaScript does not make any distinction between functions
and methods. Any function can be used as method (as in obj.f()) or as a
function (f()). In the first case the function f is a member of the object obj and
executed as method. In the latter case f is simply invoked as function. Whenever
a function is invoked as method, the keyword this points to the object as part of
which it was executed (in our example obj). If a function is executed as simple
function (and not method), then this points to the global object which contains
all global variables.
Generally the this object is unused in functions that are not invoked as methods.
SCM2JS therefore can use it as a container for the counter value. The call target is
stored as a field in a unique object TAIL_OBJECT and then executed as a method
call. The field calls of TAIL_OBJECT represents the tail-call counter c.
The (simplified) code in Figure 1.9 presents our technique on the transformed
version of the previous example. At the beginning of the function the counter
variable sc_tailCalls is initialized with the tail call counter stored in the tail
object. The important data of the tail-object is thus saved, and the tail-object is
free to be reused for other tail-calls.
For each tail call, the function first tests if it was called as tail call (line 6). If
the test succeeds, another test (line 7) determines if MAX_TAIL_CALLS (our c)
consecutive tail calls have been executed. If the limit has been reached a tram-
poline has to be returned (line 8). If the limit has not yet been reached then the
counter is incremented (line 10), and the target is called as method (line 12). No
type check is necessary as the result would be returned verbatim indifferently of
its type. If the procedure was not called as target of a tail call (line 14), then it
resets the counter to 1 and handles potential trampoline closures. The result of
the tail call (line 17) is tested (line 18), and according to the result either restarted
or simply returned. The restart method of the trampoline is responsible for
restarting any potential further trampoline closures.
As the tail-object is reused for every tail-call, we must put tail-calls into A-Normal
form [3]. Otherwise another function might change the counter-value of the tail-
object after line 10 or line 15.
Note that the non tail calls (like the one in line 25) are not modified, and that
tail calls (line 12, and 17) are compatible with all JavaScript functions that do
not access this. Functions that use the this object are methods and usually
attached to some object. Method calls, however, are never instrumented (not even
in tail position) and are hence free to use the this variable.
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1: function even(x) {
2: var sc_tailCalls = TAIL_OBJECT.calls;
3: // nonTailCall();
4: if (x === 0) return true;
5: else {
6: if (this === TAIL_OBJECT) {
7: if (sc_tailCalls == MAX_TAIL_CALLS) {
8: return new Trampoline(odd, [x-1]);
9: } else {
10: TAIL_OBJECT.calls = sc_tailCalls + 1;
11: TAIL_OBJECT.f = odd;
12: return TAIL_OBJECT.f(x-1);
13: }
14: } else {
15: TAIL_OBJECT.calls = 1;
16: TAIL_OBJECT.f = odd;
17: var sc_tailTmp = TAIL_OBJECT.f(x-1);
18: if (sc_tailTmp instanceof Trampoline)
19: return sc_tailTmp.restart();
20: else
21: return sc_tailTmp;
22: }
23: }
24: }
25: is2even = even(2);

FIGURE 1.9: SCM2JS’s optimized implementation of trampolines.

1.5.2 Acyclic trampoline optimization

Chain-calls that do not finish in a cycle are compiled to direct calls without tram-
poline instrumentation. As such they do not test against the limit c anymore and
may exceed the c consecutive tail calls. As the chain does not end in any cycle
the number of supplementary calls is however bounded by the length of this chain.
Figure 1.10 illustrates the idea. In this example there are three tail call sites (line
4, 5, and 7). Furthermore the tail call chain len-print → approx-print
→ my-print does not end in a cycle. All three call locations are hence not in-
strumented. We have developed a static analysis that detects tail-call chains and
potential cycles in them. When the analysis proves the absence of cycles, func-
tions are not instrumented. Applied to the example of Figure 1.10, it successfully
eliminates all instrumentation for the given functions.
If len-print is the cth consecutive call in a tail-call chain then it should re-
turn a trampoline, but without the instrumentation it continues tail calling, thus
exceeding the limit. The “damage” is however limited as there is only one other
tail call afterwards. In the worst case the program hence exceeds the given limit
c by 2 (the length of the chain).
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1: (define (my-print msg) (print msg) msg)
2: (define (approx-print val)
3: (if (< val 10)
4: (my-print "small")
5: (my-print "big")))
6: (define (len-print l)
7: (approx-print (length l)))

FIGURE 1.10: Chain of tail-calls reaching a non-tail-call.

As this optimization is done at compile time it is not possible to determine all call
targets, and some tail calls keep the trampoline instrumentation even though they
can not reach any cycle. In our tail call intensive benchmark 40% of all tail calls
have been simplified by this optimization.
Our experiments show that the cost for proper tail recursion is largely program-
dependent. Most tail calls are loops (which are already handled by the while
transformation) and programs tend to have few remaining tail calls. More than
80% of our benchmarks were tail-call free after the while transformation. Typ-
ical tail-call intensive programs however suggest a slow down of about 1.5, and
extreme cases (like the even/odd example) run at most 2.5 times slower.

1.6 BENCHMARKS

To evaluate the performance of SCM2JS and trampolines we ran several bench-
marks under two Internet browsers: Firefox 2.0.0.2 and Opera 9.10 build 521.
All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GB, running Linux
2.6.20. Each program was run 5 times, and the minimum time was collected. The
time measurement was done by a small JavaScript program itself. Any time spent
on the preparation (parsing, precompiling, etc.) was hence not measured.
Our first test measured the performance of SCM2JS generated code compared to
handwritten JavaScript code. We wrote our benchmarks both in JavaScript and
Scheme and then compared the execution time of the JavaScript version with the
time of the compiled Scheme version. Figure 1.11a presents the ratio of the Java-
Script time by the execution time of the compiled program. A value of 1.0 rep-
resents the reference time of the handwritten JavaScript code. Any value lower
(resp. higher) than 1.0 means that the compiled Scheme code ran faster (resp.
slower) than this code. SCM2JS fares quite well in this comparison. The com-
piled code generally approaches the reference value of 1.0. The good performance
in bague, fib, quicksort and even/odd can be explained by our inlining
pass, the bad value in Nested by the nature of this benchmark. Nested consists
(as the name suggests) of several nested loops incrementing a counter in the most
nested loop. The while loops themselves are minimal and any additional expres-
sion slows down the program. The JavaScript version while(e--){...} is up
to 1.7 times faster than the generated version while(e>0){... --e;}.
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Native vs. Scm2js

Firefox Opera

1

Even/Odd 0.6
0.8

Towers 1.1
1.1

Tak 0.9
1.0

Sieve 1.1
1.0

Quicksort 0.7
0.8

Nested 1.0
1.3

Mbrot 1.0
0.8

Mb100 1.0
1.1

Fib 0.6
0.9

Bague 0.6
0.5

(a) Compiled Scheme relative to handwritten JavaScript files, which are
the 1.0 mark. Lower is better.

Trampolines

Firefox Opera

1 2

Ewal 1.5
1.2

Even/Odd 1.8
2.4

(b) Trampolined code relative to compiled code with the trampoline flag
disabled, which are the 1.0 mark. Lower is better.

FIGURE 1.11: SCM2JS code interpreted by Firefox and Opera.

Figure 1.11b shows the performance penalties introduced by trampolines. As
SCM2JS is able to prove that none of the previous benchmarks but even/odd
contains any cyclic tail calls (at least after the while transformation), enabling
or disabling proper tail-recursion has no effect on the generated code. Their per-
formance would have been equal to 1, and we therefore do not print their results.
We added another benchmark (ewal), which implements a meta circular Scheme
interpreter that executes an iterative version of fact. The program uses many
anonymous functions and tail calls and is hence a good candidate for this test.
The extreme case even/odd is at most 2.5 times slower. The more realistic
ewal is only about 1.7 times slower.
Although we think that code size is usually insignificant compared to the size of
images that are sent with web-pages, we compared the size of the produced code
with hand-written JavaScript and the original Scheme code. Most web-browsers
accept compressed JavaScript files, and Figure 1.12 therefore only contains a
comparison of gzipped files. As we do not have a JavaScript version of the ewal
benchmark we used the original Scheme code as reference. Our results show that
even without trampolines SCM2JS produced code is usually bigger than the equiv-
alent JavaScript code. This can be explained by inlining and other optimizations.
The trampoline versions of even/odd and ewal were respectively 2 and 1.3

15



Native vs. Scheme vs. Scm2Js

Scheme Scm2JS

1

Ewal 1.3
1.0

Even/Odd 1.2
1.0

Towers 1.4
1.0

Tak 1.6
0.9

Sieve 1.3
1.2

Quicksort 1.6
1.2

Nested 1.2
1.3

Mbrot 1.3
1.1

Mb100 1.4
1.0

Fib 1.8
1.0

Bague 1.3
1.4

FIGURE 1.12: Code size comparison of handwritten JavaScript code, Scheme
source, and SCM2JS produced code. All files have been compressed. JavaScript
file size are the 1.0 mark. Lower is better.

times bigger than the version without trampolines.

1.7 RELATED WORK

Related work can be classified into three categories: projects that run Scheme in
Web-browsers, projects that use JavaScript as compilation target and projects that
propose to unify client and server development.
There are many attempts to run Scheme and Lisp like languages on the client
side. Contrary to SCM2JS these projects are either interpreters or they change
the semantics of the input-language to match the semantics of JavaScript. For
instance, ParenScript7 (a compiler of a Lisp like language to JavaScript) keeps
the distinction between statements and expressions from JavaScript. As such the
do construct (compiled to JavaScript’s while statement) can not be used at an
expression location, and it does not return any value. Examples for interpreters
are jsScheme8 and Little Scheme9.
JavaScript is a high-level language and hence not well suited as a compilation tar-
get. However, due to the ubiquity of JavaScript, such compilations have become
more and more attractive.
Google10 compiles Java to JavaScript. Java’s object model can be simulated with
JavaScript’s prototype object model, and both share many common constructs
(with identical syntax). Java is statically typed and permits many optimizations
that are infeasible in highly dynamic languages like JavaScript and Scheme. The
compilation from Java to JavaScript hence seems to be a good choice for effi-

7Manuel Odendahl and Edward Marco Baringer, http://parenscript.org
8Alex Yakovlev, http://alex.ability.ru/scheme.html
9Douglas Crockford, http://www.crockford.com/javascript/scheme.html

10http://code.google.com/webtoolkit/
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cient code. Powerful features like higher order functions and variable argument
functions are however lost in the process. Due to the different nature of Java and
JavaScript it is necessary to use the JSNI (JavaScript Native Interface) to interface
with existing JavaScript code.
Script# 11 and NeoSwiff 12 both compile C# to JavaScript and face hence the same
difficulties and share the same advantages as the Google Java compiler.
All these compilers greatly simplify the development of Web projects, but still
separate client and server development. In particular the communication between
client and server is still complicated.
Links13 eliminates this boundary. Links, a typed language, uses annotations to
force the execution of functions on either the server or the client, but allows the
execution of non-annotated functions on either side. When calls pass the client-
server boundary they are transparently compiled to xml-http-requests. The client-
side portion of a program written in Links is transformed to a CPS JavaScript,
which breaks the call-convention with standard JavaScript functions. It is not yet
optimized for speed and runs one to two orders of magnitude slower than SCM2JS.

1.8 CONCLUSION

In this paper we have presented SCM2JS, a Scheme to JavaScript compiler. Our
work shows that such a compiler is feasible and can be efficient. We discussed the
compilation of proper tail calls, one of the major differences between the two lan-
guages. The while transformation we presented compiles a large percentage of
tail recursive calls into cheap while iterations (8 out of our 10 benchmarks were
tail-call free after this optimization), and the trampoline implementation takes care
of the rest. Proper tail-recursion is expensive though, and even though our opti-
mization removed the costly instrumentation for up to 40% of affected functions
worst case examples exhibited a slowdown of a factor two.
We modified existing tail-call techniques so that strict compatibility with exist-
ing JavaScript code is preserved. It is thus possible to interface easily with ex-
isting JavaScript libraries. Also SCM2JS generates efficient code. We there-
fore achieved both of our initial requirements for this compiler: good integration
with JavaScript and good performance. The integration of SCM2JS into Hop (the
framework which motivated the creation of SCM2JS) opened the door for a single
language for Web programming. As Hop itself is a variant of the Scheme lan-
guage it is now possible to write client-code and server-code of sophisticated web
applications exclusively in Scheme.

11Nikhil Kothari, http://porjects.nikhilk.net/Projects/ScriptSharp.aspx
12GloxFX Technologies, http://www.globfx.com/products/neoswiff/
13Ezra Cooper, Sam Lindley, Philip Wadler and Jeremy Yallop,

http://groups.inf.ed.ac.uk/links/papers/links-icfp06/links-icfp06.pdf
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