Compiling Scheme to JavaScript

Florian Loitsch Manuel Serrano
Inria Sophia Antipolis Inria Sophia Antipolis
2004 route des Lucioles - BP 93 F-06902 Sophia 2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France Antipolis, Cedex, France
http://www.inria.fr/mimosa/Florian.Loitsch http://www.inria.fr/mimosa/Manuel.Serrano
ABSTRACT However, for this replacement to be effective two requiretae

This paper presentscd2Js a compiler that translates a variant must be fulfilled.

of the Scheme programming language into JavaScript. Onrte 0 o Using Scheme instead of JavaScript should impose no peafuren
hand, some Scheme features are missing, amongst which gte mo penalty. That is the performance of compiled Scheme codes

important are the lack of support for continuations, theeabs must be comparable to equivalent hand-written JavaScript
of exact numbers, and a partial treatment of tail recursi@ns codes. We are considering performance as a potential issue
the other hand, some extensions are added for improving the even if we have noticed tremendous differences of perfooman
connection between Scheme and JavaScript. In particutar23s depending on the hardware architecture and the JavaScript
extends Scheme with the JavaScriot-notation which enables interpreter used for testing. For instance, we have fouat th
compact class accesses. Scheme code and JavaScript catele mi rynning JavaScript programs within Firefox on the ultimate

because they both access functions and variables of the othe genera’[ion of Intel processors is about ten times fastar tha

language and because they share, at runtime, a common memory running the same programs within Safari. This tends to detnate

The codes produced byc#2Js are fast because for most programs that most users are not paying much attention to performance
they have performance comparable to equivalent handenritt

JavaScript programs. Hence, one may usa13Js for replacing
JavaScript with Scheme. For instance, one may implement web
libraries or HTML actions in Scheme. The paper shows how this
can be done in context of Hop, a programming language dedicat
to interactive web development.

Scheme and JavaScript must be tightly integrated. That is al
bindings must be available from one language to the other.
The data structure must also be usable indifferently in both
language. For web programming this is of prime importance.
In JavaScript, the DOM (théocument Object model is a
standardized way of representing a visualized HTML documen
1. Introduction using_ an object hierarchy) is interfaced with classes. For
: enabling easy access to the DOM, Scheme programs must be
JavaScript is a popular scripting language. It is embedded i able to access JavaScript classes with a lightweight aniiuet
many applications such as PDF viewers, integrated devedopm syntax.
environments, graphical applications. It has given biotldialects
that are also successful (for instance, ActionScript,dngliage for
programming Flash applications). Its large deployment &niy
due to its use as scripting language for web pages. Nearly eve
modern site uses JavaScript now, and all mainstream interne
browsers are capable of interpreting JavaScript. As Welvdes
are installed on nearly every computer, JavaScript inéteps are
ubiquitous.
Contrary to what its name suggests, JavaScript is a furation
language whose design has been influenced by the Schemarprogrg
language [10]. However, these two languages are separgted b
their syntaxes, the Scheme support for continuations, #iva-J
Script support of object layer based on prototypes, and suhes
minor technical differences. Since this is not an incrgdifficult
task, we have found it appealing to craft a compiler from &uohe 2. SCM2JS and R5RS
to JavaScript for replacing the latter with the former, imtjgalar, Scm2Js is not conform to the Brs. There are mainly three
in active web pages. reasons for the non-conformance ofR2Js: extensions to the
Scheme language, short-comings (mainly motivated by effai
reasons) and missing features.
ScmM2Jsshould integrate easily with JavaScript. During the coeati
of a comfortable interface we were led to extend the Scheme
language by the “dot-notation” as explained in Section 4.
R°RS requires compliant Scheme implementations to be properly
tail-recursive. 8m2Js correctly translates some common recursive
i]) function calls into iterative statements (see Section 3kt
[copyright notice will appear here] fails to cover all cases. Instead of implementing some esigen

For enabling the 8mM2Js compiler to meet these two requirements
we have decided to give up on full Scheme compliance. Segtion
presents the difference of the source language@i&ls and the
official Scheme language as defined by its standard [10]idect
3 discusses the Scheme to JavaScript compilation per deowiss
how Scheme data structures are mapped to JavaScript. #rpses
the most significant aspect of the compilation of the corflml.
Then it concludes with a performance study. The followingt®e

4 presents the integration of Scheme and JavaScript. Anggaoh
embedding of 8M2Jsis then provided in Section 5 which presents
how itis used in the context of the Hop programming langu@ge.
remaining sections discuss related and future work.

1 2006/4/7

techniques, like trampolines, we decided to leave the neimgi
tail-recursive calls untouched. Efficiency made us viokether
R°Rs requirement. JavaScript does not have any fixed point

3.2 Data Types

JavaScript has basically four main types: booleans, nusnber
strings, and objects. Functions are of type object and duave

number type, and instead of reimplementing a integer type We thejr proper data type. The JavaScript specification [8]taxilly

decided to map Scheme’s exact numbers to JavaScript'snitpati
point numbers.

ScM2Js is not (yet) feature complete either. It misses hygienic
macros (althoughdefine-macro can be used as replacement)
and it does not implement the complete Scheme runtime ibrar
most importantlycall/cc andeval are not availableeval, on
one hand, could be easily implemented in the form of a library
without any changes to the compiler1l/cc, on the other hand,
would require either a transformation to Continuation Regs
Style, or exception handling mechanisms as described ih [14
Both techniques would induce a certain overhead on the dechpi
program.

3. SCM2JS Compiler

JavaScript and Scheme are related languages, but the etiopil
from one to another is not so trivial. In [9] we already predsdra
JavaScript to Scheme compiler. This section introducestiegse
compiler, £M2Js, and the important points of such a compilation.
We will begin with a short comparison of the two languagesnth

continue with the chosen data type mapping in Section 3.2. We

will discuss flow control compilation in Section 3.3. Seati8.4
presents some optimizations we implemented ©wm3Js, and
Section 3.5 shows some benchmarks which confirm that alethes
efforts weren't fruitless.

3.1 Scheme vs. JavaScript

This section discusses the differences (and similaritiés)ava-
Scriptand Scheme. We limit this comparison to the most it
parts of the two languages. JavaScript has been inspiredisng,
and most of the similarities are hence not astounding. Tlefimg

list enumerates some of the shared features:

e types are dynamically checked,

e functions are first class citizens,
e |exical scoping,

e automatic memory management,

e aneval function, which allows one to compile and run code at
run-time, and

e n-ary and var-arg functions with apply primitive that allows
to indirectly call these functions on a list or array of argants.

In other areas JavaScript is however quite different frome&ee.
The move from Lisp-style syntax to C-like syntax is certpitiie
most striking difference, and Section 3.4 mentions the esgion

citesundefined andnull as respective types. Scheme, despite
being a smaller language, uses four more types: pairs, ngecto
characters and symbols.
Scm2Js maps Scheme’s

e booleans to booleans.
e functions to JavaScript functions.

e numbers to JavaScript numbers. Even though this mapping
seems obvious, it makesc®2Js non conform to RRs. Java-
Script’'s numbers are always floating point, whereas Scheme
differentiates exact and inexact numbers.

e pairs to the JavaScript “clas€c_Pair with fields car and
cdr. The empty listis represented hy11.

e vectors to JavaScriptrrays?

e characters to the “clas€c_Char, holding a JavaScript string
of length 1.

e strings to a new JavaScript “class8c_String. It is not
possible to reuse JavaScript’s strings, as they are imreutab
sc_String itself holds one of these immutable strings, and
replaces it, when necessary.

e symbols to strings.

JavaScript's typing rules are less restrictive than Scienudes.
Due to implicit conversions many operations that are eriors
Scheme are valid expressions in JavaScripiu3Jstakes advantage
of R°RS liberal error handling. Implementations are rarely fatce
to detect and signal errors, but are free to handle mostsether
way they want to. In particular “[...] itis an error for a pexture to
be passed an argument that the procedure is not expliclyifsgd

to handle [...]. Implementations may extend a procedureraain
of definition to include such arguments”. In our case, erames
handled by JavaScript. If an operation yields an error aliogr
to the JavaScript specification, an error is signaled. If dvaw
JavaScript is able to handle an expression that would béidnva
Scheme, no error is reported. The following examples detretes
this behavior: (car *()) is an invalid expression in Scheme.
Scm2Js compiles this expression tll.car. Asnull doesn’t
have any fields, JavaScript throws an exception. The corhpile
version hence raises an error. In the following (invalidiesnippet
we try to add a symbol to a numbef+ 3 ’sym). The translated
code would be3 + ’sym’ which is a valid JavaScript expression
concatenating the two stringg" and"sym". In this case no error
will be detected.

to statement pass which has been implemented as a consequencsimilar missed errors happen when functions are not passed

of the C-like syntax. Other changes have nevertheless &atgr

the correct number of arguments, in which case either ngssin

impact on the development of a Scheme to JavaScript compiler arguments are filled with a specis#unspecified value, or

Especially JavaScript's peculiar syntactic scoping ofialdes
makes the compilation difficult. In JavaScript a variableldeation

is valid for a complete function block wherever the deciarat

is located. Section 3.3 shows why this behavior complicites
compilation.

As we will see in the next section, the data types aren’t equal
either. JavaScript has less data types, and the matchieg e
not always equivalent. JavaScript strings, for instanee(@ntrary

to Scheme strings) immutable, and JavaScript numbers \aey sl
floating point (whereas Scheme has exact numbers too).
Another difference is the lack oéall/cc in JavaScript. The
existing try/catch partially compensates for the absence, but
is not as powerful asall/cc

additional arguments are ignored.

3.3 Flow Control

Scheme has only few flow-control constructs, and all of thereh
similar counterparts in JavaScript. A direct mapping is éesy
impossible. F§Rsrequires Scheme implementations to be properly
tail-recursive. JavaScript on the other hand doesn’t evention
this feature. Mapping Scheme function calls naively to $avipt
function calls is hence dependent on the JavaScript impi&atien

1Despite being called “Array”, this data-type is an object ansists,
similar to all JavaScript objects, of a hashtable.

2006/4/7

and not always conform. Two popular solutions ateampolines
and Henry Baker’s “Cheney on the M.T.A” [6]. The concept of
trampolines needs the modification of all call locationsl! @alls
are replaced by instructions that save the call target aguhaents
in global variables, followed by @eturn. Non tail calls, on the
other hand, are wrapped into an iterative loop. Initialky driginal
call target is executed. Once the function returns the todimg
checks for the existence of a function in the global varighk
temporarily holds the tail call targets. If this variablenist empty
the stored function is executed, and the trampoline waitgte
next return.

Even though trampolines solve the initial problem of rapidl
growing stacks, they are inefficient. Tail calls need to rpalzite
the global variables, whereas non tail call must be wrappexdan
iterative loops. An optimized version of trampolines isgeeted in
[11]. Instead of returning at every tail call, the progranaliswed
to stack a constant number of tail calls. Only when the lirait i
reached the continuation is stored in the global varialzled, the
trampoline is used.

“Cheney onthe M.T.A.”, on the other hand, transforms theypam
into Continuation Passing Style (CPS) first, and therebyiaktes
the need for stacks. In the paper the authors propose toeistaitk
as short term memory. Whenever the stack reaches the staitk li
a garbage collection is performed, and the program restatits

an empty stack. The stack becomes the youngest generatin in

generational garbage collector.

All these techniques introduce some performance penatynan
therefore decided not to implement any. For noeM2 Js just tries
to compile tail-recursive calls into iterative JavaScsftements.
This approach is however incomplete as it is impossiblegiicstly
determine all call-targets.@3412Js is able to transform the most
common recursive calls (likeet loop constructs) but leaves other
more difficult tail recursive calls untouched.

Even when the call-targets have been determined the taitere
iterative transformation is not trivial. Aet loop construct, for
instance, is mapped to JavaScripitsile statement.

Example:

(let loop ((x 1))
(if (> x 10)
’done
(loop (+ x 1))))

is compiled as:

var res = undefined;
var x = 1;
while (true) {
if (> x 10)
res = "done";
else {
x =x + 1;
continue;
}

break;

}

This simple mapping is efficient but it may break down when

closures are built in the body of the loop:

1: (let loop ((x 1))
2: (store! (lambda () x))
&g (loop (+ x 1)))

2 Actually all important JavaScript interpreters are knomt to be tail-
recursive.

In this example the loop variable is captured by anonymous
functions in line2. The capturedk is however freshly allocated
at each recursive call and is hence different for each ofethes
functions. An invocation of two different closures wouleld two
different results. The previous transformation on the iotiend
hoists loop variables outside the loop, which implies a ethar
for all anonymous functions:

var res = undefined;

var x = 1;

while (true) {
store(function () { return x; });
x=x+1;
continue;

}

x is now outside the loop (lin®) and it's value is physically
modified at each iteration (lin&). As the variable is allocated
outside the loop all anonymous functions reference the same
As this variable is physically changed during each itergtiall
anonymous functions return the same result (i.e. the finakvaf
x) when executed.

In JavaScript locally declared variables are visible witiie whole
function body, and declaring a new variable within tieile
body doesn’t solve this issue. The following code demotesrthis
unfruitful attempt:

NSO OH 0o

var res = undefined;
var x = 1;
while (true) {
var tmp_X = X;
store(function() { return tmp_x; });
x =x + 1;
continue;
break;

}

Even thoughtmp_x is declared inside thehile construct, the
peculiar JavaScript scoping rule makes it visible with theplete
function. In practice this means that the order and locatbn
variable declarations is ignored and that there existsrneae
than one variable of the same name. Once a variable has been
declared future declarations of variables of the same name a
ignored. In our case this means that the anonymous funciicenre

the same variable (this timenp_x) again.

There are only two ways of creating new scopes in JavaScript:
functions and thesith construct. Indeed anonymous functions
solve the captured variable problem:

var res = undefined;
var x = 1;
while (true) {
(function(x) {
store(function() { return x; });
()5
x =x + 1;
continue;
break;

}

Although they partially defeat the purpose of the iteratigle
statement (i.e. removing the unnecessary applicationgy, don’t

fill the stack and are hence a great improvement over re@ursiv
function calls. It is furthermore possible to limit the agamous
function to parts of the loop-body. If the captured variaislenly
used within one branch of arf it is not necessary to invoke the
function in the other branch. Anonymous functions are hawev
too limiting: some JavaScript constructs don’'t work ovandiion

2006/4/7

boundaries, and in particular tkentinue statement must not be
moved inside another function.
JavaScript'swith statement on the other hand fullfills all our

block statemenf s1 s2 } by the sequence expressiani(e2).
The tail-rec pass however introduces some statementsarilye
loops and makes the technique necessary. Some other JataScr

requirementswith takes an object as parameter and pushes it statements without equivalent expressionscatetinue, return,

on the execution context stack. Every field of the pushedcbbje
becomes a local variable limited to thetth scope. It is hence
sufficient to create an empty object, store the capturecbtas in
the fields of this object, and finally use théth construct to push
it on the execution context stack.

var res =
var x = 1;
while (true) {

var tmp = new Object;

tmp.x = X;

with(tmp) {

store(function() { return x; });

}

x =x + 1;

continue;

break;

}

undefined;

Some benchmarks indicate that, depending on the interprete

pushing an empty object on the execution context stackdbtb)i
slower or faster than function calls.

3.4 Optimizations

This section discusses common optimizations and compithiniques
and shows how they apply to our compilez’$2Js. Due to the high
level of JavaScript only few optimizations are applicalties for

instance not easy to take advantage of a typing pass as ofte can

pass typing information to JavaScript interpreters. Wehdidlever
implement (amongst others) an inlining optimization.

ScM2Js’s inlining is done in two steps. A first pass inlines user
functions, whereas a second pass inlines runtime procedihe
first pass is rather rudimentary but fulfills its design geéalinline

all 1et loop expressions. When a variable is bound to a function
and when it is only used once in functional position, thensit i
inlined. The first condition avoids us to do a control flow gsé,
whereas the second condition avoids code grdwBven though
this optimization is quite limited, it reduces the execnttome of
some benchmarks to less than 50%

A straightforward compilation of Scheme programs to Javia§c
programs maps Scheme calls to JavaScript calls. In mang tzise
translation introduces an overhead. In particular bingrgrations
like +, -,or % are far less efficient if called via a runtime function.
A second pass therefore replaces function calls to speitifary
functions with the more efficient versioac_plus(x, y) would
become(x + y). Other examples for this optimizations are all
list primitives (car, cons, null?, etc.) and vector functions
(vector-ref, vector-set! orvector-length). This optimization
is especially important as it gives a speed improvement dbup
factor of 25.

break, throw, andtry.

3.5 Benchmarks

In order to evaluate the performance ofN&2Js we ran several
benchmarks under three Internet browsers on three diffarehitectures:

e Linux/x86: an Intel Pentium 4 3.40GHz, 1GB, running Linux
2.6.15.

The used browsers were:
= Firefox 1.5.0.1,
= Opera 9.0 pre2, and
= Konqueror 3.5.1

e Apple/G4: a PowerPC G4 1.67GHz, 2GB, running Mac OS X
10.4.5.

We used the following browsers:
= Firefox 1.5.0.1,
= Opera 9 build 3303, and
» Safari 2.0.3 (417.9.2)

e Apple/Core: a Intel Core Duo 2GHz, 1GB, running Mac OS X
10.4.5.

We used the following browsers:
= Firefox pre 1.5.0.2,
= Opera 9 build 3278, and
» Safari 2.0.3 (417.9.2)

It turned out, that the choice of browser has far more impact o
the performance than the architectuFearefox and Opera are
sometimes up to ten times faster tt@afari or Konqueror. The
fastest architecture Intel Core Duo is however only fourenas
fast as the PowerPC G4. More importantly, the browsers leehav
similar on the different platforms.

Each program was run 10 times, and the minimum time was
collected. The time measurement was done by a small script,
which launched the benchmarks. Any time spent on the prépara
(parsing, precompiling, etc.) was hence not measured.

Every benchmark has been written in Scheme and JavaScrpt. W
then compiled the Scheme versions usirgv®Js and measured
the execution times of both the JavaScript code and the dedpi
version.

Figure 1, 2 and 3 present the ratio of the JavaScript time by th
execution time of the compiled program (resp. on the Pentium
Apple G4 and Apple Intel Core Duo). A value of 1.0 therefore
represents the reference time of the handwritten JavaSmie.
Any value lower (resp. higher) than 1.0 means that the cadpil

We conclude this section with a problem many Scheme compiler Scheme code ran faster (resp. slower) than this code.

encounter: Scheme is expression based, whereas JavaBcript In general the compiled code is nearly as fast as the haneldraf
statement based. Some JavaScript constructs can only e useVersion. Even under the worst conditiorci$2Js is only about

at specific locations. It is for instance not possible to use a SiX times slower than the JavaScript version (benchniasced
while loop at the right hand side of an assignmentmM®Js under Firefox on the Pentium 4 in figure Nested consists of
introduces temporary variables to store the intermediasailts several nested loops incrementing a counter in the mostahsp.

of such statements. Interestingly these statements artiyntios Scm2Js introduces a temporary variable for each loop, and uses
result of optimizations. JavaScript has an equivalentesgion for this variable twice per iteration. This more than doublessize of
most statements: the if statemeit (test) s1 else s2 can the loop bodies with a respective performance penalty. Feoyty

be replaced by the conditional operatest 7 el : e2 and the Opera handles this case much better thatrefox. Firefox is
about three times faster th@pera when run on the JavaScript

files, butOpera degrades more gracefully and beBisefox on
the compiled files.

3 Future versions will probably inline too if the function’ize is under a
certain constant.

4 2006/4/7

Intel Pentium 4 / Linux

M Firefox Opera I Konqgueror

Bague
Fib
Mb100
Mbrot
Nested
Quicksort

Sieve
Tak

Towers

Figure 1. Scm2Js compiled Scheme code interpreted by Firefox, Opera and d@nwg on a Pentium 4 running Linux. Scores are relative
to handwritten JavaScript files, which are the 1.0 mark. ldwéetter.

IBM PowerPC G4 / Mac OS X
B Firefox Opera M Safari

Bague
Fib
Mb100
Mbrot

e — |
Quicksort = S, 33 4.0

Sieve
Tak

Towers

Figure 2. Scm2Jsinterpreted by Firefox, Opera and Safari vs. JavaScript Apge G4 running Mac OS X. Lower is better.

Intel Core Duo / Mac OS X

M Firefox Opera M Safari
2 3 4 5

Bague
Fib
Mb100 :
Mbrot .)
Nested LD 2.3 >0
Quicksort ;;f— 3. Z. 0
Sieve .
Tak
Towers

Figure 3. Scm2Jsinterpreted by Firefox, Opera and Safari vs. JavaScript Apge Intel Core Duo running Mac OS X. Lower is better.

5 2006/4/7

TheQuicksort benchmark suffers from the same problem: a very
small loop iterates over an array to find elements smallereatgr
than a certain pivot.

In less extreme cases¢c®2Js performs quite well, though, and the
rudimentary inlining even allows&v2Js to beat the handwritten
JavaScript in some cases (in particularBague benchmark).

4. JavaScript Integration

We introduced therefore JavaScript's dot-notation intheBae.
In addition tojs-field-set! and js-field ScmM2Js makes it
possible to directly access fields by concatenation thecglgedot
and the field-name. The previous example becomes:

(set! x.y.z a.b)

The dot-notation leads us to the first way of referencing -Java
Script variables from within Scheme: the runtime Schemélste

ScM2Js provides a complete JavaScript-Scheme interface. That *js* holds all global variables. If one wants to access Javacrip

is JavaScript code can access Scheme variables and cath&che
functions, and inversely Scheme code can use JavaScripts/al
When passing values from one language to another, conusrsio
must take place. In particular JavaScript strings and Selstrings

are not of the same type. As JavaScript strings are immytable
it was not possible to directly map Scheme strings to them.

globalalert function, it is sufficient to retrieve thelert field of
the xjs* variable: (js-field *js* ’alert) or using the dot-
notation*js*.alert.

Internally* js* is set to JavaScript's globahis object. As such it
automatically contains all global variabl@$hexjs* object is also
an easy way of making Scheme values available to JavaSodpt ¢

Scheme symbols, on the other hand, are immutable too, and inJust by assigning a new field &fs* users can create a new global

the current version symbols are compiled to JavaScriphgsri
whereas Scheme strings are translated into a newstassring.

variable and thereby export a Scheme vdlur.addition to this
explicit exports £m2Js automatically declares all global Scheme

If a Scheme string should be used as JavaScript string a callvariables as global Javascript variables. The global bsaare

to string->symbol is hence necessdrywhereas a JavaScript

declared under their mangled form, which means that onlyaetu

string can be converted to a Scheme string by the means of of variables are exported under their Scheme names.

symbol->string. Pairs and characters don’t have any conversion
routines (as there are not any equivalent data types in GeEpd$
and itis mostly convenient to just use their compiled repnéstion.
Pairs by accessing thewar and cdr fields, and characters by
accessing theal field of thesc_Char class.

Functions are already mostly interchangeable, but to ease t
integration of Scheme functions in the context of Java$avip
added thethis-extension. If a function is used as method, Java-
Script sets ahis variabl€ to the object on which the method was
called. Take for instance the code in Figure 4.

1: function f£() { print(this.x); }; // prints 3
2: var o = new Object;

3: 0.x = 3;

4: o.f =1

5: 0.f0);

Figure 4. JavaScript'sthis keyword represents the object on
which the method has been called.

As £ is called as method 06, (line 5) this will be set too
within the functionf (line 1). The this-extension brings the
this variable to Scheme functions. Code within a procedure may
referencethis and hence access the object’s field on which it
has been called. Usinghis outside the scope of methods doesn’t
make much sense (even though the JavaScript specificaties @i
sense to this case), and it should therefore be only usectifiar®e
function is going to represent a method.

In order to use JavaScript objects within Scheme two runtime
primitives js-field andjs-field-set! have been added. They
allow to respectively retrieve or set the fields of JavaSaipects.
The use of these functions is not optimal though. Accessing (
changing) fields is too verbose and cumbersome. The eqoivalle
the short JavaScript expression

X.y.z = a.b
would be:

(js-field-set! (js-field x ’y) ’z (js-field a ’b))

41t is obviously possible to directly use a symbol instead.
5Actually this is not a variable, but a keyword.

In a certain way thexjs* variable resembles explicit casts of
statically typed languages like Java or C. The programmer is
explicitly telling the compiler he is going to do somethirengerous,
but that he is aware of the risk. IndeedgN&2Js can't verify if

the JavaScript variable exists, or if the variable name reenb
mistyped.

A more secure method uses the keyword. Whenever &v2Js
encounters &js . A-LIST) expression in the top-level it adds
the a-list’s bindings to the symbol-table. These symbasesolved

at compile time and accesses to these variables are therefor
checked by the compiler. This approach has the additionalrddge

of better integration into the code. The A-list allows tcaalJava-
Script variables with typical Scheme symbols. In the follogv
exampleA_GLOBAL would be aliased t@global* andsetEvent

to event-set!:

(js (event-set! setEvent) (*global* A_GLOBAL))

In some cases even the indirect access ovet fhe variable is not
dynamic enough. Scheme code snippets can be compiled sdpara
and it is often desirable to access variables of other pieldesse
shippets might be the event handlers scattered around anLHTM
file, or complete libraries.

The previous interfaces can both be used to bind the separate
pieces, but both come with their respective disadvantagessafe
method requires the developer to write import clauses. &aibein

the case of event handlers, these clauses can become cambers
Accessing variables of different parts over #hig* variable is not
optimal either. Global Scheme variables become memberseof t
global JavaScript variables under their mangled name. thargh
they are hence accessible over #jex variable the programmer
would need to know the mangled variable name. As the mangling
function should stay compiler intern we implemented a third
option: every unbound variable is automatically consideiebe

an imported global variable. If&v2Js needs to mangle the name
the mangling will be the same for both modules, otherwise the
variable access could either reference a global JavaSeriatble,

6 Thexjsx variable is, under its mangled name, a field of this object too

“This approach even allows to create global variables that caly
accessible through the global obje€set! *js*.new-global ’val)
sets the global variableew-global to ’val’. new-global is however
parsed asnew - global and it is hence impossible to reference the
variable without the use of the globethis object.

2006/4/7

a “compatible” Scheme variable. Also, this model combinase
advantages of the previous approaches: imported variaole’s
need to be declared, but can't be used instantly, and theyoean
accessed directly (without redirection by thgs* variable). This
flexibility comes at a price, though. Allowing unbound syrt#ho
removes an important safety net as any unbound symbol will be
considered to be a global imported variable. That is, thepilem

is no longer able to display “unbound variable” error messag
Figure 5 demonstrates this smooth integration of JavaSitrip
Scheme on a small example that manipulates the DOM. The given
Scheme program dynamically adds new HTML elements into an
existing tree.

5. Hop integration

In this section we present an example ofM2Js embedding.
We show how it can be used in the context of Hop. Hop is a
functional language designed for programming webappiinat
[13]. It exposes a distributed model made of tamata. The first
stratum, named thenain stratum, is intended for programming
server-side computations. The second stratum, namedi émé or
GUI stratum, is intended for programming client-side compaoitest
The two strata execute on different computers. They do ratesh
memory but they share their namespace and they communieate v
function calls and events.

A Hop program first starts on a server. This initial step etates

an HTML tree that is sent to the client, typically a web browse
User interactions on the client side may lead to the invooadif
functions on the server which, in turn, elaborates new HTkées
that are sent back to the client.

In the current version of Hop, the main strata is programmea i
variant of Scheme and the client strata is programmed irStaiat.
The Scm2Js compiler allows to use Scheme for both stratum. This
section presents the integration afi$2Js in Hop. It first presents

a compact overview of Hop (Sections 5.1, 5.2, and 5.3). Then,
focuses on the integration o®2Js (Section 5.4 and Section 5.5)
and its impact on the GUI stratum.

5.1 The syntaxes of Hop

Hop rests on the closeness of the syntaxes of Scheme and HTML.
A simple syntactic transformation turns HTML documentsoint
Hop programs. Hop adds an extra open parenthesis beforengpen
markups and replaces closing markups with single closingnhaeses.
In addition Hop attributes are introduced by an identifiertstg

with a colon character:{ and their value is separated from the
name by white spaces. Hence the HTML document of Figure 6 is
written as shown Figure 7 in Hop.

<HTML>
<BODY>
<TABLE width="100%">
<TR> <TD>0</TD></TR>
<TR> <TD>1</TD></TR>
<TR> <TD>2</TD></TR>
<TR> <TD>3</TD></TR>
</TABLE>
</BODY>
</HTML>

Figure 6. A simple HTML file.

In the plain version of Hop, the JavaScript expressions ®Gh|
stratum are delimited by opening and closing curly braeand

1). For the sake of the example, Figure 8 shows a program that
displays the local time of the client.

(<HTML>
(<BODY>
(<TABLE>
(<TR>
(<TR>
(<TR>
(<TR>

:width
(<TD>
(<TD>
(<TD>
(<TD>

"100%“
0))
1))
2))
3)))))

Figure 7. A simple HOP program.

(<HTML>
(<BODY>
(<P> "The current date is: ")
(:id "date" "")

(<SCRIPT> {
var el = document.getElementById('"date");
el.innerHTML = new Date() + "";

PN

Figure 8. Blending Scheme and JavaScript syntax.

5.2 Hop elaboration

The HTML tree that forms an answer is computed by the exprassi
of the main stratum. That is, it @aborated on the server. During
that stage, values can lgjected inside expressions of the GUI
stratum. This is denoted by the escape charagterside curly
braces. The expression followingsebelongs to the main stratum.
It is evaluated during the elaboration. Its results is iteskin the
expression of the GUI stratum. Simple atomic values suctriags

or numbers as well as compound values such as vectors,meésre
to HTML nodes, and, as presented in Section 5.3, functions ca
be inserted. The source code of Figure 9 illustrates thiaagp
First, linel a HTML span element is declared. It is inserted in
the answer lines. A reference to this element is injected in the
expression of the GUI stratum ling In this example, a second
expression is injected ling

(let ((el (:id "date" "")))
(<HTML>
(<BODY>
(<P> "The current date is: ")
a-span

(<SCRIPT> {
($el) .innerHTML =
"client time: " + new Date() +
" -- server time: " + $(current-date);

PN

SORID G WD

~

Figure 9. Elaborating a HTML tree.

5.3 Hop services

The expressions of the two strata of a Hop program are eealuat
in different heaps and environments. That is, they do notesha
data. However, they may communicate by the meansefice
invocations. A service is a function declared on the server. It
is defined using th@efine-service form. As any function it
may accept several arguments. A service is invoked from tie G
stratum with a specialop form:

hop(service(ap, a;, a, ...), callback)

The values @ ay, &, ... are the actual arguments sent to the service.
Once the server has completed the evaluation of the ses\ioely,

i.e., when it has completed the elaboration of the answappties,

on the client, thecallback function on the service's answer
(converted to a string). The code of Figure 10 shows an exampl

2006/4/7

1: (define (table-create! . rows)

2: (let ((table (document.createElement ’TABLE)))

3: (for-each (lambda (row)

4: (table.appendChild row))

5: rows)

6: table))

7:

8: (define (row-create! header? . cell-texts)

9: (let ((row (document.createElement (if header? ’TH ’TR))))
10: (for-each (lambda (cell-text)

11: (let ((c (document.createElement ’TD)))
12: (set! c.innerHTML cell-text)

13: (row.appendChild c)))

14: cell-texts)

15: row))

16:

17: (define (div-fill! div-id)

18: (let* ((nb-images document.images.length)

19: (nb-forms document.forms.length)

20: (head-row (row-create! #t ’Tag ’Count))

21: (image-row (row-create! #f ’Image nb-images))

22: (form-row (row-create! #f ’Form nb-forms))

23: (table (table-create! head-row image-row form-row)))
24: ((document.getElementById div-id).appendChild table)))

Figure 5. A Scheme program manipulating the DOM tree. The given progtgnamically adds an HTML table, that contains statistiles (
number of images and forms) about the current documentn&i8, and19 the number of images and forms of the current document are
retrieved. Using thereateElement method of thelocument variable we then construct new table tags (€, and11). These tags are
subsequently combined vigpendChild (line 4, and13), and finally appended to the v tag that has been given as parameter (Bidle

where a table of contents is build on the server from inforomat 1: (<HTML> .
sent by the client. In addition to illustrating the servied tine 10, 2 (map <H1> (iota 3)))
this example also shows that compound data such as vectgrs ma 2 (1i'z<(B([}:1?T"'ON(><DIV> Toc: "))
transit from client and server and vice versa. 4 :
5: ronclick
6: ~(let ((hs (document.getElementByTags "h1")))
1: (define-service (make-toc sections) 7 (hop ($make-toc hs)
2: ((vector-map sectiomns))) 8 (lambda (s)
3: 9: (set! $toc.innerHTML s))))
4: (<HTML> 10: "Click to view the table of contents")))
5: (map <H1> (iota 3))
6: (let ((toc (<DIV> "Toc: "))) Figure 11. Service invocation in Scheme.
7: (<BUTTON>
8: ronclick {
1(1;.: Kzré;:;:fg:?;)getElementByTagS("hln); This form invokes theservice with the arguments @ a, a,
. P . y On completion of the invocation, the continuation iplad.
11: function(s) {($toc).innerHTML = s;}) L . . .
12: } "Click to view the table of contents"))) Contrary to thénop service invocation presented in Section 5.3, the

value sent to the continuation is no longer a string but ampk#
Figure 10. Service invocation. or compound data type. In particular, Hop is able to autaradyi
create, on demand, classes on the client. Thatis, whentamaesis
returned to the client as a result of a service invocatioadidition
to sending the object, Hop also sends to the client the capgresl
5.4 Hop Scheme for declaring the class anteriorly. This enables Hop exgioes
The StM2Js compiler lets us replace JavaScript with Scheme in to access objects independently of the strata. This istriéitesd in
Hop programs. In this new version, the curly braces are cepla the example of Figure 12. In this example, a clas$tware is
with the~ escape character that introduces expressions of the clientdeclared in the main stratum (lir2d). Instances are created in the
stratum. During the elaboration stage, Scheme client sgjmes servicequery-by-name and sent back to the client (lir®). On
are compiled on the fly into JavaScript. The source code afrig ~ the GUI stratum (line27, 28, and29) the value returned by that
11 is a direct re-writing of Figure 10. service is directly accessed as a class instance.
As it can be noticed, the dot-notation ofc@2Js is strongly)
relevant in the context of Hop. It enables a compact notdfion ~ 5-5 External Scheme Files

reading and writing fields of instances which are frequeriap. The previous section detailed only one way of inserting Sehe
In combination with £m2Js, we have added a new construction code into Hop documents. Another way consists of including
to Hop, namely therith-hop form. Its syntax is: complete Scheme files (usually libraries) in thEAD> section
of the page. Figure (ref :figure "file-include”) shows an exden
(with-hop (service a, a; a; ...) continuation) where two files are included: one JavaScript file, and oner8ehe

8 2006/4/7

~a)" name))

1: (module example

2: (library sqlite)

3: (class software

4: name: :string

5: author::string

6: version: :string

7: license::string))

8:

9: (define-service (query-by-name name)

10: (sqlite-select make-software "softwares WHERE (name =
11:

12: (let ((name (<INPUT>))

13: (version (<INPUT>))

14: (license (<INPUT>)))

15: (<HTML>

16: (<BODY>

17: (<TABLE>

18: (<TR> (<TD> name))

19: (<TR> (<TD> version))

20: (<TR> (<TD> license)))

21: (<INPUT>

22: :type ’text

23: conkeyup ~(if (= event.keyCode 13)

24: (with-hop ($query-by-name this.value)
25: (lambda (o)

26: (when o

27: (set! $name.value o.name)
28: (set! $version.value o.value)
29: (set! $license.value o.

value)))))))))

Figure 12. This example illustrates the exchanges of compound valoes & server to a client. In this example, a class is declared o
the server (line8). The serviceyjuery-by-name (line 9) queries a database in order to return instances of the sddssiare to the client.
Automatically, Hop declares the classftware on the client. So, in the client code, the value receivedéncintinuation (lin€5) is tested
and the fields revelant to the application are directly ex&a (line27, 28, and29).

file. The Scheme file is compiled on the fly and then sent the same5.6 Conclusion

way as the JavaScript file.

(<HTML>
(<HEAD>
(<HOP-HEAD> :jscript "jslib.js")
(<HOP-SCHEME-HEAD> :sscript "schemelib.scm"))
(<BODY> "some body text"))

Figure 13. A Hop document includes a JavaScript and a Scheme
file.

We mentioned in Section 4 that there are different ways effating
with Scheme code. Either the safe interface ugiadirectives, the
explicit mode accessing thg s* variable, or the unsafe way where
all unbound symbols are considered to be implicitly impdrte
global variables.

In the context of Hop we opted for the unsafe interface. It is
the easiest way of combining external files and injected code
Even if external file came with a header file a safe compilation
would still be extremely difficult. Scheme code in Hop files is
often out of order (the code for a button click might be befibre
main script with important initializations and declarat®) and all
injected Scheme expressions are compiled upfront whenléhis fi
loaded. The out of order compilation implies potentiallydafined
variables at early locations, and the upfront compilatioeans
that we don’t have any relationship between the differemmesee

Replacing JavaScript with Scheme on the client stratumtbasas
and cons. On the positive side, it enforces the cohesiondagtw
the two strata. Scheme and JavaScript are similar languages
they promote slightly different programming styles. Fostance,
Scheme promotes recursions and higher-order operatorigg wh
JavaScript promotes loops and iterators. Hence, whileacam
JavaScript with Scheme does not bring new functionalityap Hit,
undoubtably, makes programs look nicer. A single, cohesymtiax

is used which gives the feeling of a continum from the servéhe
client and vice-versa. Switching from server programminglient
programming does not require much intellectual effort.

On the dark side, it could be argued that using a single syntax
inside a single source code, for expressions evaluatedferetit
environments and libraries is prone to error. The early expnts
tend to show that is not a dramatic drawback. Only the expege
will tell if using a single syntax for both strata is a benefit.

6. Related Work

Several different projects have tried to replace JavaSorpthe
client side. The attempts can be divided into three categoeither

by enhancing the Internet browsers with their language ofoeh

by compiling to already existing plugins (in particular tdava
Virtual Machine), or by compiling directly to JavaScript.

The most famous and successful extensions to browsers are th
Java and the Flash plugin. The Java extension [2] integiates
JVM into the browser, and allows to run arbitrirgode within

pieces. Two Scheme expressions might be part of the same paget. Macromedia’s Flash plugin [1] on the other hand is spezd

(and should hence share the same variables) or might be etatypl
separated entities (or even dead code). The unsafe irgenfas
however advantages too, and we found it comfortable to use Ja
Script libraries without the hassle of import/export deatens.

in displaying animations. Since release 5 Flash comes with a

8The interpreted code is contained by security measuresthBuengine
itself is capable of executing any code.

2006/4/7

integrated scripting language ActionScript [7], which &sbd on [8] ECMA — ECMA-262: ECMAScript Language Specification —
ECMAScript. 1999.

A more SM2Js related project is OpenScheme [4]. Similar to [9] Florian Loitsch — Javascript to Scheme Compilation — 2005
Scm2Jsit allows to use Scheme as scripting language on the client Workshop on Scheme and Functional Programming, Septe@0@5,

side. It achieves this through the means of a plugin (avilédy [10] Kelsey, R. and Clinger, W. and Rees, Jhe Revised(5) Report on
either Internet Explorer or Netscape compatible browstrs) is the Algorithmic Language Scheme— Higher-Order and Symbolic
capable of interpreting Scheme code. With this plugin dgwels Computation, 11(1), Sep, 1998.

can directly send Scheme code to the client. [11] Schinz, M. and Odersky, M. Fail call elimination of the Java
Most projects don’t write their own plugins, though, butsetthe Virtual Machine — Proceedings of Babel&aps01, Florence, Italy, Sep,
existing Java extension. Any language that can be compl@evta 2001.

Byte Code can be interpreted by the Java plugin, and is hence[12] serpette, B. and Serrano, M. Compiling Scheme to JVM
executable by the browser. Bigloo [12] amongst many othars ¢ bytecode: a performance study- 7th Int&apsl Conf. on Functional
benefit from this approach to deliver so called applets wigbw Programming, Pittsburgh, Pensylvanie, USA, Oct, 2002.

pages. o)) [13] Serrano, M. and Gallesio, E.HOP, a language for programming
The Java plugin is however not installed on every client,addva- the Web— 2006.

Scriptbased approach reaches a far bigger userbagg2JavaScript [14] Tatsurou Sekiguchi and Takahiro Sakamoto and Akinamézawa
[3] is a prototype of compiling lisp-like languages to Javat. — Portable Implementation of Continuation Operators in
ParenScript [5] is an already more mature attempt with a Imperative Languages by Exception Handling— Lecture Notes in
complete macro environment or lisp-style iterations. Targliage Computer Science, 20222001, pp. 217+.

itself is largely based on JavaScript (with a LISP syntax)jolv
makes a direct translation straight-forward.

7. Future Work

ScM2Js has reached a usable state and it can be used as JavaScript
replacement now. There is however still room for improvenze
we would like to address the following issues in the future:

e increase performance. We think that an improved versiomof o
inlining pass, and some peephole optimizations could have a
positive impact on performance.

e improve the runtime. Some functions likeal are still missing,
even though their implementation is straightforward.

e implementcall/cc. We hope to be able to create serializable
continuations, which would allow us to research migration
between Web browsers.

8. Conclusion

In this paper we have presented¥2Js, a Scheme to JavaScript
compiler. We enumerated some differences between these two
languages, and showed how they affect an efficient comgpilati
We detailed in particular the tail recursive loop translatiSeveral
benchmarks demonstrate the usability of our compilem3Js
compiled Scheme code is generally not more than twice asadow
handcrafted JavaScript code.

We introduced the JavaScript and Hop integration. On thentli
side the JavaScript interface allows to exchange data ketwe
Scheme and JavaScript code, and an extension eases the use of
JavaScript values within Scheme code. On the server-sidareve
able to replace JavaScript completely with Scheme.

As Hop itself is a variant of the Scheme language it is now iptess

to write sophisticated web applications exclusively in &dle.

9. References

[1] http://lwww.macromedia.com/shockwave

[2] www.java.com/getjava/

[3] http://iwww.cryptopunk.com/wip/lisptojavascript.html .

[4] http://gd.tuwien.ac.at/languages/OpenScheme/nposntrh.
[5] http://blogs.blOrg.net/netzstaub/archives/000525.htl.

[6] Baker, H. —CONS Should Not CONS Its Arguments, Part II:
Cheney on the M.T.A<1> — Notices, 30(9), Sep, 1995, pp. 17-20.

[7] Colin Moock —ActionScript for Flash MX: The Definitive Guide —
,, 2002, pp. 1104 (est.).

10 2006/4/7

