
IS
S

N
 0

24
9-

63
99

appor t
de r e c he rc he

1995

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Reactive Objects

Frédéric Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

N˚ 2664
Octobre 1995

PROGRAMME 2

Calcul symbolique,

programmation

et génie logiciel

Reactive Objects

Fr�ed�eric Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

Programme 2 | Calcul symbolique, programmation et g�enie logiciel

Projet MEIJE

Rapport de recherche n�2664 | Octobre 1995 | 23 pages

Abstract: In the reactive approach, system components are not supposed to exe-

cute at their own rate, but are instead driven by a logical common clock, de�ning

global instants. The Reactive Object Model introduced in this paper, is an object

based formalism matching the reactive paradigm. In this model, methods can be

invoked using instantaneous non-blocking send orders, which are immediately pro-

cessed (that is, processed during the current instant); moreover, a method cannot

execute more than once at each instant. The Reactive Object Model is described

and compared to the Actor Model; then a prototype language based on this model

is introduced; �nally its expressive power is shown on the example of a broadcast

communication mechanism.

Key-words: Actors, Concurrent Programming,Objects, Reactive Approach

(R�esum�e : tsvp)

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)

Téléphone : (33) 93 65 77 77 – Te´lécopie : (33) 93 65 77 65

Objets r�eactifs

R�esum�e : L'approche r�eactive suppose que les composants d'un syst�eme parall�eles

ne s'executent pas �a leur propre rythme, mais sont dirig�es par une horloge logique qui

d�e�nit des instants globaux. Le mod�ele des Objets r�eactifs introduit dans ce papier

est un formalisme \bas�e-objets" fond�e sur le paradigme r�eactif. Dans ce mod�ele,

les m�ethodes sont appel�ees par des odres d'ex�ecution instantan�es et non bloquants,

trait�es imme�ediatement (durant l'instant courant). De plus, une même m�ethode ne

peut s'ex�ecuter plus d'une fois durant le même instant. Le mod�ele des objets r�eactifs

est d�ecrit et compar�e au mod�ele des Acteurs, puis un langage prototype fonde�e sur ce

mod�ele est introduit. Pour terminer, on montre la puissance d'expression du mod�ele

�a travers l'exemple d'une communication di�us�ee.

Mots-cl�e : Acteurs, Programmation concurrente, Objets, Approche r�eactive

Reactive Objects 3

1 Introduction

In usual programming languages (for example, C), one of the main reasons for de-

�ning procedures is to allow reuse of pieces of code without rewriting them. After

being de�ned, a procedure has just to be called instead of copying its body. Moreo-

ver procedures are the basic units for modularity (even if they are generally felt as

not su�cient for that purpose). Usual languages provide only sequential program-

ming constructs: there is only one control
ow, which in case of procedure calls, is

suspended in the caller until the called procedure terminates; this \Procedure Call"

paradigm is shown on �gure 1.

execution of f body

f terminates

call of f

 call of f
is completed

caller

called function

 caller is
suspended

f starts

Figure 1: The Procedure Call Paradigm

Notice that the \Remote Procedure Call" (RPC) protocol[7] is a natural exten-

sion of the Procedure Call paradigm to distributed computing. In this context, the

client is the caller which calls the server. The RPC paradigm is shown on �gure 2.

execution of server body

server terminates

call of the server

call of server
is completed

client

server

 client is
suspended

server starts

network

Figure 2: The Remote Procedure Call Paradigm

RR n�2664

4 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

Many extensions of the Procedure Call paradigm have been designed to allow

several control
ows. One of the �rst extension is the Actor model originally propo-

sed by Hewitt[11], and later developed by Agha[1]. Actors are parallel autonomous

agents, which are distributed in space and execute at their own rate (thus, each ac-

tor represents a distinct control
ow) and communicate asynchronously by sending

messages. The send primitive is the non-blocking analog of procedure call: in the

Actor model, a caller just send an execution order (a message) to a called actor, and

it continues without waiting for the called actor to receive (or process) the order.

Thus, the caller and the called actors are logically executed in parallel, as soon as

the execution order is sent by the caller. This \Send and Forget" paradigm, which

is the core of the Actor model, is shown on �gure 3.

agent

agent

order sent

 caller continues
after sending the order

Figure 3: The Send and Forget Paradigm

Several questions arise from this paradigm:

1. After being sent, when will an order actually be executed ?

2. How to get a result from the called agent ?

3. How to deal with concurrent orders sent to the same agent ?

We are now going to consider these questions in turn.

For being executed, an order �rst has to reach the called agent; thus, here is a

need to insure that an order will eventually be delivered (else programming would

become quite problematic). In the Actor model, messages are bu�ered intomailboxes,

from which actors take their inputs, and a fairness assumption states that every

message sent to an actor is guaranteed to be eventually put into its mailbox[2]. An

important point is that there is no way for the caller to get information on what

really happens, and when it happens. Notice that in a distributed context, fairness

simply means that the communication network is not allowed to loose messages.

To return a result from a called agent to the caller, is not as simple as in the

Procedure Call paradigm, since there is no implicit synchronization between them

at the end of called agent execution. However, the bene�t is that the caller blocks

waiting for the result, only when it really needs it. A standard solution is to send

along with the order an extra information used by the called agent to return the

result to the caller. It looks like �gure 4, in which the caller transmits its identity to

INRIA

Reactive Objects 5

the called agent to allow it to reply (this means that not only \simple" values are to

be associated to orders, but also \higher order" ones, like agent identities; this has

deep implications for semantics; see[14] for a full discussion on this aspect).

caller

called agent

order sent + identity

caller needs
 the result

caller gets
 the result

result sent back
 using identity

Figure 4: Getting Results from Agents

As parallelism is basic in the Send-and-Forget paradigm, there must be a way

to deal with concurrent orders sent to the same agent. Figure 5 shows a situation

where two distinct agents send two orders to the same target. In the Actor model,

the problem is solved by the use of mailboxes which bu�er messages.

caller2

called
agent

caller1

Figure 5: Several Calls to a Same Agent

Several problems are raised by the Actor model:

� A fairness hypothesis is actually not su�cient as it does not implies that

transmission delays (between the sending of a message and its placing into a

mailbox) are bounded (it only implies that they are �nite). In real situations,

something that can be delayed during an unbounded amount of time is often

considered as equivalent to one allowed to never occur. In short, fairness means

�nite but unbounded, but what is really sought is a kind of bounded delay

property.

� Program behaviors may depend on mailbox sizes. Moreover, over
ow problems

arise when using bounded size �les; on the other hand, using unbounded �les

may lead to situations where unbounded memory allocation becomes needed.

RR n�2664

6 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

� The need for mechanisms to overpass the mailbox mechanism may appear in

some situations, for example to deal with priorities (alarms, for instance). The

express mode of ABCL/1[16] is an example of such a mechanism.

We are now going to introduce the notion of an instant into the Send-and-Forget

paradigm. to obtain a new paradigm called \Reactive Agent" paradigm.

2 The Reactive Approach

In the reactive approach, processes (as we call parallel system components) are not

allowed to execute at their own rate, but are driven by a logical \basic clock" which

de�nes a common time. In other words, there are instants which are global to all

processes, and a particular process is not allowed to execute for the next instant

while there exists another process which is not completed for the current instant.

Several models are based on the reactive approach, which mainly di�er on the

way processes are created and communicate:

� In Nets of Reactive Processes (NRP)[6], processes are connected through chan-

nels, to form deterministic nets. Channels are in�nite \�rst in/�rst out" �les;

a process can output messages into channels (always possible, as channels are

in�nite) or it can input messages from channels, being blocked when channels

are empty. Each channel has at most one producer process and at most one

consumer process, and nets can be recursively de�ned (thus, channels and pro-

cesses can be dynamically created). The key point of the NRP model is that

processes are also allowed to test for channel emptyness during one instant,

while preserving net determinism.

� In the POR/RLib formalism, processes are dynamically created and triggered

by broadcast events. The POR/RLib is the kernel of an industrial process

control tool (used to pilot Lafarge cement factories)[8].

� In the synchronous language SL[9], agents communicate using broadcast signals1.

At each instant, a signal is either present, that is emitted by some agent during

this instant, or absent otherwise; moreover, all agents get the same informa-

tion about the signal presence or absence (this is the broadcast characteristic).

There is no dynamic creation of agents in SL.

The reactive approach focus on the notion of logical time, common to several

processes. It naturally leads to decompose complex systems into several \reactive

areas", each of them de�ning its proper common time. Reactive formalisms are well

suited to program these reactive areas, while standard asynchronous mechanisms

(like for example, message passing) are reserved for inter-areas communications.

1
SL is strongly linked to the Esterel synchronous language[4].

INRIA

Reactive Objects 7

The Reactive Agent Paradigm

Introducing instants into the Send-and-Forget paradigm, allows to use them to

bound delays of order transmissions. More precisely, transmission of an order can be

required to be processed during the same instant the order is sent. These one-instant

transmission orders will be simply called instantaneous orders.

To preserve the globality of instants, it is natural to require that an agent does

not process more than one order during one instant (otherwise, one agent could

execute several of its instants while others could execute none). This solves the

concurrency problem raised by concurrent calls to the same agent: at each instant,

only one order may be processed by an agent, the other ones being simply rejected.

Let us call this, \one call per instant" property. An important point is that a caller

agent can immediately (that is, in the current instant) know if its orders are rejected

or accepted.

Instants allow to decompose agent behaviors into steps. During a given global

instant, an agent may be called or not; in the �rst case, it executes its next step,

and otherwise, it remains asleep. A pathological situation is when an agent execution

step does not terminate; in this case, the agent will never be able to react to any

new execution order; notice that in such situations, globality of instants prevents

the whole system to terminate for the current instant, and thus, to go to the next

instant. We will say that an agent has the \reactivity" property if all its execution

steps always terminate, and is thus ready to react to orders at each instant.

Thus, the Reactive Agent paradigm consists of agents reacting to instantaneous

orders and verifying the \one call per instant" and the \reactivity" properties. This

leads to an approach in which systems are decomposed into reactive areas where

agents communicate inside their area by instantaneous orders, and between distinct

areas, by usual unbounded delay orders. This is shown on �gure 6.

agent

agent

instantaneous
 order

reactive area 1 reactive area 2

agentunbounded delay
 order

Figure 6: The Reactive Agent Based Approach

Notice that mailboxes are useless for reactive agents, as orders need not be

stored: at each instant, if an order is the �rst one addressed to a target agent,

then it can immediately �re it; otherwise it is simply rejected. Notice also that the

fairness assumption of the Actor model is no more needed inside reactive areas,

where instantaneous orders are used.

RR n�2664

8 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

An important problem in parallel programming is to avoid inter-blocking between

mutual calls. We end this section, with an example showing the use of the \one call

per instant" property to avoid inter-blocking situations. We consider two graphical

objects O1 and O2 shown on �gure 7, that are linked, and must move together. Each

object reacts to a move order and immediately transmits it to the other object.

Cycles2 between move calls are automatically broken because of the \one call per

instant" method property; for example, if O1 receive a move order, it transmits it to

O2 which in turn, transmit the order to O1; but the transmission cycle stops then,

as O1 move method has already been executed for the current instant.

move

move

object O1 object O2

move

move

Figure 7: Two Linked Graphical Objects

3 Reactive Objects

We are now de�ning a model based on the Reactive Agent paradigm, and called

\Reactive Object Model" (ROM). In this model, objects encapsulate data shared

by agents, called methods, owned by the object. Methods can be invoked by ins-

tantaneous orders, have the \one call per instant" property, and are intented to be

reactive. This model is currently studied and developed under contract with the

France T�el�ecom company3. Its formal semantics is described in [14].

First, we introduce the model; then section 4 describes a prototype language

based on it; in section 5, we use the language to encode a broadcast communication

mechanism; �nally, future works are considered in section ??.

Objects, Methods and Systems

An object encapsulates data shared by all itsmethods, which are parallel and concur-

rent treatments on these data. A system de�nes a reactive area, and is made of

objects that are run in parallel and share the same temporal reference. There are

thus three levels: systems, objects in systems, and methods associated to objects;

the key point is that the same notions of an instant and of a phase go through the

three levels:

2called \causality cycles" in synchronous languages.
3Contract France T�el�ecom-CNET 93 1B 141, #506

INRIA

Reactive Objects 9

� Execution of a method is divided into instants: one can speak of the �rst instant

of the method, of the second instant, and so on. The same method cannot be

run several times during one instant. Moreover, a method can suspend its

execution, waiting for a new phase, and execution will resume in the current

instant, when this phase will be reached (thus, phases could as well be named

\micro instants").

� Execution of an object for the current instant is terminated when all its me-

thods have �nished to execute for that instant.

� A new instant takes place when all objects have terminated their execution

for the current instant; a new phase takes place when all methods either have

�nished to execute for the current instant or are suspended waiting for a next

phase.

Therefore, instants and phases provide systems with a global synchronizing mecha-

nism: the system, its objects, and their methods all run to the same global clock,

and no component is free to take some advance on the others.

Figure 8 shows the structure of an object, made of three parts:

� a data part de�ning object data;

� an interface part, for calling object methods; one can see it as made of \push

buttons" : to call a method, one pushes the corresponding button, which re-

mains depressed until next instant; moreover, all buttons are automatically

released at the beginning of each new instant;

� a code part, made of several pieces of code, each one de�ning the body of a

method. The arrow depicted with each method body shows where execution

is currently stopped in it.

data part

interface part

code part

M1 Mk

val1
val2

...

...

...

Figure 8: An Object

Method Calls

There exists three kinds of method calls;

RR n�2664

10 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

� In asynchronous calls, the caller does not wait for the called method to termi-

nate; it just sends an order and continues to execute.

� In synchronous calls, the caller halts until either the order is rejected, or, if

accepted, the called method terminates for the current instant.

� Delayed calls are asynchronous calls which are delayed to the next instant.

In the two �rst cases, the caller can be informed whether the order sent is accepted

or rejected (this information is meaningless for delayed calls which are processed

only at next instant). Parameters may be transmitted during calls and they may be

of any kind; they can even be objects or methods.

Figure 9 shows the e�ect of an accepted call of a method named M in object O:

button M is pushed and execution of the method body associated to M goes to a new

point shown by the arrow. On the other hand, �gure 10 shows a rejected call to an

already done method (the corresponding button is depressed): it has no e�ect at all

(recall that all buttons are raised at the beginning of each new instant).

M1...

...

M ...

...

M1...

...

M ...

...

becomes

object O object O

call of method named M
 in object O

Figure 9: Accepted Send to a Method

M1...

...

M ...

...

call of method named M
 in object O

object O

Figure 10: Rejected Send to a Method

Clones

Objects can be dynamically created as clones of existing ones4. A clone of an object

O is a new object whose methods are copies of those of O. The cloning operation

4The notion of a clone comes from the SELF language[18]

INRIA

Reactive Objects 11

is shown on �gure 11. Notice that in the clone object, data are not copied and are

unde�ned (the ? symbol), and that method bodies are reset.

M1 Mk

val1
val2

...

...

...

M1 Mk...

...

...

creates

O’ is a clone of O

object O object O’

Figure 11: The Clone Operation

Adding Methods

Methods can be dynamically added to objects. The e�ect of adding a method to an

object is shown on �gure 12: a new button is added with a new reset instance of the

method body (notice that button and method names are not necessary the same).

M1 Mk...

...

M1 Mk...

...

becomes

X

object O object O

method M

add method M to object O
 under name X

Figure 12: Add a Method

When adding a method, if there exists a method with the same name, then

any access to the old method becomes impossible (thus, the old method becomes

unaccessible).

Initial Object

There exists an initial objet, with only one method; this method is continuously

executed by the system and each execution of it de�nes a new global instant. During

one instant, objects are created and methods are called; execution of called methods

can cause creation of new objects and calls of new methods, that will be executed

in the same way. A new phase is issued when all methods either are suspended, or

have �nished to execute for the current instant. The current instant is terminated

when all called methods have terminated their execution for that instant; then, the

initial method is called another time, de�ning a new instant, and so on forever.

RR n�2664

12 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

This concludes the Reactive Object Model description. The next section gives a

syntax and de�nes a prototype language based on the ROM model.

4 The Language

This section gives a syntax for the ROM model. The language described is built on

Reactive C (RC)[5] which is itself based on C, and gives a way to code systems

designed according to the reactive approach. Our intention is not to give a full

edged language, but just to de�ne a prototype that can be useful to investigate the

ROM model. We are aware that this prototype language is not user-friendly, and

we plan to build a real language based on the ROM model.

Object De�nitions

The data part of an object is a structure whose �elds can only be accessed by the

object's methods. De�nition of an object O having �elds f1,...,fk is written:

object(O)

f1;

.....

fk;

endobject(O)

Example :

object(Signal)

int emitted;

endobject(Signal)

An object O is simply declared by:

objectType O;

In this case, O has to be de�ned as clone of another object (see bellow).

A �eld x can be accessed by object's methods under the name field(x).

The object named basic has an empty data part, and is prede�ned.

Method De�nitions

The de�nition of a method M associated to an object O has the following form:

method(O,M){

...

}

INRIA

Reactive Objects 13

Method bodies are made of RC statements. A method is called me in its body, and

its name is me->name. Variables de�ned in a method body are local to it and are

introduced by the var keyword. The owner object of the method is called self, and

its name is self->name. For example, the following method prints its name each

time it is executed:

method(basic,identify){

for(;;){

printf("I am %s. ",me->name); }

stop;

}

}

Notice the stopRC statement that stops execution for the current instant; execution

will restart from this point, when the method will execute for the next time.

Remark also that there is the possibility to de�ne non-reactive objects whose me-

thod never terminate for the current instant, an example of which would be identify

without the stop in it. Such objects are de�nitely erroneous in the Reactive Object

Model.

Clones

The clone New of an object Old is created by the de�nition:

clone(Old,New);

Object New is local to the block in which the de�nition takes place.

An already declared object New is de�ned as a clone of Old by executing the

statement:

isclone(Old,New);

Adding Methods

To add a method M to object O under name X (which is a string) is written:

addas(O,M,X);

When X is the name of M, one simply writes:

add(O,M);

Asynchronous Calls

Asynchronous method calls are performed using the send statement. A parameter

is associated to an execution order; it is a pointer of type void*, and NULL denotes

RR n�2664

14 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

a parameter which is not useful. If the call is accepted, the parameter is transmitted

to the called method, and in the method body, it is known as arg. An asynchronous

call to a method of object O, whose interface name is "name", with parameter arg,

is written:

send(O,"name",arg);

Example :

send(O1,"identify",NULL);

To get information on acceptance or rejection of an asynchronous call, one uses

the sendres primitive. Code UNKNOWN means that the method is unknown, and

ALREADY DONE that the call is rejected because the method has already been called

during the current instant. The return code is assigned to an int variable given as

fourth argument; for example:

sendres(O,"name",arg,result);

Synchronous Calls

In a synchronous accepted call, the caller waits for the called method to terminates

for the current instant. A synchronous call to a method of object O, whose interface

name is "name", with parameter arg, is written:

call(O,"name",arg);

To get information on acceptance or rejection of a synchronous call, one uses the

callres primitive; for example:

callres(O,"name",arg,result);

Delayed Calls

A delayed call for the next instant is made using the sendnext primitive. There is

no corresponding primitive to get information about acceptance or rejection of the

call, as it does not concern the current instant. A delayed call to a method of object

O, whose interface name is "name", with parameter arg, is written:

sendnext(O,"name",arg);

Method Renaming

A method can dynamically change its interface name by executing a renaming sta-

tement. For example, it is changed in "new" by:

rename("new");

INRIA

Reactive Objects 15

Renamings are specially useful to restrict access to methods. For that purpose, a

method can rename itself by a new name which will be communicated only to objects

allowed to call it. For example, consider the following method:

method(O,public){

rename(arg);

...

}

One gets a restricted access to the method, by calling it with a new name as para-

meter (one supposes there is a way to create new fresh names); then, the method

will not be accessible by the old name public, but only by those knowing the new

name.

Initial Object

The initial object de�nes the system entry point; it owns a special method, also

called initial, whose continuous execution de�nes the global instants. When it is

needed, one can pass parameters to the system, using the standard \argc/argv" C

mechanism. To de�ne the initial method with the parameters param has the following

syntax:

initial(param){

...

}

Example :

initial(int argc, char *argv[]){

for(i = 0;;i++){

printf("\ninstant %d: ",i);

stop;

}

}

Phases

Instants may be decomposed into phases. The notion of a phase is strongly related

to the possibility in RC to decompose a reaction into several micro-reactions, using

the suspend statement. We thus choose to directly use this RC statement, and get

the two following primitives:

� The boolean test isPhase(n) is true if and only if the system in in phase

number n (the initial phase has number 1).

� By executing the suspend statement, a method suspends its execution.

RR n�2664

16 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

For example, one waits for the phase number 2 by executing the following loop:

for(;;){

if (isPhase(2)) break;

suspend;

}

A new phase is issued by the system when each called methods either is comple-

tely terminated, or has terminated its execution for the current instant (executing a

stop statement), or is suspended (executing a suspend statement). A new instant

is issued by the system when a new phase takes place while no suspended method

remains. Moreover, the phase number is reset to 1 at the beginning of each new

instant.

5 Expressivity

We are going to consider two examples to show the expressive power of the ROM

model. In the �rst one, one de�nes some kind of \active" objects that can execute

in an autonomous way. The second example shows how to implement a broadcast

communication mechanism.

Active Objects

Using the sendnext statement, a method can continuously call itself for the next

instant. An object owning such a method is an active object that executes in an

autonomous way, without the need for another object to call one of its methods.

For example, the following program de�nes an active object O which at each instant,

prints a message, although its run method is only called once by the initial object:

method(basic,run){

for(;;){

printf("run!");

sendnext(self,me->name,NULL);

stop;

}

}

initial(){

clone(basic,O);

add(O,run);

send(O,"run",NULL);

}

INRIA

Reactive Objects 17

Instantaneous Broadcast

We want to implement a very basic notion of a broadcast event, with only two

primitives:

� awaitEvent(E) blocks control until event E is generated.

� generateEvent(E) generates event E, which has the e�ect to immediately

resume execution of all methods waiting for E.

Notice that this is a real broadcast communication mechanism (the agent generating

an event has no knowledge on the agents that are blocked waiting for it) and not a

simple multicast (in which the event generator would have to know all the agents

awaiting the event).

The implementation is based on the following points:

� Events are objects which have two associated methods GenerateEvent and

AwaitEvent.

� The GenerateEvent method sets a �eld of the object generated.

� There are two phases: events are generated during the �rst one, and absences

of events are processed during the second one.

� The AwaitEventmethod tests continuously the object �eld; if the second phase

is reached (the event is thus absent), then the method executes a delayed call

to itself for continuing to work at next instant; otherwise, it terminates. Notice

that events are examples of \active" objects.

Here is the code:

Events. An event is an object with only one �eld called gen.

object(BasicEvent)

int gen;

endobject(BasicEvent)

To generate an event means to assign gen the number of the current instant,

which is stored in the instantNumber variable. This variable is automatically set

by the system at the beginning of each global instant, and thus, presence of all events

is automatically reset when a new instant takes place.

method(BasicEvent,GenerateEvent){

for(;;){

field(gen)= _instantNumber;

stop;

}

}

RR n�2664

18 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

During phase 1, the AwaitEvent method continuously tests the event to be ge-

nerated, and if it has not been generated when phase 2 takes place, it calls itself for

the next instant. When AwaitEvent detects that the event is generated, it calls a

method which has the same name than itself, and which belongs to an object passed

as argument, and then it terminates. Code for AwaitEvent is:

method(BasicEvent,AwaitEvent){

var objectType obj = (objectType)arg;

for(;;){

if(isPhase(2)){

sendnext(self,me->name,NULL);

stop;

}else if(field(gen)!=_instantNumber){

send(obj,me->name,NULL);

return;

}else suspend;

}

}

Notice that the method continuously executes the suspend statement while phase 2

is not reached and the event is not generated.

Generation of an Event. Code corresponding to generateEvent(evt) is:

send(evt,"GenerateEvent",NULL);

Notice that to generate an already generated event has no e�ect as the GenerateEvent

method is executed at most once during one instant (\one call per instant" property).

Waiting for an Event. A method waiting for an event E, begins by adding

to E an instance of AwaitEvent under a new secret name; then, it calls it using a

synchronous call; if it returns during phase 1, this means that the event is generated,

and the awaitEvent statement terminates; if it returns during phase 2, the event

is considered as de�nitely absent for the current instant; then the method renames

itself in secret and executes a stop statement to terminate the current instant; in

this case, only the event will possibly call it, when the event will be generated. Code

corresponding to awaitEvent(evt) is5:

{

var char *secret = newName(), *save;

addas(evt,AwaitEvent,secret);

call(evt,secret,self);

5The newName C function returns a new fresh name, and the strdup function copies character

strings.

INRIA

Reactive Objects 19

if(isPhase(2)){

save = (char*)strdup(me->name);

rename(secret);

stop;

rename(save);

}

}

Notice that the object identity (self) is the parameter of the synchronous call to

the event, allowing it to reply to the object, when the event will be generated (this

corresponds to �gure 4). Notice also that in case method name is changed into

secret, it is restored at the end of execution (after having been saved using the

strdup function). Moreover, when the event is generated during �rst instant, call of

the secret method by the event has no e�ect as this method does not exist in the

object.

6 Reactive Objects and Distribution

The Reactive Object Model introduced above relies on a global notion of instant

shared by all reactive objects. In a distributed context with potentially long, and

even a priori unbounded communication delays, realizing a global instant may be

costly. More precisely, the practicality of \instantaneous" reactions in the Reactive

Object model, as with other synchronous formalisms such as Esterel, Lustre,

etc., depends on the informal rule of thumb that reactions ought to be fast enough

to capture all relevant event occurrences in the system. If a reaction involves a

priori unbounded communication delays, then this rule of thumb will obviously be

violated. Programming with reactive objects in distributed systems thus calls for

some addition to the model.

As hinted at in Section 2, we can decompose a system into reactive areas, where

agents communicate inside their area by instantaneous orders, and between distinct

areas by usual unbounded delay orders. In this section, we discuss this model in

more detail, and brie
y comment on its implementation.

Reactive areas in unbounded delay environments

We consider �rst the basic model, with distinct reactive areas interconnected by a

communication infrastructure with unbounded communication delays (the general

case in distributed systems).

Communication between objects residing in two distinct synchronous areas is also

by means of asynchronous and synchronous calls. In an asynchronous call, the caller

does not wait for the called method to terminate, just as with the send primitive.

Unlike an asynchronous call with the reactive send primitive, however, the execution

of the invoked method does not take place within the same instant, but instead at an

RR n�2664

20 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

arbitrary future one. For the same reason, a synchronous call between two distinct

reactive aeras extends over an indeterminate number of instants.

From the point of view of the reactive model, synchronous calls to reactive objects

outside the originating area terminate the execution of the calling method for the

current instant. The caller will resume execution when the synchronous call returns,

at a di�erent, a priori unknown, future instant. Notice that it is possible in the

reactive model to precisely measure, in terms of instants in the caller's reactive

area, the duration of a synchronous call6.

In this model, the semantics of calls is \timed", i.e. calls span several (at leat one)

instant. This is what distinguishes calls within a reactive area from calls between

di�erent reactive areas. Although, semantically, the time considered is purely logical

(instants derive from the operational semantics rules of the model and arise as

terminated or stopped computations), it is possible to relate this logical time with

physical time in order to maintain real-time synchronization. This can be achieved

by anchoring the initial object in Section 4 to a time driven signal such as a real-

time clock, and by ensuring that each reaction, i.e. each instant, in a reactive area is

bounded in time. The time granularity of instants in a reactive area is thus essentially

given by the bound on their execution time.

The informal rule of thumb referred to above can then be simply stated as \the

smallest delay between two consecutive occurrences of the same event type should

be greater than the time granularity of instants".

Reactive areas in bounded delay environments

The semantics of communication in unbounded-delay environments described above

re
ects the assumption that the programmer has no knowledge of, or does not rely

on any knowledge of communication delays that may occur between reactive areas.

In large distributed systems, this is in general the case, with the unbounded delay

assumption abstracting assumptions about the implicit behavior of the communica-

tion infrastructure as well as potential failure modes (from the nodes in the system

or from the communication infrastructure). In environments with a communication

infrastructure providing bounded communication delays, however, it is possible to

re�ne the basic distributed model by synchronizing di�erent reactive areas.

In the synchronized model, reactive areas operate in parallel but their execution

is synchronized so that their reactions occur during the same global instant. The

semantics of calls between reactive areas is as presented above, except that they

are now guaranteed to arrive at their destination at the next instant. For instance,

when a synchronous call is made to a reactive object in a di�erent reactive area, it

triggers a reaction at the next instant following its initiation. Likewise, the response

to a synchronous call will arrive at the caller in the initial area exactly two instants

after the initiation of the call. Distributed executions in the system are thus globally

6For instance, it su�ces to maintain some \clock variable". When the call returns, the clock

variable holds the number of instants elapsed since the initiation of the call.

INRIA

Reactive Objects 21

clocked, but communication and reaction are only instantaneous within a reactive

area.

Communication between reactive area takes exactly one clock tick. This syn-

chronized model represents one extreme, in which executions in the whole system

is controlled by a global clock whose granularity is given by the sum of the bounds

on communication delays and on reactive area reaction time. Other re�nements are

possible where, for instance, calls between di�erent areas are delayed for some �xed,

known number of clock ticks, allowing a �ner granularity of time for the reaction of

reactive areas.

Implementing Distributed Reactive Objects

The Distributed Reactive Object model (DROM) discussed above can be readily

implemented using a standard distributed platform such as one consistent with the

CORBA speci�cation [15]. This entails deriving interface signature descriptions for

reactive objects in the CORBA Interface De�nition Language (IDL), and providing

an appropriate binding between a reactive area and its environment.

Two related aspects must be considered in realizing the latter:

1. managing, i.e. generating and collecting, calls in and out of a reactive area,

2. preserving the semantics of reactions inside a reactive area.

Essentially, to comply with the semantics of calls explained above, the execution of

each reaction inside a reactive area must be treated as a single atomic action, during

which the environment visible from the area (i.e. set of incoming calls or responses

from previous synchronous calls) must remain unchanged.

This is exactly similar to the construction, detailed in [17], of a virtual machine

to execute programs written in the Esterel synchronous programming language.

Indeed, a particular degenerated case of reactive area would be that of a single reac-

tive object that could, e.g., be programmed using a standard synchronous language

such as Esterel or Lustre.

7 Conclusion and Future Work

The Reactive Object Model is a new formalism that merges an object approach

together with the notion of a global instant. Object methods are executed in parallel,

and are called using instantaneous orders which are asynchronous calls processed

at the same instant they are issued. A prototype language based on the ROM

models have been designed and implemented in Reactive C. The expressive power

of the ROM model is illustrated by implementation of a broadcast communication

mechanism. Finally, the embedding of the ROM model into a distributed framework

(DROM) has been discussed.

RR n�2664

22 Frederic Boussinot , Guillaume Doumenc , Jean-Bernard Stefani

Work on theDROMmodel is currently under way. We plan to realize theDROM

model as described in Section 6 by integrating the ROM model on top of a CORBA

[15] and ODP [10, 3] conformant distributed platform (called TORB for Telecom-

munications Object Request Broker) [13], reusing work already carried out for the

execution of reactive objects in a distributed environment based on the Chorus

operating system microkernel [17].

We also plan to integrate the DROM model with a study of predictability condi-

tions, to be able to satisfy so called \quality of services" requirements (from a time

related, as well as from a functional viewpoint)[12].

Finally, we plan to design a true syntax for the prototype language presented in

section 4. This language, called RC++, would be built on the top of C++, and it

would implement ROM reactive objects as well as broadcast communication.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, 1986.

[2] G. Agha, S. Frolund, Woo Young Kim, R. Panwar, A. Patterson, and D. Stur-

man. Abstraction and Modularity Mechanisms for Concurrent Computing. In

Gul Agha and Peter Wegner and Akinori Yonezawa, editor, Research Directions

in Concurrent Object Oriented Programming, pages 3{21. The MIT Press, 1993.

[3] ODP Reference Model: Architecture. Itu-t iso/iec recommendation x.903, in-

ternational standard 10746-2, January 1995.

[4] G. Berry and G. Gonthier. The Esterel Synchronous Programming Lan-

guage: Design, Semantics, Implementation. Science Of Computer Programming,

19(2):87{152, 1992.

[5] F. Boussinot. Reactive C: An Extension of C to Program Reactive Systems.

Software Practice and Experience, 21(4):401{428, 1991.

[6] F. Boussinot. R�eseaux de Processus R�eactifs. Technical Report 1588, INRIA,

1992.

[7] J.R. Corbin. The Art of Distributed Applications: Programming Techniques

for Remote Procedure Calls. Sun Technical Reference Library. Springer Verlag,

1991.

[8] G. Doumenc, G. Garcin, and P. Gueydon. Un Syst�eme de Contrôle/Commande

R�eactif Strict. In Proc. RTS'94, 1994.

[9] F. Boussinot and R. de Simone. The SL Synchronous Language. Technical

Report RR-2510, INRIA, March 1995.

INRIA

Reactive Objects 23

[10] ODP Reference Model: Foundations. Itu-t iso/iec recommendation x.902, in-

ternational standard 10746-2, January 1995.

[11] C. Hewitt. Viewing Control Structure as Patterns of Passing Messages. Journal

of Arti�cial Intelligence, 8(3):323{364, 1977.

[12] J.B. Stefani. Computational Aspects of QoS in an Object Based Distributed

System Architecture. 3rd International Workshop on Responsive Computer

Systems, Lincoln, NH, USA, September 1993.

[13] J.B. Stefani, and P. Auzimour, and F. Dang Tran, and L. Hazard, and F. Horn,

and V. Perebaskine. A Real-Time DPE on top of the Chorus micro-kernel.

Technical Report NT/PAA/TSA/TLR/4179, CNET, January 1995.

[14] C. Laneve and F. Boussinot. Two Semantics for a Language of Reactive Objects.

Technical Report RR-2511, INRIA, March 1995.

[15] Object Management Group. The Common Object Request Broker: Architecture

and Speci�cation. OMG Document 91.12.1, December 1991.

[16] A. Onezawa, J.P. Briot, and E. Shibayama. Object-Oriented Concurrent Pro-

gramming in ABCL/1. Proc. of the OOPSLA'86, pages 258{268, 1986.

[17] R. Bernhard and L. Hazard and F. Horn and J.B. Stefani. Implementation of

a Synchronous Execution Machine on the Chorus micro-kernel. In Proceedings

14th IEEE Real-Time Systems Symposium, Raleigh, NC, USA, December 1993.

[18] D. Ungar and R.B. Smith. SELF: The Power of Simplicity. Lisp and Symbolic

Computation, pages 187{205, 1991.

RR n�2664

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

