
Reactive Programming
and FairThreads

Fr�ed�eric Boussinot

MIMOSA Project, Inria-Sophia

http://www.inria.fr/mimosa/rp

April 2007

1

http://www.inria.fr/mimosa/rp


Summary

1. Reactive programming objectives

2. The FairThreads model and the FunLoft language

3. Cellular automata

4. Use of multicore machines

2



Reactive programming objectives

� Concurrent programming with clear and precise semantics

(compared to Pthreads, for example)

� Static analysis to ensure general properties such as safety,

absence of memory leaks, or absence of data-races

� E�cient implementations (large number of components,

multicore)

Application domains:

� Simulations of systems made of large numbers of interacting

entities (Physics, games)

� Embedded systems

� Migration-based systems

3



The FairThreads Model

� Threads linked to a scheduler are run cooperatively and share

the same instants

� Several schedulers run asynchronously - Thread migration

� Implementations: Java (restriction to a unique scheduler),

Scheme (with specialised service threads), library of

FairThreads in C, LOFT.

4



Work in Progress: FunLoft

� Inductive data types - First order functions

{ Termination detection of recursively de�ned functions.

Consequence: termination of instants (\reactivity")

� Restriction on the 
ow of data (strati�cation) carried by

references and events.

Consequence: bounded system size = absence of memory leaks

� Separation of references (using a type and e�ect system):

{ Schedulers own references shared by threads linked to them

{ Threads own private references only accessible by them

{ Consequence: atomicity of the cooperative model extended

to unlinked threads and to multi-schedulers = absence of

data-races

5



FunLoft Abstract Syntax

p ::= x j C(p; : : : ; p)

e ::= x j C(e; : : : ; e) j f(e; : : : ; e)

j match x with p � >e j : : : j p � >e

j let x = e in e j ref e j !e j e:=e

j cooperate j thread f(e; : : : ; e) j join e j stop e

j unlink e j link s do e

j event j generate e with e j await e j get all values e in e

j loop e j while e do e

� functions de�ned by recursion at top-level

� schedulers de�ned at top-level

� function/module (functions terminate instantly, modules not)

6



Cellular automata

From the 50's (von Neumann, Ulam): grid of cells, �xed

neighbourhood for each cell, �nite number of possible states for

each cell and transition rules de�ned locally

� Parallelism + discrete time + determinism

� Game of Life (Conway) :

dead cell + 3 living neighbours ! living;

living cell + neighbours 6= 2,3 ! dead

7



Coding a Cell in FunLoft

let module linked_cell (x,y,me,state,neighbours) =

let count = ref 0 in

let living = ref state in

begin

generate ready;

await starting_event;

loop begin

cell_display (x,y,!living,color);

if !living then awake (neighbours) else await me;

count := 0;

for_all_values me with _ -> count++;

gol_strategy (living,!count);

end

end

8



Multicore Programming

� How can a single application bene�t from a multicore

architecture? Solution: multithreading

� Benchmark: Game Of Life (GOL) divided into several

synchronised areas: one native thread per area. Strong

synchronisation. Global determinism.

� At language level: Synchronised schedulers

{ no sharing of memory (to avoid data races)

{ events: shared among synchronised schedulers

{ syntax:

let s1 = scheduler

and s2 = scheduler

9



Multithreaded GOL

� Main di�erences with a unique scheduler solution:

{ Drawing orders sent to the graphical thread

{ No global array of cells

{ Synchronised start of cells

� Di�cult to get full bene�t from multicore:

{ multi-threaded malloc

{ multi-threaded GC (H. Boehm's GC)

� Demo (10K cells, 500 instants, 1K cycles)

one scheduler

real 0m26.367s

user 0m24.991s

sys 0m0.381s

two schedulers

real 0m20.944s

user 0m26.548s

sys 0m0.626s

10



Conclusion

FunLoft provides:

� concurrent programming with clear semantics

� static analyses to prevent from data-races and memory leaks

� e�cient implementation: large number of components

� syntax for multithreaded applications on multicore

architectures

FunLoft is experimental:

� formalisation yet to achieve: type inference, join primitive,

synchronised schedulers

� rough implementation: Loft-C, pthreads, Boehm's GC

11


