Mobility and Threads in Ambients

Xudong GUAN

Shanghai Jiao Tong University

In this talk ...

Part I. Introducing myself

Part II. Mobility and threads in Ambients

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients

Who, Where, What

- Xudong GUAN, Ph.D.
- Shanghai Jiao Tong University, Shanghai, China
- Thesis: Ambients
- Other interests: Web Usage Mining, Wiki

Thesis: Ambients

- Robust Ambients: coaction parameters
- Evolving Type System: mobility and threads
- Algebraic proof of pi-encoding in pure ambients

Web Usage Mining

- Preprocessing
- Association: improving the pattern interestingness
- Clustering: fast session and page clustering
- Destination prediction and recommendation

Wiki - "The Writable Web"

• Collaborative Document Authoring

⇒ Project documentation

⇒ Resource and knowledge sharing

- Personal knowledge storage
 - ⇒ Bookmarking and comments
 - ⇒ Experiences recording
 - ⇒ Resource keeping

Part II Mobility and Threads in Ambients

1. Motivation

- 2. The type system: ETS-MT
- 3. Equational laws under ETS-MT
- 4. The new encoding

Motivation

- Levi and Sangiorgi, 00: algebraic proof of renaming, firewall-crossing, pi-encoding, ...
- Zimmer, 00: pi-encoding in pure ambients, nonalgebraic proof, leaving one conjecture -- all the auxiliary reductions are confluent.
- Problem: Can we make use of the equational laws already developed in LS00 to prove the conjecture?

What we have: a review of the equational laws

• Untyped laws

 \Rightarrow simple but restrictive

• Single-threadness laws

⇒ the two interacting ambients must be singlethreaded

• Uniform receptiveness laws

⇒ built on single-threadness and immobility

What we want: a review of the encoding and the auxiliary reductions

- Channel name => *n*[*allowIO n* | *server read*]
- Variable name => x[*allowIO* x | *fwd* M']
- input process => *read*[*request read M*]
- output process => write[request write M]
- Communication steps:
 - ⇒ redirection: <u>*r/w-in-x*</u> enter-in-r/w r/w-open-enter *r/w-out-x*
 - ⇒ meet: <u>r/w-in-n</u> enter-in-read read-open-enter enter-out-read
- ⇒ construction: <u>enter-in-write</u> write-open-enter read-be-p write-in-p p-open-write read-out-n p-be-read p-out-read read-be-x p-out-x open-p
 18 Sep. 2002 Xudong GUAN Mobility Threads in Ambients . 10.

Classification of the auxiliary reductions

- *read / write* entering and exiting *n / x* ⇒ *n / x* : imm; read, write : ST
- *enter* entering and exiting *read* / *write* ⇒ *enter*, *read*, *write* : ST
- opening *enter*, *read*, *write*, and *p* ⇒ *enter*, *read*, *write*, *p* : ST
- Is this possible?

The problem of typing

- *read* is mobile, must be ST
- communication makes the resulting variable ambient *x*[*fwd M | allowIO x*], which is not ST. As a result, it must be immobile.
- two renamings: from *read* to *p* and from *p* to *x*
- ---- the type systems in LS00 is difficult to handle here.

Solution: a small type system + a few trivial modifications to the encoding

- able to record mobility and threads of ambients and processes
 - \Rightarrow *n* is mobile: *n* may exercise *in/out* at some point
 - ⇒ threads of ambient: maximum number of concurrent top-level actions of the process inside
- special treatment to the *open/co-open* capabilities
 ⇒ distinguish the behavior before and after opening
 ⇒ e.g. *write* is mobile and x is immobile, x can open *write* to get *fwd M*

Part II Mobility and Threads in Ambients

1. Motivation

2. The type system: ETS-MT

- 3. Equational laws under ETS-MT
- 4. The new encoding

ETS-MT: grammar

• only records threads and mobility information

$$\Gamma = \{n:T / \dots \}$$

$$\Gamma / -- P:T \quad \Gamma / -- n:T \qquad \Gamma / -- M:W$$

$$T (type) ::= \bot / U / U[T] \qquad W (context) ::= --$$

$$U (pre-type) ::= Z^{Y} \qquad / U \cdot_{t} W$$

$$Z (mobility) ::= \underbrace{V} | \frown \qquad / T /_{t} W$$

$$Y (threads) ::= 0 / 1 / \omega \qquad / U[W]$$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 15.

Current type and future type (ex. in SA)

U[*T*] *U*: current type, current behavior*T*: future type, behavior after being opened

0: \underline{V}^0 **in** read. **0**: $\widehat{}^1$ **in** read. $\overline{}$ **open** write. **0**: $\widehat{}^1[\underline{V}^0]$

open n. **open** m. **! in** p : $\underline{V}^{1}[\underline{V}^{1}[\underline{V}^{\omega}]]$

open $m \mid m[$ **open** $n \mid n[$ **open** n .**open** m .**! in** p]] $\rightarrow \rightarrow !$ **in** $p : \underline{V}^{\omega}$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 16.

Subtyping

 $\underline{\mathsf{V}} \le \frown \bullet \qquad 0 \le 1 \le \omega$

e.g.

 $\underline{V}^{0} \leq \bigvee_{V^{1}}^{0} \leq \bigvee_{V^{1}}^{1}$

$\underline{V}^{0}[\underline{V}^{0}] \leq \underline{V}^{1}[\underline{V}^{0}] \leq \underline{V}^{1}[\frown^{1}]$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . **17**.

Type operators

•*t*

$$\mathbf{n} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{0} : \mathbf{n}^{1} \cdot \mathbf{n} \cdot \mathbf{0} : \mathbf{n}^{1} \cdot \mathbf{n} \cdot \mathbf{0} = \mathbf{n}^{1} \cdot \mathbf{n} \cdot \mathbf{$$

$$t \qquad \qquad \mathbf{in} \ m \ | \ \mathbf{\overline{out}} \ n : \mathbf{P}^{0}$$

$$\mathbf{P}^{1} \ |_{t} \ \underline{\nabla}^{1} = \mathbf{P}^{0}$$

$$\mathbf{in} \ m \ | \ n[P] : \mathbf{P}^{1}$$

$$\mathbf{P}^{1} \ |_{t} \ \underline{\nabla}^{0} = \mathbf{P}^{1}$$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 18.

Typing of co-open

in read. **open** write. $\mathbf{0}: \mathbf{O}^1[\underline{V}^0]$

open write . $\mathbf{0}$: $\underline{V}^{1}[\underline{V}^{0}]$

open write . $P: \underline{V}^{1}[T_{P}]$

open
$$n: \underline{V}^1[--]$$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 19.

Typing of parallel co-opens in *m* . **0** / $\overline{\text{open}}$ *n* . **0** : $\widehat{}^{\omega}$ [$\widehat{}^{\mu}$] \bigcap^{1} \downarrow^{t} \bigvee^{1} $\begin{bmatrix} V^{0} \end{bmatrix}$ $= (\mathbf{N}^{1}|_{t} \underline{V}^{1}) [\mathbf{N}^{1}|_{t} \underline{V}^{0}]$ $= \bigcap_{\omega} [\bigcap_{\omega} [\bigcap_{\omega}]]$ **open** *n* . **open** *n* . **0** : $\underline{V}^{1}[\underline{V}^{1}[\underline{V}^{0}]]$ $\overline{\mathbf{open}} \ n \ . \ \mathbf{0} \mid \overline{\mathbf{open}} \ n \ . \ \mathbf{0} : \quad \underline{V}^{1} \left[\ \underline{V}^{1} \left[\ \underline{V}^{0} \right] \right]$ M_1 . **open** n. $P_1 \mid M_2$. **open** n. P_2 : $U_1[T_1] \mid_t U_2[T_2] = ?$ **18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients** . 20.

Typing of open

open $n . \mathbf{0} | n [\overline{\mathbf{open}} n . \mathbf{0}] \rightarrow \mathbf{0}$ $n : \underline{\vee}^{1} [\underline{\vee}^{0}]$ open $n . \mathbf{0} : \underline{\vee}^{1} ._{t} \underline{\vee}^{0}$ open $n . \mathbf{0} | n [\overline{\mathbf{open}} n . Q] \rightarrow Q$

 $n: \underline{V}^1[T_Q]$

open $n \cdot \mathbf{0} : \underline{V}^1 \cdot_t T_Q$

open $n: \underline{V}^1 \cdot_t (- |_t T_Q)$

open $n \cdot P \mid n$ [open $n \cdot Q$] $\rightarrow P \mid Q$ $P : T_P \quad n : \underline{V}^1 [T_Q]$ open $n \cdot P : \underline{V}^1 \cdot_t (T_P \mid_t T_Q)$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . **21**.

Relating ETS-MT and grave interference

grave interference $=> \bigwedge^{\omega}$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 22.

Part II Mobility and Threads in Ambients

- 1. Motivation
- 2. The type system: ETS-MT
- 3. Equational laws under ETS-MT
- 4. The new encoding

Single-threadness and immobility

- Current(U)=U, Current(U[T])=U
- Future(U[T])=T
- ST: *P*/*n*:*T* and *Current*(*T*).*threads* <= 1
- I: P/n:U and U.mobility = V

Six uniform receptiveness structures

- read $[\operatorname{in} n \cdot P_1 / Q_1] | n [! \overline{\operatorname{in}} n \cdot P_2 | Q_2]$ \Rightarrow read : ST, n : I
- ! enter[in read . P_1 / Q_1] | read [in read . P_2 / Q_2] \Rightarrow read : ST
- other 4 cases:

!*n*[**out** ...], *n*[!**out**...], !**open** *n*..., !*n*[**open**...]

Part II Mobility and Threads in Ambients

- 1. Motivation
- 2. The type system: ETS-MT
- 3. Equational laws under ETS-MT
- 4. The new encoding

Single-threaded encoding in pure SA

- some results:
 - ⇒ *read*, *write*, *enter* : ST
 - \Rightarrow *n*, *x* : I
 - \Rightarrow no renaming
- the encoding:

. 27.

 $\{(\nu n)P\} \quad \triangleq (\nu n: \underline{\vee}^{\omega})$ $(n[allowIO n / n_1 [allowIO n_1]$ | server write . in n_1 . in read . open write / server read . in n_1 . in read . out n_1 . out n . out read . **open** write **. out** read **. open** r_2 **. \overline{open}** read] | {P}) $\{M(x).P\} \stackrel{\Delta}{=} read \ [request read M$ $/(V x: V^{\omega})$ $(c_1 [out read . \overline{open} c_1 . \{P\}]$ $|r_1[$ **in** r_1 . **in** x . **open** $r_1]$ $| x [in x. open r_1. open w_1]$. $(allowIO x | r_2 [out x . \overline{open} r_2])])$ | open $c_1 |$ open $c_2 |$ open read $\{0\} \stackrel{{\scriptstyle \bigtriangleup}}{=} 0$ $\{M\langle M'\rangle.P\} \stackrel{\Delta}{=} write[request write M]$ $\{P/Q\} \triangleq \{P\}|\{Q\}$ $/c_2$ [out read . open c_2 . {P}] $|w_1[$ **in** r_1 . **open** w_1 . fwd M' $]] | {!P} \triangleq !{P}$ **Xudong GUAN - Mobility Threads in Ambients** 18 Sep. 2002 . 28 .

Typing of the encoding

$$\{ (vn)P \} \stackrel{\bigtriangleup}{=} (vn:\underline{\vee}^{\omega})$$

$$(n[allowIO n | n_1[allowIO n_1] \\ | server write . in n_1. in read . open write \\ | server read . in n_1. in read . out n_1. out n . out read \\ . open write . out read . open r_2 . open read] \\ | \{P\})$$

enter :
$$\bigwedge^{1} [\bigwedge^{1} [\underbrace{V}^{0}]]$$

read, write, r_{1}, r_{2}, w_{1} : $\bigwedge^{1} [\underbrace{V}^{0}]$
 c_{1}, c_{2} : $\bigwedge^{1} [\underbrace{V}^{\omega}]$
 $n_{1} : \underbrace{V}^{\omega}$
 $n, x : \underbrace{V}^{\omega}$
 $\{P\} : \underbrace{V}^{\omega}$

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 29.

The result

• Auxiliary reductions, and even some primary reductions are confluent, the only interference is the mutual selections of *reads* and *writes* inside channels.

Conclusion

- verification made easy by typing, but
- typing is not easy

 $m [\overline{\operatorname{out}} n / n [\operatorname{out} m . (! \overline{\operatorname{in}} n | ! \overline{\operatorname{out}} n) / p[P]]]$

--- The End ----

18 Sep. 2002 Xudong GUAN - Mobility Threads in Ambients . 31.