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General motivation
To design a base language with:
• functional core
• objects
• well-defined semantics, that can be realistically

implemented
• ML-like inference of principal types

in the goal of adding other paradigms (migration, reac-

tive)...
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Outline
First part:
• semantics of object languages
• a type system with degrees
• implementation, abstract machine
• mixins

Second part:
• intersection types
• Klop calculus
• type inference
• extensions
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First part

Generalised recursion
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Semantics of objects
Auto-application semantics

• model initiated by Kamin, 1988;
reference: Abadi and Cardelli, 1996

• object = collection of pre-methods:

o = [. . . , l = ζ(self) b, . . .]

• method call:

o.l ⇒ b {self ← o}

• specific typing
• inference of principal types impossible
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Semantics of objects 2
Recursive record semantics

• Cardelli 1988, Wand 1994, Cook 1994
• class:

C = λx1 . . . λxn λself {l1 = M1, . . . , lp = Mp}

• object: o = fix (CN1 . . . Nn)

• row variables to extend the object
• no modification of the state, since self is bound to

the initial object
• typing model of OCAML
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Language proposition
• Wand’s recursive record semantics
• ML-like references to hold the state of the object
• examples:

point = λxλself

{pos = ref x,

move = λy(self.pos := !self.pos+ y)}

p = fix (point 4)

color_point = λxλcλself

{point x self, color = ref c}
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Evaluating the fixpoint
• Problem: how can we evaluate the fixpoint ?

fix = λf (let rec x = fx in x)

• In SML, only allowed construct:

let rec x = λyN in M

• We need a generalised recursion operator
• But some recursions are dangerous:

let rec x = xV in M

let rec x = x+ 1 in M
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Type system with degrees
• Boudol, 2001
• degree = boolean information in function types

and in typing contexts

θd → τ

• 0 = “dangerous”, 1 = “sure”
• intuitively: is the value required or not when

evaluating
• (let rec x = N in M) is typable iff N is typable

with a degree 1 for x
• (let rec x = fx in M) is typable iff f has type
θ1 → τ (“protective” function)
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Degrees - examples
• example of protective function:

point0 = λself

{pos = ref 0,

move = λy(self.pos := !self.pos+ y)}

• fix = λf(let rec x = fx in x)
has type: (τ 1 → τ)0 → τ

• λself{x = 0, y = self.x}
has type: {ρ, x : τ}0 → {x : int, y : τ}
where ρ is a row variable
with the constraint ρ :: {x}

Generalised recursion and type inference for intersection types – p.10



Degrees - results

• subject reduction

• safety: the evaluation of a typable term never
leads to an error (recursion, field access,
applications...)

• algorithm for infering principal types,
extension of ML’s one
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Unification and inference algo-
rithms

• more “realistic” and efficient versions
• working on graphs (recursive types)
• unification of degrees, records, types
• polymorphism similar to ML, on degree, row or

type variables; generalising for:

let (rec) x = V in M

• constraints on row variables (ρ :: L) and degree
variables;
example: λfλx(fx) has type
(θα → τ)β → θγ → τ with γ ≤ α
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Abstract machine
• we need to evaluate terms with the shape

(λselfM) o

where o is a still unevaluated variable, knowing
that the value of self is not needed to evaluate M

• usual machines for λ-calculus or ML do not
allow the evaluation of generalised recursion
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Abstract machine
M = (S, σ,M, ξ)

• S: control stack
• σ: environment
• M : term to evaluate
• ξ: memory for recursive values (and references)

• set of 11 transition rules, among which a “magic”
rule:

(S :: (σλyM []), ρ :: {x 7→ `}, x, ξ)
→ (S, σ :: {y 7→ `},M, ξ) if ξ(`) = •
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Abstract machine
• operational correspondence
• determinism
• no infinite “silent” reductions
• correction:

if the starting term is typable, then both the
machine and the calculus semantics go through
the same reductions
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MLOBJ

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/mlobj.html

OCAML-like interpreter...
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Mixins
• goal: use higher-order constructs to build more

powerful objects
• generator: λs {. . .}
• mixin: generator modifier

C = λx1 . . . λxnλgλs {. . . fields . . .methods . . .}

• instance (λs {} is the initial generator):

fix (CN1 . . . Nn(λs {}))

• new operator:

new = λm fix (m (λs {}))
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Mixins - definition
Implemented by syntactic sugar rules.

mixin
var l = N non-constant data
cst l = N constant data
meth l(super, self) = N method
meth l(super, self) ← N method override
inherit N inheritance
without l field suppression
rename l as l′ field renaming

end

Method call: M#l
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Mixins - examples
point = λx coloring = λc

mixin mixin
var pos = x var color = c

meth move . . . meth paint . . .
end end

colorPoint = λxλc

mixin
inherit point x
inherit coloring c

end

⇒ multiple inheritance
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Mixins - examples
reset =

mixin
meth reset(super, self) = self.pos := 0

end

resetPoint = λx resetColorPoint = λxλc

mixin mixin
inherit point x inherit colorPoint x c
inherit reset inherit reset

end end

⇒ code sharing
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Mixins - examples
mixin

meth reset(super, self)←
λd (super#reset; super#paint d)

end

• Typing determines which mixins can be
instantiated and which cannot.

• By changing the initial generator, one can get
initialisers.

• Mixins = first order values
⇒ a huge expressive power
still to be explored !
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And after ?
• advanced functionalities: cloning, binary

methods... :

meth eq(super, self) = λp (self.pos == p.pos)

• operationally, no problem
• typing: not enough polymorphism !
• System F ?

type inference undecidable...
• intersection types ?

finite-rank inference is decidable...
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Second part

Inference of intersection types
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History
• system D: Coppo, Dezani, 1980; Pottinger, 1980
• principal typing: Coppo, Dezani and Venneri,

1980; Ronchi della Rocca and Venneri, 1984
• inference: Ronchi della Rocca, 1988
• system I: Kfoury and Wells, 1999
• system E: Carlier, Kfoury, Polakow and Wells,

2004

Motivation:

to find an algorithm simpler to understand and to prove
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Types syntax

τ, σ ::= t | τ1, . . . , τn → σ

• conjunction only at the left of an arrow
• empty sequence denoted by ω
• τ1, . . . , τn → σ: type of a function waiting for an

argument having all types τi
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Typing rules

x : τ ` x : τ
(Typ Id)

Γ `M : τ

Γ \ x ` λxM : Γ(x)→ τ
(Typ λ)

Γ `M : τ1, . . . , τn → σ ∀i, Γi ` N : τi
Γ,Γ1, . . . ,Γn `MN : σ

(Typ Appl Gen) (n ≥ 1)

Γ `M : ω → σ Γ1 ` N : τ1
Γ,Γ1 `MN : σ

(Typ Appl ω)
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Examples
• ` I : t→ t

(I = λxx)

• ` 2 : (t1 → t2), (t2 → t3)→ t1 → t3
(2 = λfλx f(fx))

• ` ∆ : t1, (t1 → t2)→ t2
(∆ = λx(xx))

• ` K : t→ ω → t
(K = λxλy x)

• 0 Ω :? 0 KxΩ :?
(Ω = ∆∆)
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Properties
• Subject reduction: If M →M ′, then

Γ `M : τ =⇒ Γ `M ′ : τ

• Theorem: A term M is typable in D if and only if
M is strongly normalising (i.e. iff it has no
diverging reduction).

• Trivial algorithm: try to strongly normalise, then
type.

• Problem: does not work for an extended calculus
(recursion...)

• We have the type, but not the typing tree...
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Example

M = F (λu ∆(uu))

with F = λxλy y and ∆ = λx (xx)

• First step:
annotate every variable and application with a
fresh type variable.

M t = (F t (λu (∆t(u : t4 u : t5) : t6) : t7)) : t8

where F t = λxλy(y : t0)
and ∆t = λx (x : t1 x : t2) : t3
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Example - F (λu ∆(uu))
• Second step:

for every application (M tN t) : t, build the
constraint:

Typ(N t)→ t ⊥ Typ(M t) [ftv(N t)]















(t4, t5 → t7)→ t8 ⊥ ω → t0 → t0 [t1, . . . , t7],

t6 → t7 ⊥ t1, t2 → t3 [t4, t5, t6],

t5 → t6 ⊥ t4 [t5],

t2 → t3 ⊥ t1 [t2]















(In ML, we would add t4 ⊥ t5 and t1 ⊥ t2).
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Example - F (λu ∆(uu))

Decomposition of:

t6 → t7 ⊥ t1, t2 → t3 [t4, t5, t6]

Updated system:














(t14, t
2
4, t

1
5, t

2
5 → t3)→ t8 ⊥ ω → t0 → t0 [T ],

t26 → t3 ⊥ t16 [t24, t
2
5, t

2
6],

t15 → t16 ⊥ t14 [t15],

t25 → t26 ⊥ t24 [t25]















where T = {t3, t14, t
2
4, t

1
5, t

2
5, t

1
6, t

2
6}

Those equations correspond to the term:

F (λu (uu)(uu))
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Example - F (λu ∆(uu))

Decomposition of:

(t14, t
2

4, t
1

5, t
2

5 → t3)→ t8 ⊥ ω → t0 → t0 [T ]

We should not “erase” the argument, since it must be
typable ! Updated system:







t26 → t3 ⊥ t16 [t24, t
2
5, t

2
6],

t15 → t16 ⊥ t14 [t15],

t25 → t26 ⊥ t24 [t25]







Those equations correspond to the terms:

I et λu (uu)(uu)

and not I alone
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ΛK-calculus
• Inspired by Klop, 1980.
• Syntax:

M,N ::= x |MN | λxM | [M,N ]

• Semantics:

For x ∈ fv(M):

[λxM,N1, . . . , Nn]N −→K [M{x 7→ N}, N1, . . . , Nn]

For x /∈ fv(M):

[λxM,N1, . . . , Nn] N −→K [M,N1, . . . , Nn, N ]
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ΛK-calculus
• WN K = SN K: normalising terms are strongly

normalising
• SN Λ = Λ ∩ SN K: they correspond to strongly

normalising terms in λ-calculus
• We add the typing rule:

Γ1 `M1 : τ Γ2 `M2 : σ

Γ1,Γ2 ` [M1,M2] : τ
(Typ Forget)
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Reduction rules
System state: (E ,Π) where
• E is a set of constraints
• Π is a proof skeleton, that will evolve to a valid

typing tree

Rule for n ≥ 1:

({τ → t ⊥ t1, . . . , tn → σ [T ]} ∪ E , Π) −→ (S(E), S(Π))

with S = {ti 7→ 〈τ〉
i, 〈T 〉i}1≤i≤n :: {t 7→ σ, ∅} :: D(n, T )

(Rn)
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Reduction rules
Rule for n = 0:

({τ → t ⊥ ω → σ [T ]} ∪ E , Π) −→ (S(E), S(Π))

with S = {t 7→ σ, ∅}

(R0)

Final rule:

({τ ⊥ t} ∪ E , Π) −→f (S(E), S(Π)) with S = {t 7→ τ}

(Rf)
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Results
• Theorem: A term M is typable if and only if the

initial system corresponding to M converges.

• Theorem: If M is typable, then the final proof
skeleton is a valid typing tree for M .

• Theorem: This typing tree is principal.
• Rank: Syntactic definition on types; to evaluate

the “level” of polymorphism.

Property: The finite-rank algorithm always stops.
Consequence: Finite-rank inference is decidable.
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Other results
• Implementation of the algorithm: TYPI

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/typi.html

• Variant: by replacing the rule (R0) with the
general rule (Rn); equivalent to the type system
DΩ, with the rule:

`M : ω
(Typ ω)

• Extension to references (introducing conjunction
only for values, as in ML; less liberty on the
order of resolution)

• Extension to recursion µxM (additional
unification at the end of the algorithm)

in order to type MLOBJ ...
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Future
• integrate intersection types in the language

MLOBJ

• polymorphic methods in MLOBJ

• study the expressivity of mixins more closely
• extend the language with other paradigms
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The end
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TYPI

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/typi.html

Direct implementation of the algorithm...
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Rank

inc(0) = 0

inc(n) = n+ 1 for n > 0

rank(t) = 0

rank(τ → σ) = max(inc(rank(τ)), rank(σ))

rank(τ1, . . . , τn → σ) =

max(inc(max(1, rank(τ1), . . . , rank(τn))), rank(σ))

for n 6= 1
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Rank
Syntactic definition on types...
• rank 0: usual types without intersection
• rank 1: empty
• rank r ≥ 2: there is a non-trivial conjunction

under r − 1 arrows
Example:
(t1 → t2), (ω → t3)→ t1 → t3 has rank 3
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Finite-rank algorithm
• Choose a maximal allowed rank r.
• For every intermediate step (E ,Π), check that
rank(Π) ≤ r.

• Otherwise, the term is not typable at rank r.

Property: The finite-rank algorithm always stops.

Consequence: Finite-rank inference is decidable.
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Variant
What happens if we use the general rule also for n = 0 ?

({τ → t ⊥ t1, . . . , tn → σ [T ]} ∪ E , Π) −→ (S(E), S(Π))

with S = {ti 7→ 〈τ〉
i, 〈T 〉i}1≤i≤n :: {t 7→ σ, ∅} :: D(n, T )

(Rn)

• Leads to “erase” constraints or sub-trees by D(0, T )

• Correspondence with the type system DΩ (Krivine) or λ∩

(Barendregt)

`M : ω
(Typ ω)
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Variant
• Property: The variant of the algorithm converges

iff the term is normalising.
• Proposition: A term is typable in DΩ with a

non-trivial type iff it has a head-normal form.
• Caracterisation of normalising terms.
• Corollary: If the algorithm converges, then the

term is typable.
• Reciprocal property: not true (example: xΩ)
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System I

• System proposed by Kfoury and Wells (variant:
System E with Carlier)

• Types contain expansion variables:

ψ ::= α | (ψ → ψ)

ψ ::= ψ | (ψ ∧ ψ′) | (Fψ)

• Algorithm for solving similar constraints and
returning a typing tree
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System I

• Correspondence expansion variables / territory:

FT ←→ T = {v | FT ∈ E-path(v,ΓI(M))}

• Both algorithms perform the same operations, not
necessarily in the same order, if we ignore
expansion variables
→ operational correspondence

• Used to avoid redoing the proofs of some results
(principality, finite rank)
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References
The expression

(λr (r := ["chaîne"] ; hd(! r) + 1)) (ref [ ])

is typable, but its execution leads to an error...

Solution similar to the one for polymorphism in ML:
introducing conjunction only for values (Davies and
Pfenning).

Γ ` V : A Γ ` V : B

Γ ` V : A ∧B

Γ `M : A→ B Γ ` N : A

Γ `MN : B
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References
• Distinguish the types of terms-variables and

applications: tv and t@
• Extended syntax for types:

tb ::= tv | tb ref | cte | tb list

τ, σ ::= tv | τ ref | cte | τ list | t@ | tb, . . . , tb → τ

• Decomposible equations:

τ → t@ ⊥ tb1
, . . . , tbn

→ σ [T ]
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References

({τ → t@
⊥ tb1 , . . . , tbn

→ σ [T ]} ∪ E, Π) −→ (S(E), S(Π))

with S =

��
�

�

mgu(tbi
, 〈τ〉i, 〈T 〉i)1≤i≤n :: {t@ 7→ σ, ∅} :: D(n, T ) if V alueType(τ)

mgu(tbi
, τ, T )1≤i≤n :: {t@ 7→ σ, ∅} otherwise

but we also need to impose an order for solving the

constraints, corresponding more or less to call-by-

value...
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Recursion
• We add an operator µxM
• Solution: infer types as for M , then additional

unification algorithm
• Modify the type system:

Γ, x : σ1, . . . , x : σn `M : τ

Γ ` µx M : τ
(REC) with ∀i σi ≡ τ

• Equality modulo commutativity and contraction:

. . . , τ1, τ2, . . .→ σ ≡ . . . , τ2, τ1, . . .→ σ

. . . , τ, τ, . . . → σ ≡ . . . , τ, . . .→ σ

Generalised recursion and type inference for intersection types – p.52
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