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General motivation
To design a base language with:
« functional core
 objects

 well-defined semantics, that can be realistically
Implemented

« ML-like inference of principal types

In the goal of adding other paradigms (migration, reac-
tive)...
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Outline

First part:
 semantics of object languages
* a type system with degrees

 Implementation, abstract machine
* MIXINS

%l INRIA
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Outline

First part:
 semantics of object languages
* a type system with degrees
« Implementation, abstract machine
* MIXINS
Second part:
* Intersection types
 Klop calculus
* type Inference
* extensions
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First part

Generalised recursion
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Semantics of objects

Auto-application semantics

« model initiated by Kamin, 1988;
reference: Abadi and Cardelli, 1996

 object = collection of pre-methods:
o=1..,l =C((self)d,...]
« method call:
0.l = b{self «— o}

* specific typing
« Inference of principal types impossible
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Semantics of objects 2

%l INRIA

Recursive record semantics

Cardelli 1988, Wand 1994, Cook 1994
class:

C:)\QEl...)\iEn)\Self{ll:Ml,...,lp:Mp}

object: o= fix (CNy...N,)
row variables to extend the object

no modification of the state, since self 1S bound to
the initial object

typing model of OCAML

Generalised recursion and type inference for intersection types — p.6



_anguage proposition

» Wand’s recursive record semantics
« ML-like references to hold the state of the object
» examples:

point = AxAself
{pos = ref x,
move = \y(self.pos := lself.pos + y) }

p = fix (point 4)

color_point = AxAcAself
{point x self, color = ref c}
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Evaluating the fixpoint

* Problem: how can we evaluate the fixpoint ?
fix = \f (let rec x = fz in z)
* In SML, only allowed construct:
let rec x = AyN in M

» \WWe need a generalised recursion operator
» But some recursions are dangerous:

let recx =2V in M

letrecx =2+ 1in M
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Type system with degrees

* Boudol, 2001

 degree = boolean information in function types
and In typing contexts

0 —

* 0 =*"dangerous”, 1 = “sure”

o Intuitively: Is the value required or not when
evaluating

* (let recx = N in M) is typable iff NV is typable
with a degree 1 for z

e (let rec x = fain M) is typable iff f has type
0' — 7 (“protective” function)
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Degrees - examples

« example of protective function:

point0 = Aselt
{pos = ref 0,
move = \y(self.pos := !self.pos + y) }

e fix = Af(let recx = fxin x)
has type: (7! — 7)) — 7
o dself{x =0,y = self.z}
has type: {p,z: 7}’ — {z :int,y : 7}
where p IS a row variable
with the constraint p :: {z'}
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Degrees - results

* subject reduction

« safety: the evaluation of a typable term never
leads to an error (recursion, field access,
applications...)

« algorithm for infering principal types,
extension of ML’s one
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unitication and interence algo-
rithms

« more “realistic” and efficient versions
« working on graphs (recursive types)
« unification of degrees, records, types

 polymorphism similar to ML, on degree, row or
type variables; generalising for:

let (rec) x =V in M

» constraints on row variables (p :: L) and degree
variables;
example: A\ fz(fx) has type
(0% — 7)% — 07 — 7 withy < «
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Abstract machine
» we need to evaluate terms with the shape

(Aself M) o

where o Is a still unevaluated variable, knowing
that the value of self Is not needed to evaluate M

« usual machines for A-calculus or ML do not
allow the evaluation of generalised recursion

%l INRIA
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Abstract machine

M= (S,0,M,¢)
» S: control stack
e 0. environment
« M term to evaluate
« £ memory for recursive values (and references)

 set of 11 transition rules, among which a “magic”
rule:

(S (cAyM|)), p :: {x — L}, x,8)
— (S0 {y—(}, M) If&(0)=e
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Abstract machine

» operational correspondence
 determinism
 no Infinite “silent” reductions

e correction:
If the starting term Is typable, then both the
machine and the calculus semantics go through
the same reductions
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MLOBJ

http://wwsop.inria.fr/mnosal/Pascal . Zi nmer/ m obj . htn

OCAML-like Interpreter...
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MIXINS
« goal: use higher-order constructs to build more
powerful objects

* generator: As {...}
» mixin: generator modifier

C' = A xy... \zyAgAs {. .. fields...methods. ..}
« instance (As {} is the initial generator):

fix (CN1...Ny(As{}))

* new operator:

new = Am fix (m (As {}))
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Mixins - definition
Implemented by syntactic sugar rules.

mixin
var [ = N non-constant data
cstl =N constant data

meth [(super, self) = N method
meth [(super, self) « N method override

Inherit N Inheritance

without [ field suppression

renamel as!’ field renaming
end

Method call: M #1
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MixXIns - examples

point = \x coloring = Ac
mixin mixin
var pos = x var color = ¢
meth move . .. meth paint . ..
end end

color Point = AxAc
mixin
Inherit point x
Inherit coloring c
end

= multiple inheritance
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MixXIns - examples

reset =
mixin
meth reset(super, self) = self.pos := 0
end
reset Point = A\x resetColor Point = Ax\c
mixin mixin
Inherit point x Inherit color Point x ¢
Inherit reset Inherit reset
end end

= code sharing
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MixXIns - examples
mixin
meth reset(super, self) «

A\d (super#reset; super#paint d)
end

 Typing determines which mixins can be
Instantiated and which cannot.

» By changing the initial generator, one can get
Initialisers.
« Mixins = first order values

= a huge expressive power
still to be explored !
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And after ?

%l INRIA

advanced functionalities: cloning, binary
methods...

meth eq(super, self) = Ap (self.pos == p.pos)

operationally, no problem
typing: not enough polymorphism !

System F ?
type inference undecidable...

Intersection types ?
finite-rank inference i1s decidable...
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Second part

Inference of Iintersection types
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History

%l INRIA

system D: Coppo, Dezani, 1980; Pottinger, 1980

principal typing: Coppo, Dezani and Venneri,
1980; Ronchi della Rocca and Venneri, 1984

Inference: Ronchi della Rocca, 1988
system I. Kfoury and Wells, 1999

system E: Carlier, Kfoury, Polakow and Wells,
2004

Motivation:
to find an algorithm simpler to understand and to prove
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Types syntax

7,0 n=1t| T, ..,T =0
 conjunction only at the left of an arrow

e empty sequence denoted by w

° T11,...,T, — o. type of a function waiting for an
argument having all types 7;
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Typing rules

Typ Id
$ZT|_£UZ7'(yp )

I'=M:T1
'\t XM :T'(zx) =7

(Typ A)

I'-=M:n,....7, -0 Vi, I';yFN:7
IN1y,....I',FMN : o

(TypAppl Gen) (. > 1)

I'EM:w—0 I''EFN:7
I'[WFMN :o

(Typ Appl w)

W! NRITA Generalised recursion and type inference for intersection types — p.26



Examples

e H1:t—t
(I = \xx)

¢ |—21(t1%t2),(t2%t3)%t1%t3
(2 =AfAz f(fz))

¢ FAZtl,(tlﬁtg)ﬁtQ
(A = Az(xx))

cFK :t—-w—t
(K = \x)y x)

o ()7 ¥ Kxf):?
WESAVAY
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Properties
 Subject reduction: If M — M’ then

'-M:7 —= T'EM:7

e Theorem: A term M is typable in D if and only if
M 1s strongly normalising (i.e. iff it has no
diverging reduction).
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Properties
 Subject reduction: If M — M’ then

'-M:7 —= T'EM:7

e Theorem: A term M is typable in D if and only if
M 1s strongly normalising (i.e. iff it has no
diverging reduction).

 Trivial algorithm: try to strongly normalise, then
type.

 Problem: does not work for an extended calculus
(recursion...)

« \We have the type, but not the typing tree...
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Example

M = F(Au A(uu))
with F' = Az Ay y and A = Az (zx)
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Example
M = F(Au A(uu))
with F' = Az Ay y and A = Az (zx)

* First step:
annotate every variable and application with a
fresh type variable.

M= (F*" Qu (A%(u:tiu:ts):tg) i t7)) : tg

where F'* = Az Ay(y : to)
andAt:)\ZIZ(CEZtliCItQ)Ztg
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Example - F'(Au A(uu))

 Second step:
for every application (M*N") : ¢, build the
constraint:

Typ(N*) — t L Typ(M") [ftv(N")]
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Example - F'(Au A(uu))

 Second step:

for every application (M*N") : ¢, build the

constraint:

Typ(N®) —t L

(ta,t5 = t7) = g =+
t6 — t7 =
t5 — t6 ==

Typ(M") [fto(N")]

wﬁtoﬁto :tl,...,t7],
tl,tQ — tg :t4,t5,t6],
Ly ts],

t1 9]

(In ML, we would add ¢, L ¢; and ¢; L ¢5).

%l INRIA
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Example - F'(Au A(uu))
Decomposition of:
te — tr = t1,to — t3 [ta, s, te]

Updated system:

(th, 15,1512 —t3) = tg L+ w—tg—tyg [T,
t%_>t3 — tfli :t?bt%vta
té%té — téll :té]v
ts —tg = 1 t3]

where T = {t3,t), 1, t5, 5, £, £ }
Those equations correspond to the term:
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Example - F'(Au A(uu))
Decomposition of:
(ti,t5,t5,ts — t3) = tg L w—tg — to [T]

We should not “erase” the argument, since It must be
typable ! Updated system:

tg—ts — g [t5,t5, 1),

ts >t — t3 [ts],

s —tg — 13 [t]
Those equations correspond to the terms:

I et \u (uu)(uu)
and not / alone
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A-calculus

* Inspired by Klop, 1980.
o Syntax:

M,N :=xz|MN | XxM | |M, N]|
 Semantics:
For z € fu(M):
MM, Ny,...,Ny| N — [M{x— N}, Ny,..., N,
Forx ¢ fu(M):

AzM,Ny,...,Ny] N — [M,Ny,...,N,, N]
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A-calculus

* WN . = SN: normalising terms are strongly
normalising

« SN, =A N SN,: they correspond to strongly
normalising terms in A-calculus

« We add the typing rule:

F1|_M127' F2|_M220'
Fl,FQ |_ [Ml,MQ] . T

(Typ Forget)
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Reduction rules

System state: (&, IT) where
o £ 1S a set of constraints

« II 1s a proof skeleton, that will evolve to a valid
typing tree
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Reduction rules

System state: (&, IT) where
o £ 1S a set of constraints

« II 1s a proof skeleton, that will evolve to a valid
typing tree

Rulefor n > 1:

{r—=t L ty,...,t, — 0o [TIYUE, II) — (S(&), SAI))
with S = {t; — (7). (T h<icn :: {t — 0,0} :: D(n, T)

(En)
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Reduction rules

Rulefor n = 0:

{r =t £ w—0o [TJUE, TI) — (S(E), SAD))
with S = {t — 0,0}

(o)
Final rule:

{r £ tJUg, ) —; (S(&), SII)) withS = {t +— 7}

(Ry)
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Results

e Theorem: A term M is typable if and only if the
Initial system corresponding to M converges.
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Results

e Theorem: A term M is typable if and only if the

Initial system corres
e Theorem: If M isty

skeleton is a valid ty

%l INRIA

Genera

lise

d rec

ponding to M converges.

pable, then the final proof
ning tree for M.
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Results

e Theorem: A term M is typable if and only if the
Initial system corresponding to M converges.

e Theorem: If M Isty

pable, then the final proof

skeleton is a valid ty

ning tree for M.

« Theorem: This typing tree is principal.

%l INRIA

Generalised recursion and type inference for intersection types — p.37



Results

Theorem: A term M Is typable if and only if the
Initial system corresponding to M converges.

%l INRIA

Theorem: If M 1sty

pable, then the final proof

skeleton is a valid ty

ning tree for M.

Theorem: This typing tree Is principal.

Rank: Syntactic defi

nition on types; to evaluate

the “level” of polymorphism.
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Results

e Theorem: A term M is typable if and only if the

Initial system corres
e Theorem: If M isty

ponding to M converges.
pable, then the final proof

skeleton is a valid typing tree for M.
« Theorem: This typing tree is principal.

« Rank: Syntactic defi
the “level” of polym

nition on types; to evaluate
orphism.

Property: The finite-rank algorithm always stops.
Consequence: Finite-rank inference is decidable.

%l INRIA
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Other results
« Implementation of the algorithm: TyPlI

http://wwwsop.inria.fr/mnosal/Pascal.Zi nrer/typi.htn

« Variant: by replacing the rule (Ry) with the

general rule (R,,); equivalent to the type system
DS2, with the rule:

(Typ w)

= M w

 Extension to references (introducing conjunction
only for values, as in ML less liberty on the
order of resolution)

 Extension to recursion uxz M (additional
unification at the end of the algorithm)

In order to type MLOBJ ...

%l INRIA
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Future

* Integrate Intersection types in the language
\YINOI=N

 polymorphic methods in MLOBJ
« study the expressivity of mixins more closely
« extend the language with other paradigms
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The end
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TYPI

http://wwwsop.inria.fr/mnosal/Pascal.Zi mrer/typi.htmn

Direct implementation of the algorithm...
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Rank

inc(0) =0
incn) =n+1 forn >0
rank(t) =0
rank(t — o) = max(inc(rank(t)), rank(o))
rank(Ty, ..., T, — 0) =

max (inc(max(1, rank(m),...,rank(r,))), rank(c))

forn £ 1
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Rank

Syntactic definition on types...
 rank 0: usual types without intersection
* rank 1: empty

 rank r > 2: there Is a non-trivial conjunction
under » — 1 arrows
Example:

(tl — tg), (w — tg) — 11 — 13 has rank 3
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Finite-rank algorithm

« Choose a maximal allowed rank r.

« For every intermediate step (£, 1), check that
rank (1) < r.

« Otherwise, the term Is not typable at rank r.

W! NRIA Generalised recursion and type inference for intersection types — p.44



Finite-rank algorithm

« Choose a maximal allowed rank r.

« For every intermediate step (£, 1), check that
rank (1) < r.

« Otherwise, the term Is not typable at rank r.

Property: The finite-rank algorithm always stops.
Consequence: Finite-rank inference Is decidable.
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Variant

What happens if we use the general rulealso for n =0 ?

{r—t L t,...,t, =0 [TIIUE, TI) — (S(&), S(II))
with S = {t; — (7). (T h<icn :: {t — 0,0} :: D(n, T)

(En)

* Leadsto “erase” constraints or sub-treesby D(0,T)

* Correspondence with the type system DS (Krivine) or AN
(Barendregt)

T
I—M:w(ypw)
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Variant

%l INRIA

Pro
Iff t
Pro
non

perty: The variant of the algorithm converges
ne term 1s normalising.

nosition: A term Is typable in D) with a
-trivial type Iff it has a head-normal form.

Caracterisation of normalising terms.

Corollary: If the algorithm converges, then the
term is typable.

Reciprocal property: not true (example: z€2)
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System 1
 System proposed by Kfoury and Wells (variant:

%l INRIA

System E with Carlier)

 Types contain expansion variables:

p = al (=)
b oa= [ (YAY) | (FY)

 Algorithm for solving similar constraints and

returning a typing tree

Genera

lise

d rec

ursion and type inference for intersection types — p.47



System 1

%l INRIA

 Correspondence expansion variables / territory:
Fr «—— T ={v| Fr € E-path(v,I'1(M))}

 Both algorithms perform the same operations, not
necessarily in the same order, If we ignore
expansion variables
— operational correspondence

« Used to avoid redoing the proofs of some results
(principality, finite rank)
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References
The expression

(Ar (r:=["chatne"”]; hd(!r)+ 1)) (ref[])

IS typable, but its execution leads to an error...

W! NRIA Generalised recursion and type inference for intersection types — p.49



References

%l INRIA

The expression
(Ar (r:=["chatne"”]; hd(!r)+ 1)) (ref[])

IS typable, but its execution leads to an error...

Solution similar to the one for polymorphism in ML.:
Introducing conjunction only for values (Davies and
Pfenning).

I'rv:A T'HFV:B
'V :AANB

I'-M:A—- B I'FN:A
I'-MN : B
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References

« Distinguish the types of terms-variables and
applications: ¢, and ta

 Extended syntax for types:
ty n=t, | tyref | cte | ty list

7-70-:::tv’TT€f|Ct€‘7liSt‘t@’tb,..wtb%T

« Decomposible equations:

T —ta £ ty,...,t, — o [T

W! NRITA Generalised
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References

{r —ta £ tp,,...,ts, — o [T]JUE, II) — (S(£), SAI))

with S — mgu(tp,, (T)", (T )1<i<n = {t@ — 0,0} :: D(n,T) if ValueType(T)
mgu(tbiaTa T)lgzgn . {t@ — o, (Z)} otherwise
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References

{r —te £ to,...,tp, — o [TIJUE, II) — (S(£), SI))

with S — mgu(tp,, (T)", (T )1<i<n = {t@ — 0,0} :: D(n,T) if ValueType(T)
mgu(tbivTv T)lgzgn . {t@ — o, (Z)} otherwise

but we also need to impose an order for solving the
constraints, corresponding more or less to call-by-
value...

W! NRIA Generalised recursion and type inference for intersection types — p.51
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Recursion

« We add an operator px M

 Solution: Infer types as for M, then additional
unification algorithm

* Modify the type system:

'v:01,...,0:0, M : 7T
I'=pxe M7

Rec) WIthV7 0; = 7

 Equality modulo commutativity and contraction:
ey 711,720 — 0 = ...,79,T1y... — 0O

Ty Tyeee =0 = ..., Ty... =0

Generalised recursion and type inference for intersection types — p.52
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