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General motivation
To design a base language with:
• functional core
• objects
• well-defined semantics, that can be realistically

implemented
• ML-like inference of principal types

in the goal of adding other paradigms (migration,
reactive)...

Generalised Recursion in ML and Mixins – p. 2



Outline
• semantics of object languages
• a language with recursive records and generalised

recursion
• a type system with degrees
• implementation, abstract machine
• mixins
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Semantics of objects 1
Auto-application semantics

• model initiated by Kamin, 1988;
reference: Abadi and Cardelli, 1996

• object = collection of pre-methods:

o = [. . . , l = ζ(self) b, . . .]

• method call:

o.l ⇒ b {self ← o}

• specific typing
• inference of principal types impossible

Generalised Recursion in ML and Mixins – p. 4



Semantics of objects 2
Recursive record semantics

• Cardelli 1988, Wand 1994, Cook 1994
• class:

C = λx1 . . . λxn λself {l1 = M1, . . . , lp = Mp}

• object: o = fix (CN1 . . . Nn)

• row variables to extend the object
• no modification of the state, sinceself is bound to

the initial object
• typing model of OCAML
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Language proposition
• Wand’s recursive record semantics
• ML-like references to hold the state of the object
• examples:

point = λxλself

{pos = ref x,

move = λy(self.pos := !self.pos + y)}

p = fix (point 4)

color_point = λxλcλself

{point x self, color = ref c}
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Evaluating the fixpoint
• Problem: how can we evaluate the fixpoint ?

fix = λf (let rec x = fx in x)

• In SML, only allowed construct:

let rec x = λyN in M

• We need a generalised recursion operator
• But some recursions are dangerous:

let rec x = xV in M

let rec x = x + 1 in M
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Type system with degrees
• Boudol, 2001
• degree = boolean information in function types

and in typing contexts

θd → τ

• 0 = “dangerous”,1 = “sure”
• intuitively: is the value required or not when

evaluating
• (let rec x = N in M) is typable iffN is typable

with a degree1 for x

• (let rec x = fx in M) is typable ifff has type
θ1 → τ (“protective” function)
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Degrees - examples
• example of protective function:

point0 = λself

{pos = ref 0,

move = λy(self.pos := !self.pos + y)}

• fix = λf(let rec x = fx in x)
has type:(τ 1 → τ)0 → τ

• λself{x = 0, y = self.x}
has type:{ρ, x : τ}0 → {x : int, y : τ}
whereρ is a row variable
with the constraintρ :: {x}
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Degrees - results

• subject reduction

• safety: the evaluation of a typable term never
leads to an error (recursion, field access,
applications...)

• algorithm for infering principal types,
extension of ML’s one
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Unification and inference algorithms

• more “realistic” and efficient versions
• working on graphs (recursive types)
• unification of degrees, records, types
• polymorphism similar to ML, on degree, row or

type variables; generalising for:

let (rec) x = V in M

• constraints on row variables (ρ :: L) and degree
variables;
example:λfλx(fx) has type
(θα → τ)β → θγ → τ with γ ≤ α
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Abstract machine
• we need to evaluate terms with the shape

(λselfM) o

whereo is a still unevaluated variable, knowing
that the value ofself is not needed to evaluateM

• usual machines forλ-calculus or ML do not
allow the evaluation of generalised recursion
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Abstract machine
M = (S, σ,M, ξ)

• S: control stack
• σ: environment
• M : term to evaluate
• ξ: memory for recursive values (and references)

• set of11 transition rules, among which a “magic”
rule:

(S :: (σλyM []), ρ :: {x 7→ `}, x, ξ)

→ (S, σ :: {y 7→ `},M, ξ) if ξ(`) = •
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Abstract machine
• operational correspondence
• determinism
• no infinite “silent” reductions
• correction:

if the starting term is typable, then both the
machine and the calculus semantics go through
the same reductions
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M L OBJ

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/mlobj.html

OCAML -like interpreter...

Generalised Recursion in ML and Mixins – p. 15



Mixins
• goal: use higher-order constructs to build more

powerful objects
• generator:λs {. . .}

• mixin: generator modifier

C = λx1 . . . λxnλgλs {. . . fields. . . methods. . .}

• instance (λs {} is the initial generator):

fix (CN1 . . . Nn(λs {}))

• new operator:

new = λm fix (m (λs {}))
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Mixins - definition
Implemented by syntactic sugar rules.

mixin
var l = N non-constant data
cst l = N constant data
meth l(super, self) = N method
meth l(super, self) ← N method override
inherit N inheritance
without l field suppression
renamel asl′ field renaming

end

Method call:M#l
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Mixins - examples
point = λx coloring = λc

mixin mixin
var pos = x var color = c

meth move . . . meth paint . . .

end end

colorPoint = λxλc

mixin
inherit point x

inherit coloring c

end

⇒ multiple inheritance
Generalised Recursion in ML and Mixins – p. 18



Mixins - examples
reset =

mixin
meth reset(super, self) = self.pos := 0

end

resetPoint = λx resetColorPoint = λxλc

mixin mixin
inherit point x inherit colorPoint x c

inherit reset inherit reset

end end

⇒ code sharing
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Mixins - examples
mixin

meth reset(super, self)←

λd (super#reset; super#paint d)

end

• Typing determines which mixins can be
instantiated and which cannot.

• By changing the initial generator, one can get
initialisers.

• Mixins = first order values
⇒ a huge expressive power
still to be explored !
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And after ?
• advanced functionalities: cloning, binary

methods... :

meth eq(super, self) = λp (self.pos == p.pos)

• operationally, no problem
• typing: not enough polymorphism !
• System F ?

type inference undecidable...
• intersection types ?

finite-rank inference is decidable...
⇒ 2nd part of PhD thesis: new inference
algorithm for intersection types
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Future
• integrate intersection types in the language

MLOBJ

• polymorphic methods in MLOBJ

• study the expressivity of mixins more closely
• extend the language with other paradigms
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The end
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