
Math. Struct. in Comp. Science (2003), vol. 13, pp. 721–770. c© 2003 Cambridge University Press

DOI: 10.1017/S0960129503004079 Printed in the United Kingdom

On the expressiveness of pure safe ambients†

PASCAL ZIMMER

INRIA Sophia Antipolis – Mimosa, 2004 route des Lucioles, BP 93,

06902 Sophia Antipolis Cedex, France

Email: pascal.zimmer@sophia.inria.fr

Received 15 January 2001; revised 6 March 2002

We consider the Pure Safe Ambient Calculus, which is Levi and Sangiorgi’s Safe Ambient

Calculus (a variant of Cardelli and Gordon’s Mobile Ambient Calculus) restricted to its

mobility primitives - in particular, we focus on its expressive power. Since it has no form of

communication or substitution, we show how these notions can be simulated by mobility

and modifications in the hierarchical structure of ambients. As a main result, we use these

techniques to design an encoding of the synchronous π-calculus into pure ambients, and we

study its correctness, thus showing that pure ambients are as expressive as the π-calculus. In

order to simplify the proof and give an intuitive understanding of the encoding, we design

an intermediate language, the π-Calculus with Explicit Substitutions and Channels, which is

an extension of the π-calculus in which communication and substitution are broken into

simpler steps, and we show that is has the same expressive power as the π-calculus.

1. Introduction

The ambient calculus (Cardelli and Gordon 1997; Cardelli and Gordon 1998) was designed

to model within a single framework both mobile computing, that is, computation in mobile

devices such as a laptop, and mobile computation, that is, mobile code moving between

different devices, like applets or agents. It also shows how the notions of administrative

domains, firewalls, authorisations, and so on, can be formalised in a calculus. (For

more discussion about the problems raised by mobility and computation over wide-area

networks, see Cardelli (1999a;1999b).) Informally, an ambient is a bounded place where

computation happens. Ambients can be nested so as to form a hierarchy. Each of them

has a name (not necessarily distinct from other ambient names), which is used to control

access. An ambient can be moved as a whole, with all the computations and subambients

it contains: it can enter another ambient or exit it. It can also be opened so that its

contents become visible at the current level, and communication between two processes

can occur within an ambient (like in the π-calculus).

As a variant, the safe ambients were first presented in Levi and Sangiorgi (2000). They

differ from the classical mobile ambients by the addition of coactions. In the ambient

calculus, a movement is initiated only by the moving ambient and the target ambient has

no control over it. In contrast with this, in safe ambients both participants must agree

† An extended abstract of this paper appeared in Zimmer (2000).

P. Zimmer 722

by using matching action and coaction. In our investigations, it appeared that protocols

were much simpler to implement in safe ambients than in classical ambients. For example,

when designing a communication mechanism based on requests answered by replicated

servers (both being ambients), it is difficult to prevent a server from answering the same

request twice. In safe ambients, the uniqueness of an answer is easier to achieve if there

is only one coaction in each request.

The purpose of this paper is to study the expressive power of the subcalculus obtained

by removing all communication primitives, to give the pure safe ambient calculus. This

subcalculus has no abstraction at all: it has neither output nor input prefix, no variable

binding, no communication rule, and it cannot perform any global substitution of variables

in a process. Consequently, the only ‘tools’ allowed are the hierarchical structure of

ambients, their movements and openings. The main motivation for this study is to

understand what makes the ambient calculus so expressive, and which constructs are

really important from a purely theoretical point of view. A similar question has been

addressed in previous work in the setting of the π-calculus (Palamidessi 1997). After

all, the pure ambient calculus is to the classical ambient calculus what CCS is to the

π-calculus: the former has no operator of abstraction and no instantiation of variables,

while the latter does.

We have not been able to show that pure ambients are as expressive as classical mobile

ambients, but we have managed to encode the finite sum-free synchronous π-calculus

(Milner 1991) in pure (safe) ambients. This result is also interesting: we know that the

π-calculus is very expressive, and we show that pure ambients are at least as expressive.

We give such an encoding in this paper and prove its correctness. The main problem

we had to face was the simulation of substitution (which is precisely what is missing in

pure ambients): the communication rule of the π-calculus binds a variable x to an output

value m and performs this substitution in the continuation process in one single step. With

pure ambients, we need to adopt another mechanism: every future reference to x has to

be replaced dynamically by a reference to m. For this purpose, we create an ambient x

acting as a ‘forwarder’. Furthermore, we introduce explicit channels in the form of unique

ambients for each channel name, so that matching input and output primitives can meet

somewhere.

It was shown in Cardelli and Gordon (1998) that mobile ambients without commu-

nication primitives are expressive enough to simulate Turing machines. However, Turing

machines are a good model for sequential programming but are not well adapted to a

concurrency framework. What we want is a ‘reasonable’ encoding having at least the

property of compositionality (that is, such that 〈〈P | Q〉〉 = 〈〈P 〉〉 | 〈〈Q〉〉), which would not

be the case if we use an encoding via Turing machines (CCS is also Turing-complete, but

the π-calculus is much more powerful).

In order to show an operational correspondence between the π-calculus and our

encoding, we had to design an intermediate calculus to simplify the proof: the π-Calculus

with Explicit Substitutions and Channels (πesc-calculus in short). This is an extension of

the π-calculus, with new primitives for variables and explicit channels, breaking up the

communication and substitution mechanisms of the π-calculus into simpler steps. This

calculus appears to be an interesting byproduct and not just a technical tool. This is

On the expressiveness of pure safe ambients 723

because:

— it allows a better intuitive description of the mechanism underlying the encoding in

pure ambients;

— and it has the same expressive power as the π-calculus. More precisely, we give

translations from π to πesc and vice versa, prove their correctness, and show a soundness

result.

1.1. Related work

Some encodings of the π-calculus into ambients have already been proposed in the

literature (Cardelli and Gordon 1998; Levi and Sangiorgi 2000), but all of them encoded

the communications and substitutions of the π-calculus into communications and sub-

stitutions of the ambient calculus, whereas our encoding cannot use these mechanisms.

Moreover, all of them encoded only the asynchronous π-calculus (πa) and could not be

easily extended so as to encode its synchronous version. Finally, except for the encoding

of Levi and Sangiorgi (Levi and Sangiorgi 2000), no operational correspondence result

has been completely proved for any of them.

For some restrictions of the π-calculus, substitution can be simulated in a different way

from our approach. The local π (Lπ) (Merro and Sangiorgi 1998) is an asynchronous

π-calculus (without matching) with an additional constraint on the input construct n(x).P :

the name x may not occur free in P in input position. In this calculus, the following is a

valid algebraic law:

P {b/c} = (νc) (P | c � b)

where c may not be free in P in input position, b �= c and c � b � !c(x).b〈x〉 is a link

forwarding every message for c to b. Note that this law is false in the full πa-calculus,

hence also in the π-calculus, so we could not use this approach in our case (that is, in the

full synchronous π-calculus).

In the same way, an equator was first defined in Honda and Yoshida (1995) by

E(b, c) � b � c | c � b

and it was shown in Merro (1999) that

P {b/c} ∼=πa (νc) (E(b, c) | P)

(∼=πa being barbed congruence in the πa-calculus). However, this equality is false in the full

synchronous π-calculus because the use of forwarders breaks the sequentiality imposed

by output prefixing, so we could not use this approach either.

Some variants of the π-calculus with explicit substitutions have also been proposed. In

the πξ-calculus (Ferrari et al. 1996), processes are prefixed by a global environment ξ that

contains the name associations carried on in past communications. The main rule is

P
ω−→ P ′

ξ :: P
δ(ξ,ξ′ ,ω)
�−→ ξ′ :: P ′

with ξ′ ∈ η(ξ, ω)

P. Zimmer 724

where the functions δ and η are defined according to the desired semantics (late, early,

open), such that the environment ξ is extended with the name associations activated by the

transition P
ω−→ P ′. The main difference between this approach and our πesc-calculus is

that there is only one global environment outside the process, instead of multiple variables

directly included in the syntax and taking advantage of name restriction. Moreover, in

the πξ-calculus, substitutions are performed outside the term (in δ(ξ, ξ′, ω)) and are not

included in the reductions.

Another variant is the calculus of explicit substitutions πσ from Hirschkoff (1999),

in which a rewrite system is used to perform name substitutions inside terms. Since

processes are written in De Bruijn notation, this calculus looks very different from

the πesc-calculus. Furthermore, it performs substitutions in the whole output term (the

rule is (ab)[s] → a[s]b[s]), so that the transitive closure of substitutions is automatically

computed, whereas in the πesc-calculus, an arbitrary long chain of variables can be created.

Moreover, the operational semantics of both πξ and πσ are defined via a labelled transition

system, whereas our calculus uses CHAM-style rules, and none of them introduces explicit

channels in its syntax.

A final point to note is that all dialects and variants of the π-calculus that have been

studied so far have a construct for abstraction (usually embodied in the input prefix),

hence computation involves some form of substitution. For us, the challenge consisted

precisely in the fact that we do not have any such operator in pure ambients.

1.2. Outline

In Section 2, we give the necessary background for the π-calculus and safe ambients. We

also introduce a special kind of substitution. In Section 3, we present the πesc-calculus

and some associated tools. Section 4 defines encodings between the π-calculus and the

πesc-calculus, states the main relations between them and gives an overview of the proofs.

The second part of the encoding, from the πesc-calculus into pure ambients, is given in

Section 5, together with an operational correspondence result. Finally, Section 6 gathers

the results into a main theorem and gives the final encoding for the π-calculus. Proofs of

the results stated in this paper are given in Appendix A.

2. Background

2.1. The π-calculus

We start by reviewing the syntax of the monadic synchronous π-calculus we will use

throughout the paper.

2.1.1. Syntax We distinguish between names of channels and names of variables. Let

Name be a denumerably infinite set of names of channels (ranged over by n, m, p, . . .),

and Var be a denumerably infinite set of names of variables (ranged over by x, y, . . .).

We need to treat these two sets as distinct, because their behaviour will be different in the

On the expressiveness of pure safe ambients 725

encoding into ambients. The syntax of the π-calculus is then defined as follows:

P ::= (νn) P restriction M ::= n channel name

| 0 nil process | x variable name

| P | Q parallel composition

| !P replication

| M〈M ′〉.P output

| M(x).P input

In (νn) P and M(x).P , the names n and x, respectively, are bound in P . We can always

change this name using α-conversion, and we consider the resulting process equal to the

first. If a name is not bound, it is called free. The set of free channel names of P is

denoted by fn(P), and the set of free variable names by fv(P).

2.1.2. Reduction rules Below is the operational semantics of our π-calculus, given in the

form of a one-step reduction relation, written −→ . The main rule is (π Red Comm), in

which an input prefix and an output prefix on the same channel n are consumed, whereas

the variable x is replaced by the value m (the construction Q{m/x} is defined as the result

of replacing each free occurrence of x in Q by m). We write −→∗ for zero or more

reductions in the π-calculus, and −→+ for one or more reductions (the same conventions

apply also to the other calculi that will be presented in the rest of the paper).

n〈m〉.P | n(x).Q −→ P | Q{m/x}
(π Red Comm)

P −→ P ′

P | Q −→ P ′ | Q (π Red Par)

P −→ P ′

(νn) P −→ (νn) P ′
(π Red Res)

P ≡ P ′ −→ Q′ ≡ Q

P −→ Q
(π Red Struct)

The last rule of this one-step reduction makes use of a structural congruence rewriting

relation ≡. Its definition is standard, with rules to commute processes in parallel, to

change the scope of a restriction operator, unfold a replicated process, and so on. Its rules

are given below.

P ≡ P (π Struct Refl)

P ≡ Q ⇒ Q ≡ P (π Struct Symm)

P ≡ Q ≡ R ⇒ P ≡ R (π Struct Trans)

P ≡ Q ⇒ (νn) P ≡ (νn) Q (π Struct Res)

P ≡ Q ⇒ P | R ≡ Q | R (π Struct Par)

P ≡ Q ⇒ !P ≡ !Q (π Struct Repl)

P ≡ Q ⇒ M〈M ′〉.P ≡M〈M ′〉.Q (π Struct Output)

P ≡ Q ⇒ M(x).P ≡M(x).Q (π Struct Input)

P | 0 ≡ P (π Struct Par Zero)

P. Zimmer 726

P | Q ≡ Q | P (π Struct Par Comm)

P | (Q | R) ≡ (P | Q) | R (π Struct Par Assoc)

(νn) (P | Q) ≡ P | (νn) Q if n /∈ fn(P) (π Struct Res Par)

(νn) (νm) P ≡ (νm) (νn) P (π Struct Res Res)

!P ≡ P | !P (π Struct Repl Par)

!0 ≡ 0 (π Struct Repl Zero)

2.2. Pure ambients

In this section, we present the subcalculus of the Safe Ambient Calculus we will use.

It corresponds to the original Safe Ambients from Levi and Sangiorgi (2000) with the

communication primitives removed. This restriction allows us to simplify the syntax (the

original one needed a type system to reject some ill-formed terms). The complete syntax

is defined as follows:

P ::= (νn) P restriction Cap ::= in n entering

| 0 nil process | in n co-entering

| P | Q parallel composition | out n exiting

| !P replication | out n co-exiting

| n[P] ambient | open n opening

| Cap.P capability | open n co-opening

The basic constructs of process calculi are present: restriction of names, nil process,

parallel operator and replication. They behave as in the π-calculus. An ambient is written

n[P] where n is the name of the ambient and P is the process running inside it. Actions

are called capabilities and are written Cap.P . There are three possible capabilities: one to

enter an ambient (in n), one to exit an ambient (out n) and one to open an ambient

(open n), each of them having a corresponding cocapability (namely in n, out n and

open n). In order for a movement to take place, a capability and its corresponding

cocapability (that is, with the same name) must be present at the right place, as shown

by the following reduction rules:

n[in m . P | Q] | m[in m .R | S] ↪→ m[n[P | Q] | R | S] (SA Red In)

m[n[out m .P | Q] | out m .R | S] ↪→ n[P | Q] | m[R | S] (SA Red Out)

open n .P | n[open n .Q] ↪→ P | Q (SA Red Open)

The operational semantics is completed by four other rules, so that reduction can occur

under restriction, in parallel processes, inside ambients, or after a structural congruence

rewriting (which is very similar to the structural congruence for the π-calculus):

P ↪→ Q

(νn) P ↪→ (νn) Q
(SA Red Res)

P ↪→ Q

P | R ↪→ Q | R (SA Red Par)

P ↪→ Q

n[P] ↪→ n[Q]
(SA Red Amb)

P ≡ P ′ P ′ ↪→ Q′ Q′ ≡ Q

P ↪→ Q
(SA Red Struct)

The main difference between this and the safe ambients of Levi and Sangiorgi (2000) is

the lack of communication primitives, namely the asynchronous output 〈M〉 and the input

On the expressiveness of pure safe ambients 727

binder (x).P . Another difference is the use of replication in place of recursion. Furthermore,

cocapabilities are not present in the ambient calculus of Cardelli and Gordon (1998).

2.3. Substitutions

In this section, we introduce a special kind of substitution, which has a tree structure.

This is needed because both πesc-calculus and the encoding into ambients implicitly use

such a mathematical structure and not a substitution of general shape.

Intuitively, to every variable, it associates either another variable in the domain of the

substitution, or a channel name. And there is an additional condition: by following the

‘chain’ of successive images, we always end on a channel name.

More formally, in the rest of the paper, every occurrence of ‘substitution’ refers to the

following definition.

Definition 1. A substitution is a partial function σ : Var → Var ∪Name such that:

— ∀x ∈ dom(σ), xσ ∈ Name ∪ dom(σ) (that is, im(σ) ⊆ Name ∪ dom(σ)).

— ∀x ∈ dom(σ), there is k > 0 such that xσk ∈ Name (that is, there are no cycles) (σk

being the composition of σ, k times).

We now define the graph of a substitution: its set of vertices is dom(σ) ∪ Name and

its edges are (x, xσ) for x ∈ dom(σ). With the above definition, one can easily show that

the graph of a substitution has a forest structure (a set of trees), with roots in Name

and all other nodes in dom(σ) ⊆ Var. Consequently, we can define σ∗ : dom(σ) → Name,

the transitive closure of σ, associating to each variable the name at the root of the

corresponding tree (σ∗ = σp where p = max{k/xσk ∈ Name, x ∈ dom(σ)}).
If x /∈ dom(σ) and M ∈ Name ∪ dom(σ), we define σ′ = {M/x} � σ by xσ′ = M and

yσ′ = yσ for y �= x. The resulting substitution σ′ is still a substitution in the sense of

Definition 1.

The empty substitution is written �, and we also define fn(σ) � im(σ) ∩ Name.

Moreover, we extend the domain of substitutions so that we can apply them to processes.

3. The intermediate calculus (πesc)

In this section, we introduce our π-Calculus with Explicit Substitutions and Channels.

3.1. Syntax

Syntactically, the πesc-calculus is an extension of the π-calculus, with additional constructs

to handle substitutions and channels.

First, the construction (νx : M) P (with x �= M) represents a new variable x whose

contents is M. The name x is bound in P (as n is bound in (νn) P). Intuitively, any free

occurrence of the name x in P refers to this variable and can be replaced by M without

changing the behaviour of the process P .

Prefixes in the π-calculus have the form M(x).P and M〈M ′〉.P ; we call the bodies of

the prefixes, namely (x).P and 〈M ′〉.P , abstraction and concretion, respectively.

P. Zimmer 728

The construction [n : S] represents an explicit channel of name n, whose contents are a

set S of abstractions and concretions performed on that channel. More precisely, S is not

exactly a set but a parallel composition of abstractions and concretions (we use parallel

composition for convenience in proofs). S can be either ε (the empty channel), a parallel

composition S | S ′, a concretion 〈M〉.P for an output, or an abstraction (x).P for an input

(they correspond to the processes n〈M〉.P and n(x).P , respectively). Intuitively, when a

process performs an output or input on n, the request is put inside the channel with that

name (if there is one).

The complete syntax of πesc is as follows:

P ::= (νn) P restriction M ::= n channel name

| 0 nil process | x variable name

| P | Q parallel composition

| !P replication S ::= ε empty channel

| M〈M ′〉.P output | S | S ′ parallel composition

| M(x).P input | 〈M〉.P concretion

| [n : S] explicit channel | (x).P abstraction

| (νx : M) P explicit variable with x �= M

3.2. Reduction rules

We now give an operational semantics for πesc. Reduction rules are of the form σ : P �−→
P ′, where P and P ′ are processes, and σ is a substitution that acts as an environment

containing the values of free variables in P . As a side condition, we restrict the application

of the rules to processes P and substitutions σ such that fv(P) ⊆ dom(σ), in order that

we can find the value of every free variable appearing in P .

The first two rules allow us to replace an output or input prefix on a variable x by the

same prefix on the value M of x. If M is another variable, we can then apply the same

rule again (since in this case M ∈ dom(σ) by the definition of a substitution). We continue

like this until M is a channel name. Note also that we do not perform substitutions on

M ′ in the rule (πesc Red Subst Out).

xσ = M

σ : x〈M ′〉.P �−→ M〈M ′〉.P
(πesc Red Subst Out)

xσ = M

σ : x(y).P �−→ M(y).P
(πesc Red Subst In)

The next two rules have already been outlined above: if a channel n and a prefixed

process on n meet in a parallel composition, the request is put inside the channel (we then

omit the name n since all abstractions and concretions in [n : S] refer implicitly to n).

σ : [n : S] | n〈M〉.P �−→ [n : S | 〈M〉.P]
(πesc Red Output)

σ : [n : S] | n(x).P �−→ [n : S | (x).P]
(πesc Red Input)

On the expressiveness of pure safe ambients 729

When a concretion 〈M〉.P and an abstraction (x).Q are present in the same channel,

communication can occur effectively. The two continuations P and Q are then placed

outside the channel, except that a new variable x with contents M is created in front of

Q. This is the purpose of the following rule, which corresponds to (π Red Comm) (the

side condition x �= M can always be satisfied by α-conversion on x).

x �= M

σ : [n : S | (〈M〉.P | (x).Q)] �−→ [n : S] | (P | (νx : M) Q)
(πesc Red Comm)

The next rule allows a reduction to occur under a variable restriction (νx : M) . The

only side-effect is that the binding {M/x} must be added to the environment σ (the side

condition x /∈ dom(σ) can always be satisfied by α-conversion on x, and the condition

M ∈ Name ∪ dom(σ) is automatically satisfied because fv((νx : M) P) ⊆ dom(σ), which is

an instance of the implicit side condition).

x /∈ dom(σ) {M/x} � σ : P �−→ P ′

σ : (νx : M) P �−→ (νx : M) P ′
(πesc Red Var)

Finally, the last three rules complete the calculus: reduction can occur under the scope

restriction of a channel name, in a parallel composition or by means of a structural

congruence rewriting.

σ : P �−→ P ′

σ : P | Q �−→ P ′ | Q (πesc Red Par)

σ : P �−→ P ′

σ : (νn) P �−→ (νn) P ′
(πesc Red Res)

P ≡ P ′ σ : P ′ �−→ Q′ Q′ ≡ Q

σ : P �−→ Q
(πesc Red Struct)

3.3. Structural congruence

The congruence ≡ is the same as in the π-calculus, with additional rules for the new

constructs and their interaction with the old ones (in particular, the scope of (νx : M) can

be stretched or commuted with (νn) provided that there are no name captures). The

complete list is given below:

P ≡ P (same for S) (πesc Struct Refl)

P ≡ Q ⇒ Q ≡ P (same for S) (πesc Struct Symm)

P ≡ Q ≡ R ⇒ P ≡ R (same for S) (πesc Struct Trans)

P ≡ Q ⇒ (νn) P ≡ (νn) Q (πesc Struct Res)

P. Zimmer 730

P ≡ Q ⇒ P | R ≡ Q | R (πesc Struct Par)

P ≡ Q ⇒ !P ≡ !Q (πesc Struct Repl)

P ≡ Q ⇒ M〈M ′〉.P ≡M〈M ′〉.Q (πesc Struct Output)

P ≡ Q ⇒ M(x).P ≡M(x).Q (πesc Struct Input)

S ≡ S ′ ⇒ [n : S] ≡ [n : S ′] (πesc Struct Channel)

P ≡ Q ⇒ (νx : M) P ≡ (νx : M) Q (πesc Struct Var)

S ′ ≡ S ′′ ⇒ S | S ′ ≡ S | S ′′ (πesc Struct Abs)

P ≡ Q ⇒ 〈M〉.P ≡ 〈M〉.Q (πesc Struct Out Abs)

P ≡ Q ⇒ (x).P ≡ (x).Q (πesc Struct In Abs)

P | 0 ≡ P (πesc Struct Par Zero)

P | Q ≡ Q | P (πesc Struct Par Comm)

P | (Q | R) ≡ (P | Q) | R (πesc Struct Par Assoc)

S | ε ≡ S (πesc Struct Abs Zero)

S | S ′ ≡ S ′ | S (πesc Struct Abs Comm)

S | (S ′ | S ′′) ≡ (S | S ′) | S ′′ (πesc Struct Abs Assoc)

(νn) (P | Q) ≡ P | (νn) Q if n /∈ fn(P) (πesc Struct Res Par)

(νx : M) (P | Q) ≡ P | (νx : M) Q if x /∈ fv(P) (πesc Struct Var Par)

(νn) (νm) P ≡ (νm) (νn) P (πesc Struct Res Res)

(νn) (νx : M) P ≡ (νx : M) (νn) P if n �= M (πesc Struct Res Var)

(νx : M) (νy : M ′) P ≡ (νy : M ′) (νx : M) P

if x �= y, x �= M ′ and y �= M (πesc Struct Var Var)

!P ≡ P | !P (πesc Struct Repl Par)

!0 ≡ 0 (πesc Struct Repl Zero)

3.4. Channel presentation

To follow our intuition (that is, the modelling of explicit channels), we need to cut down

the set of allowed processes in the πesc-calculus to ensure that channels are correctly

positioned and unique. Consider, for instance, the process n〈m〉.[p : S]. The channel

p would be unreachable, and thus useless, until the output on n has been performed.

Consider also the following process:

[n : S] | [n : S ′] | n〈m〉.P | n(x).Q.

Since there are two channels, the two prefixed processes could go into different channels,

for instance resulting in

[n : S | 〈m〉.P] | [n : S ′ | (x).Q],

and communication would never occur between P and Q.

For this reason, we need to be able to detect a channel. We define a presentation

predicate P ⇓1 n, which means, intuitively, that at least a channel [n : S] is present in P

and is not hidden by scope restriction. The formal definition of this predicate is easy:

the only axiom is [n : S] ⇓1 n and all other rules just perform inductive calls (except for

(νm) P ⇓1 n, which checks m �= n).

On the expressiveness of pure safe ambients 731

In the same way, we can define another predicate, P ⇓2 n, meaning that there are at

least two different channels of name n in P . For instance, P | Q ⇓2 n holds if both P ⇓1 n
and Q ⇓1 n hold at the same time.

Here is the formal definition of P ⇓i n where i = 1, 2:

P ⇓i n m �= n

(νm) P ⇓i n
(πesc Pres Res)

P ⇓i n
P | Q ⇓i n

(πesc Pres ParL)

Q ⇓i n
P | Q ⇓i n

(πesc Pres ParR)
P ⇓1 n Q ⇓1 n

P | Q ⇓2 n
(πesc Pres Par2)

P ⇓i n
!P ⇓i n

(πesc Pres Repl)
P ⇓1 n
!P ⇓2 n

(πesc Pres Repl2)

P ⇓i n
M〈M ′〉.P ⇓i n

(πesc Pres Output)
P ⇓i n

M(x).P ⇓i n
(πesc Pres Input)

[n : S] ⇓1 n
(πesc Pres Channel1)

S ⇓1 n
[n : S] ⇓2 n

(πesc Pres Channel2)

S ⇓i m
[n : S] ⇓i m

(πesc Pres Channel)
P ⇓i n

(νx : M) P ⇓i n
(πesc Pres Var)

S ⇓1 n
S | S ′ ⇓1 n

(πesc Pres AbsL)
S ′ ⇓1 n

S | S ′ ⇓1 n
(πesc Pres AbsR)

S ⇓1 n S ′ ⇓1 n
S | S ′ ⇓2 n

(πesc Pres Abs2)
P ⇓i n

〈M〉.P ⇓i n
(πesc Pres Out Abs)

P ⇓i n
(x).P ⇓i n

(πesc Pres In Abs)

Moreover, we write pr(P) for the set of channels presented by P .

Definition 2. pr(P) � {n ∈ Name/P ⇓1 n}.

Proposition 3. pr(P) ⊆ fn(P).

See Section A.2 for a proof.

3.5. Validity

Now that we have a way to detect the presence or absence of one or many channels, we

can define exactly the set of valid processes by ensuring that all channels are correctly

positioned and unique. This can be achieved by means of a small type system.

For this purpose, we define the predicate � P : OK inductively on P by checking that

channels do not appear after prefixes or replications, and that there is at most one channel

after a name restriction.

� P : OK P � ⇓2 n
� (νn) P : OK

(πesc OK Res) � 0 : OK
(πesc OK Zero)

� P : OK � Q : OK

� P | Q : OK
(πesc OK Par)

P. Zimmer 732

� P : OK ∀n ∈ Name P � ⇓1 n
�!P : OK

(πesc OK Repl)

� P : OK ∀n ∈ Name P � ⇓1 n
�M〈M ′〉.P : OK

(πesc OK Output)

� P : OK ∀n ∈ Name P � ⇓1 n
�M(x).P : OK

(πesc OK Input)

� S : OK

� [n : S] : OK
(πesc OK Channel)

� P : OK

� (νx : M) P : OK
(πesc OK Var)

� ε : OK
(πesc OK Eps)

� S : OK � S ′ : OK

� S | S ′ : OK (πesc OK Abs)

� P : OK ∀n ∈ Name P � ⇓1 n
� 〈M〉.P : OK

(πesc OK Out Abs)

� P : OK ∀n ∈ Name P � ⇓1 n
� (x).P : OK

(πesc OK In Abs)

The following lemma details the syntactic structure of a process presenting a channel

n (after type-checking). This corresponds to the desired intuition: if P ⇓1 n, a channel

[n : S] is present at the highest level, that is, only under some name restrictions.

Lemma 4. If P ⇓1 n and � P : OK , then P ≡ (νn1) . . . (νnk) (νx1 : M1) . . . (νxk′ : Mk′) ([n :

S] | P ′) with n �= ni.

Proof. The proof is by induction on the structure of P .

Corollary 5. If P ⇓1 ni and � P : OK , then P ≡ (νm1) . . . (νmk) (νx1 : M1) . . . (νxk′ :

Mk′) ([n1 : S1] | . . . | [np : Sp] | P ′) with ni �= mj .

Proof. We give the inductive step by considering a process P such that P ⇓1 n1 and

P ⇓1 n2. By Lemma 4, P ≡ (νm1) . . . (νmk) (νx1 : M1) . . . (νxk′ : Mk′) ([n1 : S1] | P1) with

m1 �= ni. From � P : OK , we get � S1 : OK and � P1 : OK . Consequently, we cannot have

S1 ⇓1 n2. Necessarily, P1 ⇓1 n2 since P ⇓1 n2. Then apply Lemma 4 to P1 and use scope

extrusion to get the final result.

Finally, we say that a process P is valid, and write � P : Valid, if � P : OK and P � ⇓2 n
for all names n ∈ Name.

� P : OK ∀n ∈ Name P � ⇓2 n
� P : Valid

(πesc Valid)

From now on, we will focus mainly on valid processes only. The following proposition

shows that this property is preserved by reduction.

Proposition 6. (Subject Reduction). If σ : P �−→ Q and � P : Valid, then � Q : Valid.

See Section A.2 for a proof.

On the expressiveness of pure safe ambients 733

3.6. Closure

Now that we have eliminated some extra channels, we will have to add a few! Consider

the process n〈m〉.P | n(x).Q. It cannot reduce because no explicit channel is present for n.

If we put an empty channel [n : ε] in parallel, communication takes place. We thus define

the channel closure of a process by adding explicit empty channels when needed. Since the

same problem can appear under a scope restriction (for instance, (νn) (n〈m〉.P | n(x).Q)

cannot reduce), we need to take care of this case too.

Definition 7. We first take scope restrictions into account. cl(P) is a homomorphism from

πesc-processes to πesc-processes for all constructs, except for restriction:

cl((νn) P) �

{
(νn) ([n : ε] | cl(P)) if P � ⇓1 n
(νn) cl(P) if P ⇓1 n.

Then the channel closure of a process with regard to a substitution σ consists of adding

an empty channel for each free name in P or σ for which P does not present a channel.

Formally:

clσ(P) � [n1 : ε] | . . . | [nk : ε] | cl(P)

where {n1, . . . , nk} = (fn(P) ∪ fn(σ)) \ pr(P) (by Proposition 3, we know that pr(P) ⊆
fn(P)).

We say that P is channel-closed with regard to σ if clσ(P) ≡ P (that is if P has all

channels to guarantee communication).

Note that if we take two different enumerations for (fn(P)∪ fn(σ))\pr(P) in Definition 7,

the resulting processes may not be syntactically equal; they will only be structurally

congruent. This is why all our results involving clσ(P) will be up to ≡.

4. Relations between the π and πesc-calculi

In this section, we prove a few equivalence properties between the π-calculus and the

πesc-calculus. The proofs mainly rely on our ability to translate a πesc-process back into a

π-process.

4.1. Back to the π-calculus

The translation from πesc to π is written [[P]] (with a parameter name n for the content

of a channel) and is defined inductively by the following rules:

[[(νn) P]] = (νn) [[P]] [[[n : S]]] = [[S]]n
[[0]] = 0 [[(νx : M) P]] = [[P]]{M/x}
[[P | Q]] = [[P]] | [[Q]] [[ε]]n = 0

[[!P]] = ![[P]] [[〈M〉.P]]n = n〈M〉.[[P]]

[[M〈M ′〉.P]] = M〈M ′〉.[[P]] [[(x).P]]n = n(x).[[P]]

[[M(x).P]] = M(x).[[P]] [[S | S ′]]n = [[S]]n | [[S ′]]n.

In fact, [[P]] is a homomorphism for all constructs, except for channels and variable

restrictions. In the former case, we just have to add the name of the channel back in front

P. Zimmer 734

of abstractions and concretions. In the latter case, we perform the substitution required

by the variable restriction: that is, [[(νx : M) P]] is [[P]] in which every free occurrence of

x is replaced by M.

4.2. Operational correspondence

When should we say that a π-process and a πesc-process are ‘equivalent’? Following our

intuition, a πesc-process P evolving in an environment σ should be translated into the

π-process [[P]]σ∗. Here we need to take the bindings of σ into account, because the free

variables of P coming from previous communications should be replaced by their value.

We apply the transitive closure σ∗ in one step so that all free variables are converted

into names of channels (in fact, [[P]]σ∗ is equal to [[(νx1 : M1) . . . (νxk : Mk) P]] if

σ = {Mk/xk} � . . . � {M1/x1
}).

The following technical proposition shows that every reduction step in the πesc-calculus

corresponds to zero or one step in the π-calculus.

Proposition 8. If σ : P �−→ Q, then [[P]]σ∗
≡−→ [[Q]]σ∗, where

≡−→ is either ≡ or −→.

Proof. The proof is by induction on the derivation of σ : P �−→ Q – see Section A.6

for details.

The converse proposition is more complex. Additional hypotheses restrict the result to

valid processes and appropriate environments only. The result states that every reduction

step in the π-calculus can be simulated by one or more reduction steps in the πesc-calculus.

Moreover, this simulation is not defined directly on P , but on its channel closure clσ(P)

(for instance, the π-processes in Section 3.6 reduce in the π-calculus, but only their channel

closures reduce in the πesc-calculus).

Proposition 9. If [[P]]σ∗ −→ Q, and � P : Valid, and fv(P) ⊆ dom(σ), there is a process

P ′ such that σ : clσ(P) �−→+ P ′ and [[P ′]]σ∗ ≡ Q.

Proof. The proof is by induction on the derivation of [[P]]σ∗ −→ Q – see Section A.7

for details.

This proposition is much more difficult to prove. We try to explain why and give a few

hints.

— Channel closure does not mix well with an inductive proof. This comes from the

fact that channel closure is not defined inductively on terms. Consequently, for

almost every construct, we need a preliminary lemma that analyses this special case

and relates the channel closure of the process to the channel closures of its sub-

components. Sometimes, there is more than a single answer, depending on the context.

See Section A.3.

— Empty channels do not mix well with structural congruence rewriting. For instance, if

the first step of reduction is

[[[n : ε] | P]]σ∗ = 0 | [[P]]σ∗ ≡ [[P]]σ∗ −→ Q,

On the expressiveness of pure safe ambients 735

we cannot proceed directly by induction since the resulting process P does not present

channel n anymore (structural congruence has ‘erased’ it), hence the channel closures

of [n : ε] | P and P are different. This example is simple, but in the general case channel

erasing can occur anywhere in a term. So we need a result to relate the channel closure

of P to P ′ when [[P]]σ∗ ≡ P ′ is the first step of reduction. See Section A.4.
— Channels do not mix well with parallel composition. This is the problem that needs

the longest technical development. Suppose that [[P | P ′]]σ∗ −→ Q | [[P ′]]σ∗ was

derived from [[P]]σ∗ −→ Q by (π Red Par). Suppose also that this reduction

involves a communication on channel n, and that P � ⇓1 n and P ′ ⇓1 n (that is, the

explicit channel n is in the P ′ part). Therefore, by induction, we get a simulation on

clσ(P) = [n : ε] | P1 since P � ⇓1 n. But now the corresponding reductions of clσ(P | P ′)
involving channel n should use the explicit channel in P ′ and not the empty channel

[n : ε] that we added in the channel closure! In the general case, we need a result

showing that reductions involving empty channels from closure can be replaced by

reductions where communications are reported on (possibly non-empty) channels from

a process in parallel. See Section A.5.

These are technical propositions, but in the rest of this paper we restrict ourselves to

valid processes, without free variables and channel-closed with regard to �. Since we use

these processes extensively throughout the paper, we will call them complete.

Definition 10. A πesc-process P is called complete if P is channel-closed with regard to �,

� P : Valid and fv(P) = ∅.

In this case, the operational correspondence is much simpler.

Corollary 11.

— If � : P �−→ Q, then [[P]]
≡−→ [[Q]].

— If [[P]] −→ Q for a complete process P , then there is a process P ′ such that

� : P �−→+ P ′ and [[P ′]] ≡ Q.

Proof. The result follows from Propositions 8 and 9.

4.3. Observational equivalence

To complete our results, we have managed to prove an observational equivalence property.

This result is not really useful for the encoding in pure ambients, but a soundness result

might also be interesting for future work.

The observability predicate P ↓ M is defined on π-processes in the usual way

(for example, n(x).P ↓ n), and can be easily extended to πesc-processes (for variables,

substitution must be performed, that is, (νx : M) P ↓M when P ↓ x).

For the π-calculus:

P ↓M n �= M

(νn) P ↓M (Obs Res)
P ↓M

P | Q ↓M (Obs ParL)

Q ↓M
P | Q ↓M (Obs ParR)

P ↓M
!P ↓M (Obs Repl)

P. Zimmer 736

M〈M ′〉.P ↓M
(Obs Output)

M(x).P ↓M (Obs Input)

For the πesc-calculus, we add:

S �≡ ε

[n : S] ↓ n (Obs Channel)

P ↓M x �= M

(νx : M ′) P ↓M (Obs Var1)
P ↓ x

(νx : M) P ↓M (Obs Var2)

Proposition 12. For a process P in the πesc-calculus, P ↓M ⇔ [[P]] ↓M.

See Section A.8 for a proof.

Corollary 13. Let P be a complete πesc-process. Then, we have [[P]] −→∗ ↓M if and only

if � : P �−→∗ ↓M.

Proof. The proof is by induction on the length of the reductions, with the help of

Corollary 11 and Proposition 12.

4.4. Soundness

We conclude this first set of results with a soundness theorem between the π and πesc-

calculi.

First of all, we need to choose a suitable equivalence between processes for both of

these calculi. For convenience, we will use barbed bisimulation. Here is the definition for

the π-calculus.

Definition 14. A relation R is a barbed bisimulation for the π-calculus if, whenever P R Q

for two π-processes P and Q, we have:

— If P −→ P ′, there is a process Q′ such that Q −→∗ Q′ and P ′ R Q′.

— If Q −→ Q′, there is a process P ′ such that P −→∗ P ′ and P ′ R Q′.

— P −→∗ ↓M if and only if Q −→∗ ↓M.

Let

≈π=
⋃
{R/R is a barbed bisimulation}.

One can check that ≈π is the largest barbed bisimulation and that it contains structural

congruence ≡ (these are classical results).

We now give a very similar definition for complete processes in the πesc-calculus.

Definition 15. A relation R is a barbed bisimulation for the πesc-calculus if, whenever

P R Q for two complete πesc-processes P and Q, we have:

— If � : P �−→ P ′, there is a process Q′ such that � : Q �−→∗ Q′ and P ′ R Q′.

— If � : Q �−→ Q′, there is a process P ′ such that � : P �−→∗ P ′ and P ′ R Q′.

— � : P �−→∗ ↓M if and only if � : Q �−→∗ ↓M.

Let

≈esc=
⋃
{R/R is a barbed bisimulation}.

One can check that ≈esc is the largest barbed bisimulation.

On the expressiveness of pure safe ambients 737

Finally, we can state the soundness result: the encodings of two equivalent processes

are equivalent, and vice versa.

Theorem 16 (Soundness). Let P and Q be two complete πesc-processes. Then, P ≈esc Q if

and only if [[P]] ≈π [[Q]].

Proof. We prove the two implications separately.

P ≈esc Q ⇒ [[P]] ≈π [[Q]] We define the relation R by P R Q when P ≡ [[P0]], Q ≡ [[Q0]]

and P0 ≈esc Q0. We need to show that R is a barbed bisimulation (then R ⊆ ≈π). To

do this, suppose that P R Q (and consequently that such P0 and Q0 exist).

— Suppose that P −→ P ′. Then, [[P0]] −→ P ′. By Corollary 11, there is a process

P ′′ such that � : P0 �−→+ P ′′ and [[P ′′]] ≡ P ′. Since P0 ≈esc Q0, there is a process

Q′ such that � : Q0 �−→∗ Q′ and P ′′ ≈esc Q′. Then, by Corollary 11, we have

Q ≡ [[Q0]] −→∗ [[Q′]]. And, P ′ R [[Q′]] using the definition of R.

— The reasoning is similar when Q reduces.

— Using Lemma 63, Corollary 13 and Definition 15, we have the following equival-

ences: P −→∗ ↓M if and only if [[P0]] −→∗ ↓M if and only if � : P0 �−→∗ ↓M
if and only if � : Q0 �−→∗ ↓ M if and only if [[Q0]] −→∗ ↓ M if and only if

Q −→∗ ↓M.

[[P]] ≈π [[Q]] ⇒ P ≈esc Q We define the relation R by P R Q when [[P]] ≈π [[Q]]. We

need to show that R is a barbed bisimulation (then R ⊆ ≈esc). To do this, suppose

that P R Q.

— Suppose that � : P �−→ P ′. By Corollary 11, we have [[P]]
≡−→ [[P ′]]. There are

two cases:

– If [[P ′]] ≡ [[P]], then [[P ′]] ≈π [[P]] and [[P ′]] ≈π [[Q]] by transitivity of ≈π .

Finally, P ′ R Q.

– If [[P]] −→ [[P ′]], since ≈π is a bisimulation, there is a process Q′ such that

[[Q]] −→∗ Q′ and [[P ′]] ≈π Q′. By Corollary 11, there is a process Q′′ such

that � : Q �−→∗ Q′′ and [[Q′′]] ≡ Q′. Then, Q′ ≈π [[Q′′]] and [[P ′]] ≈π [[Q′′]] by

transitivity of ≈π . Finally, P ′ R Q′′.

— The reasoning is similar when Q reduces.

— Using Corollary 13 and Definition 14, we have the following equivalences: � :

P �−→∗ ↓ M if and only if [[P]] −→∗ ↓ M if and only if [[Q]] −→∗ ↓ M if and

only if � : Q �−→∗ ↓M.

4.5. From the π-calculus to the πesc-calculus

There is a simple way to transform a π-process into a ‘correct’ πesc-process: replace every

construct (νn) P with (νn) ([n : ε] | P) and add an empty channel for every free name

of P . In fact, this is exactly the definition of the channel-closure cl�(P) (if we view the

π-process P as a πesc-process). It has the following interesting properties: cl�(P) is valid,

channel-closed with regard to � and has no free variables if P has none (these properties

allow us to use Corollary 11).

P. Zimmer 738

Proposition 17. cl�(P) is channel-closed with regard to � and � cl�(P) : Valid. Moreover,

if fv(P) = ∅, fv(cl�(P)) = ∅. Consequently, cl�(P) is complete if P has no free variables.

4.6. On the choice of the πesc-calculus

Explicit channels and variables are similar in their structure, but we have used different

syntaxes: two constructs (νn) and [n : S] for channels, and the single construct (νx : M)

for variables. One may ask why we retained this combination. Now is the time to answer

this question.

We could have chosen to separate variables into a restriction (νx) and an explicit variable

[x : M], with rule (πesc Red Subst Out) being σ : [x : M] | x〈M ′〉.P �−→ [x : M] |M〈M ′〉.P
(and similarly for (πesc Red Subst In)). But in order to evaluate [[(νx) P]], we would have

needed a way to reach the object [x : M] in P and get the value M. This would have led

to a very long technical development.

On the other hand, we could have chosen to include the content of a channel in the

restriction operator with (νn : S) . In this case, we get a restriction interference. For

instance, the process (νn : ε) (νx : n) n〈x〉.P should reduce by putting the concretion 〈x〉.P
into n, but neither (νn : 〈x〉.P) (νx : n) 0 nor (νx : n) (νn : 〈x〉.P) 0 would be correct: in

each case, a bound name becomes free.

5. Encoding the πesc-calculus in pure ambients

5.1. The encoding

The main mechanism underlying the encoding of πesc in pure ambients is a kind of

communication based on the request/server model. In pure ambients, a request willing

to communicate with n is an ambient named rw with the process request rw n inside

it (in our encoding, rw will be only read or write). Its first movement is to enter n.

Symmetrically, a server is a replicated ambient enter inside the destination n that tries to

enter the request and take its control. The underlying protocol is that, after the ambient-

request has entered the ambient-server, the request accepts the server code and lets it run

inside it. This mechanism is similar to the encoding of objective moves of Cardelli and

Gordon (1998). Let us first define some useful abbreviations:

server n .P �! enter[in n . open enter .P]

request rw n � in n . in rw . open enter

request rw x � in x . in rw . open enter . out x

fwd M � server write . request write M | server read . request read M

n be m .P � m[out n . in m .(open n | P)] | out n . in m . open n

allowIO n �! in n | ! out n .

For example, the general interaction between a request and a server is:

n[server rw .P | allowIO n] | rw[request rw n | Q]

↪→+ n[server rw .P | allowIO n | rw[P | Q]] for rw = read or write.

On the expressiveness of pure safe ambients 739

A variable x whose value is M is simply an ambient named x with two servers inside

it that replace every request with a similar request on M. Thus, a variable is simply a

forwarder:

x[fwd M | allowIO x] | rw[request rw x | P]

↪→+ x[fwd M | allowIO x] | rw[request rw M | P] for rw = read or write

A channel n is simulated by an ambient named n with a special server for read requests

(there is no server for write requests). When n contains a read request, it tries to find and

take control of a write request (always using the same request/server mechanism). When

this is done, the read request is replaced by an ambient x whose content is the forwarder of

the write request. Then, the two continuations are activated. Some intermediate ambient

renamings are necessary to avoid interferences.

We do not give further details of the encoding as it is not very instructive. We believe

the only way to understand it fully is to test it by hand and try to mimic the reductions

of the πesc-calculus. Some of these are given in Section A.9 in the proof of Proposition 18.

The full definition of the encoding is presented below:

{{(νn) P }} � (νn) {{P }}
{{0}} � 0

{{P | Q}} � {{P }} | {{Q}}
{{!P }} � !{{P }}
{{M〈M ′〉.P }} � (νp) (write [request write M

| fwd M ′

| p[out read . open p .{{P }}]]
| open p)

{{M(x).P }} � (νp) (read [request read M

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])]
| open p)

{{[n : S]}} � (νp1) . . . (νpk) (where {p1, . . . , pk} are the fresh names of S)

(n [allowIO n

| server read . (νp)

(out read . read be p . in p . out n . p be read

| enter[out read . in write . open enter . in p . open write])

|{{S}}n]
| open p1 | . . . | open pk)

{{(νx : M) P }} � (νx) (x[fwd M | allowIO x] | {{P }})
{{ε}}n � 0

{{S | S ′}}n � {{S}}n | {{S ′}}n
{{〈M〉.P }}n � write [in write . open enter

| fwd M

| p[out read . open p .{{P }}]] (where p is fresh)

P. Zimmer 740

{{(x).P }}n � (νq) (q [in q . out n . q be read

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])] (where p is fresh)

| enter[in write . open enter . in q . open write]).

To handle substitutions, we add the following definition:

{{{M1/x1
} � . . . � {Mk/xk}, P }} � x1[fwd M1 | allowIO x1]

| . . .
| xk[fwd Mk | allowIO xk]

| {{P }}.

5.2. Results

Before we state some properties, we need to distinguish two kinds of reductions in safe

ambients. Principal reductions, written
pr
↪→ , correspond intuitively to the first reductions of

the encodings into pure ambients of the axiomatic reduction rules from the πesc-calculus.

More precisely, we can pinpoint them by ‘marking’ some specific capabilities in the

encoding. These are the in n and in x capabilities in request rw n and request rw x, and

the in write capability in the ambient enter in {{[n : S]}}. Every reduction involving one

of these marked capabilities is principal. All the others are auxiliary and are written
aux
↪→ .

Then, we can show that every reduction in the πesc-calculus corresponds to one principal

followed by many auxiliary reductions in the encoding.

Proposition 18. If σ : P �−→ Q, then {{σ, P }}
pr
↪→ aux

↪→
∗
{{σ, Q}}.

Proof. The proof is by induction on the derivation of σ : P �−→ Q. Basically, we have

to check that every reduction rule in the πesc-calculus is mimicked by several reductions

in the encoding, which is routine. We just give one example here, refer to Section A.9 for

the other cases.

(πesc Red Subst Out) Suppose that σ : x〈M ′〉.P �−→ M〈M ′〉.P with xσ = M. To simplify,

we consider only σ = {M/x}. It is not difficult to derive the general case with an

arbitrary σ. We have (assuming that p does not interfere with other names):

{{σ, x〈M ′〉.P }}

=




x[fwd M | allowIO x]

| (νp) (write [request write x

| fwd M ′

| p[out read . open p .{{P }}]]
| open p)

On the expressiveness of pure safe ambients 741

≡




x[enter[in write . open enter . request write M]

| fwd M | allowIO x]

| (νp) (write [in x . in write . open enter . out x

| fwd M ′

| p[out read . open p .{{P }}]]
| open p)

pr
↪→




(νp) (x [enter[in write . open enter . request write M]

| fwd M | allowIO x

| write [in write . open enter . out x

| fwd M ′

| p[out read . open p .{{P }}]]]
| open p)

aux
↪→




(νp) (x [fwd M | allowIO x

| write [enter[open enter . request write M]

| open enter . out x

| fwd M ′

| p[out read . open p .{{P }}]]]
| open p)

aux
↪→




(νp) (x [fwd M | allowIO x

| write [request write M

| out x
| fwd M ′

| p[out read . open p .{{P }}]]]
| open p)

aux
↪→




x[fwd M | allowIO x]

| (νp) (write [request write M

| fwd M ′

| p[out read . open p .{{P }}]]
| open p)

= {{σ,M〈M ′〉.P }}

In the other direction, we can prove that if an encoded ambient term has a principal

reduction, one can extend it with auxiliary reductions so that it corresponds to one single

πesc-reduction. Moreover, this single reduction is unique in some sense, up to structural

congruence.

Proposition 19. If {{σ, P }}
pr
↪→ Q, there is a process P ′ such that σ : P �−→ P ′ and

Q
aux
↪→
∗
{{σ, P ′}}. Moreover, if σ : P �−→ P ′′ and Q

aux
↪→
∗
{{σ, P ′′}}, then P ′ ≡ P ′′.

Proof. Since {{σ, P }}
pr
↪→ Q is a principal reduction, it must involve one of the ‘marked’

capabilities. This capability determines a corresponding axiomatic reduction in the πesc-

calculus, namely:

— (πesc Red Subst Out) if the capability is in x in request write x .

P. Zimmer 742

— (πesc Red Subst In) if the capability is in x in request read x .

— (πesc Red Output) if the capability is in n in request write n .

— (πesc Red Input) if the capability is in n in request read n .

— (πesc Red Comm) if the capability is in write in the ambient enter in {{[n : S]}}.
Starting from this axiom, it is not difficult to determine the reduction σ : P �−→ P ′ in

πesc. Then, with the same arguments as in the proof of Proposition 18, we can find the

auxiliary reductions in πesc such that Q
aux
↪→
∗
{{σ, P ′}}.

Moreover, since the first principal reduction uniquely determines the corresponding

axiom (and reduction) in πesc, the resulting process P ′ is unique modulo ≡, which implies

the second part of the proposition.

We need to explain why we have to distinguish between principal and auxiliary

reductions. A counter-example, written in CCS style, is P �! a | ! a | b.C | b.D. We

have P −→ P and P −→ P ′ = ! a | ! a | C | D. Considering the first reduction, the

last theorem would give {{P }} ↪→ Q, with P −→ P and Q ↪→∗ {{P }}. But we also have

P −→ P ′ and Q ↪→∗ {{P ′}}, with P �≡ P ′. Thus the second assertion would be false.

The problem is avoided by distinguishing the two kinds of reductions: there must be a

principal reduction between Q and {{P ′}}.
However, Proposition 19 is not as strong as we would hope: we always reach the

next encoded term with auxiliary reductions before the next principal reduction. In fact,

auxiliary reductions do not really matter: our encoding was designed so that a new

effective step in the computation (that is, a principal reduction) can take place as soon as

possible (sometimes a few auxiliary reductions are needed first to unblock the situation).

This is why we believe the following conjecture to be true. Proving it is not difficult

in theory, but we face a huge number of cases to examine, leading to a combinatorial

explosion that possibly only an automatic demonstration tool could handle.

Conjecture 20.
aux
↪→ is confluent with

aux
↪→ and

pr
↪→, that is:

— if P
aux
↪→ P1 and P

aux
↪→ P2, there is a process Q such that P1

aux
↪→ Q and P2

aux
↪→ Q.

— if P
pr
↪→ P1 and P

aux
↪→ P2, there is a process Q such that P1

aux
↪→ Q and P2

pr
↪→ Q.

5.3. Observational equivalence

As we have done for the πesc-calculus, we are able to define an observation predicate, and

show an adequacy result: observability is preserved by the encoding.

However, observability in pure ambients will be more difficult to define and make

well-adapted to the encoding - to this end, we define evaluation contexts.

Definition 21. An evaluation context is a context where the hole [·] occurs only once and

not under a guard. More precisely, they are of the form: C[·] � (ν�n) ([·] | P).

Definition 22. The observation predicate is defined in pure ambients by: P ↓ M if and

only if either P ≡ C[{{M〈M ′〉.Q}}] or P ≡ C[{{M(x).Q}}] or P ≡ C[{{[M : S]}}] for some

evaluation context C[·] that does not bind M, some process Q, some names M and M ′,

and some term S �≡ ε (depending on the case, not all of these conditions are needed).

On the expressiveness of pure safe ambients 743

With this definition, we can state the adequacy property.

Proposition 23. For a πesc-process P , we have:

1 P ↓M ⇒ {{P }} ↪→∗ ↓M
2 {{P }} ↓M ⇒ P ↓M.

Proof.

1 The proof is by induction on the derivation of P ↓M. The only non-trivial case is for

(Obs Var2): when (νx : M) P ↓M has been derived from P ↓ x. Then, by the induction

hypothesis, we get {{P }} ↪→∗ Q ↓ x. We have:

{{(νx : M) P }} = (νx) (x[fwd M | allowIO x] | {{P }})
↪→∗ (νx) (x[fwd M | allowIO x] | Q).

Since Q ↓ x, necessarily Q ≡ C[{{x〈M ′〉.Q′}}] or Q ≡ C[{{x(y).Q′}}] for some evaluation

context C[·] that does not bind x nor M (since the oberved name x is a variable, we

cannot be in the third case, that is, of a non-empty channel). Then (supposing we are

in the first case),

{{(νx : M) P }} ↪→∗ (νx) (x[fwd M | allowIO x] | C[{{x〈M ′〉.Q′}}])
≡ C[(νx) (x[fwd M | allowIO x] | {{x〈M ′〉.Q′}})]
↪→+ R = C[(νx) (x[fwd M | allowIO x] | {{M〈M ′〉.Q′}})]

and we finally get R ↓M.

2 This part follows by a direct and easy induction on P .

Soundness – discussion Is it possible to define some equivalence in pure ambients (barbed

bisimulation or some other) based upon the observation predicate P ↓ M, and show a

soundness property as we did for the encoding between the π and πesc-calculi? We are

not sure if such a result would be technically reachable, but in any case, we are not really

interested in it. In fact, the resulting equivalence over pure ambients seems too artificial

to us, since this particular observation predicate is really too specific to our encoding

and very different from sensible definitions of observability in ambients (for example,

observing the name n for every ambient n[P]). Thus, the resulting equivalence would be

very poor from our point of view. However, it would be interesting to find another sensible

notion of equivalence, and show a corresponding soundness result for our encoding. This

we leave as an open question.

6. The final encoding

It remains for us to compose the results of the two previous sections. The encoding of a

π-process P into pure ambients is defined by:

〈〈P 〉〉 � {{�, cl�(P)}}.

Using the definitions in Section 5, we can give the final encoding directly, and not via

the πesc-calculus. Those definitions apply to processes without free names; otherwise we

P. Zimmer 744

need to add an empty channel for each free name (this implies that, strictly speaking, the

encoding is only fully compositional for processes without free names):

〈〈0〉〉 � 0

〈〈P | Q〉〉 � 〈〈P 〉〉 | 〈〈Q〉〉
〈〈!P 〉〉 � !〈〈P 〉〉
〈〈(νn) P 〉〉 � (νn)

(n [allowIO n

| server read . (νp)

(out read . read be p . in p . out n . p be read

| enter[out read . in write . open enter . in p . open write])]

|〈〈P 〉〉)
〈〈M〈M ′〉.P 〉〉 � (νp) (write [request write M

| fwd M ′

| p[out read . open p .〈〈P 〉〉]]
| open p)

〈〈M(x).P 〉〉 � (νp) (read [request read M

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .〈〈P 〉〉])]
| open p)

It remains to state some operational correspondence properties. We first define an

equivalence relation �
 between the π-calculus and pure ambients.

Definition 24. Let P be a π-process with no free variables and R be a pure ambient

process. We say that P and R are equivalent (written P �
 R) if there is a complete

πesc-process Q such that P ≡ [[Q]] and {{�, Q}} ≡ R.

It is routine to check that P �
 〈〈P 〉〉 for every π-process P with no free variables.

With this definition, we can state the final operational correspondence theorem.

Theorem 25. Suppose P �
 R.

— If P −→ P ′, there is a process R′ such that R ↪→+ R′ and P ′ �
 R′.

— If R
pr
↪→ R′, there is a process R′′ such that R′

aux
↪→
∗

R′′ and either P �
 R′′, or

P −→ P ′ �
 R′′.

— P ↓M ⇒ R ↪→∗ ↓M and R ↓M ⇒ P ↓M.

Proof. Combine Corollary 11 and Propositions 18, 19, 12 and 23.

7. Conclusion and future work

We have given an encoding of the synchronous π-calculus into the ambient calculus with

neither communication primitives nor substitutions. And we have proved an operational

correspondence for our encoding, showing that pure ambients are as expressive as the

π-calculus. To do this, we designed the πesc-calculus in order to facilitate the proof. This

On the expressiveness of pure safe ambients 745

calculus seems interesting in itself, since it models substitutions and channels explicitly.

Independently from the encoding in pure ambients, we proved expressiveness and adequacy

results between π and πesc.

The first task for future work should be to use an automatic demonstration tool to

prove Conjecture 20. If it succeeds, we could state a much stronger final theorem for

our operational correspondence (namely that only principal reductions do really matter).

Moreover, our encoding was also designed to avoid all interferences with other processes

(if we restrict internal names for the request/server mechanism). Thus, we would like to

show that no attack against the protocol is possible by proving that the processes P and

(νread) (νwrite) (νenter) 〈〈P 〉〉 are ‘equivalent’ in some sense.

Furthermore, a few expressiveness questions arise from our work. Is it possible to encode

the π-calculus with classical mobile ambients instead of safe ambients (we explained in

the introduction why it seems difficult)? And more importantly for us: is it possible to

encode the full ambient calculus (safe or not) with its communication primitives into the

same calculus without communication primitives (in fact, this is the question that led us

to do this work)? The main difference with the encoding of the π-calculus is that variables

should now be present at every level in the hierarchy of ambients and not only at the

global level. Thus, intuitively, they should replicate themselves and scatter dynamically,

even in newly created ambients, and it is not obvious how to achieve this effect.

Appendix A. Proofs

A.1. Lemmas concerning substitutions

These first elementary lemmas deal with our special notion of substitution. They detail

how commutativity, transitive closure, structural congruence and reduction relate to each

other, and will be useful in many other proofs.

Lemma 26. If x /∈ dom(σ):

1 {M/x}σ = σ{Mσ/x}
2 {M/x}σ∗ = σ∗{Mσ∗/x}.

Proof.

1 x{M/x}σ = Mσ = x{Mσ/x} = xσ{Mσ/x} since x /∈ dom(σ). For y �= x, y{M/x}σ = yσ =

yσ{Mσ/x} since yσ �= x (because x ∈ im(σ) implies x ∈ dom(σ)).

2 With σ∗ = σp, we just need to apply the last result p times.

Lemma 27. If x /∈ dom(σ) and M ∈ Name ∪ dom(σ), then ({M/x} � σ)∗ = {M/x}σ∗.

Proof. We cannot have M = x, and since x /∈ dom(σ), x /∈ im(σ). Thus, x /∈ im({M/x}�σ).

Consequently, for M ′ �= x, M ′({M/x} � σ)∗ = M ′σ∗ = M ′{M/x}σ∗. And x({M/x} � σ)∗ =

M({M/x} � σ)∗ = Mσ∗ = x{M/x}σ∗. Finally, ({M/x} � σ)∗ = {M/x}σ∗.

Lemma 28.

1 If P ≡ Q, then Pσ ≡ Qσ.

2 If P −→ Q, then Pσ −→ Qσ.

P. Zimmer 746

Proof. The proof is by induction on the derivations of P ≡ Q and P −→ Q.

Lemma 29. If Pσ ≡ Q, then there exists P ′ such that P ≡ P ′ and Q = P ′σ.

Proof. The proof is by induction on the derivation of Pσ ≡ Q.

A.2. Elementary lemmas for the πesc-calculus

This section contains some elementary lemmas for the πesc-calculus that will be useful in

the final proofs.

A.2.1. Free names and free variables

This lemma shows how free names and variables are preserved by structural congruence

and reduction.

Lemma 30.

1 If P ≡ Q, then fn(P) = fn(Q) and fv(P) = fv(Q).

2 If σ : P �−→ Q, then fn(P) ∪ fn(σ) = fn(Q) ∪ fn(σ) and fv(Q) ⊆ dom(σ).

Proof. The proof is by induction on the derivations of P ≡ Q and σ : P �−→ Q.

A.2.2. Channel presentation and channel closure

The two following results state some basic facts.

Lemma 31. P ⇓2 n ⇒ P ⇓1 n ⇒ n ∈ fn(P).

Proof. The proof is by induction on the derivations of P ⇓2 n and P ⇓1 n.

Proposition 3 pr(P) ⊆ fn(P).

Proof. The result follows from Lemma 31.

Channel presentation and channel closure are preserved by structural congruence.

Lemma 32. If P ≡ Q:

1 P ⇓1 n ⇔ Q ⇓1 n for all n ∈ Name

2 P ⇓2 n ⇔ Q ⇓2 n for all n ∈ Name

3 cl(P) ≡ cl(Q)

Proof. The proof is by induction on the derivation of P ≡ Q.

Corollary 33. If P ≡ Q, then pr(P) = pr(Q) and clσ(P) ≡ clσ(Q).

Proof. The result follows from Lemmas 30 and 32.

Also, channel presentation and channel closure are preserved by reduction in the

πesc-calculus.

Lemma 34. If σ : P �−→ Q:

1 P ⇓1 n ⇔ Q ⇓1 n for all n ∈ Name.

On the expressiveness of pure safe ambients 747

2 P ⇓2 n ⇔ Q ⇓2 n for all n ∈ Name.

3 σ : cl(P) �−→ cl(Q).

Proof. The proof is by induction on the derivation of σ : P �−→ Q, using Lemma 32.

Corollary 35. If σ : P �−→ Q:

1 pr(P) = pr(Q).

2 σ : clσ(P) �−→ clσ(Q).

3 P channel-closed with regard to σ ⇔ Q channel-closed with regard to σ.

Proof. The results follow from Lemmas 30 and 34.

The next lemma gives a few more results about channel closure.

Lemma 36.

1 fv(cl(P)) = fv(P).

2 P ⇓2 n if and only if cl(P) ⇓2 n.
3 � P : Valid if and only if � cl(P) : Valid.

Proof. The proof is by induction on P .

A.2.3. Validity

This section gives the proof of subject reduction for the validity type system in πesc-

calculus.

Lemma 37. If P ≡ Q, then � P : Valid ⇔ � Q : Valid.

Proof. First prove � P : OK ⇔ � Q : OK by induction on the derivation of P ≡ Q,

using Lemma 31 and Lemma 32. Then, it is easy to prove � P : Valid ⇔ � Q : Valid

with Lemma 32.

Proposition 6. If σ : P �−→ Q and � P : Valid, then � Q : Valid.

Proof. First prove � P : OK ⇒ � Q : OK by induction on the derivation of σ : P �−→
Q, using Lemma 34 and Lemma 37. Then, it is easy to prove � P : Valid ⇒ � Q : Valid

with Lemma 34.

A.2.4. Reductions

The next lemma details one elementary step of substitution.

Lemma 38. If Mσ = M ′, then σ : M〈M ′′〉.P �−→∗ M ′〈M ′′〉.P (provided that fv(M〈M ′′〉.
P) ⊆ dom(σ)) and σ : M(x).P �−→∗ M ′(x).P (provided that fv(M(x).P) ⊆ dom(σ)). The

same holds if Mσ∗ = M ′.

Proof. If M /∈ dom(σ), then M〈M ′′〉.P = M ′〈M ′′〉.P and M(x).P = M ′(x).P with

no reduction. Otherwise, M = x for some variable name x, and xσ = M ′. Then, σ :

M〈M ′′〉.P �−→ M ′〈M ′′〉.P by (πesc Red Subst Out) and σ : M(x).P �−→ M ′(x).P by

P. Zimmer 748

(πesc Red Subst In). If Mσ∗ = M ′, we just apply the last result p times where p is such

that σ∗ = σp (there are at most p reductions).

The next lemma shows how we can extend environments without affecting reductions.

Lemma 39. If x /∈ dom(σ), M ∈ Name ∪ dom(σ) and σ : P �−→ P ′, then {M/x} � σ :

P �−→ P ′.

Proof. The proof is by induction on the derivation of σ : P �−→ P ′.

A.2.5. Translation [[.]]

The following three lemmas show how the translation [[.]] relates to free names and

variables, channel closure and structural congruence.

Lemma 40. fn([[P]]) ⊆ fn(P) and fv([[P]]) ⊆ fv(P).

Proof. The proof is by induction on the structure of P (the inequalities come from the

cases [n : ε] and (νx : M) P with x /∈ fv([[P]])).

Lemma 41. [[cl(P)]] ≡ [[P]]

Proof. The proof is by induction on the structure of P .

Lemma 42. If P ≡ Q, then [[P]] ≡ [[Q]].

Proof. The proof is by induction on the derivation of P ≡ Q:

(πesc Struct Var) Suppose that (νx : M) P ≡ (νx : M) Q was derived from P ≡ Q. By

the induction hypothesis, [[P]] ≡ [[Q]]. Then [[P]]{M/x} ≡ [[Q]]{M/x} by Lemma 28.

Finally, [[(νx : M) P]] ≡ [[(νx : M) Q]].

(πesc Struct Res Par) Suppose that (νn) (P | Q) ≡ P | (νn) Q with n /∈ fn(P). By

Lemma 40, n /∈ fn([[P]]). Then we can derive [[(νn) (P | Q)]] = (νn) ([[P]] | [[Q]]) ≡
[[P]] | (νn) [[Q]] = [[P | (νn) Q]] with (π Struct Res Par).

(πesc Struct Var Par) Suppose that (νx : M) (P | Q) ≡ P | (νx : M) Q with x /∈ fv(P).

By Lemma 40, x /∈ fv([[P]]) and thus [[P]]{M/x} = [[P]]. Then we have [[(νx :

M) (P | Q)]] = [[P]]{M/x} | [[Q]]{M/x} = [[P]] | [[(νx : M) Q]] = [[P | (νx : M) Q]].

(πesc Struct Res Var) Suppose that (νn) (νx : M) P ≡ (νx : M) (νn) P with n �= M. Then

[[(νn) (νx : M) P]] = (νn) ([[P]]{M/x}) = ((νn) [[P]]){M/x} = [[(νx : M) (νn) P]] (the

second equality is correct because n �= M).

(πesc Struct Var Var) Suppose (νx : M) (νy : M ′) P ≡ (νy : M ′) (νx : M) P with

x �= y, x �= M ′ and y �= M. With these conditions and Lemma 26, {M/x}{M
′
/y} =

{M ′
/y}{M{

M′/y}/x} = {M ′
/y}{M/x}. Then [[(νx : M) (νy : M ′) P]] = [[(νy : M ′) (νx :

M) P]].

The other cases are trivial.

The next two results are decomposition lemmas when the translation of a process is

either a parallel composition, or an input/output operator.

On the expressiveness of pure safe ambients 749

Lemma 43. If [[P]] = P1 | P2 and P is not of the form (νx : M) P ′, then either

— P = [n : S | S ′] with [[S]]n = P1 and [[S ′]]n = P2

— P = P ′1 | P ′2 with [[P ′1]] = P1 and [[P ′2]] = P2

Proof. These are the only ways to derive [[P]] = P1 | P2.

Lemma 44. If [[P]] = M〈M ′〉.P ′ and P is not of the form (νx : M ′′) P ′′, then either

— P = [n : 〈M ′〉.P ′′] with M = n and [[P ′′]] = P ′

— P = M〈M ′〉.P ′′ with [[P ′′]] = P ′

A similar lemma holds if [[P]] = M(x).P ′.

Proof. These are the only ways to derive [[P]] = M〈M ′〉.P ′.

A.3. Lemmas for channel closure

In this section we treat our first problem: channel closure does not mix well with an

inductive proof. For this reason, we need a preliminary result for almost every construct

to show how channel closure behaves with them. We start here with the two easier

cases: variable restriction and name restriction. The other cases need further technical

development and will be treated in the following sections. Furthermore, Lemma 46 gives

a similar result in a special case.

Lemma 45. (νx : M) cl{M/x}�σ(P) ≡ clσ((νx : M) P) if x /∈ dom(σ) and M ∈ Name ∪
dom(σ).

Proof. We have pr(P) = pr((νx : M) P). Then:

(fn(P) ∪ fn({M/x} � σ)) \ pr(P) = (fn(P) ∪ fn(M) ∪ fn(σ)) \ pr(P)

= (fn((νx : M) P) ∪ fn(σ)) \ pr((νx : M) P).

Finally,

(νx : M) cl{M/x}�σ(P) ≡ (νx : M) ([n1 : ε] | . . . | [nk : ε] | cl(P))

≡ [n1 : ε] | . . . | [nk : ε] | (νx : M) cl(P)

≡ clσ((νx : M) P),

using (πesc Struct Var Par).

Lemma 46. clσ(P) ≡ clσ([n1 : ε] | . . . | [nk : ε] | P) if ni ∈ fn(P) \ pr(P).

Proof. Since ni ∈ fn(P) \ pr(P), we can write the set (fn(P) ∪ fn(σ)) \ pr(P) as

{n1, . . . , nk, m1, . . . mp}. We can show pr([n1 : ε] | . . . | [nk : ε] | P) = {n1, . . . , nk} ∪ pr(P).

Then

(fn([n1 : ε] | . . . | [nk : ε] | P) ∪ fn(σ)) \ pr([n1 : ε] | . . . | [nk : ε] | P)

= ({n1, . . . , nk} ∪ fn(P) ∪ fn(σ)) \ ({n1, . . . , nk} ∪ pr(P))

= ((fn(P) ∪ fn(σ)) \ pr(P)) \ {n1, . . . , nk}
= {m1, . . . mp}.

P. Zimmer 750

Finally,

clσ(P) ≡ [m1 : ε] | . . . | [mp : ε] | [n1 : ε] | . . . | [nk : ε] | cl(P)

≡ clσ([n1 : ε] | . . . | [nk : ε] | P).

Lemma 47. If n /∈ fn(σ), clσ((νn) P) ≡
{

(νn) clσ(P) if n ∈ fn(P)

(νn) ([n : ε] | clσ(P)) if n /∈ fn(P)

Proof.

— If P ⇓1 n, then n ∈ fn(P). In this case, pr(P) = {n} ∪ pr((νn) P) and cl((νn) P) =

(νn) cl(P). Then

(fn((νn) P) ∪ fn(σ)) \ pr((νn) P) = (fn(P) \ {n} ∪ fn(σ)) \ pr((νn) P)

= ((fn(P) ∪ fn(σ)) \ {n}) \ pr((νn) P)

since n /∈ fn(σ). This is equal to (fn(P) ∪ fn(σ)) \ pr(P). Finally,

clσ((νn) P) ≡ [n1 : ε] | . . . | [nk : ε] | (νn) cl(P)

≡ (νn) ([n1 : ε] | . . . | [nk : ε] | cl(P))

≡ (νn) clσ(P),

using (πesc Struct Res Par) (we can suppose ni �= n).

— If P � ⇓1 n, we have pr(P) = pr((νn) P) and cl((νn) P) = (νn) ([n : ε] | cl(P)). There are

two cases to consider:

– If n /∈ fn(P), fn((νn) P) = fn(P). Then (fn((νn) P) ∪ fn(σ)) \ pr((νn) P) =

(fn(P) ∪ fn(σ)) \ pr(P). Finally,

clσ((νn) P) ≡ [n1 : ε] | . . . | [nk : ε] | (νn) ([n : ε] | cl(P))

≡ (νn) ([n : ε] | [n1 : ε] | . . . | [nk : ε] | cl(P))

≡ (νn) ([n : ε] | clσ(P)).

– If n ∈ fn(P), fn((νn) P) ∪ {n} = fn(P). Then

(fn(P) ∪ fn(σ)) \ pr(P) = (fn((νn) P) ∪ {n} ∪ fn(σ)) \ pr((νn) P)

= (fn((νn) P) ∪ fn(σ)) \ pr((νn) P) ∪ {n}

(since n /∈ pr((νn) P)). Finally,

clσ((νn) P) ≡ [n1 : ε] | . . . | [nk : ε] | (νn) ([n : ε] | cl(P))

≡ (νn) ([n1 : ε] | . . . | [nk : ε] | [n : ε] | cl(P))

≡ (νn) clσ(P).

A.4. Managing empty channels

In this section, we adress our second problem: in πesc-calculus, empty channels can be

‘erased’ by structural congruence rewriting. To avoid this effect, we introduce an ordering

On the expressiveness of pure safe ambients 751

relation on terms, modulo ≡, written �. Intuitively, P � P ′ means that P ′ is similar to P ,

but contains some extra empty channels. As an example, the main axiom is 0 � [n : ε].

More formally, � is the least relation on terms satisfying the following rules:

P ≡ Q ⇒ P � Q (πesc Empty Struct)

P � Q � R ⇒ P � R (πesc Empty Trans)

0 � [n : ε] (πesc Empty Axiom)

P � P ′ ⇒ (νn) P � (νn) P ′ (πesc Empty Res)

0 � 0 (πesc Empty Zero)

P � P ′ and Q � Q′ ⇒ P | Q � P ′ | Q′ (πesc Empty Par)

P � P ′ ⇒ !P � !P ′ (πesc Empty Repl)

P � P ′ ⇒ M〈M ′〉.P � M〈M ′〉.P ′ (πesc Empty Output)

P � P ′ ⇒ M(x).P � M(x).P ′ (πesc Empty Input)

S � S ′ ⇒ [n : S] � [n : S ′] (πesc Empty Channel)

P � P ′ ⇒ (νx : M) P � (νx : M) P ′ (πesc Empty Var)

ε � ε (πesc Empty Empty)

S � S1 and S ′ � S ′1 ⇒ S | S ′ � S1 | S ′1 (πesc Empty Abs)

P � P ′ ⇒ 〈M〉.P � 〈M〉.P ′ (πesc Empty Out Abs)

P � P ′ ⇒ (x).P � (x).P ′ (πesc Empty Inp Abs)

First, in order to understand why we need such a technical tool, let us explain why

we could not have imagined adding the rule 0 ≡ [n : ε] to the definition of structural

congruence. In that case, we would have:

n〈M〉.P | n(x).Q

≡ [n : ε] | [n : ε] | n〈M〉.P | n(x).Q

�−→�−→ [n : 〈M〉.P] | [n : (x).Q],

and no further communication could occur. This problem is very similar to the one that

motivated the introduction of the presentation predicates P ⇓1 n and P ⇓2 n.

Lemma 48. � is an ordering relation, modulo ≡.

Proof. We need to check that:

— � is reflexive: P � P since P ≡ P .

— � is transitive: by definition.

— � is asymmetric modulo ≡, that is, P � P ′ and P ′ � P implies P ≡ P ′: by induction

on the derivation of P � P ′.

The next few lemmas show how the relation � relates to free names and variables,

channel presentation, validity and finally channel closure.

Lemma 49. If P � P ′, then fn(P) ⊆ fn(P ′) and fv(P) = fv(P ′).

Proof. The proof is by induction on the derivation of P � P ′.

Lemma 50. If P � P ′ and P ⇓i n, then P ′ ⇓i n.

P. Zimmer 752

Proof. The proof is by induction on the derivation of P � P ′, first for i = 1, then for

i = 2, using Lemma 32.

Corollary 51. If P � P ′, then pr(P) ⊆ pr(P ′).

Proof. The result follows using Lemma 50.

Lemma 52. If P � P ′ and � P ′ : Valid, then � P : Valid.

Proof. The proof is by induction on the derivation of P � P ′, using Lemma 50.

Lemma 53. If P � P ′ and � P ′ : Valid, then cl(P ′) ≡ [n1 : ε] | . . . | [nk : ε] | cl(P) with

{n1, . . . , nk} = pr(P ′) \ pr(P).

Proof. The proof is by induction on the derivation of P � P ′, using Corollary 51:

(πesc Empty Struct) Suppose P ≡ P ′. Then, by Lemma 32, we have cl(P) ≡ cl(P ′), and,

by Corollary 33, pr(P) = pr(P ′).

(πesc Empty Trans) Suppose P � Q � R and � R : Valid. By Lemma 52, � Q : Valid. By

the induction hypothesis,

cl(R) ≡ [n1 : ε] | . . . | [nk : ε] | cl(Q)

≡ [n1 : ε] | . . . | [nk : ε] | [m1 : ε] | . . . | [mp : ε] | cl(P)

with {n1, . . . , nk} = pr(R) \ pr(Q) and {m1, . . . , mp} = pr(Q) \ pr(P). It remains to check

that pr(R) \ pr(P) = {n1, . . . , nk, m1, . . . , mp}, which is easy by Corollary 51.

(πesc Empty Axiom) We have cl([n : ε]) = [n : ε] ≡ [n : ε] | 0 = [n : ε] | cl(0) and

pr([n : ε]) \ pr(0) = {n}.
(πesc Empty Res) Suppose that (νn) P � (νn) P ′ was derived from P � P ′. Since �

(νn) P ′ : Valid, � P ′ : Valid. By the induction hypothesis, cl(P ′) ≡ [n1 : ε] | . . . | [nk :

ε] | cl(P) with {n1, . . . , nk} = pr(P ′) \ pr(P). There are three cases to consider:

— If P ⇓1 n, then P ′ ⇓1 n by Lemma 50, and we have n �= ni. Moreover, pr((νn) P ′) \
pr((νn) P) = {n1, . . . , nk}, and

cl((νn) P ′) = (νn) cl(P ′)

≡ (νn) ([n1 : ε] | . . . | [nk : ε] | cl(P))

≡ [n1 : ε] | . . . | [nk : ε] | (νn) cl(P)

= [n1 : ε] | . . . | [nk : ε] | cl((νn) P).

— If P � ⇓1 n and P ′ ⇓1 n, n is one of the ni. We may assume n = n1 for example. Then

we have pr((νn) P ′) \ pr((νn) P) = {n2, . . . , nk}, and

cl((νn) P ′) = (νn) cl(P ′)

≡ (νn) ([n : ε] | [n2 : ε] | . . . | [nk : ε] | cl(P))

≡ [n2 : ε] | . . . | [nk : ε] | (νn) ([n : ε] | cl(P))

= [n2 : ε] | . . . | [nk : ε] | cl((νn) P).

On the expressiveness of pure safe ambients 753

— If P � ⇓1 n and P ′ � ⇓1 n, we have n �= ni and pr((νn) P ′) \ pr((νn) P) = {n1, . . . , nk}.
Moreover,

cl((νn) P ′) = (νn) ([n : ε] | cl(P ′))
≡ (νn) ([n : ε] | [n1 : ε] | . . . | [nk : ε] | cl(P))

≡ [n1 : ε] | . . . | [nk : ε] | (νn) ([n : ε] | cl(P))

= [n1 : ε] | . . . | [nk : ε] | cl((νn) P).

(πesc Empty Par) Suppose that P | Q � P ′ | Q′ was derived from P � P ′ and Q � Q′.

Since � P ′ | Q′ : Valid, we have � P ′ : Valid and � Q′ : Valid. By the induction

hypothesis, cl(P ′) ≡ [n1 : ε] | . . . | [nk : ε] | cl(P) with {n1, . . . , nk} = pr(P ′) \ pr(P),

and cl(Q′) ≡ [m1 : ε] | . . . | [mp : ε] | cl(Q) with {m1, . . . , mp} = pr(Q′) \ pr(Q).

Since � P ′ | Q′ : Valid, we have ni �= mj (otherwise P ′ | Q′ ⇓2 ni). Moreover,

pr(P ′) ∩ pr(Q) ⊆ pr(P ′) ∩ pr(Q′) = ∅ and pr(Q′) ∩ pr(P) = ∅. Consequently, pr(P ′ | Q′)\
pr(P | Q) = pr(P ′)\pr(P)∪pr(Q′)\pr(Q) = {n1, . . . , nk, m1, . . . , mp}. Finally, cl(P ′ | Q′) =

cl(P ′) | cl(Q′) ≡ [n1 : ε] | . . . | [nk : ε] | [m1 : ε] | . . . | [mp : ε] | cl(P | Q).

(πesc Empty Repl) Suppose that !P � !P ′ was derived from P � P ′. Since �!P ′ : Valid,
we have pr(P ′) = ∅. Then, by the induction hypothesis, cl(P ′) ≡ cl(P). And, since

pr(!P ′) = ∅, we have cl(!P ′) ≡ cl(!P).

The other cases are similar or trivial.

Finally, the following result shows that if we translate a process P in π-calculus and

rewrite it by structural congruence (thus possibly erasing some empty channels), we in

fact get the direct translation of a process � P .

Lemma 54. If [[P]] ≡ Q (or Q ≡ [[P]]), there exists P ′ such that Q = [[P ′]] and P ′ � P

(and the same for S instead of P).

Proof. The proof is by induction on the derivation of [[P]] ≡ Q, with a special treatment

for P = (νx : M) P ′ (since this part of the reasoning is common to all cases, we include

it in the induction and we consider that P is not of this form in all other cases).

(νx : M) P We have [[(νx : M) P]] = [[P]]{M/x} ≡ Q. By Lemma 29, there is Q′ such

that [[P]] ≡ Q′ and Q = Q′{M/x}. By the induction hypothesis, there is P ′ such that

Q′ = [[P ′]] and P ′ � P . Then Q = [[P ′]]{M/x} = [[(νx : M) P ′]], and we can derive

(νx : M) P ′ � (νx : M) P .

(π Struct Refl) This case is trivial, because � is reflexive.

(π Struct Symm) This case follows directly by induction.

(π Struct Trans) This case is trivial, because � is transitive.

(π Struct Res) Suppose [[P]] = (νn) P1 ≡ (νn) Q1 = Q was derived from P1 ≡ Q1.

Necessarily, P = (νn) P2 with P1 = [[P2]]. By the induction hypothesis, there is P ′2 such

that Q1 = [[P ′2]] and P ′2 � P2. Let P ′ = (νn) P ′2. We have Q = (νn) [[P ′2]] = [[P ′]] and

P ′ � (νn) P2 = P .

(π Struct Par) Suppose that [[P]] = P0 | R ≡ Q | R was derived from P0 ≡ Q. By

Lemma 43, there are two cases to consider:

P. Zimmer 754

— P = P1 | P2 with [[P1]] = P0 and [[P2]] = R. We have [[P1]] ≡ Q. By the induction

hypothesis, there is P ′1 such that Q = [[P ′1]] and P ′1 � P1. Then Q | R = [[P ′1 | P2]]

and P ′1 | P2 � P1 | P2 = P .

— P = [n : S1 | S2] with [[S1]]n = P0 and [[S2]]n = R. We have [[S1]]n ≡ Q. By

the induction hypothesis, there is S ′1 such that Q = [[S ′1]]n and S ′1 � S1. Then

Q | R = [[S ′1 | S2]]n = [[[n : S ′1 | S2]]] and [n : S ′1 | S2] � [n : S1 | S2] = P .

(π Struct Par Zero) Suppose [[P]] = Q | 0 ≡ Q. By Lemma 43, there are two cases to

consider:

— P = [n : S | S ′] with [[S]]n = Q and [[S ′]]n = 0. Necessarily, S ′ = ε. We have

P = [n : S | ε] ≡ [n : S]. Finally, Q = [[[n : S]]] and [n : S] � P .

— P = P1 | P2 with [[P1]] = Q and [[P2]] = 0. There are two possibilities. If P2 = 0,

then P = P1 | 0 ≡ P1, so P1 � P . Otherwise, P2 = [n : ε], and then P1 ≡ P1 | 0 �
P1 | [n : ε] = P .

The other cases are similar.

A.5. Channels and parallel composition

In this section, we adress the third problem: to complete an inductive proof, we need to

show how communications involving an empty channel added by channel closure can be

reported to (possibly non-empty) channels provided by a process in parallel.

As a first step, we define a syntactic operator that finds the channels ni in a process

and adds some concretions and abstractions Si within it.

Definition 55. P {ni ←+ Si} is defined by [nj : S ′]{ni ←+ Si} = [nj : S ′{ni ←+ Si} | Sj] and is

a homomorphism for all other constructs.

Next, we show that this operator is preserved by structural congruence and reduction

in πesc.

Lemma 56.

1 If P ≡ Q, then P {ni ←+ Si} ≡ Q{ni ←+ Si}.
2 If fv(Si) ⊆ dom(σ) and σ : P �−→ P ′, then σ : P {ni ←+ Si} �−→ P ′{ni ←+ Si}.

Proof.

1 The proof is by induction on the derivation of P ≡ Q.

2 The proof is by induction on the derivation of σ : P �−→ P ′.

The next lemma shows that translating a πesc-process back into π-calculus after some

channel extensions is equivalent to translating the original process and the extensions

separately, as if these were simple input/output instructions. Thus, we ‘forget’ the first

step of communication (the entering of a channel).

Lemma 57. If � P : Valid, then [[P {ni ←+ Si}]] ≡ [[P]] | [[Si1]]ni1 | . . . | [[Sik]]nik where

{i1, . . . , ik} = {i / P ⇓1 ni}.

On the expressiveness of pure safe ambients 755

Proof. The proof is by induction on the structure of P :

— [[((νn) P){ni ←+ Si}]] = (νn) [[P {ni ←+ Si}]] (we can always suppose n /∈ fn({ni ←
+ Si}). Since � (νn) P : Valid implies � P : Valid, we have [[P {ni ←+ Si}]] ≡
[[P]] | [[Si1]]ni1 | . . . | [[Sik]]nik with {i1, . . . , ik} = {i / P ⇓1 ni} by the induction hypothesis.

Since n �= ni, we have {i / (νn) P ⇓1 ni} = {i / P ⇓1 ni}. Finally,

[[((νn) P){ni ←+ Si}]] ≡ (νn) ([[P]] | [[Si1]]ni1 | . . . | [[Sik]]nik)
≡ [[(νn) P]] | [[Si1]]ni1 | . . . | [[Sik]]nik .

— [[0{ni ←+ Si}]] = [[0]] and {i / 0 ⇓1 ni} = ∅ trivially.

— [[(P | Q){ni ←+ Si}]] = [[P {ni ←+ Si}]] | [[Q{ni ←+ Si}]]. Since � P | Q : Valid, we

have � P : Valid and � Q : Valid. Moreover, we cannot have P ⇓1 ni and Q ⇓1 ni
at the same time, otherwise we would have P | Q ⇓2 ni. Thus, {i / P | Q ⇓1 ni} =

{i / P ⇓1 ni} ∪ {i / Q ⇓1 ni} with a disjunctive union. By the induction hypothesis,

[[P {ni ←+ Si}]] ≡ [[P]] | [[Si1]]ni1 | . . . | [[Sik]]nik where {i1, . . . , ik} = {i / P ⇓1 ni}, and

[[Q{ni ←+ Si}]] ≡ [[Q]] | [[Sj1]]nj1 | . . . | [[Sjp]]njp where {j1, . . . , jp} = {i / Q ⇓1 ni}. Then

[[(P | Q){ni ←+ Si}]] ≡ [[P | Q]] | [[Si1]]ni1 | . . . | [[Sik]]nik | [[Sj1]]nj1 | . . . | [[Sjp]]njp with

{i1, . . . , ik, j1,jp} = {i / P | Q ⇓1 ni}.
— Since �!P : Valid, we have P � ⇓1 n for all n ∈ Name. Moreover, � P : Valid and

[[P {ni ←+ Si}]] = [[P]] by the induction hypothesis. Then [[(!P){ni ←+ Si}]] =![[P {ni ←
+ Si}]] =![[P]] = [[!P]], and {i / !P ⇓1 ni} = {i / P ⇓1 ni} = ∅.

— [[[nj : S]{ni ←+ Si}]] = [[[nj : S{ni ←+ Si} | Sj]]] = [[S{ni ←+ Si}]]nj | [[Sj]]nj . Since

� [nj : S] : Valid, � S : Valid. By the induction hypothesis, [[S{ni ←+ Si}]]nj ≡
[[S]]nj | [[Si1]]ni1 | . . . | [[Sik]]nik where {i1, . . . , ik} = {i / S ⇓1 ni}. Then [[[nj : S]{ni ←
+ Si}]] ≡ [[[nj : S]]] | [[Si1]]ni1 | . . . | [[Sik]]nik | [[Sj]]nj . And {i / [nj : S] ⇓1 ni} =

{j}∪{i / S ⇓1 ni} with a disjunctive union (otherwise [nj : S] ⇓2 nj , which is impossible

since � [nj : S] : Valid).

The other cases are very similar.

The next lemma shows that we can increase the contents of channels placed in parallel

without affecting the possible reductions.

Lemma 58. If � P : Valid, P � ⇓1 ni, fv(Si) ⊆ dom(σ) and σ : [n1 : ε] | . . . | [nk :

ε] | P �−→∗ P ′, then σ : [n1 : S1] | . . . | [nk : Sk] | P �−→∗ P ′′ with the condition

[[P ′′]] ≡ [[P ′]] | [[S1]]n1
| . . . | [[Sk]]nk .

Proof. Let Q = [n1 : ε] | . . . | [nk : ε] | P . By Lemma 56, σ : Q{ni ←+ Si} �−→∗
P ′{ni ←+ Si}. Since P � ⇓1 ni, we have P {ni ←+ Si} = P and thus Q{ni ←+ Si} = [n1 :

S1] | . . . | [nk : Sk] | P . Moreover, since P � ⇓1 ni, we have Q ⇓1 ni but Q � ⇓2 ni. It

follows easily that � Q : Valid. By Proposition 6., � P ′ : Valid. Using Lemma 57, we get

[[P ′{ni ←+ Si}]] = [[P ′]] | [[S1]]n1
| . . . | [[Sk]]nk (P ′ ⇓1 ni for all i because of Lemma 34 and

Q ⇓1 ni).

The next lemma generalises the previous one by showing that we can use the channels

of another process in parallel if they are available, instead of empty channels.

Lemma 59. If � P : Valid, � Q : Valid, P � ⇓1 ni, Q ⇓1 ni, fv(Q) ⊆ dom(σ) and σ : [n1 :

ε] | . . . | [nk : ε] | P �−→∗ P ′, then σ : P | Q �−→∗ P ′′ with [[P ′′]] ≡ [[P ′ | Q]].

P. Zimmer 756

Proof. From Corollary 5, we get Q ≡ (νm1) . . . (νmp) (νx1 : M1) . . . (νxp′ : Mp′) ([n1 :

S1] | . . . | [nk : Sk] | Q′) with ni �= mj . We also suppose ni /∈ fn(P) ∪ fn([[P ′]]), xi /∈
fv(P) ∪ fv([[P ′]]) ∪ dom(σ) and xi �= xj for i �= j. Then P | Q ≡ (νm1) . . . (νmp) (νx1 :

M1) . . . (νxp′ : Mp′) ([n1 : S1] | . . . | [nk : Sk] | P | Q′). By Lemma 39, we have

{Mp′/xp′ } � . . . � {M1/x1
} � σ : [n1 : ε] | . . . | [nk : ε] | P �−→∗ P ′. By Lemma 58, there

exists P1 such that {Mp′/xp′ } � . . . � {M1/x1
} � σ : [n1 : S1] | . . . | [nk : Sk] | P �−→∗ P1

and [[P1]] ≡ [[P ′]] | [[S1]]n1
| . . . | [[Sk]]nk . Then we can derive σ : P | Q �−→∗ P ′′ =

(νm1) . . . (νmp) (νx1 : M1) . . . (νxp′ : Mp′) (P1 | Q′). Finally,

[[P ′′]] = (νm1) . . . (νmp) ([[P1]] | [[Q′]]){Mp′/xp′ }. . . {
M1/x1

}
≡ (νm1) . . . (νmp) ([[P ′]] | [[S1]]n1

| . . . | [[Sk]]nk | [[Q′]]){Mp′/xp′ } . . . {
M1/x1

}
≡ [[P ′]] | (νm1) . . . (νmp) ([[S1]]n1

| . . . | [[Sk]]nk | [[Q′]]){Mp′/xp′ } . . . {
M1/x1

}
≡ [[P ′]] | [[Q]]

= [[P ′ | Q]].

Finally, the next two lemmas are the missing lemmas from Section A.3, that is, the

inductive steps for parallel composition and channels.

Lemma 60. If � P | Q : Valid, fv(Q) ⊆ dom(σ) and σ : clσ(P) �−→∗ P ′, then σ :

clσ(P | Q) �−→∗ P ′′ with [[P ′′]] ≡ [[P ′ | Q]].

Proof. Let us write clσ(P) = [n1 : ε] | . . . | [nk : ε] | [m1 : ε] | . . . | [mk′ : ε] | cl(P) with

(fn(P) ∪ fn(σ)) \ pr(P) = {n1, . . . , nk, m1, . . . , mk′ } divided so that Q ⇓1 ni and Q � ⇓1 mj . Let

P0 = [m1 : ε] | . . . | [mk′ : ε] | cl(P). We know that σ : [n1 : ε] | . . . | [nk : ε] | P0 �−→∗ P ′.

Since � P | Q : Valid, � P : Valid. By definition of mj , we have P � ⇓1 mj , so � P0 : Valid.

Moreover, P0 � ⇓1 ni, � cl(Q) : Valid and cl(Q) ⇓1 ni by Lemma 36. Using Lemma 59, there

exists P1 such that σ : P0 | cl(Q) �−→∗ P1 and [[P1]] ≡ [[P ′ | cl(Q)]] ≡ [[P ′ | Q]] (using

Lemma 41). We can write:

(fn(P | Q) ∪ fn(σ)) \ pr(P | Q) = (fn(P) ∪ fn(Q) ∪ fn(σ)) \ (pr(P) ∪ pr(Q))

= ((fn(P) ∪ fn(σ)) \ pr(P)) \ pr(Q)

∪ ((fn(Q) ∪ fn(σ)) \ pr(Q)) \ pr(P).

Because mj ∈ (fn(P) ∪ fn(σ)) \ pr(P) but mj /∈ pr(Q), we have mj ∈ (fn(P | Q) ∪
fn(σ)) \ pr(P | Q). This allows us to write clσ(P | Q) = [p1 : ε] | . . . [pl : ε] | [m1 :

ε] | . . . | [mk′ : ε] | cl(P) | cl(Q) = [p1 : ε] | . . . [pl : ε] | P0 | cl(Q). And we can derive

σ : clσ(P | Q) �−→∗ P ′′ = [p1 : ε] | . . . [pl : ε] | P1. Finally, [[P ′′]] ≡ [[P1]] ≡ [[P ′ | Q]].

Lemma 61. If � [n : S | S ′] : Valid, fv(S ′) ⊆ dom(σ) and σ : clσ([n : S]) �−→∗ P , then

σ : clσ([n : S | S ′]) �−→∗ P ′ with [[P ′]] ≡ [[P]] | [[S ′]]n.

Proof. Let us write clσ([n : S]) = [n1 : ε] | . . . | [nk : ε] | [n : cl(S)] with (fn([n :

S]) ∪ fn(σ)) \ pr([n : S]) = {n1, . . . , nk}. By Lemma 56, σ : clσ([n : S]){n←+ cl(S ′)} = [n1 :

ε] | . . . | [nk : ε] | [n : cl(S) | cl(S ′)] �−→∗ P {n←+ cl(S ′)}. Moreover, pr([n : S]) = pr([n :

S | S ′]) = {n}. Then

On the expressiveness of pure safe ambients 757

(fn([n : S | S ′]) ∪ fn(σ)) \ pr([n : S | S ′])
= ({n} ∪ fn(S) ∪ fn(S ′) ∪ fn(σ)) \ {n}
= {n1, . . . , nk} ∪ (fn(S ′) \ {n}) ⊇ {n1, . . . , nk}.

We can derive σ : clσ([n : S | S ′]) �−→∗ P ′ = [m1 : ε] | . . . | [mp : ε] | P {n ←+ cl(S ′)}.
Since � [n : S] : Valid, � P : Valid by Lemma 36 and Proposition 6. Moreover, by

Corollary 35 and Lemma 36, pr(P) = pr([n : S]) = {n}. Finally, using Lemma 57,

[[P ′]] ≡ [[P {n←+ cl(S ′)}]] ≡ [[P]] | [[cl(S ′)]]n ≡ [[P]] | [[S ′]]n (using Lemma 41).

A.6. Proof of Proposition 8

Proposition 8. If σ : P �−→ Q, then [[P]]σ∗
≡−→ [[Q]]σ∗, where

≡−→ is either ≡ or −→.

Proof. The proof is by induction on the derivation of σ : P �−→ Q:

(πesc Red Subst Out) Suppose that σ : x〈M ′〉.P �−→ M〈M ′〉.P with xσ = M. We have,

obviously, xσ∗ = Mσ∗. Then [[x〈M ′〉.P]]σ∗ = (xσ∗)〈M ′σ∗〉.([[P]]σ∗) = (Mσ∗)〈M ′σ∗〉.
([[P]]σ∗) = [[M〈M ′〉.P]]σ∗.

(πesc Red Subst In) This case is similar to (πesc Red Subst Out).

(πesc Red Output) Suppose that σ : [n : S] | n〈M〉.P �−→ [n : S | 〈M〉.P]. We have

[[[n : S] | n〈M〉.P]] = [[S]]n | n〈M〉.[[P]] = [[S | 〈M〉.P]]n = [[[n : S | 〈M〉.P]]]. Then

[[[n : S] | n〈M〉.P]]σ∗ = [[[n : S ∪ {〈M〉.P }]]]σ∗.
(πesc Red Input) This case is similar to (πesc Red Output).

(πesc Red Comm) Suppose that σ : [n : S | (〈M〉.P | (x).Q)] �−→ [n : S] | (P | (νx : M) Q)

with x �= M (we also suppose x /∈ dom(σ)). We have:

[[[n : S | (〈M〉.P | (x).Q)]]]σ∗

= [[S]]nσ
∗ | (n〈Mσ∗〉.([[P]]σ∗) | n(x).([[Q]]σ∗))

−→ [[S]]nσ
∗ | ([[P]]σ∗ | ([[Q]]σ∗){Mσ∗/x}) (by (π Red Comm))

= [[S]]nσ
∗ | ([[P]]σ∗ | ([[Q]]{M/x})σ∗) (using Lemma 26)

= [[[n : S] | (P | (νx : M) Q)]]σ∗

(πesc Red Par) Suppose that σ : P | Q �−→ P ′ | Q was derived from σ : P �−→ P ′. By

the induction hypothesis, [[P]]σ∗
≡−→ [[P ′]]σ∗. Then [[P | Q]]σ∗ = [[P]]σ∗ | [[Q]]σ∗

≡−→
[[P ′]]σ∗ | [[Q]]σ∗ = [[P ′ | Q]]σ∗ by (π Struct Par) or (π Red Par).

(πesc Red Res) Suppose that σ : (νn) P �−→ (νn) P ′ was derived from σ : P �−→ P ′. By

the induction hypothesis, [[P]]σ∗
≡−→ [[P ′]]σ∗. Then [[(νn) P]]σ∗ = (νn) ([[P]]σ∗)

≡−→
(νn) ([[P ′]]σ∗) = [[(νn) P]]σ∗ by (π Struct Res) or (π Red Res) (we can always suppose

n /∈ im(σ)).

(πesc Red Var) Suppose that σ : (νx : M) P �−→ (νx : M) P ′ was derived from

{M/x} � σ : P �−→ P ′ with x /∈ dom(σ). By the induction hypothesis, we have

[[P]]({M/x} � σ)∗
≡−→ [[Q]]({M/x} � σ)∗. Then [[(νx : M) P]]σ∗ = [[P]]{M/x}σ∗ =

[[P]]({M/x} � σ)∗
≡−→ [[Q]]({M/x} � σ)∗ = [[Q]]{M/x}σ∗ = [[(νx : M) Q]]σ∗, using

Lemma 27.

P. Zimmer 758

(πesc Red Struct) Suppose that σ : P �−→ Q was derived from P ≡ P ′, σ : P ′ �−→ Q′

and Q′ ≡ Q. By Lemma 42, [[P]] ≡ [[P ′]] and by Lemma 28, [[P]]σ∗ ≡ [[P ′]]σ∗. By the

induction hypothesis, [[P ′]]σ∗
≡−→ [[Q′]]σ∗. Using Lemmas 42 and 28, [[Q′]]σ∗ ≡ [[Q]]σ∗.

Finally, we can derive [[P]]σ∗
≡−→ [[Q]]σ∗ by (π Struct Trans) or (π Red Struct).

A.7. Proof of Proposition 9

Proposition 9. If [[P]]σ∗ −→ Q, � P : Valid and fv(P) ⊆ dom(σ), then there is a process

P ′ such that σ : clσ(P) �−→+ P ′ and [[P ′]]σ∗ ≡ Q.

Proof. The proof is by induction on the derivation of [[P]]σ∗ −→ Q, with a special

treatment for P = (νx : M) P ′ (since this part of the reasoning is common to all cases, we

include it in the induction and we consider that P is not of this form in all other cases).

(νx : M) P Suppose that [[(νx : M) P]]σ∗ −→ Q, � (νx : M) P : Valid and fv((νx :

M) P) ⊆ dom(σ). We also suppose x /∈ dom(σ). We have [[P]]{M/x}σ∗ −→ Q. Let

σ′ = {M/x}�σ. By Lemma 27, σ′∗ = {M/x}σ∗. So we have [[P]]σ′∗ −→ Q, � P : Valid

(from � (νx : M) P : Valid) and fv(P) ⊆ dom(σ′). By the induction hypothesis, there

exists P ′ such that σ′ : clσ′ (P) �−→+ P ′ and [[P ′]]σ′∗ ≡ Q. Then we can derive

σ : (νx : M) clσ′(P) �−→+ (νx : M) P ′ by (πesc Red Var). By Lemma 45, (νx :

M) clσ′(P) ≡ clσ((νx : M) P), so we can derive σ : clσ((νx : M) P) �−→+ (νx : M) P ′.

And [[(νx : M) P ′]]σ∗ = [[P ′]]{M/x}σ∗ = [[P ′]]σ′∗ ≡ Q.

(π Red Comm) Suppose that [[P]]σ∗ = m〈M〉.P1 | n(x).P2 −→ P1 | P2{m/x} = Q,

� P : Valid and fv(P) ⊆ dom(σ). Necessarily, [[P]] = M1〈M2〉.P3 | M3(x).P4 with

M1σ
∗ = n, M2σ

∗ = m, P3σ
∗ = P1, M3σ

∗ = n and P4σ
∗ = P2 (we can always suppose

x �= M2 and x /∈ dom(σ)). By Lemma 43, there are two cases to consider:

— P = [p : S | S ′] with [[S]]p = M1〈M2〉.P3 and [[S ′]]p = M3(x).P4. The first assertion

implies M1 = p and S = 〈M2〉.P5 with [[P5]] = P3. The second assertion implies

M3 = p and S ′ = (x).P6 with [[P6]] = P4. Then we have n = M1σ
∗ = pσ∗ =

p. To summarise, P = [n : 〈M2〉.P5 | (x).P6]. Since x �= M2, we can derive

σ : P �−→ [n : ε] | (P5 | (νx : M2) P6) by (πesc Red Comm). Then σ :

clσ(P) �−→ P ′ = [n1 : ε] | . . . | [nk : ε] | [n : ε] | (cl(P5) | (νx : M2) cl(P6)).

We have [[P ′]] ≡ [[cl(P5)]] | [[cl(P6)]]{M2/x} ≡ [[P5]] | [[P6]]{M2/x} = P3 | P4{M2/x}.
Then, by Lemma 28, [[P ′]]σ∗ ≡ P3σ

∗ | P4{M2/x}σ∗. Using Lemma 26, [[P ′]]σ∗ ≡
P3σ

∗ | P4σ
∗{M2σ

∗
/x} = P1 | P2{m/x} = Q.

— P = P5 | P6 with [[P5]] = M1〈M2〉.P3 and [[P6]] = M3(x).P4. There can be some

variable restrictions in P5 and P6. We take all of them into account: P5 = (νx1 :

N1) . . . (νxk : Nk) P ′5 and P6 = (νy1 : N ′1) . . . (νyk′ : N ′k′) P ′6. We can always

rename the variables in order to have the following assumptions: xi /∈ dom(σ) ∪
fv(P4) ∪ fv(P6) ∪ {M3, y1, . . . , yk′ , N

′
1, . . . , N

′
k′ } and yj /∈ dom(σ) ∪ fv(P3) ∪ fv(P ′5) ∪

{x,M2, x1, . . . , xk, N1, . . . , Nk}. Let σx = {Nk/xk}. . . {N1/x1
}, σ′x = {Nk/xk}�. . . �{N1/x1

},
σy = {N ′k′ /yk′ }. . . {N

′
1/y1
} and σ′y = {N ′k′ /yk′ } � . . . �{N

′
1/y1
}. Since fv(P) ⊆ dom(σ), we

have Ni ∈ Name ∪ dom(σ) ∪ {x1, . . . , xi−1} and N ′j ∈ Name ∪ dom(σ) ∪ {y1, . . . , yj−1}.
With the above conditions, we can prove by Lemma 27 that (σ′y�σ′x�σ)∗ = σyσxσ

∗.

On the expressiveness of pure safe ambients 759

Moreover, σyσx = σxσy easily. Then we have [[P ′5]]σx = [[P5]] = M1〈M2〉.P3 and

[[P ′6]]σy = [[P6]] = M3(x).P4. Then [[P ′5]] = M ′
1〈M ′

2〉.P ′3 with M ′
1σx = M1, M

′
2σx = M2

and P ′3σx = P3, and [[P ′6]] = M ′
3(x).P ′4 with M ′

3σy = M3 and P ′4σy = P4. Using

Lemma 44, there are four cases to consider:

– P ′5 = [p : 〈M ′
2〉.P ′′3] with M ′

1 = p and [[P ′′3]] = P ′3, and P ′6 = [p′ : (x).P ′′4] with

M ′
3 = p′ and [[P ′′4]] = P ′4. In this case, n = M1σ

∗ = M ′
1σxσ

∗ = pσxσ
∗ = p

and n = M3σ
∗ = M ′

3σyσ
∗ = p′σyσ

∗ = p′. Then P ′5 ⇓1 n and P ′6 ⇓1 n. We can

derive P5 ⇓1 n and P6 ⇓1 n. Finally, P ⇓2 n, but this is in contradiction with

� P : Valid. Consequently, this case is impossible.

– P ′5 = [p : 〈M ′
2〉.P ′′3] with M ′

1 = p and [[P ′′3]] = P ′3, and P ′6 = M ′
3(x).P ′′4 with

[[P ′′4]] = P ′4. In this case, n = M1σ
∗ = M ′

1σxσ
∗ = pσxσ

∗ = p. We have fv(P ′6) ⊆
{y1, . . . , yk′ } ∪ fv(P6) ⊆ {y1, . . . , yk′ } ∪ fv(P) ⊆ dom(σ′x � σ′y � σ). Moreover,

M ′
3(σ
′
y � σ′x � σ)∗ = M ′

3σyσxσ
∗ = M3σxσ

∗ = M3σ
∗ = n. Thus, by Lemma 38, we

can derive σ′y � σ′x � σ : P ′6 �−→∗ n(x).P ′′4 . With similar reasoning, fv(P ′5) ⊆
dom(σ′x � σ′y � σ). We can derive

σ′y � σ′x � σ : P ′5 | P ′6
�−→∗ [n : 〈M ′

2〉.P ′′3] | n(x).P ′′4 (by (πesc Red Par))

�−→ [n : 〈M ′
2〉.P ′′3 | (x).P ′′4] (by (πesc Red Input))

�−→ [n : ε] | (P ′′3 | (νx : M ′
2) P

′′
4) (by (πesc Red Comm))

With the above conditions, we have P = P5 | P6 ≡ (νx1 : N1) . . . (νxk :

Nk) (P ′5 | P6) ≡ (νx1 : N1) . . . (νxk : Nk) (νy1 : N ′1) . . . (νyk′ : N ′k′) (P ′5 | P ′6).
Using (πesc Red Var) and (πesc Red Struct), we can derive σ : P �−→+ (νx1 :

N1) . . . (νxk : Nk) (νy1 : N ′1) . . . (νyk′ : N
′
k′) ([n : ε] | P ′′3 | (νx : M ′

2) P
′′
4). Finally,

σ : clσ(P) �−→+ P ′ = [n1 : ε] | . . . | [nr : ε] | (νx1 : N1) . . . (νxk : Nk) (νy1 :

N ′1) . . . (νyk′ : N
′
k′) ([n : ε] | cl(P ′′3) | (νx : M ′

2) cl(P
′′
4)). Then,

[[P ′]] ≡ ([[cl(P ′′3)]] | [[cl(P ′′4)]]{M ′
2/x})σyσx

≡ ([[P ′′3]] | [[P ′′4]]{M ′
2/x})σyσx

≡ P ′3σyσx | P ′4{M
′
2/x}σyσx

= P ′3σxσy | P ′4σyσx{M
′
2σxσy/x}

= P3σy | P4σx{M2σy/x}
= P3 | P4{M2/x}

[[P ′]]σ∗ ≡ P3σ
∗ | P4σ

∗{M2σ
∗
/x}

= P1 | P2{m/x}
= Q.

– P ′5 = M ′
1〈M ′

2〉.P ′′3 with [[P ′′3]] = P ′3, and P ′6 = [p : (x).P ′′4] with M ′
3 = p and

[[P ′′4]] = P ′4. This case is very similar to the last one: we just need to exchange

the roles of P5 and P6.

– P ′5 = M ′
1〈M ′

2〉.P ′′3 with [[P ′′3]] = P ′3, and P ′6 = M ′
3(x).P ′′4 with [[P ′′4]] = P ′4. The

reasoning is very similar, except that we have to introduce the channel n

P. Zimmer 760

explicitly. We will not give details of the side conditions. From M ′
1(σ
′
y � σ′x �

σ)∗ = n and Lemma 38, we derive σ′y � σ′x � σ : P ′5 �−→ n〈M ′
2〉.P ′′3 . From

M ′
3(σ
′
y � σ′x � σ)∗ = n and Lemma 38, we derive σ′y � σ′x � σ : P ′6 �−→ n(x).P ′′4 .

Then,

σ′y � σ′x � σ : [n : ε] | P ′5 | P ′6 �−→∗ [n : ε] | n〈M ′
2〉.P ′′3 | n(x).P ′′4

�−→ [n : ε | 〈M ′
2〉.P ′′3] | n(x).P ′′4

�−→ [n : ε | 〈M ′
2〉.P ′′3 | (x).P ′′4]

�−→ [n : ε] | P ′′3 | (νx : M ′
2) P

′′
4 .

Then σ : [n : ε] | P �−→+ (νx1 : N1) . . . (νxk : Nk) (νy1 : N ′1) . . . (νyk′ : N
′
k′) ([n :

ε] | P ′′3 | (νx : M ′
2) P ′′4). Since � P : Valid, we have P ′′3 � ⇓1 n and P ′′4 � ⇓1 n.

Consequently, P � ⇓1 n and n ∈ (fn(P)∪ fn(σ)) \ pr(P). Finally, σ : clσ(P) = [n1 :

ε] | . . . | [nr : ε] | [n : ε] | cl(P) �−→+ P ′ = [n1 : ε] | . . . | [nr : ε] | (νx1 :

N1) . . . (νxk : Nk) (νy1 : N ′1) . . . (νyk′ : N ′k′) ([n : ε] | cl(P ′′3) | (νx : M ′
2) cl(P ′′4)).

Checking the condition [[P]]σ∗ ≡ Q is the same as above.

(π Red Par) Suppose that [[P]]σ∗ = P1 | Q −→ P2 | Q was derived from P1 −→ P2,

and that � P : Valid and fv(P) ⊆ dom(σ). Necessarily, [[P]] = P3 | Q1 with P3σ
∗ = P1

and Q1σ
∗ = Q. By Lemma 43, there are two cases to consider:

— P = [n : S | S ′] with [[S]]n = P3 and [[S ′]]n = Q1. Then P1 = [[S]]nσ
∗ = [[[n : S]]]σ∗

and P1 −→ P2. From � P : Valid, we get � [n : S] : Valid, and from fv(P) ⊆
dom(σ), we get fv([n : S]) ⊆ dom(σ). By the induction hypothesis, there is a process

P ′′ such that σ : clσ([n : S]) �−→+ P ′′ and [[P ′′]]σ∗ ≡ P2. By Lemma 61, since

� P : Valid and fv(S ′) ⊆ dom(σ), there is a process P ′ such that σ : clσ(P) �−→+ P ′

and [[P ′]] ≡ [[P ′′]] | [[S ′]]n = [[P ′′]] | Q1. Finally, [[P ′]]σ∗ ≡ [[P ′′]]σ∗ | Q1σ
∗ ≡ P2 | Q.

— P = P4 | Q2 with [[P4]] = P3 and [[Q2]] = Q1. Then P1 = [[P4]]σ
∗ −→ P2. Since

� P : Valid, we get � P4 : Valid. By the induction hypothesis, there is a process P ′4
such that σ : clσ(P4) �−→+ P ′4 and [[P ′4]]σ

∗ ≡ P2. By Lemma 60, there is P ′ such

that σ : clσ(P4 | Q2) �−→+ P ′ and [[P ′]] ≡ [[P ′4 | Q2]]. Finally, σ : clσ(P) �−→+ P ′

and [[P ′]]σ∗ ≡ [[P ′4]]σ
∗ | [[Q2]]σ

∗ ≡ P2 | Q1σ
∗ = P2 | Q.

(π Red Res) Suppose that [[P]]σ∗ = (νn) P0 −→ (νn) Q0 = Q was derived from

P0 −→ Q0, and that � P : Valid and fv(P) ⊆ dom(σ). Necessarily, P = (νn) P1 with

[[P1]]σ
∗ = P0 and n /∈ fn(σ). We easily get that � P1 : Valid. From [[P1]]σ

∗ −→ Q0, we

deduce by the induction hypothesis that there exists P ′1 such that σ : clσ(P1) �−→+ P ′1
and [[P ′1]]σ

∗ ≡ Q0. We consider two cases:

— Suppose n ∈ fn(P). We can derive σ : (νn) clσ(P1) �−→+ P ′ = (νn) P ′1 by (πesc Red

Res). By Lemma 47, (νn) clσ(P1) ≡ clσ(P), so we can derive σ : clσ(P) �−→+ P ′.

Finally, [[P ′]]σ∗ = (νn) [[P ′1]]σ
∗ ≡ (νn) Q0 = Q.

— Suppose n /∈ fn(P). We can derive σ : (νn) ([n : ε] | clσ(P1)) �−→+ P ′ =

(νn) ([n : ε] | P ′1) by (πesc Red Par) and (πesc Red Res). By Lemma 47, we have

(νn) ([n : ε] | clσ(P1)) ≡ clσ(P), so we can derive σ : clσ(P) �−→+ P ′. Finally,

[[P ′]]σ∗ ≡ (νn) [[P ′1]]σ
∗ ≡ (νn) Q0 = Q.

On the expressiveness of pure safe ambients 761

(π Red Struct) Suppose that [[P]]σ∗ −→ Q was derived from [[P]]σ∗ ≡ P1, P1 −→ Q1

and Q1 ≡ Q, and that � P : Valid and fv(P) ⊆ dom(σ). By Lemma 29, there exists

P2 such that [[P]] ≡ P2 and P1 = P2σ
∗. Then, by Lemma 54, there exists P ′2 such that

P2 = [[P ′2]] and P ′2 � P . By Lemma 53, we have cl(P) ≡ [n1 : ε] | . . . | [nk : ε] | cl(P ′2)
with {n1, . . . , nk} = pr(P)\pr(P ′2). Let (fn(P ′2)∪fn(σ))\pr(P ′2) = {ni1 , . . . , nik′ , m1, . . . , ml}
with ni �= mj . Then we have:

(fn(P) ∪ fn(σ)) \ pr(P)

⊇ (fn(P ′2) ∪ fn(σ)) \ pr(P) using Lemma 49

= (fn(P ′2) ∪ fn(σ)) \ (pr(P ′2) ∪ {n1, . . . , nk}) using Corollary 51

= ((fn(P ′2) ∪ fn(σ)) \ pr(P ′2)) \ {n1, . . . , nk}
= {m1, . . . , ml}.

Let us write (fn(P) ∪ fn(σ)) \ pr(P) = {m1, . . . , ml , p1, . . . , pl′ } (we have pj �= ni because

ni ∈ pr(P) and pj /∈ pr(P)). We have:

clσ(P) ≡ [p1 : ε] | . . . | [pl′ : ε] | [m1 : ε] | . . . | [ml : ε] | cl(P)

≡ [p1 : ε] | . . . | [pl′ : ε] | [m1 : ε] | . . . | [ml : ε]

| [n1 : ε] | . . . | [nk : ε] | cl(P ′2) using Lemma 53

≡ [p1 : ε] | . . . | [pl′ : ε] | [nj1 : ε] | . . . | [njk−k′ : ε] | clσ(P ′2)

where {i1, . . . , ik′ } and {j1, . . . , jk−k′ } form a partition of {1, . . . , k}. Since � P : Valid,

� P ′2 : Valid by Lemma 52; and fv(P ′2) = fv(P) ⊆ dom(σ) by Lemma 49. By the

induction hypothesis, there is a process P3 such that σ : P1 = [[P ′2]]σ
∗ �−→+ P3 and

[[P3]]σ
∗ ≡ Q1. We can derive σ : clσ(P) �−→+ P ′ = [p1 : ε] | . . . | [pl′ : ε] | [nj1 :

ε] | . . . | [njk−k′ : ε] | P3. And we have [[P ′]]σ∗ ≡ [[P3]]σ
∗ ≡ Q1 ≡ Q.

A.8. Observational equivalence

This section gives the proof for the full adequacy result of Proposition 12.

A.8.1. Preliminary lemmas

Lemma 62. In the π-calculus,

— If P ↓ n, then n ∈ fn(P).

— If P ↓ x, then x ∈ fv(P).

Proof. The proof is by induction on the derivations of P ↓ n and P ↓ x.

Lemma 63. In the π-calculus, if P ≡ Q, then P ↓M ⇔ Q ↓M.

Proof. The proof is by induction on the derivation of P ≡ Q, using Lemma 62.

Lemma 64. In the π-calculus,

1 If P ↓M, then Pσ ↓Mσ.

2 If Pσ ↓M, then there exists M ′ such that P ↓M ′ and M ′σ = M.

P. Zimmer 762

Proof. The proof is by induction on the derivations of P ↓M and Pσ ↓M.

A.8.2. Proof of Proposition 12

Proposition 12. For a process P in the πesc-calculus, P ↓M ⇔ [[P]] ↓M.

Proof. We prove the two implications separately.

P ↓M ⇒ [[P]] ↓M We use induction on the derivation of P ↓M:

(Obs Res) Suppose that (νn) P ↓ M was derived from P ↓ M with n �= M. By the

induction hypothesis, [[P]] ↓M. We can derive (νn) [[P]] ↓M by (Obs Res), that is

to say, [[(νn) P]] ↓M.

(Obs ParL) Suppose that P | Q ↓ M was derived from P ↓ M. By the induction

hypothesis, [[P]] ↓M. We can derive [[P]] | [[Q]] ↓M by (Obs ParL), that is to say,

[[P | Q]] ↓M.

(Obs ParR) This case is similar to (Obs ParL).

(Obs Repl) Suppose that !P ↓ M was derived from P ↓ M. By the induction,

hypothesis, [[P]] ↓ M. We can derive ![[P]] ↓ M by (Obs Repl), that is to say,

[[!P]] ↓M.

(Obs Output) Suppose that M〈M ′〉.P ↓M. We can always derive M〈M ′〉.[[P]] ↓M by

(Obs Output), that is to say, [[M〈M ′〉.P]] ↓M.

(Obs Input) This case is similar to (Obs Output).

(Obs Channel) Suppose that [n : S] ↓ n was derived with the condition S �≡ ε. S must

contain an abstraction of the form 〈M〉.P or (x).P . Then [[[n : S]]] = [[S]]n must

contain a process of the form n〈M〉.[[P]] or n(x).[[P]]. We can derive [[[n : S]]] ↓ n
by one application of (Obs Output) or (Obs Input), and many applications of (Obs

ParL) or (Obs ParR).

(Obs Var1) Suppose that (νx : M ′) P ↓ M was derived from P ↓ M with x �= M. By

the induction hypothesis, [[P]] ↓ M. By Lemma 64, [[P]]{M ′
/x} ↓ M{M

′
/x}, that is

to say, [[(νx : M ′) P]] ↓M since x �= M.

(Obs Var2) Suppose that (νx : M) P ↓ M was derived from P ↓ x. By the induction

hypothesis, [[P]] ↓ x. By Lemma 64, [[P]]{M/x} ↓ x{M/x}, that is to say, [[(νx :

M) P]] ↓M.

[[P]] ↓M ⇒ P ↓M By the induction on the structure of P :

— Suppose that [[(νn) P]] ↓ M, that is to say, (νn) [[P]] ↓ M. This must have been

derived from [[P]] ↓ M by (Obs Res) with n �= M. By the induction hypothesis,

P ↓M, and we can derive (νn) P ↓M by (Obs Res).

— It is impossible to derive 0 ↓M for any M. Thus, the case [[0]] ↓M cannot happen.

— Suppose that [[P | Q]] ↓ M, that is to say, [[P]] | [[Q]] ↓ M. This must have been

derived from [[P]] ↓ M or [[Q]] ↓ M by (Obs ParL) or (Obs ParR). In the former

case, P ↓M by the induction hypothesis, and P | Q ↓M by (Obs ParL). The latter

case is similar.

On the expressiveness of pure safe ambients 763

— Suppose that [[!P]] ↓ M, that is to say, ![[P]] ↓ M. This must have been derived

from [[P]] ↓ M by (Obs Repl). By the induction hypothesis, P ↓ M, and we can

derive !P ↓M by (Obs Repl).

— Suppose that [[M ′〈M ′′〉.P]] ↓ M, that is to say, M ′〈M ′′〉.[[P]] ↓ M. This must have

been derived by (Obs Output) and, necessarily, M ′ = M. Then we can derive

M ′〈M ′′〉.P ↓M by (Obs Output).

— The case of [[M ′(x).P]] ↓M is very similar to that of [[M ′〈M ′′〉.P]] ↓M.

— Suppose that [[[n : S]]] ↓ M, that is to say, [[S]]n ↓ M. If S ≡ ε, this implies 0 ↓ M
by Lemma 63, which is impossible. Thus, we must have S �≡ ε. Since [[S]]n ↓ M

must have been derived by applications of the rules (Obs ParL) and (Obs ParR),

and one application of the rule (Obs Output) or (Obs Input), [[S]]n must contain a

process of the form M〈M ′〉.P or M(x).P , and, necessarily, n = M. Then [n : S] ↓M
by (Obs Channel).

— Suppose that [[(νx : M ′) P]] ↓ M, that is to say [[P]]{M ′
/x} ↓ M. Note that we

can always suppose x �= M. By Lemma 64, there is M ′′ such that [[P]] ↓ M ′′

and M ′′{M ′
/x} = M. By the induction hypothesis, P ↓ M ′′. There are two cases

to consider. If M ′′ = M, we can derive (νx : M ′) P ↓ M by (Obs Var1) since

M �= x. Otherwise, we must have M ′′ = x and M ′ = M. Then we can derive

(νx : M ′) P ↓M by (Obs Var2).

A.9. Encoding in pure ambients

This section gives the correctness proofs for the encoding of πesc into pure ambients. These

are facilitated by the similarity between the πesc-calculus and the encoding mechanism.

Lemma 65. fn(P) = fn({{P }}) \ {read, write, enter}, and fv(P) = fv({{P }}) (we always

implicitly suppose that P does not contain the special names read, write and enter).

Proof. The proof is by induction on the structure of P .

Lemma 66. If P ≡ Q, then {{P }} ≡ {{Q}}.

Proof. The proof is by induction on the derivation of P ≡ Q, using Lemma 65.

A reduction in πesc is simulated by exactly one principal reduction and many auxiliary

reductions in pure ambients.

Proposition 18. If σ : P �−→ Q, then {{σ, P }}
pr
↪→ aux

↪→
∗
{{σ, Q}}.

Proof. We use induction on the derivation of σ : P �−→ Q:

(πesc Red Subst Out) See the main text.

(πesc Red Output) Suppose that σ : [n : S] | n〈M〉.P �−→ [n : S | 〈M〉.P]. If we name

p1, . . . , pk the fresh names in S , and if we choose them as well as p to avoid interferences,

P. Zimmer 764

we have:

{{[n : S] | n〈M〉.P }} =




(νp1) . . . (νpk)

(n [allowIO n

| server read

| {{S}}n]
| open p1 | . . . | open pk)

| (νp) (write [request write n

| fwd M

| p[out read . open p .{{P }}]]
| open p)

pr
↪→




(νp1) . . . (νpk) (νp)

(n [allowIO n

| server read

| {{S}}n
| write [in write . open enter

| fwd M

| p[out read . open p .{{P }}]]]
| open p1 | . . . | open pk | open p)

= {{[n : S | 〈M〉.P]}}

Then we can easily derive {{σ, [n : S] | n〈M〉.P }}
pr
↪→ aux

↪→
∗
{{σ, [n : S | 〈M〉.P]}} for any

σ.

(πesc Red Input) Suppose that σ : [n : S] | n(x).P �−→ [n : S | (x).P]. If we name p1, . . . , pk
the fresh names in S , and if we choose them as well as p to avoid interferences, we

have:

{{[n : S] | n(x).P }}

=




(νp1) . . . (νpk)

(n [allowIO n

| server read . (νq)

(out read . read be q . in q . out n . q be read

| enter[out read . in write . open enter .

in q . open write])

| {{S}}n]
| open p1 | . . . | open pk)

| (νp) (read [request read n

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])]
| open p)

On the expressiveness of pure safe ambients 765

pr
↪→




(νp1) . . . (νpk) (νp)

(n [allowIO n

| enter[in read . open enter . (νq)

(out read . read be q . in q . out n . q be read

| enter[out read . in write . open enter . in q .

open write])]

| server read

| {{S}}n
| read [in read . open enter

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])]]
| open p1 | . . . | open pk | open p)

aux
↪→




(νp1) . . . (νpk) (νp)

(n [allowIO n

| server read

| {{S}}n
| read [open enter

| open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])
| enter[open enter . (νq)

(out read . read be q . in q . out n . q be read

| enter[out read . in write . open enter . in q .

open write])]]]

| open p1 | . . . | open pk | open p)

aux
↪→




(νp1) . . . (νpk) (νp)

(n [allowIO n

| server read

| {{S}}n
| read [open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])
| (νq)
(out read . read be q . in q . out n . q be read

| enter[out read . in write . open enter . in q .

open write])]]

| open p1 | . . . | open pk | open p)

P. Zimmer 766

aux
↪→




(νp1) . . . (νpk) (νp)

(n [allowIO n

| server read

| {{S}}n
| (νq) (read [open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])
| read be q . in q . out n . q be read]

| enter[in write . open enter . in q . open write])]

| open p1 | . . . | open pk | open p)

aux
↪→
∗




(νp1) . . . (νpk) (νp)

(n [allowIO n

| server read

| {{S}}n
| (νq) (q [open write . out read . (νx) read be x .

(out x . allowIO x

| p[out x . open p .{{P }}])
| in q . out n . q be read]

| enter[in write . open enter . in q . open write])]

| open p1 | . . . | open pk | open p)

≡ {{[n : S | (x).P]}}

Then we can easily derive {{σ, [n : S] | n(x).P }}
pr
↪→ aux

↪→
∗
{{σ, [n : S | (x).P]}} for any σ.

(πesc Red Comm) Suppose that σ : [n : S | 〈M〉.P | (x).Q] �−→ [n : S] | P | (νx : M) Q

with x �= M. If we name p1, . . . , pk the fresh names in S , and if we choose them as well

as r1 and r2 to avoid interferences, we have:

{{[n : S | 〈M〉.P | (x).Q]}}

≡




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n
| write [in write . open enter

| fwd M

| r1[out read . open r1 .{{P }}]]
| (νq) (q [open write . out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| in q . out n . q be read]

| enter[in write . open enter . in q . open write])]

| open p1 | . . . | open pk | open r1 | open r2)

On the expressiveness of pure safe ambients 767

pr
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n
| (νq) (write [open enter

| fwd M

| r1[out read . open r1 .{{P }}]
| enter[open enter . in q . open write]]

| q [open write . out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| in q . out n . q be read])]

| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n
| (νq) (write [fwd M

| r1[out read . open r1 .{{P }}]
| in q . open write]

| q [open write . out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| in q . out n . q be read])]

| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n
| (νq) q [open write . out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| out n . q be read

| write [fwd M

| r1[out read . open r1 .{{P }}]
| open write]]]

| open p1 | . . . | open pk | open r1 | open r2)

P. Zimmer 768

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n
| (νq) q [out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| out n . q be read

| fwd M

| r1[out read . open r1 .{{P }}]]]
| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n]
| (νq) q [out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| q be read

| fwd M

| r1[out read . open r1 .{{P }}]]
| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→
∗




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n]
| read [out read . (νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| fwd M

| r1[out read . open r1 .{{P }}]]
| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n]
| read [(νx) read be x .

(out x . allowIO x

| r2[out x . open r2 .{{Q}}])
| fwd M]

| r1[open r1 .{{P }}]
| open p1 | . . . | open pk | open r1 | open r2)

On the expressiveness of pure safe ambients 769

aux
↪→
∗




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n]
| (νx) x [out x . allowIO x

| r2[out x . open r2 .{{Q}}]
| fwd M]

| r1[open r1 .{{P }}]
| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→




(νp1) . . . (νpk) (νr1) (νr2)

(n [allowIO n

| server read

| {{S}}n]
| (νx) (x[allowIO x | fwd M]

| r2[open r2 .{{Q}}])
| r1[open r1 .{{P }}]
| open p1 | . . . | open pk | open r1 | open r2)

aux
↪→
∗




(νp1) . . . (νpk)

(n [allowIO n

| server read

| {{S}}n]
| open p1 | . . . | open pk)

| (νx) (x[allowIO x | fwd M] | {{Q}})
| {{P }}

≡ {{[n : S] | P | (νx : M) Q}}

Then we can easily derive {{σ, [n : S | 〈M〉.P | (x).Q]}}
pr
↪→ aux

↪→
∗
{{σ, [n : S] | P | (νx :

M) Q}} for any σ.

The other cases are similar or trivial.

Acknowledgements

I have benefitted from many discussions with Davide Sangiorgi about this work. Thanks

are also due to Ilaria Castellani, Gérard Boudol, Kohei Honda, Xudong Guan and the

anonymous referees.

References

Cardelli, L. (1999a) Abstractions for Mobile Computation. In: Vitek, J. and Jensen, C. (eds.)

Secure Internet Programming: Security Issues for Distributed and Mobile Objects. Springer-

Verlag Lecture Notes in Computer Science 1603 51–94.

Cardelli, L. (1999b) Wide Area Computation. In: Proceedings of ICALP’99. Springer-Verlag Lecture

Notes in Computer Science 1644 10–24.

P. Zimmer 770

Cardelli, L. and Gordon, A.D. (1997) A Calculus of mobile Ambients. Slides.

Cardelli, L. and Gordon, A. D. (1998) Mobile Ambients. In: Proceedings FoSSaCS’98. Springer-

Verlag Lecture Notes in Computer Science 1378 140–155.

Ferrari, G., Montanari, U., and Quaglia, P. (1996) A π-Calculus with Explicit Substitutions.

Theoretical Computer Science 168 (1) 53–103.

Hirschkoff, D. (1999) Handling Substitutions Explicitly in the π-Calculus. In: Proceedings of the

Floc Workshop WESTAPP 99.

Honda, K. and Yoshida, N. (1995) On Reduction-Based Process Semantics. Theoretical Computer

Science 152 437–486.

Levi, F. and Sangiorgi, D. (2000) Controlling Interference in Ambients. In: Proceedings of POPL’00,

ACM Press.

Merro, M. (1999) On Equators in Asynchronous Name-Passing Calculi without Matching. In:

Proceedings of EXPRESS’99. Electronic Notes in Theoretical Science 27, Elsevier.

Merro, M. and Sangiorgi, D. (1998) On Asynchrony in Name-Passing Calculi. In: Proceedings of

ICALP’98. Springer-Verlag Lecture Notes in Computer Science 1443 856–867.

Milner, R. (1991) The Polyadic π-Calculus: a Tutorial. Technical Report ECS-LFCS-91-180,

University of Edinburgh.

Palamidessi, C. (1997) Comparing the Expressive Power of the Synchronous and the Asynchronous

π-Calculus. In: Proceedings of POPL’97, ACM 256–265.

Zimmer, P. (2000) On the Expressiveness of Pure Mobile Ambients. In: 7th International Workshop

on Expressiveness in Concurrency. Electronic Notes in Theoretical Science 39, Elsevier.

