
Introduction
The Language

The type system
Conclusion

Pict: A Programming Language based on the
Pi-Calculus

Janus Dam Nielsen

1Department of Computer Science
University of Aarhus

Mobile computing fall 2004

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

π vs. λ

ML,Haskel ,Scheme, ...

λ
=

?

π − calculus
(1)

The main goals are to implement a high level concurrent language
purely in terms of the π - calculus primitives, and communication
as the sole mechanism of computation. Furthermore to design a

practical type system, combining sub-typing and higher order
polymorphism.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison

Pict is based on π.

Extended with primitive values:

booleans
integers
etc.
no change of expressivenes.

Following restrictions

asynchronous
choice free (e1 + e2)
no match
replicated input
No importance for the practical programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

A comparison cont’

π Pict Desc.

x̄y.0 x!y asynchronous output
x(y).e x?y = e input prefix
e1 | e2 (e1 | e2) parallel composition
(ν(x)e (new x e) channel creation
!x(y).e x?*y = e replicated input

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Structural congruence

Structural congruence

(e1 | e2) ≡ (e2 | e1) (2)

((e1 | e2) | e3) ≡ (e1 | (e2 | e3) (3)

x /∈ FV (e2)

((new x : T e1) | e2) ≡ (new x : T (e1 | e2)
(4)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Reduction

Reduction

{p → v} defined

(x!v | x?p = e) → {p → v}(e)
(5)

And likewise for replicated input.

{p → v}defined

(x!v | x? ∗ p = e) → ({p → v}(e) | x? ∗ p = e)
(6)

Reduction proceeds under declaration and parallel composition

e1 → e2

(d e1 → d e2)

e1 → e3

(e1|e2) → (e1|e2)
(7)

if true then e1 else e2 → e1 if false then e1 else e2 → e2

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Values

Val = id variable
[Label Val . . . Label Val] record
Type Val Polymorphic package

(rec : T Val) Rectype value
String String Constant
Char
Int
bool

Label = empty anonymous label
id Explicit label

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Patterns

Pat = id : Type variable
: Type Wildcard

id : Type @ Pat Layered
[Label Pat . . . Label Pat] record
{ id < Type } Pat Package
(rec : T Pat) Rectype

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Processes

Abs = Pat = Proc Process abstraction
Proc = Val ! Val output atom

Val ? Abs input prefix
Val ?* Abs ymorphic package
(Proc | Proc) Parallel composition
(Dec — Proc) Local declaration
if Val then Proc else Proc Conditional

Dec = new id : Type Channel creation

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Simple transformations

Declaration
(new x1 . . . (new xn e))
(d1 . . . dn e) ⇒ (d1 . . . (dn e))

parallel composition
(run e1 e2) ⇒ (e1 | e2)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Simple transformations

Declaration
(new x1 . . . (new xn e))
(d1 . . . dn e) ⇒ (d1 . . . (dn e))

parallel composition
(run e1 e2) ⇒ (e1 | e2)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Abstraction

Process abstraction:
def f [x,y] = (x!y | x!y)
(def x p = e1 e2) ⇒ (new x (x?*p = e1 | e2))

Mutually recursive definitions:
(def x1a1 . . . and xnan) ⇒
(new x1 . . . (new xn (x1?*a1 | . . . | xn?*an | e)))

Function abstraction
def f [a1 a2 a3 r] = r!v
def f [a1 a2 a3] = v (|X1 < T1 . . .Xn < Tn|l1p1 . . . lnpn):T = v
⇒ X1 < T1 . . .Xn < Tn[l1p1 . . . lnpn r :!T] = r!v

Anonymous functions:
\a ⇒ (def x a x)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Abstraction

Process abstraction:
def f [x,y] = (x!y | x!y)
(def x p = e1 e2) ⇒ (new x (x?*p = e1 | e2))

Mutually recursive definitions:
(def x1a1 . . . and xnan) ⇒
(new x1 . . . (new xn (x1?*a1 | . . . | xn?*an | e)))

Function abstraction
def f [a1 a2 a3 r] = r!v
def f [a1 a2 a3] = v (|X1 < T1 . . .Xn < Tn|l1p1 . . . lnpn):T = v
⇒ X1 < T1 . . .Xn < Tn[l1p1 . . . lnpn r :!T] = r!v

Anonymous functions:
\a ⇒ (def x a x)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Abstraction

Process abstraction:
def f [x,y] = (x!y | x!y)
(def x p = e1 e2) ⇒ (new x (x?*p = e1 | e2))

Mutually recursive definitions:
(def x1a1 . . . and xnan) ⇒
(new x1 . . . (new xn (x1?*a1 | . . . | xn?*an | e)))

Function abstraction
def f [a1 a2 a3 r] = r!v
def f [a1 a2 a3] = v (|X1 < T1 . . .Xn < Tn|l1p1 . . . lnpn):T = v
⇒ X1 < T1 . . .Xn < Tn[l1p1 . . . lnpn r :!T] = r!v

Anonymous functions:
\a ⇒ (def x a x)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Abstraction

Process abstraction:
def f [x,y] = (x!y | x!y)
(def x p = e1 e2) ⇒ (new x (x?*p = e1 | e2))

Mutually recursive definitions:
(def x1a1 . . . and xnan) ⇒
(new x1 . . . (new xn (x1?*a1 | . . . | xn?*an | e)))

Function abstraction
def f [a1 a2 a3 r] = r!v
def f [a1 a2 a3] = v (|X1 < T1 . . .Xn < Tn|l1p1 . . . lnpn):T = v
⇒ X1 < T1 . . .Xn < Tn[l1p1 . . . lnpn r :!T] = r!v

Anonymous functions:
\a ⇒ (def x a x)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Complex values

(new n c!n)
[[x → c]] = c!x
[[k → c]] = c!k

[[(dv) → c]] = (d [[v → c]])
[[(rec : Tv) → c]] = (new c ′ ([[v → c ′]] | c ′?x = c!(rec:T x))))

[[{T}v → c]] = (new c ′ ([[v → c ′]] | c ′?x = c!{T} x)))
[[[l1v1 . . . lnvn] = (new c1 ([[v1 → c1]] | c1x1 = . . .

(new cn ([[vn → cn]] | cnxn =
c![l1x1 . . . lnxn)) . . .))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Named values and application

Named value declaration:
(val p=v e) ⇒ (new c ([[v → c]] | c?p = e))
Application:
(v v1 . . . vn) [[(v |T1 . . .Tn| l1v1 . . . lnvn) → c]]

= (new c ′ ([[v → c ′]] | c ′?x = . . .
(new c1 ([[v1 → c1]] | c1?x1 = . . .
(new cn ([[vn → cn]] | cn?xn =
x!T1 . . .Tn[l1x1 . . . lnxn c])) . . .))))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Hello world.

run (print!”hello” — print!”world”)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Polymorphism.

def print2nd [#X l: (List X) p:/[X /String]] =
if (null l) then

print!”Null list”
else if (null (cdr l)) then

print!”Null tail”
else

print!(p (car (cdr l)))
run print2nd![#Int (cons ¿ 6 8 9 nil) int.toString]
run print2nd![#String (cons ¿ ”A” ”B” ”C” nil) \(s:String) = s]

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Pict and π
Core language
The High level
An example

Fibo

def fibo[n:Int r:!Int] =
if (—— (== n 0) (== n 1)) then

r!1
else

r!(+ (fibo (- n 1)) (fibo (- n 2)))
run printi!(fibo 4)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

The basics

Types of channels and of the values they carry.

Why types?

Types are useful at ensuring consistent use of channel names
and eliminating pattern matching failures.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

The basics

Types of channels and of the values they carry.

Why types?

Types are useful at ensuring consistent use of channel names
and eliminating pattern matching failures.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

The basics

Types of channels and of the values they carry.

Why types?

Types are useful at ensuring consistent use of channel names
and eliminating pattern matching failures.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Subtyping

Subtyping on channel types

Refinements of the channel type ˆT.
!T for output only
?T for reading only.

Natural subtype relation since ˆT can be used anywhere one
of the other two is used.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Subtyping

Subtyping on channel types

Refinements of the channel type ˆT.
!T for output only
?T for reading only.

Natural subtype relation since ˆT can be used anywhere one
of the other two is used.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Recursive types

Types for recursive data structures like lists and trees.

Some alternatives.

We go for the simple one, where “folding” and “unfolding” of
recursion must be handled explicitly by the programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Recursive types

Types for recursive data structures like lists and trees.

Some alternatives.

We go for the simple one, where “folding” and “unfolding” of
recursion must be handled explicitly by the programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Recursive types

Types for recursive data structures like lists and trees.

Some alternatives.

We go for the simple one, where “folding” and “unfolding” of
recursion must be handled explicitly by the programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Polymorphism

Polymorphic types are supported by means of package values
and patterns.

Polymorphic functions are represented as output channels
carrying package values.

Polymorphism and subtyping is combined by providing an
upper bound on each bound type variable in a package value.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Polymorphism

Polymorphic types are supported by means of package values
and patterns.

Polymorphic functions are represented as output channels
carrying package values.

Polymorphism and subtyping is combined by providing an
upper bound on each bound type variable in a package value.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Polymorphism

Polymorphic types are supported by means of package values
and patterns.

Polymorphic functions are represented as output channels
carrying package values.

Polymorphism and subtyping is combined by providing an
upper bound on each bound type variable in a package value.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Type inference

The core language is explicitly typed, but some type
information can be derived from the context.

The x in c?x=e has type int if c has typeˆint

The inferennce algorithm is local in that it only uses the
immediate surrounding context to determine the type.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Outline

1 Introduction

2 The Language
Pict and π
Core language
The High level
An example

3 The type system
Types
Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Type safety

Conjecture: Evaluation can not fail in well-typed processes.

Conjecture: Reduction preserves typing.

No proofs, but nice features!

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Type safety

Conjecture: Evaluation can not fail in well-typed processes.

Conjecture: Reduction preserves typing.

No proofs, but nice features!

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Types
Type safety

Type safety

Conjecture: Evaluation can not fail in well-typed processes.

Conjecture: Reduction preserves typing.

No proofs, but nice features!

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction
The Language

The type system
Conclusion

Conclusion

Pict a programming language based on π.

A typesystem for Pict.

Pict can be implemented efficiently.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

	Introduction
	The Language
	Pict and
	Core language
	The High level
	An example

	The type system
	Types
	Type safety

	Conclusion

