Pict: A Programming Language based on the
Pi-Calculus

Janus Dam Nielsen

IDepartment of Computer Science
University of Aarhus

Mobile computing fall 2004

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Outline

@ Introduction

© The Language
@ Pictand 7
o Core language
@ The High level
@ An example

© The type system
@ Types
@ Type safety

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Introduction

ML, Haskel, Scheme, ... ?
A 7 — calculus

(1)

The main goals are to implement a high level concurrent language
purely in terms of the 7 - calculus primitives, and communication
as the sole mechanism of computation. Furthermore to design a
practical type system, combining sub-typing and higher order
polymorphism.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language Core languag;
The High lev
An example

Pict and
ze
€

Outline

© The Language
@ Pictand w

Pi-Calculus

Janus Dam Nielsen

Pict and
The Language Core |

An example

A comparison

Pict is based on 7.
@ Extended with primitive values:
e booleans
e integers
e etc.
e no change of expressivenes.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core lang

The High le

An example

A comparison

Pict is based on 7.
@ Extended with primitive values:

e booleans

e integers

e etc.

e no change of expressivenes.

o Following restrictions

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core lang

The High le

An example

A comparison

Pict is based on 7.
@ Extended with primitive values:
e booleans
e integers
e etc.
e no change of expressivenes.
o Following restrictions
e asynchronous

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core lang

The High le

An example

A comparison

Pict is based on 7.
@ Extended with primitive values:

e booleans

e integers

e etc.

e no change of expressivenes.

o Following restrictions

e asynchronous
o choice free (e; + &)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core lang

The High le

An example

A comparison

Pict is based on 7.
@ Extended with primitive values:
e booleans
e integers
e etc.
e no change of expressivenes.
o Following restrictions
e asynchronous
o choice free (e; + &)
e no match

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language

Pict and
Core lang

The High le
An example

A comparison

Pict is based on 7.

@ Extended with primitive values:

booleans

integers

etc.

no change of expressivenes.

o Following restrictions

asynchronous

choice free (e; + &)
no match

replicated input

Janus Dam Nielsen

Pict: A Programming Language based on the Pi-Calculus

The Language

Pict and
Core lang

The High le
An example

A comparison

Pict is based on 7.

@ Extended with primitive values:

booleans

integers

etc.

no change of expressivenes.

o Following restrictions

asynchronous

choice free (e; + &)
no match

replicated input

No importance for the practical programmer.

Janus Dam Nielsen

Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language

An example

A comparison cont’

™ Pict Desc.

xy.0 xly asynchronous output
x(y).e x?y =e input prefix

e1 | e (e1]| &) parallel composition
(v(x)e (new x e) channel creation
Ix(y).e x?*y =e replicated input

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language

Structural congruence

@ Structural congruence

(e1] &) = (e2] @)

((e1 [e2) [&s) = (&1 | (e2] e3)

x & FV(e)
((new x: T e1) |)

= (new x: T (e | &) *)

Janus Dam Nielsen

Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language ge

Reduction

@ Reduction

{p — v} defined
(x'v | x?p = e)—={p — v}(e)

And likewise for replicated input.

{p — v}defined
(v [x7ep=e) — (Ip — vi(e) [x7sp=e)

(6)

Reduction proceeds under declaration and parallel composition

(7)

e — & €1 — €3
(da—de) (ale)—(ale)

if true then e; else e — e if false then e; else & — &

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core language

The High leve!

An example

Outline

© The Language

@ Core language

Janus Dam Nielsen

Pi-Calculus

Pict and
The Language Core language

The High level

An example

Val = id variable
[Label Val ...Label Val] record
Type Val Polymorphic package
(rec: T Val) Rectype value
String String Constant
Char
Int
bool
Label = empty anonymous label
id Explicit label

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict and
The Language Core language

The High level

An example

Patterns

Pat = id: Type variable
_: Type Wildcard
id : Type @ Pat Layered
[Label Pat ...Label Pat] record
{id < Type } Pat Package
(rec: T Pat) Rectype

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Pict T
Core language
The High level
An example

The Language

Processes

Abs Pat = Proc Process abstraction
Proc Val ! Val output atom
Val 7 Abs input prefix
Val 7* Abs ymorphic package
(Proc | Proc) Parallel composition
(Dec — Proc) Local declaration
if Val then Proc else Proc Conditional
Dec new id : Type Channel creation

Janus Dam Nielsen

Pict: A Programming Language based on the Pi-Calculus

The Language

Outline

An example

© The Language

@ The High level

Janus Dam Nielsen

Pict: A Programming Language based on the Pi-Calculus

The Language C
The High level
An example

Simple transformations

@ Declaration
(new xi ...(new x, €))

(dy...dne) = (di...(dne))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language C
The High level
An example

Simple transformations

@ Declaration
(new xi ...(new x, €))
(di...dpe)= (d1...(dne))
@ parallel composition
(run e1 &) = (e1 | &)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language C
The High level
An example

Abstraction

@ Process abstraction:

def f [x,y] = (xly | xly)
(def x p = €1 &) = (new x (x?*p = €1 | &))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language Core ge
The High level
An example

Abstraction

@ Process abstraction:

def f [x,y] = (xly | xly)

(def x p = €1 &) = (new x (x?*p = €1 | &))
@ Mutually recursive definitions:

(def x1a1 ...and x,a,) =

(new x1 ...(new x, (x1?*a1 | ...| xp?*a, | €)))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language

An example

Abstraction

@ Process abstraction:
def f [x,y] = (xly | xly)
(def x p = €1 &) = (new x (x?*p = €1 | &))
@ Mutually recursive definitions:
(def x1a1 ...and x,a,) =
(new x1 ...(new x, (x1?*a1 | ...| xp?*a, | €)))
@ Function abstraction
def f[a; a2 a3 1] = rlv
defflag ax a3 =v ([Xa < Th...Xo < Tulhpr.. . lnapn) T =v
= Xy < Ty Xn < Talhpr.. lopn r:1T] = rlv

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language

An example

Abstraction

@ Process abstraction:

def f [x,y] = (xly | xly)

(def x p = €1 &) = (new x (x?*p = €1 | &))
@ Mutually recursive definitions:

(def x1a1 ...and x,a,) =

(new x1 ...(new x, (x1?*a1 | ...| xp?*a, | €)))
@ Function abstraction

def f [a1 ap a3 1] = rlv

defflag ax a3 =v ([Xa < Th...Xo < Tulhpr.. . lnapn) T =v

= Xy < Ty Xn < Talhpr.. lopn r:1T] = rlv
@ Anonymous functions:

\a = (def x a x)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Complex values

(new n cln)
[[x — c]] clx
[[k — c]] clk
[[(dv) — <] (d [[v—<ll)

new ¢’

new ¢’

[[(rec : Tv) —]

[{T}v —]
[[[/1 Vi... /nVn]

[[v— c]] | ¢ = cl(rec:T x))))
v — ¢ | &7 = T} x)))
new ¢ ([[vi = al] | axi = ...

new ¢, ([[vn — cnl] | cnxn =

C![/1X1 . /an)) ..))

(
(
(
(

—_~ e~ N

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language

An example

Named values and application

Named value declaration:
(val p=ve) = (newc ([[v = c]] | c?p =¢))
Application:
(vviooovp) [[(v|Te... Tal hvi...lpvp) —]
= (newc ([[v—=(] | ™x=...
(new ci ([[vi — al] | a?x = ...
(new ¢, ([[vn — cnl] | cn?xn =
XITy ... Talhxi .. laxn €])) -..))))

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language Core languag
The High level
An example

Outline

© The Language

@ An example

Janus Dam Nielsen

Pi-Calculus

The Language Core languag
The High level
An example

Hello world.

run (print!”hello” — print!” world”)

Janus Dam Nielsen ict: i Pi-Calculus

The Language
The High level
An example

Polymorphism.

def print2nd [#X I: (List X) p:/[X /String]] =
if (null 1) then
print!” Null list”
else if (null (cdr 1)) then
print! Null tail”
else
print!(p (car (cdr 1))
run print2nd![#Int (cons ; 6 8 9 nil) int.toString]
run print2nd![#String (cons ; "A" "B" "C" nil) \(s:String) = s]

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

The Language

The High level
An example

def fibo[n:Int r:lInt] =
if (—— (==n0) (==n1)) then
rll
else
r!(+ (fibo (- n 1)) (fibo (- n 2)))
run printi!(fibo 4)

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Outline

© The type system
@ Types

Janus Dam Nielsen Pict: A Programming guage based on the Pi-Calculus

Types
The type system Type safety

The basics

@ Types of channels and of the values they carry.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

The basics

@ Types of channels and of the values they carry.

o Why types?

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

The basics

@ Types of channels and of the values they carry.

o Why types?

@ Types are useful at ensuring consistent use of channel names
and eliminating pattern matching failures.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Subtyping

Subtyping on channel types

@ Refinements of the channel type "T.
IT for output only
7T for reading only.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Subtyping

Subtyping on channel types

@ Refinements of the channel type "T.
IT for output only
7T for reading only.

@ Natural subtype relation since “T can be used anywhere one
of the other two is used.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Recursive types

o Types for recursive data structures like lists and trees.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Recursive types

o Types for recursive data structures like lists and trees.

@ Some alternatives.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Recursive types

@ Types for recursive data structures like lists and trees.
@ Some alternatives.

@ We go for the simple one, where “folding” and “unfolding” of
recursion must be handled explicitly by the programmer.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Polymorphism

@ Polymorphic types are supported by means of package values
and patterns.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Polymorphism

@ Polymorphic types are supported by means of package values
and patterns.

@ Polymorphic functions are represented as output channels
carrying package values.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Polymorphism

@ Polymorphic types are supported by means of package values
and patterns.

@ Polymorphic functions are represented as output channels
carrying package values.

@ Polymorphism and subtyping is combined by providing an
upper bound on each bound type variable in a package value.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Type inference

@ The core language is explicitly typed, but some type
information can be derived from the context.

@ The x in c?x=e has type int if ¢ has type~int

@ The inferennce algorithm is local in that it only uses the
immediate surrounding context to determine the type.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Outline

© The type system

@ Type safety

Janus Dam Nielsen Pict: A Programming L. Pi-Calculus

Types
The type system Type safety

Type safety

@ Conjecture: Evaluation can not fail in well-typed processes.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Type safety

@ Conjecture: Evaluation can not fail in well-typed processes.

@ Conjecture: Reduction preserves typing.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Types
The type system Type safety

Type safety

@ Conjecture: Evaluation can not fail in well-typed processes.

@ Conjecture: Reduction preserves typing.

No proofs, but nice features!

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

Conclusion

Conclusion

@ Pict a programming language based on 7.
@ A typesystem for Pict.

@ Pict can be implemented efficiently.

Janus Dam Nielsen Pict: A Programming Language based on the Pi-Calculus

	Introduction
	The Language
	Pict and
	Core language
	The High level
	An example

	The type system
	Types
	Type safety

	Conclusion

