Logics for the Ambient Calculus - and model checking mobile ambients

Helena M. Meyer

Mobile Computing Seminar December 2, 2004

Logics for the Ambient Calculus- and model checking mobile ambients - p. 1

Plan

- / Motivation
- / The formal model for the ambient logic
- / The ambient logic
- Logical formulas and notation of satisfaction
- / Model checking of mobile programs

Goal:

- *formally* describe properties of mobile computations
- \checkmark reasoning about these properties
 - / ensure *correctness* of programs written in the ambient calculus

Solution:

- / Cardelli and Gordon: the ambient logic
- / a modal logic with temporal and *spatial* modalities
- ✓ designed to specify properties of distributed and mobile computations programmed in the ambient calculus
- formal model:
 the ambient calculus without private names

Specification logic for mobility:

- / describe the structure of spatial configurations
- \checkmark describe their evolution through time
- \checkmark \Rightarrow a modal logic of space and time

The ambient logic can be:

 very precise - describing the structure of locations
 imprecise - describing things that happen eventually or sometime

Spatial configurations = ambient configurations consisting only of spatial operators

Natural interpretation as

- / unordered edge-labelled trees
- dge labels = names of sublocations
- / subtrees = sublocations

Spatial specifications:

- \checkmark the configuration looks initially like tree T1
- / and eventually like tree T2

Temporal specifications:

- / "there is always at most one agent called n here"
- \checkmark "eventually the agent crosses the firewall"

Plan

- / Motivation
- / The formal model for the ambient logic
- / The ambient logic
- Logical formulas and notation of satisfaction
- / Model checking of mobile programs

A model for the ambient logic

- ✓ a modified version of the basic Ambient Calculus
 ✓ no name restriction $(\nu n)P$
- P,Q ::=processes inactivity P|Qcomposition spatial Preplication M[P]ambient M.Paction (n).Pinput action temporal output action $\langle M \rangle$

A model for the ambient logic

Syntax (continued):

A ::=	expressions	
n	name } names	
$in \; M$	can enter M	
$out \ M$	$\operatorname{can} \operatorname{exit} M$	> capabilities
$open \ M$	can open M $$	
ϵ	null)	otha
M.M'	composite \int^{P}	auns

Semantics of the ambient calculus

The semantics is given by the relations:

 $\checkmark P \equiv Q \quad \text{and} \quad P \to Q$

Structural congruence, $P \equiv Q$,

- \checkmark is a relation between processes
- \checkmark used in the ambient logic
- \checkmark used in the reduction semantics
- \checkmark the rules for structural congruence are sound and complete for equivalence of edge-labelled trees
- \checkmark completeness result motivates the choice of axioms for structural congruence

Semantics of the ambient calculus

The reduction relation, $P \rightarrow Q$,

- ✓ describes the dynamic behaviour of ambients
 ✓ defines the evolution of processes over time
 Auxiliary relation:
 - ✓ sublocation relation, $P \downarrow Q$,
- \checkmark defines the spatial distribution of processes
- \checkmark holds when Q is the whole interior of a top-level ambient in P

Semantics of the ambient calculus

The reduction relation:

 $n[in m.P|Q]|m[R] \rightarrow m[n[P|Q]|R]$ $m[n[out \ m.P|Q]|R] \rightarrow n[P|Q]|m[R]$ > mobility reduction $open \ n.P|n[Q] \longrightarrow P|Q$ $(n).P|\langle M \rangle \rightarrow P\{n \leftarrow M\} \}$ local communication $P \to Q \implies n[P] \to n[Q]$ ambient $P \to Q \Rightarrow P | R \to Q | R \}$ parallel $P' \equiv P, P \to Q, Q \equiv Q' \Rightarrow P' \to Q' \} \equiv$ reduction

Plan

- / Motivation
- / The formal model for the ambient logic
- / The ambient logic
- / Logical formulas and notation of satisfaction
- / Model checking of mobile programs

- **Goal:** formalise assertions
- ✓ Solution: modal logics
 - / Benefits: support model checking
 - **Properties:**

consider spatial modalities for properties:

- hold at a certain location
- hold at some location
- hold at every location

The ambient logic can talk about

- 🗸 time
 - / space
- \checkmark i.e. spatial properties and spatial specifications

Modal logic: truth of a formula is relative to a state

Ambient logic: truth is relative to the current time i.e.

- \checkmark the current state of execution
- \checkmark the current location

Correspondence between

- / spatial constructs in the ambient calculus
- / certain formulas of the ambient logic

Processes in ambi-	Formulas of the logic	
ent calculus		
0	0 "there is nothing here"	
n[P]	$n[\mathcal{A}]$ "there is one thing here"	
P Q	$\mathcal{A} \mathcal{B}$ "there are two things here"	

Logical formulas

Syntax for the ambient logic:

 $egin{array}{l} \eta \ \mathcal{A}, \mathcal{B} ::= \ \mathbf{T} \
eg \mathcal{A} \ \mathcal{A} \ \mathcal{A} \ \mathcal{B} \ \mathbf{0} \ \mathbf{0} \ \eta[\mathcal{A}] \ \mathcal{A}|\mathcal{B} \end{array}$

a name n or a variable x formula true negation disjunction void location composition

Logical formulas

Syntax continued:

 $\forall x.\mathcal{A} \\ \diamond \mathcal{A} \\ \triangle \mathcal{A} \\ \mathcal{A} @ \eta \\ \mathcal{A} \triangleright \mathcal{B}$

universal quantification over names sometime modality somewhere modality location adjunct composition adjunct

Examples:

- the formula n[0]: there is currently an empty location called n
- $\checkmark n[\mathcal{A}] : \text{represents a single step in space} \\ \text{(the place one step down into } n\text{)}$
- $\checkmark \bigtriangleup \mathcal{A}$: an arbitrary number of steps in space
- $\checkmark \diamond \mathcal{A}$: temporal eventuality operator
- \checkmark no name binders
- \checkmark only quantifiers bind variables
- ✓ a formula \mathcal{A} is *closed* if $fv(\mathcal{A}) = \emptyset$

- $P \models \mathcal{A}$
- $\checkmark\,$ process P satisfies the closed formula ${\cal A}$
- \checkmark is defined inductively
 - / temporal modality: semantics is given by
 reductions
- ✓ spatial modality: semantics is given by the *sublocation relation* $P \downarrow P'$
 - $\star P \downarrow P' \text{ iff } \exists n, P'' : P \equiv n[P']|P''$
 - ★ $P \downarrow^* P'$ is the reflexive and transitive closure ("P contains P' at some nesting level")

Notation:

 \checkmark Π is the sort of processes (P : Π) \checkmark Φ is the sort of formulas ($\mathcal{A} : \Phi$) \checkmark Λ is the sort of names (n : Λ) \checkmark Γ is the sort of variables (x : Γ)

$$P \models \mathbf{T}$$

$$P \models \neg \mathcal{A} \quad \text{iff} \quad \neg P \models \mathcal{A}$$

$$P \models \mathcal{A} \lor \mathcal{B} \quad \text{iff} \quad P \models \mathcal{A} \lor P \models \mathcal{B}$$

$$P \models \mathbf{0} \quad \text{iff} \quad P \equiv \mathbf{0}$$

$$P \models n[\mathcal{A}] \quad \text{iff} \quad \exists P' : \Pi. \ P \equiv n[P'] \land P' \models \mathcal{A}$$

$$P \models \mathcal{A} | \mathcal{B} \quad \text{iff} \quad \exists P', P'' : \Pi. \ P \equiv P' | P'' \land$$

$$P' \models \mathcal{A} \land P'' \models \mathcal{B}$$

$$P \models \forall x. \mathcal{A} \quad \text{iff} \quad \forall m : \Lambda. \ P \models \mathcal{A} \{x \leftarrow m\}$$

$$P \models \Diamond \mathcal{A} \quad \text{iff} \quad \exists P' : \Pi. \ P \rightarrow^* P' \land P' \models \mathcal{A}$$

$$P \models \bigtriangleup \mathcal{A} \quad \text{iff} \quad \exists P' : \Pi. \ P \downarrow^* P' \land P' \models \mathcal{A}$$

Continued:

 $P \models \mathcal{A} @ n \quad \text{iff} \quad n[P] \models \mathcal{A}$ $P \models \mathcal{A} \triangleright \mathcal{B} \quad \text{iff} \quad \forall P' : \Pi. P' \models \mathcal{A} \Rightarrow P|P' \models \mathcal{B}$

 ✓ @ and ▷ can be used to express assumption/guarantee specifications (security properties)

 $\checkmark P \models \mathcal{A}@n \text{ means that } P \text{ satisfies } \mathcal{A} \text{ even when } \\ \text{placed into a location } n \end{cases}$

 $\checkmark \mathcal{A} \rhd \mathcal{B} \text{ means that } P \text{ satisfies } \mathcal{B} \text{ under any} \\ \text{possible attack by an opponent that it bound to} \\ \text{satisfy } \mathcal{A} \end{cases}$

Note:

the definition of satisfaction is based heavily on the structural congruence relation

 Structural congruence is easily decidable (useful in model checking applications)

Derived connectives

Other properties expressible in the logic:

Fiff \neg Tfalse $\mathcal{A} \land \mathcal{B}$ iff $\neg (\neg \mathcal{A} \lor \neg \mathcal{B})$ conjunction $\mathcal{A} \Rightarrow \mathcal{B}$ iff $\neg \mathcal{A} \lor \mathcal{B}$ implication $\exists x. \mathcal{A}$ iff $\neg \forall x. \neg \mathcal{A}$ existential quantification $\Box \mathcal{A}$ iff $\neg \Diamond \neg \mathcal{A}$ everytime modality $\bigtriangledown \mathcal{A}$ iff $\neg \bigtriangleup \neg \mathcal{A}$ everywhere modality

Example:

 $\checkmark \Box n[\mathbf{0}]$: there is always a location called n

Plan

- / Motivation
- / The formal model for the ambient logic
- / The ambient logic
- Logical formulas and notation of satisfaction
- / Model checking of mobile programs

Given:

- \checkmark program P in ambient calculus
- \checkmark property F specified as an ambient logic formula
- \checkmark determine automatically whether $P \models F$

Requirement:

 \checkmark the model of the program must be *finite*

Model checking algorithm

- \checkmark for the *fragment* of the ambient calculus:
 - no replications
 - no dynamic name generations
 - called the *replication-free* or *finite-state* fragment of the ambient calculus
- \checkmark against a *fragment* of the ambient logic:
 - no guarantee operators ($\mathcal{A} \triangleright \mathcal{B}$)

Why these fragments?

Replication and *guarantee* are both sources of infinity:

- \checkmark replicated process \equiv infinite array of replicas
 - ✓ guarantee formula \equiv a certain infinite quantification over processes

Conclusion:

not possible to extend the model checking algorithm, because these extensions leads to **undecidability**

- Cardelli and Gordon give a model checking algorithm for this decidable sublogic
- / Express and automatically verify properties of mobile code
- ✓ No official implementation of a model checker for mobile ambients (?)

References

 L. Cardelli and A. Gordon: Anytime, Anywhere: Modal Logics for Mobile Ambients, 2000

/ W. Charatonik, A. Gordon et al: *Model Checking Mobile Ambients*, 2002

A study of the logic extended with constructs for describing private names:

 L. Cardelli and A. Gordon: Logical properties of name restriction, 2001

