
The Join calculus
A calculus of mobile agents

Martin Mosegaard Jensen

Mobile Computing seminar 2004, DAIMI

The Join calculus – p. 1/32

http://www.daimi.au.dk/~martinm

Plan
√

Motivation
√

The reflexive CHAM
√

Distribution: locality, migration, failure detection
√

Observational congruence
√

Comparison to π
√

The JoCaml system

The Join calculus – p. 2/32

Motivation

Match concurrency and distribution:
√

π has a simple and precise abstract foundation.
√

Distributed setting: location, migration, failure?

Solution:
Take π, add reflection and notion of locality.
Formal model:
Join and The distributed reflexive CHAM
Implementation:
The JoCaml system

The Join calculus – p. 3/32

Overview

In the taxomony of the survey, Join has:
√

Labile processes (names as values, like in π)
√

Motile processes (notion of location)

The Join calculus – p. 4/32

http://www.cmi.univ-mrs.fr/~dalzilio/Papers/survey.ps

Syntax - Join

Terms of the calculus are processes, definitions and
join-patterns:

P
def
= x〈ṽ〉 | def D in P | P |P | 0

D
def
= J � P | D ∧D | T

J
def
= x〈ṽ〉 | J |J

Notice the difference from π:
Restriction, reception and replication is combined in
join pattern.

The Join calculus – p. 5/32

The chemical abstract machine
√

Higher-order solutionsR `M of reactions and
molecules.

√

Structural rules (
) :
Reversible (syntactical rearrangements)
Reduction rules (−→) :
Consume terms in the solution (computation step)

The Join calculus – p. 6/32

Reaction rules - Reflexive CHAM

struc-join ` P1|P2
 ` P1, P2

struc-null ` 0
 `
struc-and D1 ∧D2 `
 D1, D2 `
struc-nodef T `
 `
struc-def ` def D in P
 Dσdv ` Pσdv
reduction J � P ` Jσrv −→ J � P ` Pσrv

The Join calculus – p. 7/32

Operational semantics

reduction J � P ` Jσrv −→ J � P ` Pσrv

In one computation step, reductions:
√

consume any molecule with a given port pattern
√

make a fresh copy of their guarded process
√

substitute its received parameters for the sent
names

√

release the process

The Join calculus – p. 8/32

Example

` def fruit〈f〉 | cake〈c〉� P

in fruit〈apple〉 | fruit〈pear〉 | cake〈pie〉

fruit〈f〉 | cake〈c〉 � P `
fruit〈apple〉 | cake〈pie〉 | fruit〈pear〉
−→
fruit〈f〉 | cake〈c〉 � P `
fruit〈apple〉 | P{pear/f,pie/c}

The Join calculus – p. 9/32

Distribution

Issues:
√

Location
√

Migration
√

Failure detection

The Join calculus – p. 10/32

Distributed RCHAM

The distributed RCHAM is a multiset of CHAMS:
‖ Ri ` Mi

with a notion of local solutions

Interaction of solutions (comm):

`ϕ x〈ṽ〉 ‖ J � P `
−→
`ϕ ‖ J � P ` x〈ṽ〉 (x ∈ dv[J])

(2-step: message transport, may be followed by
message treatment (reduction))

The Join calculus – p. 11/32

Location
√

Attach location names to local solutions

Location names: a, b, . . . ∈ L
Location paths: ϕ, ψ, . . . ∈ L∗

Solutions are now labelled: R `ϕ M
Define:
`ϕ is a sub location of `ψ when
ψ is a prefix of ϕ.

Example: `abc is a sub location of `a

Thus ordered solutions form a tree.

The Join calculus – p. 12/32

Locations (cont’d)

Location constructor:

D
def
= . . . | a[D : P]

Creation of a sub location (struc-loc):

a[D : P] `ϕ

`ϕ ‖ {D} `ϕa {P}

The Join calculus – p. 13/32

Migration

Concerns the movement of a location

Syntax extension:

P
def
= . . . | go〈b, κ〉

plus a new reduction rule (move):

a[D : P | go〈b, κ〉] `ϕ ‖ `ψb
−→
`ϕ ‖ a[D : P | κ〈〉] `ψb

The Join calculus – p. 14/32

Failure detection
√

In a realistic setting we need to consider failures

√

Simple failure model for the π-calculus?
√

Join model:
Prohibit reactions inside a failed location

√

So we need to distinguish a failed location...

The Join calculus – p. 15/32

Failure detection
√

In a realistic setting we need to consider failures
√

Simple failure model for the π-calculus?

√

Join model:
Prohibit reactions inside a failed location

√

So we need to distinguish a failed location...

The Join calculus – p. 15/32

Failure detection
√

In a realistic setting we need to consider failures
√

Simple failure model for the π-calculus?
√

Join model:
Prohibit reactions inside a failed location

√

So we need to distinguish a failed location...

The Join calculus – p. 15/32

Failure detection
√

In a realistic setting we need to consider failures
√

Simple failure model for the π-calculus?
√

Join model:
Prohibit reactions inside a failed location

√

So we need to distinguish a failed location...

The Join calculus – p. 15/32

Representing failures
√

Tag failed locations: Ω 6∈ L
√

Location ϕ is dead if it contains Ω
√

The position of Ω in ϕ denotes the origin of the
failure

The Join calculus – p. 16/32

Failure extensions

New primitives: halt〈〉 and fail〈·, ·〉

Rule for halting (halt):

a[D : P | halt〈〉] `ϕ −→ Ωa[D : P] `ϕ

And for failure detection (detect):

`ϕ fail〈a, κ〉 ‖ `ψεa −→ `ϕ κ〈〉 ‖ `ψεa

(if ψεa is dead)

The Join calculus – p. 17/32

Plan
√

Motivation
√

The reflexive CHAM
√

Distribution: locality, migration, failure detection
√

Observational congruence
√

Comparison to π
√

The JoCaml system

The Join calculus – p. 18/32

Observational congruence
√

What is observable?

√

Capability of a process to emit on free channel
names

√

Define a reduction relation between processes:

P −→ P ′
def
= ∅ ` {P} (
∗−→

∗) ∅ ` {P ′}

and associate an output barb ⇓x to free channel
names x:
P ⇓x

def
= x ∈ fv(P) ∧ ∃ṽ,R,M, ∅ ` P −→∗

R ` M, x〈ṽ〉

The Join calculus – p. 19/32

Observational congruence
√

What is observable?
√

Capability of a process to emit on free channel
names

√

Define a reduction relation between processes:

P −→ P ′
def
= ∅ ` {P} (
∗−→

∗) ∅ ` {P ′}

and associate an output barb ⇓x to free channel
names x:
P ⇓x

def
= x ∈ fv(P) ∧ ∃ṽ,R,M, ∅ ` P −→∗

R ` M, x〈ṽ〉

The Join calculus – p. 19/32

Observational congruence
√

What is observable?
√

Capability of a process to emit on free channel
names

√

Define a reduction relation between processes:

P −→ P ′
def
= ∅ ` {P} (
∗−→

∗) ∅ ` {P ′}

and associate an output barb ⇓x to free channel
names x:
P ⇓x

def
= x ∈ fv(P) ∧ ∃ṽ,R,M, ∅ ` P −→∗

R ` M, x〈ṽ〉

The Join calculus – p. 19/32

Observational congruence (cont’d)

We can now define the observational congruence to
be the largest equivalence relation ≈ satisfying
∀P,Q, P ≈ Q:

∀x ∈ N , P ⇓x ⇒ Q ⇓x
P −→∗ P ′ ⇒ ∃Q′, Q −→∗ Q′ and P ′ ≈ Q′

∀D, def D in P ≈ def D in Q
∀R, R | P ≈ R | Q

The Join calculus – p. 20/32

Comparison with the π-calculus
√

π is a well-studied reference calculus

Using:
√

The observational congruence, and
√

A core join-calculus:

P
def
= x〈u〉 | P1|P2 | def x〈u〉|y〈v〉 � P1 in P2

Join is shown to be as expressive as the asynchronous
π-calculus (up to their weak barbed congruences)

The Join calculus – p. 21/32

ftp://ftp.inria.fr/INRIA/Projects/moscova/fournet/rcham-jcalc-11pt.ps.Z

Full abstraction

Let P1,P2 be two process calculi, with resp.
equivalences ≈1⊂ P1 × P1,≈2⊂ P2 × P2.

P2 is more expressive than P1 when ∃ fully abstract
encoding [[]]1→2 from P1 to P2 s.t. ∀P,Q ∈ P1 :

P ≈1 Q⇐⇒ [[P]]1→2 ≈2 [[Q]]1→2

P1 and P2 have the same expressive power when each
one is more expressive than the other

The Join calculus – p. 22/32

Encoding: π ←→ Join

Method: provide fully abstract encodings:
√

π −→ Join
√

Join −→ CoreJoin
√

CoreJoin −→ π

The Join calculus – p. 23/32

Encoding: π ←→ Join

From π to Join, naive encoding:

[[P |Q]]π
def
= [[P]]π|[[Q]]π

[[νx.P]]
def
= def xo〈vo, vi〉|xi〈κ〉 � κ〈vo, vi〉 in [[P]]π

[[x̄v]]π
def
= xo〈vo, vi〉

[[x(v).P]]π
def
= def κ〈vo, vi〉 � [[P]]π in xi〈κ〉

[[!x(v).P]]π
def
= def κ〈vo, vi〉 � xi〈κ〉|[[P]]π in xi〈κ〉

The Join calculus – p. 24/32

Problem with naive encoding

It should not be possible to observe reception of a
message, but..

[[x(u).x̄u]]π = def κ〈vo, vi〉 � xo〈vo, vi〉 in xi〈κ〉
6≈j 0

To ensure translation is secure in all contexts we need
a “firewall” mechanism (in the paper)

The Join calculus – p. 25/32

ftp://ftp.inria.fr/INRIA/Projects/moscova/fournet/rcham-jcalc-11pt.ps.Z

Encoding: π ←→ Join

Naive encoding from (core) Join to π:

[[Q|R]]j
def
= [[Q]]j|[[R]]j

[[x〈v〉]]j
def
= x̄v

[[def x〈u〉|y〈v〉 �Q in R]]j
def
= νxy.(!x(u).y(v).[[Q]]j |[[R]]j)

This translation also needs a firewall

The Join calculus – p. 26/32

The JoCaml system
√

Extension of Objective Caml
√

Primitives for controlling locality, migration and
failure detection

√

Tight connection to the calculus
√

Proposed as the next-generation Internet
programming language

The Join calculus – p. 27/32

Example in JoCaml

def fruit〈f〉 | cake〈c〉 � P

in fruit〈apple〉 | fruit〈pear〉 | cake〈pie〉

is written:

let def fruit! f | cake! c =

print_string (f ˆ " " ˆ c ˆ "\n");

in

spawn {fruit "apple" | fruit "pear"

| cake "pie"};;

The Join calculus – p. 28/32

A mobile agent - server side

let def f x =

print_string ("["ˆstring_of_int(x)ˆ"] ");

flush stdout;

reply x*x in

Ns.register "square" f vartype

;;

let loc there do {}

;;

Ns.register "there" there vartype;

Join.server ()

The Join calculus – p. 29/32

A mobile agent - client side

let loc mobile

do {

let there = Ns.lookup "there" vartype in

go there;

let sqr = Ns.lookup "square" vartype in

let def sum (s,n) =

reply (if n = 0

then s

else sum (s+sqr n, n-1)) in

let res = sum (0,5) in

print_string ("sum 5= "ˆstring_of_int res);

flush stdout;

}

The Join calculus – p. 30/32

Further reading
√

The reflexive CHAM and the join-calculus
√

A Calculus of Mobile Agents
√

The JoCaml system

The Join calculus – p. 31/32

ftp://ftp.inria.fr/INRIA/Projects/moscova/fournet/rcham-jcalc-11pt.ps.Z
http://pauillac.inria.fr/~maranget/papers/mobile.ps
http://pauillac.inria.fr/jocaml/

Questions?

The Join calculus – p. 32/32

	Plan
	Motivation
	Overview
	Syntax - Join
	The chemical abstract machine
	Reaction rules - Reflexive CHAM
	Operational semantics
	Example
	Distribution
	Distributed RCHAM
	Location
	Locations (cont'd)
	Migration
	Failure detection
	Failure detection
	Failure detection
	Failure detection

	Representing failures
	Failure extensions
	Plan
	Observational congruence
	Observational congruence
	Observational congruence

	Observational congruence (cont'd)
	Comparison with the $pi $-calculus
	Full abstraction
	Encoding: $pi longleftrightarrow Join$
	Encoding: $pi longleftrightarrow Join$
	Problem with naive encoding
	Encoding: $pi longleftrightarrow Join$
	The JoCaml system
	Example in JoCaml
	A mobile agent - server side
	A mobile agent - client side
	Further reading
	Questions?

