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Reminder — Syntax

a(x).P
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Operational Semantics

(Com)

(M +z(y).P) | (N+22.Q0) — Ply— 2} | Q

P — P P — P
PIQ — PIQ™"  (va)P — (va)P

; (Res)

Q=P P — P P =q
Q — @

(Struct)
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Equivalence of processes

» A sequential system is a function:
Inputs— outputs

» Two functions are equivalent iff their outputs are
identical for every input.
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Equivalence of processes

A sequential system is a function:
Inputs— outputs

Two functions are equivalent iff their outputs are
identical for every input.

A parallel system may not be deterministic.
A parallel system may not terminate.

Mobile Computing — p. 4



Traces

PSP 5Py
IS a trace ofP

- —: synchronization on channel(for example
av | a(x).P)

» 5 synchronization on an internal private
channel (for exampléva)(av | a(z).P))
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Traces

PSP 5Py
IS a trace ofP
- —: synchronization on channel(for example
av | a(x).P)
» —: synchronization on an internal private
channel (for exampléva)(av | a(z).P))

 (Informal) P equivalent ta): same set of traces
(maybe infinite)
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Compositionality

Two coffee machines and a consumer:

2 krones 2 krones > K
2 krones rones

t i%\ioﬁee teal l coffee lcoﬁee

P = C

v
]

2 krones.(tea + cof fee)
P' = (2 krones.tea) + (2 krones + cof fee)

~
|

2 krones . cof fee
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Compositionality

Two coffee machines and a consumer:

2 krones 2 krones
2 krones

t i%\ioﬁee teal l coffee lcoﬁee

P = C

- P and P’ accept the same language
- P|C andP'|C do not accept the same language
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Compositionality

Two coffee machines and a consumer:

2 krones 2 krones > K
2 krones rones

t ff
tﬂoffee ea cofiee ' coffee

P ’ C

- P and P’ accept the same language
- P|C andP'|C do not accept the same language
» = trace equivalence is not compositional
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Barbs

* Instead of looking at what happens, let's see what
we are able to do (intensionality)

« Observing a state? | n If P contains a toplevel
visible prefix whose subject is(eithera or a)

« Remark:P | a can be defined as
P = (vii)((a(x).P' + M) | Q)
for somer, P', M and@ such that ¢ n
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Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies
(Vn.P | n= @ | n) and, for anyP’ such that
P — P’, there is a proces9’ such that) — )’
and P"R()’, and symmetrically fot).
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Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies

(Vn.P | n= @ | n) and, for anyP’ such that

P — P’, there is a proces9’ such that) — )’

and P"R()’, and symmetrically fot).
Definition [Barbed bisimilarity ] Thebarbed

bisimilarity Is the greatest barbed bisimulation.
We write P ~ ().

Proposition ~ is an equivalence relation.
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Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies

(Vn.P | n= @ | n) and, for anyP’ such that

P — P’, there is a proces9’ such that) — )’

and P"R()’, and symmetrically fot).
Definition [Barbed bisimilarity ] Thebarbed

bisimilarity Is the greatest barbed bisimulation.
We write P ~ ().

Proposition ~ is an equivalence relation.

Remark: to proveP ~ (), find one bisimulatiorR
such thatPR(Q).
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Example

Let:

R ={ ((vz)(zZa| z(w).zw), T.2b),
(P,Q) / P=(vz)(0|Zza),Q = b}

‘R Is a barbed bisimulation, thus in particular:

(vz)(za | z(w).2w) ~ 7.Tb
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Example

Let:

R ={ ((vz)(zZa| z(w).zw), T.2b),
(P,Q) / P=(vz)(0|Zza),Q = b}

‘R Is a barbed bisimulation, thus in particular:
(vz)(za | z(w).2w) ~ 7.Tb

~ IS quite weak... and still not compositional !
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Contexts

A context is a term with &ole, written ||.

C =0 ‘ a(a:)C ‘ ax.C ’ (Cl Cg)
| (va)C |IC[C1+ Co | ]

« C'|P]| is the process obtained by replacing the
hole || with P.
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Contexts

A context is a term with &ole, written ||.

C == 0|a(x).C|ax.C| (C|Cy)
| (va)C' | 1C| CL+ Cy | ]

« C'|P]| is the process obtained by replacing the
hole || with P.

« Non-receptive context: no occurrence|jofinder
an input prefix.
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Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

Included in~.
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Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

Included in~.

Example Z|a za+az

L
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Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

iIncluded in~.
Example Zla ;C zZ.0+ 6.2
but
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Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

iIncluded in~.
Example Zla ;C zZ.a+a.z
but

Zla~®za+az+[z=alr
Characterization
P~Qiffforany R, P| R~ Q | R.
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Some general laws

o Restriction

(va)(a(x).P) ~“ 0
(ve)(z(y).P | wz.Q) = wz.(ve)(z(y).P | Q)

If © # w andx # z.

(P Q) ~“1P |1

np ~Cp

(P+Q) ~“(P| Q)
lla = b]P ~C [a = b)!P
In.P % n.!P, n prefix
l(vx)P #© (vx)!P

* Replication
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Summary

We have defined an equivalence:
« with good properties, including compositionality
 describingbehaviours
e relying onobservations (P | n)
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Labelled transition system

« Changing the point of view: we now consider the
Interactions with the environment.

PY%o

 Three kinds of transition pa Q. P a@ 0
P 5 Q
* namesn(u)

bn(a(b)) = {b}

bound names., bn(u) = () otherwise
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Operational semantics 1

-y (OUT)

ab.P % p a(z).P Y Pl v)

(INP)

pp 0B
(

P|Q—P|Q

COMM)
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Operational semantics 1

b (OUT) a(v) (INP)
ab.P — P a(x).P — P{x — v}
a(b) ab
P Pl /
— - Q — Q (COMM)
P ‘ Q L P/ ’ Q/
P4 p
m EaR) bn(p) N fr(Q) =0
P|lQ—=P|Q
P4 p

sum)  + symmetrical rules !

P+Q5 P
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Operational semantics 2

IP|PL P
P L p
PSP
(va)P 5 (va)P’

(BANG)

ReS) a & n()
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Operational semantics 2

IP|PL P
P L p
PSP
(va)P 5 (va)P’

(BANG)

ReS) a & n()

P p

(vb) 0 pr

OPEN) @ F# b

P“(i) P/ Qd(—b>) Q/
(

P|Q— (wh) (P Q)

CLOSE)
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Example...
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Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
P"R@', and symmetrically fot).
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Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
P"R@', and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.
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Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
PR, and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.

Definition [Full bisimilarity] P ~¢ Qiff Po ~ Qo
for any substitution.
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Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
PR, and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.

Definition [Full bisimilarity] P ~¢ Qiff Po ~ Qo
for any substitution.

Remark:~ implies trace equivalence.
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Example

Let’s consider:

R =1 (v2)(za | 2(w).7w), 7.70),
(#2)(0 | Ta), Ta),
(#2)(0]0),0)}

‘R Is a bisimulation, thus in particular:
(vz)(za | z(w).2w) ~ T.Za

= smaller relatioriR
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Comparing the definitions

Theorem
P~ Qiff P~ Q,andP ~¢ Q iff P ~¢ Q.

Mobile Computing — p. 20



Comparing the definitions

Theorem
P~ Qiff P~ Q,andP ~¢ Q iff P ~¢ Q.
Remarks:
* ~ can be seen as a proof techniquefor

» ~ allows toderive the laws for= (structure—
behaviour)
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Chimic vs labelled transitions

— More natural, we work modula-conversion, AC

of | and+ and permutation of.

Definition of equivalence: more “declarative”,

context plays an important ro

e.

", \We work on trees, with the redex “on” the term.
Interactions between the term and the context are

built more deterministically.

Simplier definition of equivalence.
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| ate variant

We have seen agarly operational semantics:

PrYWp 0%
(INP) (

a(aj).Pag)P{va} P|Q—P|Q

COMM)
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| ate variant

We have seen agarly operational semantics:

PrYWp 0%
e (INP) — —(comMwm)
a(x).P — P{r — v} Pl|Q—P|Q

We can actually differ the application of substitution:

PP QRQ

a(x) P’Q;P/{ Hb}’Q/(
a(x).P — P L

COMM)
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| ate variant

Definition A symmetrical relatiork is a late
bisimulation iff, whenevelPR():

. if pY P’, there is a process’ such that

Q (@) Q' and, for allp,
P{x— b} R Q{x — b};

. if P 5 P’ whereu is not an input, usual
definition.
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| ate variant

Definition A symmetrical relatiork is a late
bisimulation iff, whenevelPR():

. if pY P’, there is a process’ such that

Q (@) Q' and, for allp,
P{x— b} R Q{x — b};

. if P 5 P’ whereu is not an input, usual
definition.

Theorem ~;C~

—~
N
~—
N

Counter-example? = x(z) + x

Q=x(2)+x

Z+a(z).[z =yl

Mobile Computing — p. 23
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Proof techniques

P~ Q PR Q P R Q

pol Lp pl Lp  pl Lp
P/ ~ Q/ Pl R Ql Pl f(R) Ql
bisimilarity  bisimulation bisimulation up-t@
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Proof techniques

P~ Q PR Q P R Q

pol Lp pl Lp  pl Lp
P/ ~ Q/ P/ R Ql P/ f(R) Ql
bisimilarity  bisimulation bisimulation up-t@

For example, bisimulation up-to bisimilarity:

P R ¢

wl Ly
P ~PRQ ~ @

Reference: D. SangiorgiOn the bisimulation proof
technique’
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Weak transitions

e Two kinds of transitions:
« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation
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Weak transitions

e Two kinds of transitions:
« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation

 |dea: ignore the internal transitions
— weak equivalences
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Weak transitions

e Two kinds of transitions:

« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation

 |dea: ignore the internal transitions
— weak equivalences

 Definition [weak transitions]
= reflexive and transitive closure of

ﬂ>: > OF = Whenﬂ — 7, 5 otherwise
P& P:P=5=P
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Weak bisimilarity

We play the game of bisimulation, changing the
notion of “step”:

Definition A relation’R is aweak bisimulation Iff,
wheneverPRQ andP & P/, there is a process

@)’ such thaty & Q' and P'"RQ’, and
symmetrically for(). Theweak bisimilarity is
written ~.
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Weak bisimilarity

e &~ IS an equivalence relation
o ~(C X

« Some examples of laws:

a.7.P ~ o P
TP ~ P
P+71tP =~ P
a.(P+7.0Q)+a.Q ~ a(P+71.0Q)

 Also a presentation with barbs:

def
In ==ln
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Asynchronousm

Only form of output:ab
P = zy|M|P|P| (ve)P|!P
M = 0|xz(2).P|7.P| M+ M
» More realistic
« Remark:7.P and0 can be encoded

* A choice+ hides some protocol
« \Why no output in sums ?
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Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)
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Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

. If P24 P/ thenP = zy | P’
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Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)
. If P2 P thenP = zy | P’

c1f P Y P thenP = (vy)(zy | P')

Mobile Computing — p. 29



Asynchrony

No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

if P24 P/ thenP = zy | P’
z(y)

« If P — P, thenP = (vy)(zy | P')

if P24 P thenP 4 2%= P’ (confluence)
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Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

if P24 P/ thenP = zy | P’
Z(y)

« If P — P, thenP = (vy)(zy | P')

if P24 P thenP 4 2%= P’ (confluence)

it P 24" prwith w ¢ fn(P), then
P == P{w ~ y}
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Asynchrony

Theorem The notions of early and late bisimulations
coincide in asynchronous-calculus. Moreover,
these are congruences.

= a simpler theory, easier proofs...
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Encodings

Notation: encoding of: | P]

Interest:
« to compare models, programming paradigms and
idioms
* to study the expressive power of a construction
and subfragments of a language
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Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).
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Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

« This makes sense only wh¢R| andP are in a
same language. Often, we usdencoding a
construction into a smaller language).
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Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

« This makes sense only wh¢R| andP are in a
same language. Often, we usdencoding a
construction into a smaller language).

» Otherwise, we might want to provall
abstraction:
P1><P2 Iff [[Pl]]X[[PQ]]

(allows to compare encodings from one language
iInto another)
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Encodings

Otherwise, we shall prove at leasierational
correspondence:

. If P — P',then[P] — [P'].

« If [P] — @, thenthereis a process such that
P — P'and@Q = [PF'].

(one-to-one version)
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Encodings

Otherwise, we shall prove at leasierational
correspondence:

« If P — P/, then|P] = [P].

« If [P] = @, then there is a proces3 such that
P — P'and@ = [PF'].

(weak version)
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Encodings

Otherwise, we shall prove at leasierational
correspondence:

e If P — P, then|P| == |F'].

« If [P] = @, then there is a proce$3 such that
P — P'and@ =~ [P'].

(weak version up-to bisimilarity)
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Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?
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Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@fv,t) | t.P) | a(z,r).(Q | T)
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Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@v,t) | t.P) | a(z,r).(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().
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Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@v,t) | t.P) | a(z,r).(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().
o &7
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Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(afv,t) | t.P) | a(z,7)(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().
o &7
Take A Gv.av andB < av | av
We haveA ~ B, but:

[A] (vt1, to)(afv, t1) | t1.(a(v, t2) | t2))
and [B] (vt1) (@, t1) | t1) | (vE2)(@(v, t2) | t2)
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Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).
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Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).

 Because of mixed choice
a(z).P + bv.Q

* Proof: impossible to resolve the problem of chief
election in a symmetrical network.
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Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).

» Because of mixed choice
a(z).P + bv.Q
* Proof: impossible to resolve the problem of chief

election in a symmetrical network.

» “Reasonable” means:
compositional [P|Q] = | P]||Q], |Pc| = [P]o)
preserving divergence

» one of the very few non-expressivity result
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M-calculus

Terms:
M=z | e M| (MM

#-reduction:

(Ax.M) N - M{z+— N}
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M-calculus

Terms:
M=z | e M| (MM
g-reduction:

(Ax.M) N - M{z+— N}

Encoding the\-calculus intorr, iIdeas:

« A A-term M is represented by aterm | M |
located inp: [M],.

» Application Is represented with parallel
composition.
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Encoding the A-calculus

DaM], = (vy)pyly(e, q).[M],

[[5’7:19 = pT

[M N, (vg)(IM], | g(v).
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Encoding the A-calculus

DaM], = (vy)pyly(e, q).[M],

def _
[[ﬂp = px

[M N, € (we)([M], | q(v).

(vr)([NT- | r(v").0(", p)))
» [M], sends the value o¥/ onp

* For a function, we send its address;
it is consulted by sending a value and a return
channel.
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