Mobile Computing

The m-calculus - Equational theory

Pascal Zimmer

pzi ner @ai m . au. dk

BRICS

Mobile Computing — p. 1

Reminder — Syntax

a(x).P

Mobile Computing — p. 2

Operational Semantics

(Com)

(M +z(y).P) | (N+22.Q0) — Ply— 2} | Q

P — P P — P
PIQ — PIQ™" (va)P — (va)P

; (Res)

Q=P P — P P =q
Q — @

(Struct)

Mobile Computing — p. 3

Equivalence of processes

» A sequential system is a function:
Inputs— outputs

» Two functions are equivalent iff their outputs are
identical for every input.

Mobile Computing — p. 4

Equivalence of processes

A sequential system is a function:
Inputs— outputs

Two functions are equivalent iff their outputs are
identical for every input.

A parallel system may not be deterministic.
A parallel system may not terminate.

Mobile Computing — p. 4

Traces

PSP 5Py
IS a trace ofP

- —: synchronization on channel(for example
av | a(x).P)

» 5 synchronization on an internal private
channel (for exampléva)(av | a(z).P))

Mobile Computing — p. 5

Traces

PSP 5Py
IS a trace ofP
- —: synchronization on channel(for example
av | a(x).P)
» —: synchronization on an internal private
channel (for exampléva)(av | a(z).P))

 (Informal) P equivalent ta): same set of traces
(maybe infinite)

Mobile Computing — p. 5

Compositionality

Two coffee machines and a consumer:

2 krones 2 krones > K
2 krones rones

t i%\ioﬁee teal l coffee lcoﬁee

P = C

v
]

2 krones.(tea + cof fee)
P' = (2 krones.tea) + (2 krones + cof fee)

~
|

2 krones . cof fee

Mobile Computing — p. 6

Compositionality

Two coffee machines and a consumer:

2 krones 2 krones
2 krones

t i%\ioﬁee teal l coffee lcoﬁee

P = C

- P and P’ accept the same language
- P|C andP'|C do not accept the same language

Mobile Computing — p. 6

Compositionality

Two coffee machines and a consumer:

2 krones 2 krones > K
2 krones rones

t ff
tﬂoffee ea cofiee ' coffee

P ’ C

- P and P’ accept the same language
- P|C andP'|C do not accept the same language
» = trace equivalence is not compositional

Mobile Computing — p. 6

Barbs

* Instead of looking at what happens, let's see what
we are able to do (intensionality)

« Observing a state? | n If P contains a toplevel
visible prefix whose subject is(eithera or a)

« Remark:P | a can be defined as
P = (vii)((a(x).P' + M) | Q)
for somer, P', M and@ such that ¢ n

Mobile Computing — p. 7

Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies
(Vn.P | n= @ | n) and, for anyP’ such that
P — P’, there is a proces9’ such that) —)’
and P"R()’, and symmetrically fot).

Mobile Computing — p. 8

Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies

(Vn.P | n= @ | n) and, for anyP’ such that

P — P’, there is a proces9’ such that) —)’

and P"R()’, and symmetrically fot).
Definition [Barbed bisimilarity] Thebarbed

bisimilarity Is the greatest barbed bisimulation.
We write P ~ ().

Proposition ~ is an equivalence relation.

Mobile Computing — p. 8

Bisimularity

Definition [Barbed bisimulation] ArelationR Is a
barbed bismulation iff PR(Q implies

(Vn.P | n= @ | n) and, for anyP’ such that

P — P’, there is a proces9’ such that) —)’

and P"R()’, and symmetrically fot).
Definition [Barbed bisimilarity] Thebarbed

bisimilarity Is the greatest barbed bisimulation.
We write P ~ ().

Proposition ~ is an equivalence relation.

Remark: to proveP ~ (), find one bisimulatiorR
such thatPR(Q).

Mobile Computing — p. 8

Example

Let:

R ={ ((vz)(zZa| z(w).zw), T.2b),
(P,Q) / P=(vz)(0|Zza),Q = b}

‘R Is a barbed bisimulation, thus in particular:

(vz)(za | z(w).2w) ~ 7.Tb

Mobile Computing — p. 9

Example

Let:

R ={ ((vz)(zZa| z(w).zw), T.2b),
(P,Q) / P=(vz)(0|Zza),Q = b}

‘R Is a barbed bisimulation, thus in particular:
(vz)(za | z(w).2w) ~ 7.Tb

~ IS quite weak... and still not compositional !

Mobile Computing — p. 9

Contexts

A context is a term with &ole, written ||.

C =0 ‘ a(a:)C ‘ ax.C ’ (Cl Cg)
| (va)C |IC[C1+ Co |]

« C'|P]| is the process obtained by replacing the
hole || with P.

Mobile Computing — p. 10

Contexts

A context is a term with &ole, written ||.

C == 0|a(x).C|ax.C| (C|Cy)
| (va)C' | 1C| CL+ Cy |]

« C'|P]| is the process obtained by replacing the
hole || with P.

« Non-receptive context: no occurrence|jofinder
an input prefix.

Mobile Computing — p. 10

Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

Included in~.

Mobile Computing — p. 11

Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

Included in~.

Example Z|a za+az

L

Mobile Computing — p. 11

Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

iIncluded in~.
Example Zla ;C zZ.0+ 6.2
but

Mobile Computing — p. 11

Barbed congruence

Definition [Barbed congruence and equivalence |
The barbed congruence (resp. barbed

equivalence), written=“ (resp.~), is the greatest
congruence (resp. non-receptive congruence)

iIncluded in~.
Example Zla ;C zZ.a+a.z
but

Zla~®za+az+[z=alr
Characterization
P~Qiffforany R, P| R~ Q | R.

Mobile Computing — p. 11

Some general laws

o Restriction

(va)(a(x).P) ~“ 0
(ve)(z(y).P | wz.Q) = wz.(ve)(z(y).P | Q)

If © # w andx # z.

(P Q) ~“1P |1

np ~Cp

(P+Q) ~“(P| Q)
lla = b]P ~C [a = b)!P
In.P % n.!P, n prefix
l(vx)P #© (vx)!P

* Replication

Mobile Computing — p. 12

Summary

We have defined an equivalence:
« with good properties, including compositionality
 describingbehaviours
e relying onobservations (P | n)

Mobile Computing — p. 13

Labelled transition system

« Changing the point of view: we now consider the
Interactions with the environment.

PY%o

 Three kinds of transition pa Q. P a@ 0
P 5 Q
* namesn(u)

bn(a(b)) = {b}

bound names., bn(u) = () otherwise

Mobile Computing — p. 14

Operational semantics 1

-y (OUT)

ab.P % p a(z).P Y Pl v)

(INP)

pp 0B
(

P|Q—P|Q

COMM)

Mobile Computing — p. 15

Operational semantics 1

b (OUT) a(v) (INP)
ab.P — P a(x).P — P{x — v}
a(b) ab
P Pl /
— - Q — Q (COMM)
P ‘ Q L P/ ’ Q/
P4 p
m EaR) bn(p) N fr(Q) =0
P|lQ—=P|Q
P4 p

sum) + symmetrical rules !

P+Q5 P

Mobile Computing — p. 15

Operational semantics 2

IP|PL P
P L p
PSP
(va)P 5 (va)P’

(BANG)

ReS) a & n()

Mobile Computing — p. 16

Operational semantics 2

IP|PL P
P L p
PSP
(va)P 5 (va)P’

(BANG)

ReS) a & n()

P p

(vb) 0 pr

OPEN) @ F# b

P“(i) P/ Qd(—b>) Q/
(

P|Q— (wh) (P Q)

CLOSE)

Mobile Computing — p. 16

Example...

Mobile Computing — p. 17

Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
P"R@', and symmetrically fot).

Mobile Computing — p. 18

Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
P"R@', and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.

Mobile Computing — p. 18

Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
PR, and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.

Definition [Full bisimilarity] P ~¢ Qiff Po ~ Qo
for any substitution.

Mobile Computing — p. 18

Bisimilarity — again

Definition [Bisimulation | ArelationR Is a
bissimulation iff, wheneverPRQ andP = P/,

there is a procesd’ such that) - Q' and
PR, and symmetrically fot).

Definition [Bisimilarity | The bisimilarity, written
~, IS the greatest bisimulation.

Definition [Full bisimilarity] P ~¢ Qiff Po ~ Qo
for any substitution.

Remark:~ implies trace equivalence.

Mobile Computing — p. 18

Example

Let’s consider:

R =1 (v2)(za | 2(w).7w), 7.70),
(#2)(0 | Ta), Ta),
(#2)(0]0),0)}

‘R Is a bisimulation, thus in particular:
(vz)(za | z(w).2w) ~ T.Za

= smaller relatioriR

Mobile Computing — p. 19

Comparing the definitions

Theorem
P~ Qiff P~ Q,andP ~¢ Q iff P ~¢ Q.

Mobile Computing — p. 20

Comparing the definitions

Theorem
P~ Qiff P~ Q,andP ~¢ Q iff P ~¢ Q.
Remarks:
* ~ can be seen as a proof techniquefor

» ~ allows toderive the laws for= (structure—
behaviour)

Mobile Computing — p. 20

Chimic vs labelled transitions

— More natural, we work modula-conversion, AC

of | and+ and permutation of.

Definition of equivalence: more “declarative”,

context plays an important ro

e.

", \We work on trees, with the redex “on” the term.
Interactions between the term and the context are

built more deterministically.

Simplier definition of equivalence.

Mobile Computing — p. 21

| ate variant

We have seen agarly operational semantics:

PrYWp 0%
(INP) (

a(aj).Pag)P{va} P|Q—P|Q

COMM)

Mobile Computing — p. 22

| ate variant

We have seen agarly operational semantics:

PrYWp 0%
e (INP) — —(comMwm)
a(x).P — P{r — v} Pl|Q—P|Q

We can actually differ the application of substitution:

PP QRQ

a(x) P’Q;P/{ Hb}’Q/(
a(x).P — P L

COMM)

Mobile Computing — p. 22

| ate variant

Definition A symmetrical relatiork is a late
bisimulation iff, whenevelPR():

. if pY P’, there is a process’ such that

Q (@) Q' and, for allp,
P{x— b} R Q{x — b};

. if P 5 P’ whereu is not an input, usual
definition.

Mobile Computing — p. 23

| ate variant

Definition A symmetrical relatiork is a late
bisimulation iff, whenevelPR():

. if pY P’, there is a process’ such that

Q (@) Q' and, for allp,
P{x— b} R Q{x — b};

. if P 5 P’ whereu is not an input, usual
definition.

Theorem ~;C~

—~
N
~—
N

Counter-example? = x(z) + x

Q=x(2)+x

Z+a(z).[z =yl

Mobile Computing — p. 23

—~
N
~—
N

Proof techniques

P~ Q PR Q P R Q

pol Lp pl Lp pl Lp
P/ ~ Q/ Pl R Ql Pl f(R) Ql
bisimilarity bisimulation bisimulation up-t@

Mobile Computing — p. 24

Proof techniques

P~ Q PR Q P R Q

pol Lp pl Lp pl Lp
P/ ~ Q/ P/ R Ql P/ f(R) Ql
bisimilarity bisimulation bisimulation up-t@

For example, bisimulation up-to bisimilarity:

P R ¢

wl Ly
P ~PRQ ~ @

Reference: D. SangiorgiOn the bisimulation proof
technique’

Mobile Computing — p. 24

Weak transitions

e Two kinds of transitions:
« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation

Mobile Computing — p. 25

Weak transitions

e Two kinds of transitions:
« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation

 |dea: ignore the internal transitions
— weak equivalences

Mobile Computing — p. 25

Weak transitions

e Two kinds of transitions:

« 5 with 4 # 7 and>
 Vvisible transitions and internal transitions

* Interaction with the context and no internal
computation

 |dea: ignore the internal transitions
— weak equivalences

 Definition [weak transitions]
= reflexive and transitive closure of

ﬂ>: > OF = Whenﬂ — 7, 5 otherwise
P& P:P=5=P

Mobile Computing — p. 25

Weak bisimilarity

We play the game of bisimulation, changing the
notion of “step”:

Definition A relation’R is aweak bisimulation Iff,
wheneverPRQ andP & P/, there is a process

@)’ such thaty & Q' and P'"RQ’, and
symmetrically for(). Theweak bisimilarity is
written ~.

Mobile Computing — p. 26

Weak bisimilarity

e &~ IS an equivalence relation
o ~(C X

« Some examples of laws:

a.7.P ~ o P
TP ~ P
P+71tP =~ P
a.(P+7.0Q)+a.Q ~ a(P+71.0Q)

 Also a presentation with barbs:

def
In ==ln

Mobile Computing — p. 27

Asynchronousm

Only form of output:ab
P = zy|M|P|P| (ve)P|!P
M = 0|xz(2).P|7.P| M+ M
» More realistic
« Remark:7.P and0 can be encoded

* A choice+ hides some protocol
« \Why no output in sums ?

Mobile Computing — p. 28

Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

Mobile Computing — p. 29

Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

. If P24 P/ thenP = zy | P’

Mobile Computing — p. 29

Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)
. If P2 P thenP = zy | P’

c1f P Y P thenP = (vy)(zy | P')

Mobile Computing — p. 29

Asynchrony

No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

if P24 P/ thenP = zy | P’
z(y)

« If P — P, thenP = (vy)(zy | P')

if P24 P thenP 4 2%= P’ (confluence)

Mobile Computing — p. 29

Asynchrony

» No continuation for outputs, but there can be
some causality relations:

(vy,z)(@y | yz | Za | R) withy,z ¢ fn(R)

if P24 P/ thenP = zy | P’
Z(y)

« If P — P, thenP = (vy)(zy | P')

if P24 P thenP 4 2%= P’ (confluence)

it P 24" prwith w ¢ fn(P), then
P == P{w ~ y}

Mobile Computing — p. 29

Asynchrony

Theorem The notions of early and late bisimulations
coincide in asynchronous-calculus. Moreover,
these are congruences.

= a simpler theory, easier proofs...

Mobile Computing — p. 30

Encodings

Notation: encoding of: | P]

Interest:
« to compare models, programming paradigms and
idioms
* to study the expressive power of a construction
and subfragments of a language

Mobile Computing — p. 31

Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

Mobile Computing — p. 32

Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

« This makes sense only wh¢R| andP are in a
same language. Often, we usdencoding a
construction into a smaller language).

Mobile Computing — p. 32

Encodings

- We want to show something likeP.P < | P]|
where= Is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

« This makes sense only wh¢R| andP are in a
same language. Often, we usdencoding a
construction into a smaller language).

» Otherwise, we might want to provall
abstraction:
P1><P2 Iff [[Pl]]X[[PQ]]

(allows to compare encodings from one language
iInto another)

Mobile Computing — p. 32

Encodings

Otherwise, we shall prove at leasierational
correspondence:

. If P — P',then[P] — [P'].

« If [P] — @, thenthereis a process such that
P — P'and@Q = [PF'].

(one-to-one version)

Mobile Computing — p. 33

Encodings

Otherwise, we shall prove at leasierational
correspondence:

« If P — P/, then|P] = [P].

« If [P] = @, then there is a proces3 such that
P — P'and@ = [PF'].

(weak version)

Mobile Computing — p. 33

Encodings

Otherwise, we shall prove at leasierational
correspondence:

e If P — P, then|P| == |F'].

« If [P] = @, then there is a proce$3 such that
P — P'and@ =~ [P'].

(weak version up-to bisimilarity)

Mobile Computing — p. 33

Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

Mobile Computing — p. 34

Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@fv,t) | t.P) | a(z,r).(Q | T)

Mobile Computing — p. 34

Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@v,t) | t.P) | a(z,r).(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().

Mobile Computing — p. 34

Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(@v,t) | t.P) | a(z,r).(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().
o &7

Mobile Computing — p. 34

Encoding synchronousr

How should we represeat. P | a(x).Q) in
asynchronous-calculus ?

(vt)(afv,t) | t.P) | a(z,7)(Q | T)
« One can show thgtP] ~ |Q] impliesP =~ ().
o &7
Take A Gv.av andB < av | av
We haveA ~ B, but:

[A] (vt1, to)(afv, t1) | t1.(a(v, t2) | t2))
and [B] (vt1) (@, t1) | t1) | (vE2)(@(v, t2) | t2)

Mobile Computing — p. 34

Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).

Mobile Computing — p. 35

Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).

 Because of mixed choice
a(z).P + bv.Q

* Proof: impossible to resolve the problem of chief
election in a symmetrical network.

Mobile Computing — p. 35

Asynchronousm

Palamidessi, 1997

» Impossible to encode synchronaoumto
asynchronous (with areasonable encoding).

» Because of mixed choice
a(z).P + bv.Q
* Proof: impossible to resolve the problem of chief

election in a symmetrical network.

» “Reasonable” means:
compositional [P|Q] = | P]||Q], |Pc| = [P]o)
preserving divergence

» one of the very few non-expressivity result

Mobile Computing — p. 35

M-calculus

Terms:
M=z | e M| (MM

#-reduction:

(Ax.M) N - M{z+— N}

Mobile Computing — p. 36

M-calculus

Terms:
M=z | e M| (MM
g-reduction:

(Ax.M) N - M{z+— N}

Encoding the\-calculus intorr, iIdeas:

« A A-term M is represented by aterm | M |
located inp: [M],.

» Application Is represented with parallel
composition.

Mobile Computing — p. 36

Encoding the A-calculus

DaM], = (vy)pyly(e, q).[M],

[[5’7:19 = pT

[M N, (vg)(IM], | g(v).

Mobile Computing — p. 37

Encoding the A-calculus

DaM], = (vy)pyly(e, q).[M],

def _
[[ﬂp = px

[M N, € (we)([M], | q(v).

(vr)([NT- | r(v").0(", p)))
» [M], sends the value o¥/ onp

* For a function, we send its address;
it is consulted by sending a value and a return
channel.

Mobile Computing — p. 37

	Reminder -- Syntax
	Operational Semantics
	Equivalence of processes
	Equivalence of processes

	Traces
	Traces

	Compositionality
	Compositionality
	Compositionality

	Barbs
	Bisimularity
	Bisimularity
	Bisimularity

	Example
	Example

	Contexts
	Contexts

	Barbed congruence
	Barbed congruence
	Barbed congruence
	Barbed congruence

	Some general laws
	Summary
	Labelled transition system
	Operational semantics 1
	Operational semantics 1

	Operational semantics 2
	Operational semantics 2

	Example...
	Bisimilarity -- again
	Bisimilarity -- again
	Bisimilarity -- again
	Bisimilarity -- again

	Example
	Comparing the definitions
	Comparing the definitions

	Chimic vs labelled transitions
	Late variant
	Late variant

	Late variant
	Late variant

	Proof techniques
	Proof techniques

	Weak transitions
	Weak transitions
	Weak transitions

	Weak bisimilarity
	Weak bisimilarity
	Asynchronous $pi $
	Asynchrony
	Asynchrony
	Asynchrony
	Asynchrony
	Asynchrony

	Asynchrony
	Encodings
	Encodings
	Encodings
	Encodings

	Encodings
	Encodings
	Encodings

	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $

	Asynchronous $pi $
	Asynchronous $pi $
	Asynchronous $pi $

	$lambda $-calculus
	$lambda $-calculus

	Encoding the $lambda $-calculus
	Encoding the $lambda $-calculus

