
Mobile Computing

The π-calculus - Equational theory

Pascal Zimmer
pzimmer@daimi.au.dk

BRICS

Mobile Computing – p. 1

Reminder – Syntax

P ::= 0

| a(x).P

| āx.P

| P1 | P2

| (νa)P

| !P

| P + Q

Mobile Computing – p. 2

Operational Semantics

(M + x(y).P) | (N + x̄z.Q) → P{y 7→ z} | Q
(Com)

P → P ′

P | Q → P ′ | Q
(Par)

P → P ′

(νx)P → (νx)P ′
(Res)

Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′
(Struct)

Mobile Computing – p. 3

Equivalence of processes

• A sequential system is a function:
inputs→ outputs

• Two functions are equivalent iff their outputs are
identical for every input.

Mobile Computing – p. 4

Equivalence of processes

• A sequential system is a function:
inputs→ outputs

• Two functions are equivalent iff their outputs are
identical for every input.

• A parallel system may not be deterministic.
• A parallel system may not terminate.

Mobile Computing – p. 4

Traces

P
a
→ P1

τ
→ P2

...
→ . . .

is a trace ofP
•

a
→: synchronization on channela (for example
āv | a(x).P)

•
τ
→: synchronization on an internal private
channel (for example(νa)(āv | a(x).P))

Mobile Computing – p. 5

Traces

P
a
→ P1

τ
→ P2

...
→ . . .

is a trace ofP
•

a
→: synchronization on channela (for example
āv | a(x).P)

•
τ
→: synchronization on an internal private
channel (for example(νa)(āv | a(x).P))

• (informal)P equivalent toQ: same set of traces
(maybe infinite)

Mobile Computing – p. 5

Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

P = 2 krones.(tea + coffee)

P ′ = (2 krones.tea) + (2 krones + coffee)

C = 2 krones . coffee

Mobile Computing – p. 6

Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

• P andP ′ accept the same language
• P |C andP ′|C do not accept the same language

Mobile Computing – p. 6

Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

• P andP ′ accept the same language
• P |C andP ′|C do not accept the same language
• ⇒ trace equivalence is not compositional

Mobile Computing – p. 6

Barbs

• Instead of looking at what happens, let’s see what
we are able to do (intensionality)

• Observing a state:P ↓ η if P contains a toplevel
visible prefix whose subject isη (eithera or ā)

• Remark:P ↓ a can be defined as

P ≡ (ν~n)((a(x).P ′ + M) | Q)

for some~n, P ′,M andQ such thata /∈ ~n

Mobile Computing – p. 7

Bisimularity

Definition [Barbed bisimulation] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.

Mobile Computing – p. 8

Bisimularity

Definition [Barbed bisimulation] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.

Definition [Barbed bisimilarity] Thebarbed
bisimilarity is the greatest barbed bisimulation.
We writeP

.
∼ Q.

Proposition .
∼ is an equivalence relation.

Mobile Computing – p. 8

Bisimularity

Definition [Barbed bisimulation] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.

Definition [Barbed bisimilarity] Thebarbed
bisimilarity is the greatest barbed bisimulation.
We writeP

.
∼ Q.

Proposition .
∼ is an equivalence relation.

Remark: to proveP
.
∼ Q, find one bisimulationR

such thatPRQ.

Mobile Computing – p. 8

Example

Let:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄b),

(P,Q) / P ≡ (νz)(0 | x̄a), Q ≡ x̄b}

R is a barbed bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w)
.
∼ τ.x̄b

Mobile Computing – p. 9

Example

Let:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄b),

(P,Q) / P ≡ (νz)(0 | x̄a), Q ≡ x̄b}

R is a barbed bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w)
.
∼ τ.x̄b

.
∼ is quite weak... and still not compositional !

Mobile Computing – p. 9

Contexts

• A context is a term with ahole, written [].

C ::= 0 | a(x).C | āx.C | (C1|C2)

| (νa)C | !C | C1 + C2 | []

• C[P] is the process obtained by replacing the
hole[] with P .

Mobile Computing – p. 10

Contexts

• A context is a term with ahole, written [].

C ::= 0 | a(x).C | āx.C | (C1|C2)

| (νa)C | !C | C1 + C2 | []

• C[P] is the process obtained by replacing the
hole[] with P .

• Non-receptive context: no occurrence of[] under
an input prefix.

Mobile Computing – p. 10

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Mobile Computing – p. 11

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄

Mobile Computing – p. 11

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄

but
z̄ | a 'C z̄.a + a.z̄ + [z = a]τ

Mobile Computing – p. 11

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄

but
z̄ | a 'C z̄.a + a.z̄ + [z = a]τ

Characterization
P ' Q iff for any R, P | R

.
∼ Q | R.

Mobile Computing – p. 11

Some general laws

• Restriction

(νa)(a(x).P) 'C
0

(νx)(x(y).P | w̄z.Q) 'C w̄z.(νx)(x(y).P | Q)

if x 6= w andx 6= z.

• Replication



































!(P | Q) 'C !P | !Q

!!P 'C !P

!(P + Q) 'C!(P | Q)

![a = b]P 'C [a = b]!P

!η.P 6'C η.!P, η prefix
!(νx)P 6'C (νx)!P

Mobile Computing – p. 12

Summary

We have defined an equivalence:
• with good properties, including compositionality
• describingbehaviours
• relying onobservations (P ↓ η)

Mobile Computing – p. 13

Labelled transition system

• Changing the point of view: we now consider the
interactions with the environment.

• Three kinds of transition:















P
a(b)
→ Q

P
āb
→ Q,P

ā(b)
→ Q

P
τ
→ Q

• names:n(µ)

bound names:
bn(ā(b)) = {b}

bn(µ) = ∅ otherwise

Mobile Computing – p. 14

Operational semantics 1

āb.P
āb
→ P

(OUT)

a(x).P
a(v)
→ P{x 7→ v}

(INP)

P
a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

Mobile Computing – p. 15

Operational semantics 1

āb.P
āb
→ P

(OUT)

a(x).P
a(v)
→ P{x 7→ v}

(INP)

P
a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

P
µ
→ P ′

P | Q
µ
→ P ′ | Q

(PAR) bn(µ) ∩ fn(Q) = ∅

P
µ
→ P ′

P + Q
µ
→ P ′

(SUM) + symmetrical rules !

Mobile Computing – p. 15

Operational semantics 2

!P | P
µ
→ P ′

!P
µ
→ P ′

(BANG)

P
µ
→ P ′

(νa)P
µ
→ (νa)P ′

(RES) a /∈ n(µ)

Mobile Computing – p. 16

Operational semantics 2

!P | P
µ
→ P ′

!P
µ
→ P ′

(BANG)

P
µ
→ P ′

(νa)P
µ
→ (νa)P ′

(RES) a /∈ n(µ)

P
āb
→ P ′

(νb)P
ā(b)
→ P ′

(OPEN) a 6= b

P
a(b)
→ P ′ Q

ā(b)
→ Q′

P | Q
τ
→ (νb)(P ′ | Q′)

(CLOSE)

Mobile Computing – p. 16

Example...

Mobile Computing – p. 17

Bisimilarity – again

Definition [Bisimulation] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Mobile Computing – p. 18

Bisimilarity – again

Definition [Bisimulation] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity] The bisimilarity, written
∼, is the greatest bisimulation.

Mobile Computing – p. 18

Bisimilarity – again

Definition [Bisimulation] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity] The bisimilarity, written
∼, is the greatest bisimulation.

Definition [Full bisimilarity] P ∼C Q iff Pσ ∼ Qσ
for any substitutionσ.

Mobile Computing – p. 18

Bisimilarity – again

Definition [Bisimulation] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity] The bisimilarity, written
∼, is the greatest bisimulation.

Definition [Full bisimilarity] P ∼C Q iff Pσ ∼ Qσ
for any substitutionσ.

Remark:∼ implies trace equivalence.

Mobile Computing – p. 18

Example

Let’s consider:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄a),

((νz)(0 | x̄a), x̄a),

((νz)(0 | 0),0)}

R is a bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w) ∼ τ.x̄a

⇒ smaller relationR

Mobile Computing – p. 19

Comparing the definitions

Theorem
P ' Q iff P ∼ Q, andP 'C Q iff P ∼C Q.

Mobile Computing – p. 20

Comparing the definitions

Theorem
P ' Q iff P ∼ Q, andP 'C Q iff P ∼C Q.

Remarks:
• ∼ can be seen as a proof technique for'

• ∼ allows toderive the laws for≡ (structure→
behaviour)

Mobile Computing – p. 20

Chimic vs labelled transitions

→ More natural, we work moduloα-conversion, AC
of | and+ and permutation ofν.
Definition of equivalence: more “declarative”,
context plays an important role.

µ
→ We work on trees, with the redex “on” the term.

Interactions between the term and the context are
built more deterministically.
Simplier definition of equivalence.

Mobile Computing – p. 21

Late variant

We have seen anearly operational semantics:

a(x).P
a(v)
→ P{x 7→ v}

(INP)
P

a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

Mobile Computing – p. 22

Late variant

We have seen anearly operational semantics:

a(x).P
a(v)
→ P{x 7→ v}

(INP)
P

a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

We can actually differ the application of substitution:

a(x).P
a(x)
→ P

(INP)
P

a(x)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′{x 7→ b} | Q′

(COMM)

Mobile Computing – p. 22

Late variant

Definition A symmetrical relationR is a late
bisimulation iff, wheneverPRQ:

• if P
a(x)
→ P ′, there is a processQ′ such that

Q
a(x)
→ Q′ and, for allb,

P ′{x 7→ b} R Q′{x 7→ b};

• if P
µ
→ P ′ whereµ is not an input, usual

definition.

Mobile Computing – p. 23

Late variant

Definition A symmetrical relationR is a late
bisimulation iff, wheneverPRQ:

• if P
a(x)
→ P ′, there is a processQ′ such that

Q
a(x)
→ Q′ and, for allb,

P ′{x 7→ b} R Q′{x 7→ b};

• if P
µ
→ P ′ whereµ is not an input, usual

definition.

Theorem ∼l(∼

Counter-example:P = x(z) + x(z).z̄

Q = x(z) + x(z).z̄ + x(z).[z = y]z̄
Mobile Computing – p. 23

Proof techniques

P ∼ Q P R Q P R Q

µ ↓ ↓ µ µ ↓ ↓ µ µ ↓ ↓ µ

P ′ ∼ Q′ P ′ R Q′ P ′ F(R) Q′

bisimilarity bisimulation bisimulation up-toF

Mobile Computing – p. 24

Proof techniques

P ∼ Q P R Q P R Q

µ ↓ ↓ µ µ ↓ ↓ µ µ ↓ ↓ µ

P ′ ∼ Q′ P ′ R Q′ P ′ F(R) Q′

bisimilarity bisimulation bisimulation up-toF

For example, bisimulation up-to bisimilarity:

P R Q

µ ↓ ↓ µ

P ′ ∼ P1 R Q1 ∼ Q′

Reference: D. Sangiorgi, “On the bisimulation proof
technique”

Mobile Computing – p. 24

Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation

Mobile Computing – p. 25

Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation
• Idea: ignore the internal transitions
→ weak equivalences

Mobile Computing – p. 25

Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation
• Idea: ignore the internal transitions
→ weak equivalences

• Definition [weak transitions]
⇒: reflexive and transitive closure of

τ
→

µ̂
→:

τ
→ or = whenµ = τ ,

µ
→ otherwise

P
µ̂
⇒ P ′: P ⇒

µ̂
→⇒ P ′

Mobile Computing – p. 25

Weak bisimilarity

We play the game of bisimulation, changing the
notion of “step”:

Definition A relationR is aweak bisimulation iff,

wheneverPRQ andP
µ̂
⇒ P ′, there is a process

Q′ such thatQ
µ̂
⇒ Q′ andP ′RQ′, and

symmetrically forQ. Theweak bisimilarity is
written≈.

Mobile Computing – p. 26

Weak bisimilarity

• ≈ is an equivalence relation
• ∼⊆≈

• Some examples of laws:

α.τ.P ≈ α.P

τ.P ≈ P

P + τ.P ≈ P

α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

• Also a presentation with barbs:

⇓ η
def
= ⇒↓ η

Mobile Computing – p. 27

Asynchronousπ

Only form of output:āb

P ::= x̄y | M | P1|P2 | (νx)P | !P

M ::= 0 | x(z).P | τ.P | M + M ′

• More realistic
• Remark:τ.P and0 can be encoded
• A choice+ hides some protocol
• Why no output in sums ?

Mobile Computing – p. 28

Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

Mobile Computing – p. 29

Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

Mobile Computing – p. 29

Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)

Mobile Computing – p. 29

Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)

• If P
x̄y
→

µ
→ P ′, thenP

µ
→

x̄y
→≡ P ′ (confluence)

Mobile Computing – p. 29

Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)

• If P
x̄y
→

µ
→ P ′, thenP

µ
→

x̄y
→≡ P ′ (confluence)

• If P
x̄y
→

x(w)
→ P ′ with w /∈ fn(P), then

P
τ
→≡ P ′{w 7→ y}

Mobile Computing – p. 29

Asynchrony

Theorem The notions of early and late bisimulations
coincide in asynchronousπ-calculus. Moreover,
these are congruences.

⇒ a simpler theory, easier proofs...

Mobile Computing – p. 30

Encodings

Notation: encoding ofP : [[P]]

Interest:
• to compare models, programming paradigms and

idioms
• to study the expressive power of a construction

and subfragments of a language

Mobile Computing – p. 31

Encodings

• We want to show something like∀P.P � [[P]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

Mobile Computing – p. 32

Encodings

• We want to show something like∀P.P � [[P]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

• This makes sense only when[[P]] andP are in a
same language. Often, we use≈ (encoding a
construction into a smaller language).

Mobile Computing – p. 32

Encodings

• We want to show something like∀P.P � [[P]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

• This makes sense only when[[P]] andP are in a
same language. Often, we use≈ (encoding a
construction into a smaller language).

• Otherwise, we might want to provefull
abstraction:

P1 � P2 iff [[P1]] � [[P2]]

(allows to compare encodings from one language
into another)

Mobile Computing – p. 32

Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P]] → [[P ′]].
• If [[P]] → Q, then there is a processP ′ such that

P → P ′ andQ ≡ [[P ′]].

(one-to-one version)

Mobile Computing – p. 33

Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P]] ⇒ [[P ′]].
• If [[P]] ⇒ Q, then there is a processP ′ such that

P → P ′ andQ ≡ [[P ′]].

(weak version)

Mobile Computing – p. 33

Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P]] ⇒≈ [[P ′]].
• If [[P]] ⇒ Q, then there is a processP ′ such that

P → P ′ andQ ≈ [[P ′]].

(weak version up-to bisimilarity)

Mobile Computing – p. 33

Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

Mobile Computing – p. 34

Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P) | a(x, r).(Q | r̄)

Mobile Computing – p. 34

Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P) | a(x, r).(Q | r̄)

• One can show that[[P]] ≈ [[Q]] impliesP ≈ Q.

Mobile Computing – p. 34

Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P) | a(x, r).(Q | r̄)

• One can show that[[P]] ≈ [[Q]] impliesP ≈ Q.
• ⇐??

Mobile Computing – p. 34

Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P) | a(x, r).(Q | r̄)

• One can show that[[P]] ≈ [[Q]] impliesP ≈ Q.
• ⇐??

TakeA
def
= āv.āv andB

def
= āv | āv

We haveA ∼ B, but:
[[A]] ≡ (νt1, t2)(ā〈v, t1〉 | t1.(ā〈v, t2〉 | t2))

and [[B]] ≡ (νt1)(ā〈v, t1〉 | t1) | (νt2)(ā〈v, t2〉 | t2)

Mobile Computing – p. 34

Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).

Mobile Computing – p. 35

Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).

• Because of mixed choice

a(x).P + b̄v.Q

• Proof: impossible to resolve the problem of chief
election in a symmetrical network.

Mobile Computing – p. 35

Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).

• Because of mixed choice

a(x).P + b̄v.Q

• Proof: impossible to resolve the problem of chief
election in a symmetrical network.

• “Reasonable” means:
compositional ([[P |Q]] = [[P]]|[[Q]], [[Pσ]] = [[P]]σ)
preserving divergence

• one of the very few non-expressivity result

Mobile Computing – p. 35

λ-calculus

Terms:
M ::= x | λx.M | (M M ′)

β-reduction:

(λx.M) N → M{x 7→ N}

Mobile Computing – p. 36

λ-calculus

Terms:
M ::= x | λx.M | (M M ′)

β-reduction:

(λx.M) N → M{x 7→ N}

Encoding theλ-calculus intoπ, ideas:
• A λ-termM is represented by aπ-term[[M]]

located inp: [[M]]p.
• Application is represented with parallel

composition.

Mobile Computing – p. 36

Encoding theλ-calculus

[[λx.M]]p
def
= (νy)p̄y.!y(x, q).[[M]]q

[[x]]p
def
= p̄x

[[M N]]p
def
= (νq)([[M]]q | q(v).

(νr)([[N]]r | r(v
′).v̄〈v′, p〉))

Mobile Computing – p. 37

Encoding theλ-calculus

[[λx.M]]p
def
= (νy)p̄y.!y(x, q).[[M]]q

[[x]]p
def
= p̄x

[[M N]]p
def
= (νq)([[M]]q | q(v).

(νr)([[N]]r | r(v
′).v̄〈v′, p〉))

• [[M]]p sends the value ofM onp

• For a function, we send its address;
it is consulted by sending a value and a return
channel.

Mobile Computing – p. 37

	Reminder -- Syntax
	Operational Semantics
	Equivalence of processes
	Equivalence of processes

	Traces
	Traces

	Compositionality
	Compositionality
	Compositionality

	Barbs
	Bisimularity
	Bisimularity
	Bisimularity

	Example
	Example

	Contexts
	Contexts

	Barbed congruence
	Barbed congruence
	Barbed congruence
	Barbed congruence

	Some general laws
	Summary
	Labelled transition system
	Operational semantics 1
	Operational semantics 1

	Operational semantics 2
	Operational semantics 2

	Example...
	Bisimilarity -- again
	Bisimilarity -- again
	Bisimilarity -- again
	Bisimilarity -- again

	Example
	Comparing the definitions
	Comparing the definitions

	Chimic vs labelled transitions
	Late variant
	Late variant

	Late variant
	Late variant

	Proof techniques
	Proof techniques

	Weak transitions
	Weak transitions
	Weak transitions

	Weak bisimilarity
	Weak bisimilarity
	Asynchronous $pi $
	Asynchrony
	Asynchrony
	Asynchrony
	Asynchrony
	Asynchrony

	Asynchrony
	Encodings
	Encodings
	Encodings
	Encodings

	Encodings
	Encodings
	Encodings

	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $
	Encoding synchronous $pi $

	Asynchronous $pi $
	Asynchronous $pi $
	Asynchronous $pi $

	$lambda $-calculus
	$lambda $-calculus

	Encoding the $lambda $-calculus
	Encoding the $lambda $-calculus

