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Reminder – Syntax

P ::= 0

| a(x).P

| āx.P

| P1 | P2

| (νa)P

| !P

| P + Q
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Operational Semantics

(M + x(y).P ) | (N + x̄z.Q) → P{y 7→ z} | Q
(Com)

P → P ′

P | Q → P ′ | Q
(Par)

P → P ′

(νx)P → (νx)P ′
(Res)

Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′
(Struct)
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Equivalence of processes

• A sequential system is a function:
inputs→ outputs

• Two functions are equivalent iff their outputs are
identical for every input.
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Equivalence of processes

• A sequential system is a function:
inputs→ outputs

• Two functions are equivalent iff their outputs are
identical for every input.

• A parallel system may not be deterministic.
• A parallel system may not terminate.
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Traces

P
a
→ P1

τ
→ P2

...
→ . . .

is a trace ofP
•

a
→: synchronization on channela (for example
āv | a(x).P )

•
τ
→: synchronization on an internal private
channel (for example(νa)(āv | a(x).P ) )
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Traces

P
a
→ P1

τ
→ P2

...
→ . . .

is a trace ofP
•

a
→: synchronization on channela (for example
āv | a(x).P )

•
τ
→: synchronization on an internal private
channel (for example(νa)(āv | a(x).P ) )

• (informal)P equivalent toQ: same set of traces
(maybe infinite)
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Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

P = 2 krones.(tea + coffee)

P ′ = (2 krones.tea) + (2 krones + coffee)

C = 2 krones . coffee
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Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

• P andP ′ accept the same language
• P |C andP ′|C do not accept the same language
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Compositionality
Two coffee machines and a consumer:

2 krones 2 krones

tea coffee
coffeetea

2 krones 2 krones

coffee

P’ CP

• P andP ′ accept the same language
• P |C andP ′|C do not accept the same language
• ⇒ trace equivalence is not compositional
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Barbs

• Instead of looking at what happens, let’s see what
we are able to do (intensionality)

• Observing a state:P ↓ η if P contains a toplevel
visible prefix whose subject isη (eithera or ā)

• Remark:P ↓ a can be defined as

P ≡ (ν~n)((a(x).P ′ + M) | Q)

for some~n, P ′,M andQ such thata /∈ ~n
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Bisimularity

Definition [Barbed bisimulation ] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.
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Bisimularity

Definition [Barbed bisimulation ] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.

Definition [Barbed bisimilarity ] Thebarbed
bisimilarity is the greatest barbed bisimulation.
We writeP

.
∼ Q.

Proposition .
∼ is an equivalence relation.

Mobile Computing – p. 8



Bisimularity

Definition [Barbed bisimulation ] A relationR is a
barbed bisimulation iff PRQ implies
(∀η.P ↓ η ⇒ Q ↓ η) and, for anyP ′ such that
P → P ′, there is a processQ′ such thatQ → Q′

andP ′RQ′, and symmetrically forQ.

Definition [Barbed bisimilarity ] Thebarbed
bisimilarity is the greatest barbed bisimulation.
We writeP

.
∼ Q.

Proposition .
∼ is an equivalence relation.

Remark: to proveP
.
∼ Q, find one bisimulationR

such thatPRQ.
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Example

Let:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄b),

(P,Q) / P ≡ (νz)(0 | x̄a), Q ≡ x̄b}

R is a barbed bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w)
.
∼ τ.x̄b
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Example

Let:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄b),

(P,Q) / P ≡ (νz)(0 | x̄a), Q ≡ x̄b}

R is a barbed bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w)
.
∼ τ.x̄b

.
∼ is quite weak... and still not compositional !
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Contexts

• A context is a term with ahole, written [].

C ::= 0 | a(x).C | āx.C | (C1|C2)

| (νa)C | !C | C1 + C2 | []

• C[P ] is the process obtained by replacing the
hole[] with P .
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Contexts

• A context is a term with ahole, written [].

C ::= 0 | a(x).C | āx.C | (C1|C2)

| (νa)C | !C | C1 + C2 | []

• C[P ] is the process obtained by replacing the
hole[] with P .

• Non-receptive context: no occurrence of[] under
an input prefix.
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Barbed congruence

Definition [Barbed congruence and equivalence ]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.
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Barbed congruence

Definition [Barbed congruence and equivalence ]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄
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Barbed congruence

Definition [Barbed congruence and equivalence ]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄

but
z̄ | a 'C z̄.a + a.z̄ + [z = a]τ
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Barbed congruence

Definition [Barbed congruence and equivalence ]
The barbed congruence (resp. barbed
equivalence), written'C (resp.'), is the greatest
congruence (resp. non-receptive congruence)
included in

.
∼.

Example z̄ | a
'

6'C z̄.a + a.z̄

but
z̄ | a 'C z̄.a + a.z̄ + [z = a]τ

Characterization
P ' Q iff for any R, P | R

.
∼ Q | R.
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Some general laws

• Restriction

(νa)(a(x).P ) 'C
0

(νx)(x(y).P | w̄z.Q) 'C w̄z.(νx)(x(y).P | Q)

if x 6= w andx 6= z.

• Replication



































!(P | Q) 'C !P | !Q

!!P 'C !P

!(P + Q) 'C!(P | Q)

![a = b]P 'C [a = b]!P

!η.P 6'C η.!P, η prefix
!(νx)P 6'C (νx)!P
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Summary

We have defined an equivalence:
• with good properties, including compositionality
• describingbehaviours
• relying onobservations (P ↓ η)
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Labelled transition system

• Changing the point of view: we now consider the
interactions with the environment.

• Three kinds of transition:















P
a(b)
→ Q

P
āb
→ Q,P

ā(b)
→ Q

P
τ
→ Q

• names:n(µ)

bound names:
bn(ā(b)) = {b}

bn(µ) = ∅ otherwise
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Operational semantics 1

āb.P
āb
→ P

(OUT)

a(x).P
a(v)
→ P{x 7→ v}

(INP)

P
a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)
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Operational semantics 1

āb.P
āb
→ P

(OUT)

a(x).P
a(v)
→ P{x 7→ v}

(INP)

P
a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

P
µ
→ P ′

P | Q
µ
→ P ′ | Q

(PAR) bn(µ) ∩ fn(Q) = ∅

P
µ
→ P ′

P + Q
µ
→ P ′

(SUM) + symmetrical rules !
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Operational semantics 2

!P | P
µ
→ P ′

!P
µ
→ P ′

(BANG)

P
µ
→ P ′

(νa)P
µ
→ (νa)P ′

(RES) a /∈ n(µ)

Mobile Computing – p. 16



Operational semantics 2

!P | P
µ
→ P ′

!P
µ
→ P ′

(BANG)

P
µ
→ P ′

(νa)P
µ
→ (νa)P ′

(RES) a /∈ n(µ)

P
āb
→ P ′

(νb)P
ā(b)
→ P ′

(OPEN) a 6= b

P
a(b)
→ P ′ Q

ā(b)
→ Q′

P | Q
τ
→ (νb)(P ′ | Q′)

(CLOSE)
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Example...
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Bisimilarity – again

Definition [Bisimulation ] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.
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Bisimilarity – again

Definition [Bisimulation ] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity ] The bisimilarity, written
∼, is the greatest bisimulation.

Mobile Computing – p. 18



Bisimilarity – again

Definition [Bisimulation ] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity ] The bisimilarity, written
∼, is the greatest bisimulation.

Definition [Full bisimilarity ] P ∼C Q iff Pσ ∼ Qσ
for any substitutionσ.
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Bisimilarity – again

Definition [Bisimulation ] A relationR is a
bisimulation iff, wheneverPRQ andP

µ
→ P ′,

there is a processQ′ such thatQ
µ
→ Q′ and

P ′RQ′, and symmetrically forQ.

Definition [Bisimilarity ] The bisimilarity, written
∼, is the greatest bisimulation.

Definition [Full bisimilarity ] P ∼C Q iff Pσ ∼ Qσ
for any substitutionσ.

Remark:∼ implies trace equivalence.
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Example

Let’s consider:

R = { ((νz)(z̄a | z(w).x̄w), τ.x̄a),

((νz)(0 | x̄a), x̄a),

((νz)(0 | 0),0)}

R is a bisimulation, thus in particular:

(νz)(z̄a | z(w).x̄w) ∼ τ.x̄a

⇒ smaller relationR
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Comparing the definitions

Theorem
P ' Q iff P ∼ Q, andP 'C Q iff P ∼C Q.
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Comparing the definitions

Theorem
P ' Q iff P ∼ Q, andP 'C Q iff P ∼C Q.

Remarks:
• ∼ can be seen as a proof technique for'

• ∼ allows toderive the laws for≡ (structure→
behaviour)
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Chimic vs labelled transitions

→ More natural, we work moduloα-conversion, AC
of | and+ and permutation ofν.
Definition of equivalence: more “declarative”,
context plays an important role.

µ
→ We work on trees, with the redex “on” the term.

Interactions between the term and the context are
built more deterministically.
Simplier definition of equivalence.
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Late variant

We have seen anearly operational semantics:

a(x).P
a(v)
→ P{x 7→ v}

(INP)
P

a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)
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Late variant

We have seen anearly operational semantics:

a(x).P
a(v)
→ P{x 7→ v}

(INP)
P

a(b)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′ | Q′

(COMM)

We can actually differ the application of substitution:

a(x).P
a(x)
→ P

(INP)
P

a(x)
→ P ′ Q

āb
→ Q′

P | Q
τ
→ P ′{x 7→ b} | Q′

(COMM)
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Late variant

Definition A symmetrical relationR is a late
bisimulation iff, wheneverPRQ:

• if P
a(x)
→ P ′, there is a processQ′ such that

Q
a(x)
→ Q′ and, for allb,

P ′{x 7→ b} R Q′{x 7→ b};

• if P
µ
→ P ′ whereµ is not an input, usual

definition.
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Late variant

Definition A symmetrical relationR is a late
bisimulation iff, wheneverPRQ:

• if P
a(x)
→ P ′, there is a processQ′ such that

Q
a(x)
→ Q′ and, for allb,

P ′{x 7→ b} R Q′{x 7→ b};

• if P
µ
→ P ′ whereµ is not an input, usual

definition.

Theorem ∼l(∼

Counter-example:P = x(z) + x(z).z̄

Q = x(z) + x(z).z̄ + x(z).[z = y]z̄
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Proof techniques

P ∼ Q P R Q P R Q

µ ↓ ↓ µ µ ↓ ↓ µ µ ↓ ↓ µ

P ′ ∼ Q′ P ′ R Q′ P ′ F(R) Q′

bisimilarity bisimulation bisimulation up-toF
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Proof techniques

P ∼ Q P R Q P R Q

µ ↓ ↓ µ µ ↓ ↓ µ µ ↓ ↓ µ

P ′ ∼ Q′ P ′ R Q′ P ′ F(R) Q′

bisimilarity bisimulation bisimulation up-toF

For example, bisimulation up-to bisimilarity:

P R Q

µ ↓ ↓ µ

P ′ ∼ P1 R Q1 ∼ Q′

Reference: D. Sangiorgi, “On the bisimulation proof
technique”
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Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation
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Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation
• Idea: ignore the internal transitions
→ weak equivalences
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Weak transitions

• Two kinds of transitions:
•

µ
→ with µ 6= τ and

τ
→

• visible transitions and internal transitions
• interaction with the context and no internal

computation
• Idea: ignore the internal transitions
→ weak equivalences

• Definition [weak transitions]
⇒: reflexive and transitive closure of

τ
→

µ̂
→:

τ
→ or = whenµ = τ ,

µ
→ otherwise

P
µ̂
⇒ P ′: P ⇒

µ̂
→⇒ P ′
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Weak bisimilarity

We play the game of bisimulation, changing the
notion of “step”:

Definition A relationR is aweak bisimulation iff,

wheneverPRQ andP
µ̂
⇒ P ′, there is a process

Q′ such thatQ
µ̂
⇒ Q′ andP ′RQ′, and

symmetrically forQ. Theweak bisimilarity is
written≈.
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Weak bisimilarity

• ≈ is an equivalence relation
• ∼⊆≈

• Some examples of laws:

α.τ.P ≈ α.P

τ.P ≈ P

P + τ.P ≈ P

α.(P + τ.Q) + α.Q ≈ α.(P + τ.Q)

• Also a presentation with barbs:

⇓ η
def
= ⇒↓ η
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Asynchronousπ

Only form of output:āb

P ::= x̄y | M | P1|P2 | (νx)P | !P

M ::= 0 | x(z).P | τ.P | M + M ′

• More realistic
• Remark:τ.P and0 can be encoded
• A choice+ hides some protocol
• Why no output in sums ?
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Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)
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Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′
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Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)
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Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)

• If P
x̄y
→

µ
→ P ′, thenP

µ
→

x̄y
→≡ P ′ (confluence)
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Asynchrony

• No continuation for outputs, but there can be
some causality relations:

(νy, z)(x̄y | ȳz | z̄a | R) with y, z /∈ fn(R)

• If P
x̄y
→ P ′, thenP ≡ x̄y | P ′

• If P
x̄(y)
→ P ′, thenP ≡ (νy)(x̄y | P ′)

• If P
x̄y
→

µ
→ P ′, thenP

µ
→

x̄y
→≡ P ′ (confluence)

• If P
x̄y
→

x(w)
→ P ′ with w /∈ fn(P ), then

P
τ
→≡ P ′{w 7→ y}
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Asynchrony

Theorem The notions of early and late bisimulations
coincide in asynchronousπ-calculus. Moreover,
these are congruences.

⇒ a simpler theory, easier proofs...
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Encodings

Notation: encoding ofP : [[P ]]

Interest:
• to compare models, programming paradigms and

idioms
• to study the expressive power of a construction

and subfragments of a language
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Encodings

• We want to show something like∀P.P � [[P ]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).
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Encodings

• We want to show something like∀P.P � [[P ]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

• This makes sense only when[[P ]] andP are in a
same language. Often, we use≈ (encoding a
construction into a smaller language).
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Encodings

• We want to show something like∀P.P � [[P ]]
where� is some notion of equivalence
(weak/strong bisimilarity, trace equivalence...).

• This makes sense only when[[P ]] andP are in a
same language. Often, we use≈ (encoding a
construction into a smaller language).

• Otherwise, we might want to provefull
abstraction:

P1 � P2 iff [[P1]] � [[P2]]

(allows to compare encodings from one language
into another)
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Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P ]] → [[P ′]].
• If [[P ]] → Q, then there is a processP ′ such that

P → P ′ andQ ≡ [[P ′]].

(one-to-one version)
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Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P ]] ⇒ [[P ′]].
• If [[P ]] ⇒ Q, then there is a processP ′ such that

P → P ′ andQ ≡ [[P ′]].

(weak version)
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Encodings

Otherwise, we shall prove at leastoperational
correspondence:

• If P → P ′, then[[P ]] ⇒≈ [[P ′]].
• If [[P ]] ⇒ Q, then there is a processP ′ such that

P → P ′ andQ ≈ [[P ′]].

(weak version up-to bisimilarity)
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Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?
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Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P ) | a(x, r).(Q | r̄)

Mobile Computing – p. 34



Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P ) | a(x, r).(Q | r̄)

• One can show that[[P ]] ≈ [[Q]] impliesP ≈ Q.
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Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P ) | a(x, r).(Q | r̄)

• One can show that[[P ]] ≈ [[Q]] impliesP ≈ Q.
• ⇐??
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Encoding synchronousπ

How should we representāv.P | a(x).Q in
asynchronousπ-calculus ?

(νt)(ā〈v, t〉 | t.P ) | a(x, r).(Q | r̄)

• One can show that[[P ]] ≈ [[Q]] impliesP ≈ Q.
• ⇐??

TakeA
def
= āv.āv andB

def
= āv | āv

We haveA ∼ B, but:
[[A]] ≡ (νt1, t2)(ā〈v, t1〉 | t1.(ā〈v, t2〉 | t2))

and [[B]] ≡ (νt1)(ā〈v, t1〉 | t1) | (νt2)(ā〈v, t2〉 | t2)
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Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).
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Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).

• Because of mixed choice

a(x).P + b̄v.Q

• Proof: impossible to resolve the problem of chief
election in a symmetrical network.
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Asynchronousπ
Palamidessi, 1997

• Impossible to encode synchronousπ into
asynchronousπ (with a reasonable encoding).

• Because of mixed choice

a(x).P + b̄v.Q

• Proof: impossible to resolve the problem of chief
election in a symmetrical network.

• “Reasonable” means:
compositional ([[P |Q]] = [[P ]]|[[Q]], [[Pσ]] = [[P ]]σ)
preserving divergence

• one of the very few non-expressivity result
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λ-calculus

Terms:
M ::= x | λx.M | (M M ′)

β-reduction:

(λx.M) N → M{x 7→ N}

Mobile Computing – p. 36



λ-calculus

Terms:
M ::= x | λx.M | (M M ′)

β-reduction:

(λx.M) N → M{x 7→ N}

Encoding theλ-calculus intoπ, ideas:
• A λ-termM is represented by aπ-term[[M ]]

located inp: [[M ]]p.
• Application is represented with parallel

composition.
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Encoding theλ-calculus

[[λx.M ]]p
def
= (νy)p̄y.!y(x, q).[[M ]]q

[[x]]p
def
= p̄x

[[M N ]]p
def
= (νq)([[M ]]q | q(v).

(νr)([[N ]]r | r(v
′).v̄〈v′, p〉))
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Encoding theλ-calculus

[[λx.M ]]p
def
= (νy)p̄y.!y(x, q).[[M ]]q

[[x]]p
def
= p̄x

[[M N ]]p
def
= (νq)([[M ]]q | q(v).

(νr)([[N ]]r | r(v
′).v̄〈v′, p〉))

• [[M ]]p sends the value ofM onp

• For a function, we send its address;
it is consulted by sending a value and a return
channel.
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