Mobile Computing

The π-calculus - Equational theory

Pascal Zimmer
pzimmer@daimi.au.dk

BRICS

Reminder - Syntax

$$
\begin{array}{lll}
P::= & \mathbf{0} \\
\mid & a(x) . P \\
\mid & \bar{a} x . P \\
\mid & P_{1} \mid P_{2} \\
\mid & (\nu a) P \\
\mid & !P \\
\mid & P+Q
\end{array}
$$

Operational Semantics

$$
\begin{gathered}
\overline{(M+x(y) \cdot P)|(N+\bar{x} z . Q) \rightarrow P\{y \mapsto z\}| Q^{(C o m)}} \\
\frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q^{(P a r)}} \quad \frac{P \rightarrow P^{\prime}}{(\nu x) P \rightarrow(\nu x) P^{\prime}} \\
\frac{Q \equiv P \quad P \rightarrow P^{\prime} \quad P^{\prime} \equiv Q^{\prime}}{Q \rightarrow Q^{\prime}} \\
\text { (Stures) }
\end{gathered}
$$

Equivalence of processes

- A sequential system is a function: inputs \rightarrow outputs
- Two functions are equivalent iff their outputs are identical for every input.

Equivalence of processes

- A sequential system is a function: inputs \rightarrow outputs
- Two functions are equivalent iff their outputs are identical for every input.
- A parallel system may not be deterministic.
- A parallel system may not terminate.

Traces

$$
P \xrightarrow{a} P_{1} \xrightarrow{\tau} P_{2} \xrightarrow{\ddot{ }} \ldots
$$

is a trace of P

- \xrightarrow{a} : synchronization on channel a (for example $\bar{a} v \mid a(x) . P)$
- $\xrightarrow{\tau}$: synchronization on an internal private channel (for example ($\nu a)(\bar{a} v \mid a(x) . P)$)

Traces

$$
P \xrightarrow{a} P_{1} \xrightarrow{\tau} P_{2} \xrightarrow{\ddot{\rightarrow}} \ldots
$$

is a trace of P

- \xrightarrow{a} : synchronization on channel a (for example $\bar{a} v \mid a(x) . P)$
- $\xrightarrow{\tau}$: synchronization on an internal private channel (for example ($\nu a)(\bar{a} v \mid a(x) . P)$)
- (informal) P equivalent to Q : same set of traces (maybe infinite)

Compositionality

Two coffee machines and a consumer:

P

$$
\begin{aligned}
P & =2 \text { krones. }(\text { tea }+ \text { coffee }) \\
P^{\prime} & =(2 \text { krones.tea })+(2 \text { krones }+ \text { coffee }) \\
C & =\overline{2 \text { krones }} \cdot \overline{\text { coffee }}
\end{aligned}
$$

Compositionality

Two coffee machines and a consumer:

- P and P^{\prime} accept the same language
- $P \mid C$ and $P^{\prime} \mid C$ do not accept the same language

Compositionality

Two coffee machines and a consumer:

- P and P^{\prime} accept the same language
- $P \mid C$ and $P^{\prime} \mid C$ do not accept the same language
- \Rightarrow trace equivalence is not compositional

Barbs

- Instead of looking at what happens, let's see what we are able to do (intensionality)
- Observing a state: $P \downarrow \eta$ if P contains a toplevel visible prefix whose subject is η (either a or \bar{a})
- Remark: $P \downarrow a$ can be defined as

$$
P \equiv(\nu \vec{n})\left(\left(a(x) \cdot P^{\prime}+M\right) \mid Q\right)
$$

for some \vec{n}, P^{\prime}, M and Q such that $a \notin \vec{n}$

Bisimularity

Definition [Barbed bisimulation] A relation \mathcal{R} is a barbed bisimulation iff $P \mathcal{R} Q$ implies $(\forall \eta . P \downarrow \eta \Rightarrow Q \downarrow \eta)$ and, for any P^{\prime} such that $P \rightarrow P^{\prime}$, there is a process Q^{\prime} such that $Q \rightarrow Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.

Bisimularity

Definition [Barbed bisimulation] A relation \mathcal{R} is a barbed bisimulation iff $P \mathcal{R} Q$ implies $(\forall \eta . P \downarrow \eta \Rightarrow Q \downarrow \eta)$ and, for any P^{\prime} such that $P \rightarrow P^{\prime}$, there is a process Q^{\prime} such that $Q \rightarrow Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.
Definition [Barbed bisimilarity] The barbed bisimilarity is the greatest barbed bisimulation. We write $P \dot{\sim} Q$.
Proposition $\dot{\sim}$ is an equivalence relation.

Bisimularity

Definition [Barbed bisimulation] A relation \mathcal{R} is a barbed bisimulation iff $P \mathcal{R} Q$ implies $(\forall \eta . P \downarrow \eta \Rightarrow Q \downarrow \eta)$ and, for any P^{\prime} such that $P \rightarrow P^{\prime}$, there is a process Q^{\prime} such that $Q \rightarrow Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.
Definition [Barbed bisimilarity] The barbed bisimilarity is the greatest barbed bisimulation. We write $P \dot{\sim} Q$.
Proposition $\dot{\sim}$ is an equivalence relation.
Remark: to prove $P \dot{\sim} Q$, find one bisimulation \mathcal{R} such that $P \mathcal{R} Q$.

Example

Let:

$$
\begin{aligned}
\mathcal{R}=\{ & ((\nu z)(\bar{z} a \mid z(w) \cdot \bar{x} w), \tau \cdot \bar{x} b), \\
& (P, Q) / P \equiv(\nu z)(\mathbf{0} \mid \bar{x} a), Q \equiv \bar{x} b\}
\end{aligned}
$$

\mathcal{R} is a barbed bisimulation, thus in particular:

$$
(\nu z)(\bar{z} a \mid z(w) \cdot \bar{x} w) \dot{\sim} \tau \cdot \bar{x} b
$$

Example

Let:

$$
\begin{aligned}
\mathcal{R}=\{ & ((\nu z)(\bar{z} a \mid z(w) \cdot \bar{x} w), \tau \cdot \bar{x} b), \\
& (P, Q) / P \equiv(\nu z)(\mathbf{0} \mid \bar{x} a), Q \equiv \bar{x} b\}
\end{aligned}
$$

\mathcal{R} is a barbed bisimulation, thus in particular:

$$
(\nu z)(\bar{z} a \mid z(w) . \bar{x} w) \dot{\sim} \tau \cdot \bar{x} b
$$

$\dot{\sim}$ is quite weak... and still not compositional !

Contexts

- A context is a term with a hole, written [].

$$
\begin{aligned}
C::= & \mathbf{0}|a(x) \cdot C| \bar{a} x . C \mid\left(C_{1} \mid C_{2}\right) \\
& |(\nu a) C|!C\left|C_{1}+C_{2}\right|[]
\end{aligned}
$$

- $C[P]$ is the process obtained by replacing the hole [] with P.

Contexts

- A context is a term with a hole, written [].

$$
\begin{aligned}
C::= & \mathbf{0}|a(x) . C| \bar{a} x . C \mid\left(C_{1} \mid C_{2}\right) \\
& |(\nu a) C|!C\left|C_{1}+C_{2}\right|[]
\end{aligned}
$$

- $C[P]$ is the process obtained by replacing the hole [] with P.
- Non-receptive context: no occurrence of [] under an input prefix.

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed equivalence), written \simeq^{C} (resp. \simeq), is the greatest congruence (resp. non-receptive congruence) included in $\dot{\sim}$.

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed equivalence), written \simeq^{C} (resp. \simeq), is the greatest congruence (resp. non-receptive congruence) included in $\dot{\sim}$.

Example

$$
\bar{z} \mid a \underset{\not \chi^{C}}{\simeq} \quad \bar{z} \cdot a+a \cdot \bar{z}
$$

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed equivalence), written \simeq^{C} (resp. \simeq), is the greatest congruence (resp. non-receptive congruence) included in $\dot{\sim}$.

Example

$$
\bar{z} \mid a \underset{\not \chi^{C}}{\simeq} \quad \bar{z} \cdot a+a \cdot \bar{z}
$$

but

$$
\bar{z} \mid a \simeq^{C} \bar{z} \cdot a+a \cdot \bar{z}+[z=a] \tau
$$

Barbed congruence

Definition [Barbed congruence and equivalence]
The barbed congruence (resp. barbed equivalence), written \simeq^{C} (resp. \simeq), is the greatest congruence (resp. non-receptive congruence) included in $\dot{\sim}$.

Example

$$
\bar{z} \mid a \underset{\not \chi^{C}}{\simeq} \quad \bar{z} \cdot a+a \cdot \bar{z}
$$

but

$$
\bar{z} \mid a \simeq^{C} \bar{z} \cdot a+a \cdot \bar{z}+[z=a] \tau
$$

Characterization

$P \simeq Q$ iff for any $R, P|R \dot{\sim} Q| R$.

Some general laws

- Restriction

$$
\begin{aligned}
& (\nu a)(a(x) \cdot P) \simeq^{C} 0 \\
& (\nu x)(x(y) \cdot P \mid \bar{w} z \cdot Q) \simeq^{C} \bar{w} z \cdot(\nu x)(x(y) \cdot P \mid Q)
\end{aligned}
$$

if $x \neq w$ and $x \neq z$.

- Replication $\begin{cases} & !(P \mid Q) \simeq C!P \mid!Q \\ !!P \simeq \simeq^{C}!P \\ !(P+Q) \simeq^{C}!(P \mid Q) \\ ![a=b] P \simeq^{C}[a=b]!P \\ !\eta \cdot P \not \chi^{C} \eta!\cdot P, \quad \eta \text { prefix } \\ !(\nu x) P \not 千^{C}(\nu x)!P\end{cases}$

Summary

We have defined an equivalence:

- with good properties, including compositionality
- describing behaviours
- relying on observations ($P \downarrow \eta$)

Labelled transition system

- Changing the point of view: we now consider the interactions with the environment.
- Three kinds of transition: $\left\{\begin{array}{l}P \xrightarrow{a(b)} Q \\ P \xrightarrow{\vec{a} b} Q, P \xrightarrow{\bar{a}(b)} Q \\ P \xrightarrow{\tau} Q\end{array}\right.$
- names: $n(\mu)$
bound names:

$$
b n(\bar{a}(b))=\{b\}
$$

$b n(\mu)=\emptyset$ otherwise

Operational semantics 1

$\overline{\bar{a} b . P \xrightarrow{\bar{a} b} P}$ (OUT)

$$
a(x) \cdot P \xrightarrow{a(v)} P\{x \longmapsto v\}
$$

$$
\frac{P^{a(b)} P^{\prime} \quad Q \xrightarrow{\bar{a} b} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \text { (Сомм) }
$$

Operational semantics 1

$$
\begin{aligned}
& \bar{a} b . P \xrightarrow{\bar{a} b} P(\text { OUT) } \\
& \overline{a(x) \cdot P \xrightarrow{a(v)} P\{x \longmapsto v\}} \text { (INP) } \\
& \frac{P \xrightarrow{a(b)} P^{\prime} \quad Q \xrightarrow{\bar{a} b} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}(\text { (COMM) } \\
& \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \text { (PAR) } \quad b n(\mu) \cap f n(Q)=\emptyset \\
& \frac{P \xrightarrow{\mu} P^{\prime}}{P+Q \xrightarrow{\mu} P^{\prime}} \text { (SUM) }+ \text { symmetrical rules }!
\end{aligned}
$$

Operational semantics 2

$$
\begin{gathered}
\frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \text { (BANG) } \\
\frac{P \xrightarrow{\mu} P^{\prime}}{(\nu a) P \xrightarrow{\mu}(\nu a) P^{\prime}} \text { (RES) } a \notin n(\mu)
\end{gathered}
$$

Operational semantics 2

$$
\begin{gathered}
\frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \text { (BANG) } \\
\frac{P \xrightarrow{\mu} P^{\prime}}{(\nu a) P \xrightarrow{\mu}(\nu a) P^{\prime}} \text { (RES) } a \notin n(\mu) \\
\frac{P \xrightarrow{\bar{a} b} P^{\prime}}{(\nu b) P \xrightarrow{\bar{a}(b)} P^{\prime}} \text { (OPEN) } a \neq b \\
\frac{P \xrightarrow{a(b)} P^{\prime} Q}{P \mid Q \xrightarrow{\tau}(\nu b)\left(P^{\prime} \mid Q^{\prime}\right)}
\end{gathered}
$$

Example...

Bisimilarity - again

Definition [Bisimulation] A relation \mathcal{R} is a bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.

Bisimilarity - again

Definition [Bisimulation] A relation \mathcal{R} is a bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.
Definition [Bisimilarity] The bisimilarity, written \sim, is the greatest bisimulation.

Bisimilarity - again

Definition [Bisimulation] A relation \mathcal{R} is a bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.
Definition [Bisimilarity] The bisimilarity, written \sim, is the greatest bisimulation.
Definition [Full bisimilarity] $P \sim^{C} Q$ iff $P \sigma \sim Q \sigma$ for any substitution σ.

Bisimilarity - again

Definition [Bisimulation] A relation \mathcal{R} is a bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q.
Definition [Bisimilarity] The bisimilarity, written \sim, is the greatest bisimulation.
Definition [Full bisimilarity] $P \sim^{C} Q$ iff $P \sigma \sim Q \sigma$ for any substitution σ.

Remark: ~ implies trace equivalence.

Example

Let's consider:

$$
\begin{aligned}
\mathcal{R}=\{ & ((\nu z)(\bar{z} a \mid z(w) \cdot \bar{x} w), \tau \cdot \bar{x} a), \\
& ((\nu z)(\mathbf{0} \mid \bar{x} a), \bar{x} a), \\
& ((\nu z)(\mathbf{0} \mid \mathbf{0}), \mathbf{0})\}
\end{aligned}
$$

\mathcal{R} is a bisimulation, thus in particular:

$$
(\nu z)(\bar{z} a \mid z(w) \cdot \bar{x} w) \sim \tau \cdot \bar{x} a
$$

\Rightarrow smaller relation \mathcal{R}

Comparing the definitions

Theorem

$$
P \simeq Q \text { iff } P \sim Q, \text { and } P \simeq^{C} Q \text { iff } P \sim^{C} Q .
$$

Comparing the definitions

Theorem

$$
P \simeq Q \text { iff } P \sim Q, \text { and } P \simeq^{C} Q \text { iff } P \sim^{C} Q .
$$

Remarks:

- \sim can be seen as a proof technique for \simeq
- \sim allows to derive the laws for \equiv (structure \rightarrow behaviour)

Chimic vs labelled transitions

\rightarrow More natural, we work modulo α-conversion, AC of | and + and permutation of ν. Definition of equivalence: more "declarative", context plays an important role.
$\xrightarrow{\mu}$ We work on trees, with the redex "on" the term. Interactions between the term and the context are built more deterministically. Simplier definition of equivalence.

Late variant

We have seen an early operational semantics:

Late variant

We have seen an early operational semantics:

We can actually differ the application of substitution:
$\overline{a(x) \cdot P} \xrightarrow{a(x)} P_{(\mathbb{N P})}^{P \xrightarrow{a(x)} P^{\prime} \quad Q \xrightarrow{\bar{a} b} Q^{\prime}}\left(P\left|Q \xrightarrow{\tau} P^{\prime}\{x \mapsto b\}\right| Q^{\prime}(\right.$ COMM $)$

Late variant

Definition A symmetrical relation \mathcal{R} is a late bisimulation iff, whenever $P \mathcal{R} Q$:

- if $P \xrightarrow{a(x)} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{a(x)} Q^{\prime}$ and, for all b, $P^{\prime}\{x \mapsto b\} \mathcal{R} Q^{\prime}\{x \mapsto b\} ;$
- if $P \xrightarrow{\mu} P^{\prime}$ where μ is not an input, usual definition.

Late variant

Definition A symmetrical relation \mathcal{R} is a late bisimulation iff, whenever $P \mathcal{R} Q$:

- if $P \xrightarrow{a(x)} P^{\prime}$, there is a process Q^{\prime} such that $Q \xrightarrow{a(x)} Q^{\prime}$ and, for all b, $P^{\prime}\{x \mapsto b\} \mathcal{R} Q^{\prime}\{x \mapsto b\} ;$
- if $P \xrightarrow{\mu} P^{\prime}$ where μ is not an input, usual definition.

Theorem $\sim_{l} \subsetneq \sim$

Counter-example: $P=x(z)+x(z) \cdot \bar{z}$

$$
Q=x(z)+x(z) \cdot \bar{z}+x(z) \cdot[z=y] \bar{z}
$$

Proof techniques

$$
\left.\begin{array}{cccccc}
P \sim Q & P & \mathcal{R} & Q & P & \mathcal{R}
\end{array}\right) Q
$$

Proof techniques

$$
\left.\begin{array}{cccccc}
P \sim Q & P & \mathcal{R} & Q & P & \mathcal{R}
\end{array}\right) Q
$$

For example, bisimulation up-to bisimilarity:

$$
\begin{array}{rcc}
P & \mathcal{R} & Q \\
\mu \downarrow \\
P^{\prime} & \sim P_{1} & \mathcal{R} Q_{1} \sim \begin{array}{l}
\downarrow \mu \\
Q^{\prime}
\end{array}
\end{array}
$$

Reference: D. Sangiorgi, "On the bisimulation proof technique"

Weak transitions

- Two kinds of transitions:
$\xrightarrow{\mu}$ with $\mu \neq \tau$ and $\xrightarrow{\tau}$
- visible transitions and internal transitions
- interaction with the context and no internal computation

Weak transitions

- Two kinds of transitions:
$\xrightarrow{\mu}$ with $\mu \neq \tau$ and $\xrightarrow{\tau}$
- visible transitions and internal transitions
- interaction with the context and no internal computation
- Idea: ignore the internal transitions
\rightarrow weak equivalences

Weak transitions

- Two kinds of transitions:
$\xrightarrow{\mu}$ with $\mu \neq \tau$ and $\xrightarrow{\tau}$
- visible transitions and internal transitions
- interaction with the context and no internal computation
- Idea: ignore the internal transitions \rightarrow weak equivalences
- Definition [weak transitions]
\Rightarrow : reflexive and transitive closure of $\xrightarrow{\tau}$ $\xrightarrow{\hat{\mu}}: \xrightarrow{\tau}$ or $=$ when $\mu=\tau, \xrightarrow{\mu}$ otherwise $P \stackrel{\hat{\mu}}{\Rightarrow} P^{\prime}: P \Rightarrow \xrightarrow{\hat{\mu}} \Rightarrow P^{\prime}$

Weak bisimilarity

We play the game of bisimulation, changing the notion of "step":
Definition A relation \mathcal{R} is a weak bisimulation iff, whenever $P \mathcal{R} Q$ and $P \stackrel{\hat{\mu}}{\Rightarrow} P^{\prime}$, there is a process Q^{\prime} such that $Q \stackrel{\hat{H}}{\Rightarrow} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$, and symmetrically for Q. The weak bisimilarity is written \approx.

Weak bisimilarity

- \approx is an equivalence relation
- $\sim \subseteq \approx$
- Some examples of laws:

$$
\begin{aligned}
\alpha \cdot \tau \cdot P & \approx \alpha \cdot P \\
\tau \cdot P & \approx P \\
P+\tau \cdot P & \approx P \\
\alpha \cdot(P+\tau \cdot Q)+\alpha \cdot Q & \approx \alpha \cdot(P+\tau \cdot Q)
\end{aligned}
$$

- Also a presentation with barbs:

$$
\Downarrow \eta \stackrel{\text { def }}{=} \Rightarrow \downarrow \eta
$$

Asynchronous π

Only form of output: $\bar{a} b$

$$
\begin{aligned}
P & ::=\bar{x} y|M| P_{1}\left|P_{2}\right|(\nu x) P \mid!P \\
M & :=\mathbf{0}|x(z) \cdot P| \tau \cdot P \mid M+M^{\prime}
\end{aligned}
$$

- More realistic
- Remark: $\tau . P$ and 0 can be encoded
- A choice + hides some protocol
- Why no output in sums ?

Asynchrony

- No continuation for outputs, but there can be some causality relations:

$$
(\nu y, z)(\bar{x} y|\bar{y} z| \bar{z} a \mid R) \text { with } y, z \notin f n(R)
$$

Asynchrony

- No continuation for outputs, but there can be some causality relations:

$$
(\nu y, z)(\bar{x} y|\bar{y} z| \bar{z} a \mid R) \text { with } y, z \notin f n(R)
$$

- If $P \xrightarrow{\bar{x} y} P^{\prime}$, then $P=\bar{x} y \mid P^{\prime}$

Asynchrony

- No continuation for outputs, but there can be some causality relations:

$$
(\nu y, z)(\bar{x} y|\bar{y} z| \bar{z} a \mid R) \text { with } y, z \notin f n(R)
$$

- If $P \xrightarrow{\bar{x} y} P^{\prime}$, then $P \equiv \bar{x} y \mid P^{\prime}$
- If $P \xrightarrow{\bar{x}(y)} P^{\prime}$, then $P \equiv(\nu y)\left(\bar{x} y \mid P^{\prime}\right)$

Asynchrony

- No continuation for outputs, but there can be some causality relations:

$$
(\nu y, z)(\bar{x} y|\bar{y} z| \bar{z} a \mid R) \text { with } y, z \notin f n(R)
$$

- If $P \xrightarrow{\bar{x} y} P^{\prime}$, then $P \equiv \bar{x} y \mid P^{\prime}$
- If $P \xrightarrow{\bar{x}(y)} P^{\prime}$, then $P \equiv(\nu y)\left(\bar{x} y \mid P^{\prime}\right)$
- If $P \xrightarrow{\bar{x} y} \xrightarrow{\mu} P^{\prime}$, then $P \xrightarrow{\mu} \xrightarrow{\bar{x} y} \equiv P^{\prime}$ (confluence)

Asynchrony

- No continuation for outputs, but there can be some causality relations:

$$
(\nu y, z)(\bar{x} y|\bar{y} z| \bar{z} a \mid R) \quad \text { with } y, z \notin f n(R)
$$

- If $P \xrightarrow{\bar{x} y} P^{\prime}$, then $P \equiv \bar{x} y \mid P^{\prime}$
- If $P \xrightarrow{\bar{x}(y)} P^{\prime}$, then $P \equiv(\nu y)\left(\bar{x} y \mid P^{\prime}\right)$
- If $P \xrightarrow{\vec{x} y} \xrightarrow{\mu} P^{\prime}$, then $P \xrightarrow{\mu} \xrightarrow{\vec{x} y} \equiv P^{\prime}$ (confluence)
- If $P \xrightarrow{\bar{x} y x(w)} P^{\prime}$ with $w \notin f n(P)$, then $P \xrightarrow{\tau} \equiv P^{\prime}\{w \mapsto y\}$

Asynchrony

Theorem The notions of early and late bisimulations coincide in asynchronous π-calculus. Moreover, these are congruences.
\Rightarrow a simpler theory, easier proofs...

Encodings

Notation: encoding of $P: \llbracket P \rrbracket$
Interest:

- to compare models, programming paradigms and idioms
- to study the expressive power of a construction and subfragments of a language

Encodings

- We want to show something like $\forall P . P \asymp \llbracket P \rrbracket$ where \asymp is some notion of equivalence (weak/strong bisimilarity, trace equivalence...).

Encodings

- We want to show something like $\forall P . P \asymp \llbracket P \rrbracket$ where \asymp is some notion of equivalence (weak/strong bisimilarity, trace equivalence...).
- This makes sense only when $\llbracket P \rrbracket$ and P are in a same language. Often, we use \approx (encoding a construction into a smaller language).

Encodings

- We want to show something like $\forall P . P \asymp \llbracket P \rrbracket$ where \asymp is some notion of equivalence (weak/strong bisimilarity, trace equivalence...).
- This makes sense only when $\llbracket P \rrbracket$ and P are in a same language. Often, we use \approx (encoding a construction into a smaller language).
- Otherwise, we might want to prove full abstraction:

$$
P_{1} \asymp P_{2} \quad \text { iff } \llbracket P_{1} \rrbracket \asymp \llbracket P_{2} \rrbracket
$$

(allows to compare encodings from one language into another)

Encodings

Otherwise, we shall prove at least operational correspondence:

- If $P \rightarrow P^{\prime}$, then $\llbracket P \rrbracket \rightarrow \llbracket P^{\prime} \rrbracket$.
- If $\llbracket P \rrbracket \rightarrow Q$, then there is a process P^{\prime} such that $P \rightarrow P^{\prime}$ and $Q \equiv \llbracket P^{\prime} \rrbracket$.
(one-to-one version)

Encodings

Otherwise, we shall prove at least operational correspondence:

- If $P \rightarrow P^{\prime}$, then $\llbracket P \rrbracket \Rightarrow \llbracket P^{\prime} \rrbracket$.
- If $\llbracket P \rrbracket \Rightarrow Q$, then there is a process P^{\prime} such that $P \rightarrow P^{\prime}$ and $Q \equiv \llbracket P^{\prime} \rrbracket$.
(weak version)

Encodings

Otherwise, we shall prove at least operational correspondence:

- If $P \rightarrow P^{\prime}$, then $\llbracket P \rrbracket \Rightarrow \approx \llbracket P^{\prime} \rrbracket$.
- If $\llbracket P \rrbracket \Rightarrow Q$, then there is a process P^{\prime} such that $P \rightarrow P^{\prime}$ and $Q \approx \llbracket P^{\prime} \rrbracket$.
(weak version up-to bisimilarity)

Encoding synchronous π

How should we represent $\bar{a} v . P \mid a(x) \cdot Q$ in asynchronous π-calculus ?

Encoding synchronous π

How should we represent $\bar{a} v . P \mid a(x) \cdot Q$ in asynchronous π-calculus ?

$$
(\nu t)(\bar{a}\langle v, t\rangle \mid t \cdot P) \mid a(x, r) \cdot(Q \mid \bar{r})
$$

Encoding synchronous π

How should we represent $\bar{a} v . P \mid a(x) \cdot Q$ in asynchronous π-calculus ?

$$
(\nu t)(\bar{a}\langle v, t\rangle \mid t \cdot P) \mid a(x, r) \cdot(Q \mid \bar{r})
$$

- One can show that $\llbracket P \rrbracket \approx \llbracket Q \rrbracket$ implies $P \approx Q$.

Encoding synchronous π

How should we represent $\bar{a} v . P \mid a(x) \cdot Q$ in asynchronous π-calculus ?

$$
(\nu t)(\bar{a}\langle v, t\rangle \mid t \cdot P) \mid a(x, r) \cdot(Q \mid \bar{r})
$$

- One can show that $\llbracket P \rrbracket \approx \llbracket Q \rrbracket$ implies $P \approx Q$.
- \Leftarrow ??

Encoding synchronous π

How should we represent $\bar{a} v . P \mid a(x) \cdot Q$ in asynchronous π-calculus ?

$$
(\nu t)(\bar{a}\langle v, t\rangle \mid t \cdot P) \mid a(x, r) \cdot(Q \mid \bar{r})
$$

- One can show that $\llbracket P \rrbracket \approx \llbracket Q \rrbracket$ implies $P \approx Q$.
- \Leftarrow ??

Take $A \stackrel{\text { def }}{=} \bar{a} v \cdot \bar{a} v$ and $B \stackrel{\text { def }}{=} \bar{a} v \mid \bar{a} v$ We have $A \sim B$, but:

$$
\begin{aligned}
\llbracket A \rrbracket & \equiv\left(\nu t_{1}, t_{2}\right)\left(\bar{a}\left\langle v, t_{1}\right\rangle \mid t_{1} \cdot\left(\bar{a}\left\langle v, t_{2}\right\rangle \mid t_{2}\right)\right) \\
\text { and } \llbracket B \rrbracket & \equiv\left(\nu t_{1}\right)\left(\bar{a}\left\langle v, t_{1}\right\rangle \mid t_{1}\right) \mid\left(\nu t_{2}\right)\left(\bar{a}\left\langle v, t_{2}\right\rangle \mid t_{2}\right)
\end{aligned}
$$

Asynchronous π

Palamidessi, 1997

- Impossible to encode synchronous π into asynchronous π (with a reasonable encoding).

Asynchronous π

Palamidessi, 1997

- Impossible to encode synchronous π into asynchronous π (with a reasonable encoding).
- Because of mixed choice

$$
a(x) \cdot P+\bar{b} v \cdot Q
$$

- Proof: impossible to resolve the problem of chief election in a symmetrical network.

Asynchronous π

Palamidessi, 1997

- Impossible to encode synchronous π into asynchronous π (with a reasonable encoding).
- Because of mixed choice

$$
a(x) \cdot P+\bar{b} v \cdot Q
$$

- Proof: impossible to resolve the problem of chief election in a symmetrical network.
- "Reasonable" means:
compositional $(\llbracket P|Q \rrbracket=\llbracket P \rrbracket| \llbracket Q \rrbracket, \llbracket P \sigma \rrbracket=\llbracket P \rrbracket \sigma)$ preserving divergence
- one of the very few non-expressivity result

λ-calculus

Terms:

$$
M::=x|\lambda x \cdot M|\left(M M^{\prime}\right)
$$

β-reduction:

$$
(\lambda x \cdot M) N \rightarrow M\{x \mapsto N\}
$$

λ-calculus

Terms:

$$
M::=x|\lambda x \cdot M|\left(M M^{\prime}\right)
$$

β-reduction:

$$
(\lambda x . M) N \rightarrow M\{x \mapsto N\}
$$

Encoding the λ-calculus into π, ideas:

- A λ-term M is represented by a π-term $\llbracket M \rrbracket$ located in $p:\left[M \rrbracket_{p}\right.$.
- Application is represented with parallel composition.

Encoding the λ-calculus

$$
\begin{aligned}
& {[\lambda x . M]_{p} \stackrel{\text { def }}{=}(\nu y) \bar{p} y!!y(x, q) \cdot[M]_{q}} \\
& {[x]_{p} \stackrel{\text { def }}{=} \bar{p} x} \\
& {[M N]_{p} \xlongequal{\text { def }}(\nu q)\left(\left[M \rrbracket_{q} \mid q(v) .\right.\right.} \\
& \left.(\nu r)\left([N]_{r} \mid r\left(v^{\prime}\right) \cdot \bar{v}\left\langle v^{\prime}, p\right\rangle\right)\right)
\end{aligned}
$$

Encoding the λ-calculus

$$
\begin{aligned}
& {[\lambda x \cdot M]_{p} \stackrel{\text { def }}{=}(\nu y) \bar{p} y \cdot!y(x, q) \cdot[M]_{q}} \\
& \quad[x]_{p} \stackrel{\text { def }}{=} \bar{p} x \\
& {[M N]_{p} \stackrel{\text { def }}{=}(\nu q)\left([M]_{q} \mid q(v) .\right.} \\
&
\end{aligned}
$$

- $\left[M \rrbracket_{p}\right.$ sends the value of M on p
- For a function, we send its address; it is consulted by sending a value and a return channel.

