Brane Calculi

Presented by Jesús F. Almansa

jfa@brics.dk

Mobile Calculi Course

BRICS, University of Aarhus

December 2004

Motivation

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.

In particular, membranes have their own dynamics.

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.

In particular, membranes have their own dynamics.

- Motivation
- Design

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized. In particular, membranes have their own dynamics.

- Motivation
- Design

Previous work: P-System: dismatch with reality BioSpy: calculate with molecules BioAmbients: calculate with molecules, add membranes Brane Calculi: calculate *on* membranes

Bitonal Membrane Systems, Interactions of Biological Membranes Luca Cardelli

Brane Calculi, Interactions of Biological Membranes Luca Cardelli

Finite set of simple, closed and smooth curves

Finite set of simple, closed and smooth curves

Finite set of simple, closed and smooth curves Alternated Orientation: Bitonality

Finite set of simple, closed and smooth curves Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Finite set of simple, closed and smooth curves Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Finite set of simple, closed and smooth curves Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Some bio-reactions are atonal, but abs-atonality is mostly unrealistic. Hence, ruled-out.

Brane Calculi - p. 5/2

{Endo,Exo} is complete

{Endo,Exo} is complete

Moreover, Endo is splitted:

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

Actions "on" membranes, not "inside".

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

- Actions "on" membranes, not "inside".
- Action/co-action interaction style.

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

- Actions "on" membranes, not "inside".
- Action/co-action interaction style.
- A calculus of membrane reactions.

SystemsP, Q::= $\diamond \mid P \circ Q \mid !P \mid \sigma(P)$ Branes σ, τ ::= $0 \mid \sigma \mid \tau \mid !\sigma \mid a.\sigma$ Actionsa, b::=

SystemsP, Q::= $\diamond \mid P \circ Q \mid !P \mid \sigma(P)$ Branes σ, τ ::= $0 \mid \sigma \mid \tau \mid !\sigma \mid a.\sigma$ Actionsa, b::=

 $\tau | \sigma (\!| P \!|)$

Brane with σ, τ and contents P

Congruence \equiv , Reactions \rightarrow

 (P, \circ, \diamond) comutative monoid $(\sigma, |, 0)$ comutative monoid the usual...

Congruence \equiv , Reactions \rightarrow

 (P, \circ, \diamond) comutative monoid $(\sigma, |, 0)$ comutative monoid the usual...

$$\begin{array}{c} P \to Q \\ \hline P \circ R \to Q \circ R \\ \\ \hline P \to Q \\ \hline \sigma (\!\!\!/ P)\!\!\!\!\!) \to \sigma (\!\!\!/ Q)\!\!\!\!) \\ \hline P \equiv P' \quad P' \to Q' \quad Q' \equiv Q \\ \hline P \to Q \end{array}$$

Congruence \equiv , Reactions \rightarrow

 (P, \circ, \diamond) comutative monoid $(\sigma, |, 0)$ comutative monoid the usual...

$$\frac{P \to Q}{P \circ R \to Q \circ R} \\
\frac{P \to Q}{\sigma(P) \to \sigma(Q)} \\
\frac{P \equiv P' \quad P' \to Q' \quad Q' \equiv Q}{P \to Q}$$

plus the effect of actions

Actions a, b ::= $\triangleright_n \mid {}^{\perp}_n \triangleright(\sigma) \mid {\triangleleft}_n \mid {\triangleleft}^{\perp}_n \mid {}^{\odot}_n(\sigma)$

Actions

Actions a, b ::= $\triangleright_n \mid {}^{\perp}_n \triangleright(\sigma) \mid {\triangleleft}_n \mid {\triangleleft}^{\perp}_n \mid {}^{\odot}_n(\sigma)$

Phago:

Actions

Actions
$$a, b$$
 ::= $\triangleright_n \mid {}^{\perp}_n \triangleright(\sigma) \mid {\triangleleft}_n \mid {\triangleleft}^{\perp}_n \mid {}^{\odot}(\sigma)$

Phago:

 $\triangleright_n .\sigma | \sigma_0 (\!\!(P)\!\!) \circ_n^{\perp} \!\! \triangleright (\rho) .\tau | \tau_0 (\!\!(Q)\!\!) \to \tau | \tau_0 (\!\!(\rho (\!\!(\sigma | \sigma_0 (\!\!(P)\!\!)) \circ Q)\!\!)$

Exo:

$$\triangleleft_n^{\perp} .\tau | \tau_0 (\!\!| \triangleleft_n .\sigma | \sigma_0 (\!\!| P)\!\!) \circ Q)\!\!) \to P \circ \sigma | \sigma_0 | \tau | \tau_0 (\!\!| Q)\!\!)$$

Actions

Actions
$$a, b$$
 ::= $\triangleright_n \mid {}^{\perp}_n \triangleright(\sigma) \mid {\triangleleft}_n \mid {\triangleleft}^{\perp}_n \mid {}^{\odot}(\sigma)$

Phago:

 $\triangleright_n .\sigma | \sigma_0 (P) \circ_n^{\perp} \rhd (\rho) .\tau | \tau_0 (Q) \to \tau | \tau_0 (\rho (\sigma | \sigma_0 (P)) \circ Q)$

Exo:

$$\triangleleft_n^{\perp} .\tau | \tau_0 (\!\! | \triangleleft_n .\sigma | \sigma_0 (\!\! | P)\!\!) \circ Q)\!\!) \to P \circ \sigma | \sigma_0 | \tau | \tau_0 (\!\! | Q)\!\!)$$

Pino:

$$(\rho).\sigma|\sigma_0(P) \to \sigma|\sigma_0(\rho(\diamond) \circ P)$$

Actions Depicted

Example: Mate

Proposition:

 $\sigma_0|mate_n.\sigma(P)\circ\tau_0|mate_n^{\perp}.\tau(Q)\to^*\sigma_0|\sigma|\tau_0|\tau(P\circ Q))$

Example: Mate

$$mate_{n} \stackrel{\mathsf{def}}{=} \rhd_{n} . \triangleleft_{n'} . \sigma$$
$$mate_{n}^{\perp} \stackrel{\mathsf{def}}{=} {}_{n}^{\perp} \rhd (\triangleleft_{n'}^{\perp} . \triangleleft_{n''}) . \triangleleft_{n''}^{\perp} . \tau$$

Proposition:

 $\sigma_0|mate_n.\sigma(P)\circ\tau_0|mate_n^{\perp}.\tau(Q)\to^*\sigma_0|\sigma|\tau_0|\tau(P\circ Q))$

Example: Mate

$$mate_{n} \stackrel{\mathsf{def}}{=} \rhd_{n} . \triangleleft_{n'} . \sigma$$
$$mate_{n}^{\perp} \stackrel{\mathsf{def}}{=} {}_{n}^{\perp} \rhd (\triangleleft_{n'}^{\perp} . \triangleleft_{n''}) . \triangleleft_{n''}^{\perp} . \tau$$

Proposition:

 $\sigma_0 | mate_n. \sigma(P) \circ \tau_0 | mate_n^{\perp}. \tau(Q) \to^* \sigma_0 | \sigma | \tau_0 | \tau(P \circ Q))$

Homework: Drip (Mito with 0), Bud (Mito with 1)

Example: Viral Reproduction

Example: Viral Reproduction

Almost... molecules are needed

Nice, but...

Purely combinatorial

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

...and name restriction...

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

...and name restriction... ...and choice...

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

...and name restriction... ...and choice... ...and all π ?

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

- ...and name restriction... ...and choice... ...and all π ?
- No equivalence

Purely combinatorial communication could be added...
 a, b ::=
 ...o2o_n | o2o[⊥]_n(m) | s2s_n | s2s[⊥]_n(m) | p2c_n | p2c[⊥]_n(m) assuming τ{l ← m}

- ...and name restriction... ...and choice... ...and all π ?
- No equivalence
- Biologically meaningful?

Ambients in the air...

Ambients in the air...Pure and Safe

Ambients in the air...Pure and Safe

$$P \qquad ::= \quad (\nu \ n)P \mid 0 \mid P \circ Q \mid !P \mid n[P] \mid Cap.P$$
$$Cap \qquad ::= \quad in \ n \mid \vec{in} \ n \mid out \ n \mid \vec{out} \ n \mid open \ n \mid open \ n \mid open \ n \mid$$

Ambients in the air...Pure and Safe

$$P \qquad ::= \quad (\nu \ n)P \mid 0 \mid P \circ Q \mid !P \mid n[P] \mid Cap.P$$
$$Cap \qquad ::= \quad in \ n \mid \vec{in} \ n \mid out \ n \mid \vec{out} \ n \mid open \ n \mid open \ n \mid open \ n \mid$$

to be explored...

