Brane Calculi
 Presented by Jesús F. Almansa

jfa@brics.dk

Mobile Calculi Course

BRICS, University of Aarhus

December 2004

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.

Motivation

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.
In particular, membranes have their own dynamics.

Motivation

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.
In particular, membranes have their own dynamics.

- Motivation
- Design

Motivation

Biological Systems

- Imprecise descriptions
- Complex...

Need to be formalized.
In particular, membranes have their own dynamics.

- Motivation
- Design

Previous work:
P-System: dismatch with reality
BioSpy: calculate with molecules
BioAmbients: calculate with molecules, add membranes
Brane Calculi: calculate on membranes

Bitonal Membrane Systems, Interactions of Biological Membranes Luca Cardelli

Brane Calculi, Interactions of Biological Membranes Luca Cardelli

Membrane Systems

Finite set of simple, closed and smooth curves

Membrane Systems

Finite set of simple, closed and smooth curves

Membrane Systems

Finite set of simple, closed and smooth curves
Alternated Orientation: Bitonality

Membrane Systems

Finite set of simple, closed and smooth curves
Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Membrane Systems

Finite set of simple, closed and smooth curves
Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Membrane Systems

Finite set of simple, closed and smooth curves
Alternated Orientation: Bitonality

Reactions: (Instantaneous) transformations bitonality-preserving "locally"

Some bio-reactions are atonal, but abs-atonality is mostly unrealistic. Hence, ruled-out.

Membrane Reactions

Membrane Reactions

Mito

Membrane Reactions

Endo

堒BRICS

1

$\{$ Endo,Exo $\}$ is complete

$\{$ Endo,Exo $\}$ is complete

Moreover, Endo is splitted:

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

The Leap to Abstraction

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

- Actions "on" membranes, not "inside".

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

- Actions "on" membranes, not "inside".
- Action/co-action interaction style.

Endo is not spontaneous, but regulated by membranes (i.e. its embedded proteins)

A Formalization:

- Actions "on" membranes, not "inside".
- Action/co-action interaction style.
- A calculus of membrane reactions.

Syntax

Systems $\quad P, Q \quad::=\diamond|P \circ Q|!P \mid \sigma(P)$
Branes $\quad \sigma, \tau \quad::=0|\sigma| \tau|!\sigma| a \cdot \sigma$
Actions $\quad a, b \quad::=$

Syntax

Systems $\quad P, Q::=\diamond|P \circ Q|!P \mid \sigma(P)$
Branes $\quad \sigma, \tau \quad::=0|\sigma| \tau|!\sigma| a \cdot \sigma$
Actions $\quad a, b \quad::=$
$\tau \mid \sigma(P)$

Brane with σ, τ and contents P

Congruence \equiv, Reactions \rightarrow

(P, \circ, \diamond) comutative monoid $(\sigma, \mid, 0)$ comutative monoid the usual...

Congruence \equiv, Reactions \rightarrow

(P, \circ, \diamond) comutative monoid
$(\sigma, \mid, 0)$ comutative monoid the usual...

$$
\begin{gathered}
\frac{P \rightarrow Q}{P \circ R \rightarrow Q \circ R} \\
\frac{P \rightarrow Q}{\sigma(P) \rightarrow \sigma(Q)} \\
\frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q}
\end{gathered}
$$

Congruence \equiv, Reactions \rightarrow

(P, \circ, \diamond) comutative monoid
$(\sigma, \mid, 0)$ comutative monoid the usual...

$$
\begin{gathered}
\frac{P \rightarrow Q}{P \circ R \rightarrow Q \circ R} \\
\frac{P \rightarrow Q}{\sigma(P) \rightarrow \sigma(Q)} \\
\frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q}
\end{gathered}
$$

plus the effect of actions

Actions

Actions $a, b \quad::=\triangleright_{n}\left|{ }_{n}^{\perp} \triangleright(\sigma)\right| \triangleleft_{n}\left|\triangleleft_{n}^{\perp}\right| \odot(\sigma)$

Actions

Actions $a, b \quad::=\triangleright_{n}\left|{ }_{n}^{\perp} \triangleright(\sigma)\right| \triangleleft_{n}\left|\triangleleft_{n}^{\perp}\right|$ © (σ)

Phago:

$$
\triangleright_{n} \cdot \sigma\left|\sigma_{0}(P) \circ{ }_{n}^{1} \triangleright(\rho) . \tau\right| \tau_{0}(Q) \rightarrow \tau \mid \tau_{0}\left(\rho\left(|\sigma| \sigma_{0}(P) D \circ Q\right)\right.
$$

Actions

Actions $a, b \quad::=\triangleright_{n}\left|{ }_{n}^{\perp} \triangleright(\sigma)\right| \triangleleft_{n}\left|\triangleleft_{n}^{\perp}\right|$ © (σ)

Phago:

$$
\triangleright_{n} \cdot \sigma\left|\sigma_{0}(P) \circ{ }_{n}^{1} \triangleright(\rho) . \tau\right| \tau_{0}(Q) \rightarrow \tau \mid \tau_{0}\left(\rho\left(\sigma \mid \sigma_{0}(P) D \circ Q\right)\right.
$$

Exo:

$$
\triangleleft_{n}^{\perp} \cdot \tau\left|\tau_{0}\left(\triangleleft_{n} . \sigma \mid \sigma_{0}(P) \circ Q\right) \rightarrow P \circ \sigma\right| \sigma_{0}|\tau| \tau_{0}(Q)
$$

Actions

Actions $a, b \quad:=\triangleright_{n}\left|{ }_{n}^{\perp} \triangleright(\sigma)\right| \triangleleft_{n}\left|\triangleleft_{n}^{\perp}\right|$ © (σ)

Phago:

$$
\triangleright_{n} \cdot \sigma\left|\sigma_{0}(P) \circ{ }_{n}^{1} \triangleright(\rho) . \tau\right| \tau_{0}(Q) \rightarrow \tau \mid \tau_{0}\left(\rho\left(\sigma \mid \sigma_{0}(P) D \circ Q\right)\right.
$$

Exo:

$$
\triangleleft_{n}^{\perp} . \tau\left|\tau_{0}\left(\triangleleft_{n} . \sigma \mid \sigma_{0}(P) \circ Q\right) \rightarrow P \circ \sigma\right| \sigma_{0}|\tau| \tau_{0}(Q)
$$

Pino:

$$
\bigcirc(\rho) \cdot \sigma\left|\sigma_{0}(P) \rightarrow \sigma\right| \sigma_{0}(\rho(\diamond) \circ P)
$$

Actions Depicted

Example: Mate

Proposition:
$\sigma_{0} \mid$ mate $_{n} . \sigma(P) \circ \tau_{0} \mid$ mate $_{n}^{\perp} \cdot \tau(Q\rangle \rightarrow^{*} \sigma_{0}|\sigma| \tau_{0} \mid \tau(P \circ Q\rangle$

Example: Mate

mate $_{n} \stackrel{\text { def }}{=} \triangleright_{n} \cdot \triangleleft_{n^{\prime}} \cdot \sigma$
mate ${ }_{n}^{\perp} \stackrel{\text { def }}{=}{ }_{n}^{\perp} \triangleright\left(\triangleleft_{n^{\prime}}^{\perp} \cdot \triangleleft_{n^{\prime \prime}}\right) . \triangleleft_{n^{\prime \prime}}^{\perp} \cdot \tau$

Proposition:

$$
\sigma_{0} \mid \text { mate }_{n} . \sigma\left(P | \circ \tau _ { 0 } | \text { mate } _ { n } ^ { \perp } \cdot \tau \left(Q\left|\rightarrow^{*} \sigma_{0}\right| \sigma\left|\tau_{0}\right| \tau(P \circ Q)\right.\right.
$$

Example: Mate

mate $_{n} \stackrel{\text { def }}{=} \triangleright_{n} . \triangleleft_{n^{\prime}} . \sigma$
mate $_{n}^{\perp} \stackrel{\text { def }}{=}{ }_{n}^{\perp} \triangleright\left(\triangleleft_{n^{\prime}}^{\perp} \cdot \triangleleft_{n^{\prime \prime}}\right) . \triangleleft_{n^{\prime \prime}}^{\perp} . \tau$

Proposition:

$$
\sigma_{0} \mid \text { mate }_{n} . \sigma\left(P \emptyset \circ \tau_{0} \mid \text { mate }_{n}^{\perp} \cdot \tau(Q) \rightarrow^{*} \sigma_{0}|\sigma| \tau_{0} \mid \tau(P \circ Q)\right.
$$

Homework: Drip (Mito with 0), Bud (Mito with 1)

Example: Viral Reproduction

Example: Viral Reproduction

Almost... molecules are needed

Nice, but...

Nice, but... what kind of calculus is this?

Nice, but... what kind of calculus is this?

- Purely combinatorial

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
$\ldots 02 o_{n}\left|o 2 o_{n}^{\perp}(m)\right| s 2 s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$ assuming $\tau\{l \leftarrow m\}$

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
$\ldots o 2 o_{n}\left|o 2 o_{n}^{\perp}(m)\right| s 2 s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$ assuming $\tau\{l \leftarrow m\}$
...and name restriction...

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
$\ldots o 2 o_{n}\left|o 2 o_{n}^{\perp}(m)\right| s 2 s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$ assuming $\tau\{l \leftarrow m\}$
...and name restriction...
...and choice...

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
$\ldots o 2 o_{n}\left|o 2 o_{n}^{\perp}(m)\right| s 2 s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$ assuming $\tau\{l \leftarrow m\}$
...and name restriction...
...and choice...
...and all π ?

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
\ldots oLo $_{n}\left|o 2 o_{n}^{\perp}(m)\right| s \mathcal{L} s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$
assuming $\tau\{l \leftarrow m\}$
...and name restriction...
...and choice...
...and all π ?
- No equivalence

Nice, but... what kind of calculus is this?

- Purely combinatorial communication could be added...
$a, b::=$
$\ldots o 2 o_{n}\left|o 2 o_{n}^{\perp}(m)\right| s 2 s_{n}\left|s 2 s_{n}^{\perp}(m)\right| p 2 c_{n} \mid p 2 c_{n}^{\perp}(m)$
assuming $\tau\{l \leftarrow m\}$
...and name restriction...
...and choice...
...and all π ?
- No equivalence
- Biologically meaningful?

Comparative Exercise: Security Applications

Ambients in the air...

Comparative Exercise: Security Applications

Ambients in the air...Pure and Safe

Comparative Exercise: Security Applications

Ambients in the air...Pure and Safe

$$
\begin{array}{ll}
P & ::=(\nu n) P|0| P \circ Q|!P| n[P] \mid \text { Cap. } P \\
\text { Cap } & ::=\text { in } n \mid \text { in } n \mid \text { out } n \mid \text { out } n \mid \text { open } n \mid \text { open } n \mid
\end{array}
$$

Comparative Exercise: Security Applications

Ambients in the air...Pure and Safe

$$
\begin{array}{ll}
P & ::=(\nu n) P|0| P \circ Q|!P| n[P] \mid \text { Cap. } P \\
\text { Cap }::=\text { in } n \mid \text { in } n \mid \text { out } n \mid \text { out } n \mid \text { open } n \mid \text { open } n \mid
\end{array}
$$

to be explored...

