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SUMMARY

FairThreads introduces fair threads which are executed in a cooperative way when linked to a scheduler,
and in a preemptive way otherwise. Constructs exist for programming the dynamic linking/unlinking
of threads during execution. Users can profit from the cooperative scheduling when threads are linked.
For example, data only accessed by the threads linked to the same scheduler does not need to be protected
by locks. Users can also profit from the preemptive scheduling provided by the operating system (OS)
when threads are unlinked, for example to deal with blocking I/Os. In the cooperative context, for the
threads linked to the same scheduler, FairThreads make it possible to use broadcast events. Broadcasting is
a powerful, abstract, and modular means of communication. Basically, event broadcasting is made possible
by the specific way threads are scheduled by the scheduler to which they are linked (the ‘fair’ strategy).
FairThreads give a way to deal with some limitations of the OS. Automata are special threads, coded as
state machines, which do not need the allocation of a native thread and which have efficient execution.
Automata also give a means to deal with the limited number of native threads available when large numbers
of concurrent tasks are needed, for example in simulations. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Threads give users access to concurrency, a technique which is widely recognized as central
in programming. They are generally considered as having two major advantages: first, multi-
threaded programs can benefit from multiprocessor machines, in particular those based on symmetric
multiprocessing (SMP) architectures, which are now widely available. Secondly, blocking I/Os do not
need special attention because, as the scheduler is preemptive, there is no risk that a thread blocked on
an I/O operation also blocks the rest of the system.
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The benefit of threads is, however, not so clear for systems made of tasks needing frequent
synchronization or communication actions. Indeed, in a preemptive context, to communicate or to
synchronize generally implies the need to protect some of the data involved in the communication or in
the synchronization. Locks are basically used for this purpose, but they have a cost and are error-prone
(introducing the possibility of deadlocks).

Pure cooperative threads are actually more adapted for highly communicating tasks. Indeed, data
protection is no longer needed and one can avoid the use of locks. Moreover, cooperative threads have
clear and simple semantics, and are thus easier to program and to port. However, while cooperative
threads can be efficiently implemented at user level, they cannot benefit from multiprocessor machines
and they need special means to deal with blocking I/Os.

Actually, programming with threads is difficult because threads generally have very ‘loose’
semantics. This is particularly true with preemptive threads because their semantics strongly relies
on the scheduling policy. The semantics of threads also depends on other aspects, for example the
way threads’ priorities are mapped at the kernel level. Moreover, threads raise efficiency problems.
For example, threads take time to create, and need a rather large amount of memory to execute.
Another issue is related to the limitation of the number of native threads than can be created at system
level. Several techniques exist to bypass these problems, especially when large numbers of short-lived
components are needed. Among these techniques is thread-pooling, to limit the number of created
threads, and the use of small code fragments, sometimes called chores or chunks.

1.1. The FairThreads proposal

FairThreads proposes to overcome the difficulties of threads by giving users the opportunity to choose
the context, cooperative or preemptive, in which threads are executed.

More precisely, FairThreads defines schedulers which are cooperative contexts to which threads can
dynamically link or unlink. A thread can be linked to at most one scheduler at a time. All threads linked
to the same scheduler are executed in a cooperative way, and at the same pace. Threads which are not
linked to any scheduler are executed by the OS in a preemptive way, at their own pace. An important
point is that FairThreads offers programming constructs to dynamically link and unlink threads.

FairThreads has the following main characteristics.

• Programs can take advantage of multiprocessor machines. Indeed, schedulers and unlinked
threads can be run in real parallelism, on distinct processors.

• It allows users to stay in a purely cooperative context by linking all the threads to the same
scheduler. In this case, systems are completely deterministic and have a simple and clear
semantics.

• Blocking I/Os can be implemented in a very simple way, using unlinked threads.
• It defines instants shared by all the threads which are linked to the same scheduler. Thus, all

threads linked to the same scheduler execute at the same pace, and there is an automatic
synchronization at the end of each instant.

• It introduces events which are instantaneously broadcast to all the threads linked to a scheduler;
events are a modular and powerful mean for threads to synchronize and communicate.

• It defines automata to deal with small, short-lived tasks, which do not need the full power of
native threads. Automata have lightweight implementation and are not subject to some of the
limitations of native threads.
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This paper describes FairThreads in the context of C, implemented on top of the Pthreads library [1].
The structure is as follows. Section 2 presents the rationale for the design of FairThreads. An overview
of the application programmer interface (API) of FairThreads is given in Section 3. Several examples
showing various aspects of FairThreads are described in Section 4. Related work is considered in
Section 5. Finally, Section 6 concludes the paper.

2. RATIONALE

In FairThreads, schedulers can be seen as synchronization servers, in which linked threads
automatically synchronize at the end of each instant. However, in order to synchronize, linked threads
must behave fairly‡ and cooperate with the other threads by returning the control to the scheduler.
Thus, linked threads are basically cooperative threads. Schedulers can also be seen as event servers as
they are in charge of broadcasting generated events to all the linked threads. In this way, a scheduler
defines a kind of synchronized area made of cooperative threads running at the same pace and
communicating through broadcast events.

2.1. Synchronized areas

A synchronized area can, quite naturally, be defined to manage some shared data that has to be accessed
by several threads. In order to get access to the data, a thread first has to link to the area, and then it
becomes scheduled by the area and can thus get safe access to the data§. Indeed, as the scheduling is
cooperative, there is no risk to the thread of being preempted during an access to the data. The use of a
synchronized area is, in this case, an alternative to the use of locks. A synchronized area can also play
the role of a location that threads can join when some kind of communication or synchronization is
needed.

FairThreads allows programmers to decompose complex systems into several threads and areas to
which threads can link dynamically, following their needs. Moreover, a thread can be unlinked, that
is it can be totally free from any synchronization provided by any schedulers. Of course, unlinked
threads cannot benefit from broadcast events. Unlinked threads are run in the preemptive context of the
operating system (OS), and are thus just standard preemptive threads. Data shared by unlinked threads
have to be protected by locks, in the standard way.

The computing model of FairThreads leads to systems made of synchronous areas, as shown in
Figure 1. In Figure 1, threads are represented as vertical stacks of small segments (the instructions)
with associated arrows (the program counters). The shaded areas are the synchronized areas defined by
the schedulers. Threads linked to them are executed in a cooperative way.

2.2. Linked threads

Basically, a linked fair thread is a cooperative thread which can synchronize with other fair threads
using events, and which can communicate with them through values associated to these events.

‡Hence the name FairThreads; note, however, that this differs from the standard meaning of fair in the context of concurrency.
§In this respect, schedulers are quite close to standard monitors (see the classification of Buhr et al. [2]), except that they need a
dedicated thread of control.
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Figure 1. Two synchronized areas and one unlinked thread.

Intuitively, all threads linked to the scheduler get an equal right to execute. More precisely, a scheduler
defines instants during which all threads linked to it run up to their next cooperation point. There are
two kinds of cooperation points.

• Explicit ones, which are calls to the cooperate function, used when the thread has finished its
execution for the current instant. In this case, the thread will only regain the control at the next
instant (except of course if it is suspended or stopped). The cooperate function can thus be
seen as a kind of ‘yield’, the primitive that is central in co-routine based formalisms.

• Implicit points, where threads are waiting for events. Note that in this case, the execution can
return to the thread during the same instant, if the awaited event is generated later, by any other
thread linked to the scheduler.

A fair scheduler actually broadcasts generated events to all the fair threads linked to it. Thus, all
the threads linked to the same scheduler ‘see’ the presence and the absence of events in exactly the
same way. Moreover, values associated to events are also broadcast. Actually, events are local to the
scheduler in which they are created, and are non-persistent data which are reset at the beginning of
each new instant.

Fair scheduling

To show how the fair scheduling works, consider three fair threads informally represented by:

Thread A Thread B Thread C
1: await evt1 1: generate evt1 1: await evt1
2: await evt2 2: cooperate 2: generate evt2
3: cooperate 3: generate evt3 3: await evt3
4: await evt1

Let us detail the scheduling of these threads and describe, for each instant, exactly how and when
each thread executes.
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Figure 2. Executing fair threads A, B, and C.

• Instant 1: Thread A gets blocked (line 1) because it is waiting for event evt1 which is not
already generated during the instant.
Thread B generates evt1 (line 1), then it cooperates (line 2), which means that it has completed
its execution for the instant. It is explicitly blocked.
Thread C does not block on event evt1 as it has been generated (by B) during the instant.
It generates evt2 and it blocks, waiting for event evt3.
At this point all threads have executed but there exists a thread (A) that is blocked on an event
which is present. Thus the scheduler re-elects A in the instant. This thread does not block on event
evt2 because it is present (generated by C). Then it explicitly cooperates (line 3). At this point
all threads are blocked and no new event has been generated. This marks the end of instant 1.
Events are reset before proceeding to the next instant.

• Instant 2: Thread A gets blocked instantly waiting for evt1 (line 4), which has not been
generated during the instant. (Remember that events are reset at the beginning of each instant.)
Thread B generates evt3 and then it terminates its execution.
Thread C awakes for evt3 (line 3) and it terminates. At this point all threads are either blocked
or terminated. Instant 2 ends.

• Instant 3: Thread A blocks for the instant and for the next instants until evt1 is generated.

The execution of the three threads is summarized in Figure 2.

Modularity

Events are a powerful synchronization and communication mechanism which simplifies concurrent
programming while reducing the risk of deadlocks. Events are used when one wants one or more
threads to wait for a condition, without polling a variable to determine when the condition is fulfilled
(from this point of view, events correspond to the condition variables of Pthreads). Broadcasting is a
way to get modularity, as the thread which generates an event requires no knowledge about potential
receivers. Fairness in event processing means that all threads waiting for an event always receive it
the same instant it is generated; thus a thread which waits for an event and returns the control to the
scheduler does not risk losing the event if it is generated later in the same instant. Indeed, in this case,
the scheduler will necessarily resume the thread during the instant.
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Determinism

Cooperative frameworks are more deterministic than preemptive ones, as in cooperative frameworks
preemption cannot occur in an uncontrolled way. Actually, FairThreads takes this to an extreme point
when considering linked threads: at each instant, the order in which a scheduler starts to run threads
is always the same, and the scheduler iterates until every thread gets blocked using this very same
order. More precisely, the order is actually the one in which threads have been linked to the scheduler.
This strategy leads to completely deterministic systems which can be a great help in programming and
debugging.

Note that, using events, one can get behaviors that are actually independent of the order in which
threads are executed. For example, returning to the example described in Figure 2, the reader can verify
that executing the three threads in a different order would produce the same results (the same events
would be generated at the same instants). Of course, the presence of side effects, as print instructions,
makes things more complicated, and, in the general case, the result depends on the order in which
threads are chosen for execution.

Absence of priorities

Priorities are meaningless for linked threads which always have an equal right to execute. Absence of
priorities also contributes to simpler programming.

2.3. Automata

Automata are special fair threads which are coded as state machines and are always linked to a
scheduler. An automaton can dynamically change its linking to a scheduler using an atomic operation
(this is different with standard fair threads, which must first unlink and then re-link). As with standard
fair threads, events can be awaited and generated in automata with the same semantics. The point is that
an automaton does not need the full power of a native thread to execute. An automaton is actually run
by the thread of the scheduler to which it is linked. This is possible because an automaton is basically
a state-machine which does not need a dedicated stack to store its execution state or its local variables,
and because it is never unlinked. As a consequence, an automaton can be implemented more efficiently
than a standard fair thread but its expressive power is more limited (for example, recursive functions
that are not tail-recursive cannot be coded with automata).

Automata are specially useful in two cases. The first one is for coding auxiliary or short-lived small
tasks (for example, waiting for an event to stop a thread) which do not need the allocation of a native
thread. The second case is when large numbers of tasks are needed. Indeed, in this case, the use of a
standard fair thread, mapped to a native thread, would possibly exceed the number of native threads
allowed by the system.

Basically, automata are lists of states which are elementary pieces of sequential code. The current
state is stored by the automaton and execution starts from it at the beginning of the instant. Specific
states are defined for dealing with events; for example, there exists a wait state in which the
automaton stays until an event is present. Explicit jump operations are provided to leave states.
When a state terminates without any explicit jump, execution automatically proceeds to the next state.
Execution of the automaton terminates when the last state is exited. Thus, the fine-grain sequentiality of
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execution inside states is not memorized by automata, which only capture the coarse-grain sequentiality
of states.

2.4. Mapping to native threads

In FairThreads, all fair threads, except automata, are mapped onto native threads, which in the
implementation are standard pthreads of the Pthreads library; in the rest of the paper, native threads
and pthreads will be considered as synonymous. Fair threads which are linked to a scheduler are under
the scheduler’s control, while unlinked threads behave as standard native preemptive threads, under the
control of the OS. Actually, unlinked threads are introduced in FairThreads for two main reasons. First,
using unlinked threads, users can program non-blocking I/Os in a very simple way. Without this kind
of I/O, programming would become problematic. Secondly, unlinked threads can be run by distinct
processors. The use of unlinked threads is a plus in multiprocessor contexts.

Schedulers are basically mapped to native threads and run autonomously, defining distinct
synchronized areas, with their own instants. However, FairThreads also gives a way to control
the execution of schedulers, instant by instant, which allows users to program complex scheduling
strategies, involving several schedulers run in a synchronized way.

2.5. Use for simulations

Simulation of physical entities is used in many distinct areas, ranging from surgery training to games.
The standard approach consists in discretization of time, and then integration using some stepwise
method.

The use of threads to simulate separate and independent objects of the real world appears quite
natural when the focus is put on objects, behaviors and interactions between them. However, using
threads in this context is not so easy: for example, complex interactions between objects may demand
complex thread synchronizations, and the number of components to simulate may exceed the number
of available threads.

FairThreads can be helpful in several aspects.

• Simulation of large numbers of components is possible using automata. Automata do not need
private stacks and the consumption of memory can thus stay low.

• Interactions can be expressed with broadcast events, which gives a very modular way to deal
with them.

• Instants provide a common discrete time that can be used by the simulation.
• Interacting components can be naturally grouped into synchronized areas. The presence of

several synchronized areas can be a plus for multiprocessing.

As an example, consider the simulation on screen of moving particles. A fair thread should be
quite naturally associated with each particle for executing its behavior. An example of behavior could
be to call at each instant two functions, one for inertia and one for bouncing on the borders of
the screen. As the number of particles can be large, each particle should actually be implemented
as an automaton. Particles that are close enough have to synchronize for collision processing.
The needed synchronization is actually automatically provided by common instants shared by the fair
threads linked to the same scheduler. Collision processing should use a broadcast event generated
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by each particle and processed by the others. To avoid considering distant particles during collision
processing, the global simulation should be divided into several sub-regions which can be quite
naturally mapped to distinct schedulers to which particles dynamically link according to their moves.
In this way, each region gets its own collision event, and only particles present in the region are
processed by it (of course, the collision of two particles belonging to different regions needs a
special treatment, not considered here). Moreover, the schedulers can execute in real parallelism, on a
multiprocessor machine. One thus gets a natural and efficient programming of the simulation, based
on the synchronizations provided by instants. More generally, simulations appear as a domain which
could certainly profit from the techniques proposed by FairThreads.

3. OVERVIEW OF THE API

An overview of the API of FairThreads is given in this section. All functions are presented, but,
for simplicity, some details such as error codes are not considered here. The API is summarized in
Appendix A.

3.1. Schedulers and threads

FairThreads explicitly introduces schedulers, of type ft scheduler t, which are created with
the function ft scheduler create. Once started by a call to ft scheduler start, a
scheduler is run by a dedicated native thread which cyclically gives the control in turn to the
threads linked to it. Several schedulers can be used simultaneously in the same program. Using the
ft scheduler react function, it is possible to execute only one instant of a scheduler. With this
function, users can get control over schedulers’ execution and, for example, synchronize several of
them according to their needs.

Fair threads are of type ft thread t and are created with one of the two functions
ft thread create or ft thread create unlinked. The call ft thread create
(s,r,c,a) creates in the scheduler s a thread run by a dedicated native thread. The creation is
not immediate but becomes actual at the beginning of the next instant of s. The thread is automatically
started and it executes the function r with a as parameter. If stopped (by ft scheduler stop), the
thread switches execution to the function c to which a is also transmitted.

The call ft thread create unlinked(r,c,a) creates an unlinked thread which executes
the function r with a as parameter. As previously, the thread switches execution to c if it is stopped
(which supposes that the thread has been linked to a scheduler by ft thread link, described later).

Here is a typical program main function which creates a scheduler and a fair thread in it, and then
starts the scheduler (the call to ft exit prevents the immediate termination of the whole program;
it is considered later):

int main (void)
{

ft_scheduler_t sched = ft_scheduler_create ();
ft_thread_create (sched,t,NULL,NULL);
ft_scheduler_start (sched);
ft_exit ();
return 0;

}
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Orders can be given to a scheduler to stop, suspend, or resume a thread linked to it (an error
is returned if the thread is actually unlinked). For example, the call ft scheduler stop(t)
gives the scheduler s (which executes the thread t) the order to stop it. The stop will become
actual at the beginning of the next instant of the scheduler, in order to ensure that t is in a stable
state when stopped. In a similar way, a thread can be suspended and resumed with the functions
ft scheduler suspend and ft scheduler resume.

The executing thread is returned by ft thread self() and the scheduler of the executing thread
is returned by ft thread scheduler() (an error code is returned if the thread is unlinked).

For example, the following call is a way for a thread to stop itself:

ft_thread_stop (ft_thread_self ());

Note that this call does not prevent the executing thread from continuing execution during the current
instant, as the stop becomes effective only at the beginning of the next instant. In the terminology of
synchronous languages [3], the preemption resulting from ft thread stop is ‘weak’, not ‘strong’.

3.2. Cooperation and termination

The call ft thread cooperate() is the explicit way for the calling thread to return control to the
scheduler running it. An error code is returned if the executing thread is unlinked.

For example, the following function gives a way to trace the instants of a scheduler:

void trace_instants (void *n)
{

int i = 0;
while (1) {

printf ("\ninstant %d: ", i++);
ft_thread_cooperate();

}
}

The call ft thread cooperate n(i) is equivalent to i calls to ft thread cooperate().
Actually, ft thread cooperate n is present in the API only for optimization purposes.

The call ft thread join(t) suspends the execution of the executing thread until the thread t
terminates (either normally or because it is stopped). Note that t does not need to be linked to
the scheduler of the calling thread. With ft thread join n(t,i) the suspension is limited to
i instants in the scheduler of the executing thread.

The following loop, for example, waits for the termination of all the components of an array of
threads:

for (i = 0; i < MAX; i++)
ft_thread_join (thread_array [i]);

3.3. Events

An event has type ft event t and is created with the function ft event create, which receives
as a parameter the schedulers in charge of it. Only threads linked to swill be able to generate the event,
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to await it, or to get its associated values. Nevertheless, it is always possible to generate the event from
outside s, with ft scheduler broadcast.

The call ft thread generate(e) immediately generates the event e in the scheduler s
in charge of it. An error code is returned if the executing thread is not linked to s. The call
ft thread generate value(e,v) adds v to the list of values associated to e during the current
instant (these values can be read using ft thread get value, considered later).

For example, the following instruction generates the event presence and associates the executing
thread to it:

ft_thread_generate_value (presence,ft_thread_self ());

The call ft scheduler broadcast(e) gives to the scheduler s of the event e the order to
broadcast it to all the linked threads. In this case it is not mandatory that the executing thread is linked
to s, and it can even be unlinked. The call ft scheduler broadcast value(e,v) associates
the value v to e (as previously, v can be read using ft thread get value).

Awaiting events

Events can be awaited using ft thread await (in the case of one single event) or
ft thread select (in the case of several events). In all cases, the executing thread must be linked
to the scheduler of awaited events, in order to get safe information about their presence or absence.
Thus an error code is returned if the executing thread is not linked to the scheduler of awaited events.

The call ft thread await(e) suspends the execution of the calling thread until the event e
becomes generated. Execution resumes as soon as e is generated.

Here, for example, is a function that waits for an event to be present and then stops a thread
(preempt t is a pointer type on a structure made of an event and a thread):

void killer (void *p)
{

preempt_t p = p;
ft_thread_await (p->event);
stop (p->thread);

}

With ft thread await n(e,i), the waiting is limited to at most i instants: the executing
thread is automatically resumed at the beginning of the ith next instant if e was not previously
generated.

For example, the following code tests if event is present during the current instant (the executing
thread is supposed to be correctly linked to the scheduler of the event):

if (OK == ft_thread_await_n (event,1)) printf ("present!");
else printf ("was absent!");

Note that message ‘was absent!’ is printed only at the next instant because to determine the absence
of event takes the whole current instant. This is a major difference from Esterel [4]: in FairThreads
instantaneous reaction to the absence of an event is impossible; only delayed reaction to absence is
possible.
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The call ft thread select(k,array,mask) suspends the execution of the calling
thread until the generation of at least one element of array, which is an array of
k events. Then, mask, which is an array of k Boolean values, is set accordingly.
With ft thread select n(k,array,mask,i), the waiting is limited to i instants.

Getting event values

The call ft thread get value(e,i,r) is an attempt to get the ith value associated to event e
during the current instant (as previously, the executing thread must be linked to the scheduler of e).
If such a value exists, it is assigned to the location pointed to by r and the call terminates instantly.
Otherwise, the special code ENEXT is returned at the next instant.

For example, the following instruction waits for event and then gets all the values associated to it
during the current instant:

ft_thread_await (event);
i = 0;
while (OK == ft_thread_get_value (event,i++,res)) {

...
}

An important point is that the loop does not terminate at the instant in which event is generated, but
at the next one. Indeed, the fact that all values have been considered can only be known at the end of
the current instant. Thus ENEXT is only returned at the next instant.

3.4. Linking, unlinking, and Pthreads

The call ft thread unlink() unlinks the executing thread t from the scheduler s in which it is
running (an error code is returned if the executing thread is already unlinked). Then t is completely
removed from s and it will no longer synchronize, instant after instant, with the other threads linked
to s. Actually, after unlinking, t behaves as a standard native thread, only under the control of the
OS. Note that if it later re-links to the scheduler, it does not keep its position and is put, as every new
incoming thread, is at the end of the list of linked threads.

The call ft thread link(s) links the calling thread to the scheduler s. The calling thread must
be unlinked when executing the call. The linkage becomes actual at the beginning of the next instant
of s.

For example, the following function implements a cooperative reading I/O using the standard
blocking read function. The thread first unlinks from the scheduler, then performs the read, and
finally re-links to the scheduler:

ssize_t ft_thread_read (int fd,void *buf,size_t count)
{

ft_scheduler_t sched = ft_thread_scheduler ();
ssize_t res;
ft_thread_unlink ();
res = read (fd,buf,count);
ft_thread_link (sched);
return res;

}
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In the presence of unlinked threads, locks can be needed to protect data shared between unlinked and
linked threads. Standard mutexes are used for this purpose. The call ft thread mutex lock(p),
where p is a mutex, suspends the calling thread until p becomes locked. The lock is released using
ft thread mutex unlock. Locks owned by a thread are automatically released when the thread
terminates definitively or when it is stopped.

The call ft pthread(t) returns the native pthread which executes the fair thread t. This function
gives direct access to the Pthreads implementation of FairThreads.

The function ft exit is equivalent to pthread exit. The basic use of ft exit is to terminate
the pthread which is running the function main, without exiting from the process running the whole
program.

3.5. Automata

Automata are fair threads of the type ft thread t, created with the function
ft automaton create. The thread returned by ft automaton create(s,r,c,a) is
executed as an automaton by the scheduler s, which means that it is run by the native thread of the
scheduler and not by a dedicated native thread.

The automaton r is described as a list of numbered states coded using a set of macros described in
Appendix A. States are numbered, starting from zero, and the numbers must be consecutive, without
any gap in the numbering.

For example, here is an automaton equivalent to the function killer, previously defined:

DEFINE_AUTOMATON (killer)
{

preempt_p p = ARGS;
BEGIN_AUTOMATON

STATE_AWAIT (0,p->event)
STATE (1) {

ft_scheduler_stop (p->thread);
}

END_AUTOMATON
}

The automaton is introduced by the macro DEFINE AUTOMATON with the automaton name as a
parameter. The macro ARGS gives access to the argument given at creation. The list of states starts
with BEGIN AUTOMATON and ends with END AUTOMATON, and the state numbered 0 is always the
initial state. States are either standard states (introduced by STATE) or special states corresponding
to some API functions. For example, the special state 0 of the previous automaton corresponds to a
call of ft thread await. Actually, the control will stay in this state while the event is not present,
and it will flow to the next state as soon as the event is generated. Passing from one state to another
one can be made explicit using the macros GOTO, GOTO NEXT, or IMMEDIATE. With GOTO and
GOTO NEXT, the execution of the target state will occur only at the next instant, while it is immediate
when IMMEDIATE is used.

A fair thread instance of killer is created by:

ft_thread_t a = ft_automaton_create (sched,killer,NULL,args);
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In contrast to a creation by ft thread create, no new pthread is created using
ft automaton create, and the automaton is simply run by the pthread of the scheduler to which
it is linked. Thus no supplementary thread context switch appears, which is a good point for efficiency.
Moreover, limitations on the number of native threads that can be simultaneously running do not apply
to automata.

4. EXAMPLES

Several examples are given which show various aspects of FairThreads. The example in Section 4.1
illustrates the determinism of linked threads. A producer/consumer example which can benefit from
multiprocessor machines is described in Section 4.2. Section 4.3 shows the benefit of having precise
semantics. Finally, several uses of automata are considered in Section 4.4.

4.1. Determinism

The following code is made of two threads linked to the same scheduler, and it outputs Hello
World! cyclically. The whole code is given here for sake of completeness:

#include "fthread.h"
#include <stdio.h>

void print (void *txt)
{

while (1) {
printf ("%s", (char*)txt);
ft_thread_cooperate ();

}
}

int main (void)
{

ft_scheduler_t sched = ft_scheduler_create ();
ft_thread_create (sched,print,NULL,"Hello");
ft_thread_create (sched,print,NULL," World!\n");
ft_scheduler_start (sched);
ft_exit ();
return 0;

}

Note the call of ft exit to prevent the program terminating before executing the two threads.
Execution of linked fair threads is deterministic: the two messages Hello and World! are always
printed in this order because the thread which prints Hello is created and linked to sched before the
one which prints World.

4.2. Producer/consumer

A producer/consumer example follows. There are two files, in and out of type file t (not detailed
here), and a pool of threads that take data from in, process them, and then put results in out.
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Processing a value is supposed to be time-consuming. A scheduler and an event are associated to
each file; the event is generated to indicate that a new value is produced in the associated file:

file_t in = NULL, out = NULL;
ft_scheduler_t in_sched, out_sched;
ft_event_t new_input, new_output;

Processing values

Each cycle of the processing thread consists of the following steps. First the thread links to in sched
to get a value. Then it unlinks to process the value. When this is finished, it links to out shed to
deliver the result. Finally, the thread unlinks. The code is

void process (void *args)
{
int v;
while (1) {

ft_thread_link (in_sched);
while (size(in) == 0) {

ft_thread_await (new_input);
if (size (in) == 0) ft_thread_cooperate ();

}
v = get (&in);
ft_thread_unlink ();
< time consuming processing of v >
ft_thread_link (out_sched);
put (v,&out);
ft_thread_generate (new_output);
ft_thread_unlink ();

}
}

The event new input is used to prevent polling when no value is available from in. However, to
test it as present does not imply that a value is available: it could happen that the value has already
been consumed by another thread. This is the reason why file in is tested again, in sequence with
ft thread await. Note the call to ft thread cooperate to avoid an infinite loop during the
same instant if new input is tested as present while no value is actually available¶.

Main function

Two schedulers are created: one for values to be processed, and the other for results. Then several
unlinked processing threads are created. The main function is the following:

¶Using as many events as processing threads, one could also design a different solution in which only one thread would be
awakened at a time.
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int main (void)
{

int i;
in_sched = ft_scheduler_create ();
out_sched = ft_scheduler_create ();
new_input = ft_event_create (in_sched);
new_output = ft_event_create (out_sched);
for (i = 0; i < MAX_THREADS; i++)

ft_thread_create_unlinked (process,NULL,NULL);
ft_thread_create (in_sched,produce,NULL,NULL);
ft_thread_create (out_sched,consume,NULL,NULL);
ft_scheduler_start (in_sched);
ft_scheduler_start (out_sched);
ft_exit ();
return 0;

}

Below we give some important points.

• While processing values, the processing threads are unlinked and can thus be run by distinct
processors; the producer/consumer system can, in this way, benefit from multiprocessor
machines.

• The use of two synchronized areas defined by the two schedulers is an alternative to the use of
locks: no explicit lock is indeed needed despite the fact that all the processing threads share the
two files in and out.

• It is possible, for processing values, to use a non-cooperative procedure provided it is thread-safe
(and thus, reentrant). As the executing thread is unlinked, calling the procedure does not penalize
the other threads which do not have to wait for its termination to start running.

4.3. Using events

Consider two threads t1 and t2, and two events e1 and e2. The thread t1 awaits e1 and t2
awaits e2. When a thread receives the event it is waiting for, it stops the other thread and starts running:

ft_scheduler_t sched;
ft_thread_t t1,t2;
ft_event_t e1,e2;

....

void run1 (void *args)
{

ft_thread_await (e1);
ft_scheduler_stop (t2);
< body1 >

}

void run2 (void *args)
{

ft_thread_await (e2);
ft_scheduler_stop (t1);
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< body2 >
}
....
sched = ft_scheduler_create ();
t1 = ft_thread_create (sched,run1,NULL,NULL);
t2 = ft_thread_create (sched,run2,NULL,NULL);
e1 = ft_event_create (sched);
e2 = ft_event_create (sched);
....

The question is: what happens when e1 and e2 are simultaneously present (perhaps, because e1 and
e2 are the same event)? The answer is clear and precise, according to the semantics of FairThreads:
body1 and body2 are executed during only one instant, and then t1 and t2 both terminate at the
next instant. Note that, if one prefers body1 and body2 not to be executed at all, it is sufficient to
insert a call to ft thread cooperate just after the call to ft scheduler stop, in both run1
and run2.

Now, suppose that the same example is coded using standard pthreads instead of fair threads,
replacing events by condition variables and ft scheduler stop by pthread cancel.
The resulting program is deeply non-deterministic. Actually, one of the two threads could prevent the
other from execution and run its own body up to completion. However, the situation where both threads
cancel each other is also possible; in this case, both bodies execute for a while, with an unpredictable
result.

4.4. Automata examples

Consider three examples using automata. The first example is a recoding of the previous ‘Hello World!’
program. The second example is a three-state automaton which runs two threads in turn. The context
of simulations, as presented in Section 2.5, is considered in the third example.

Hello World with automata

Three native threads are actually run by the program of Section 4.1: one for the scheduler and two
instances of print. Using automata, one gets an equivalent program which needs only one native
thread (the one of the scheduler). The use of automata, which clearly improves efficiency, is possible
because the threads are never unlinked. The program becomes:

#include "fthread.h"
#include <stdio.h>

DEFINE_AUTOMATON (print)
{
BEGIN_AUTOMATON

STATE (0) {
printf ("%s", (char*)ARGS);
GOTO(0);

}
END_AUTOMATON

}
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int main (void)
{

ft_scheduler_t sched = ft_scheduler_create ();
ft_automaton_create (sched,print,NULL,"Hello");
ft_automaton_create (sched,print,NULL," World!\n");
ft_scheduler_start (sched);
ft_exit ();
return 0;

}

Note the replacement of ft thread create by ft automaton create in the function main.

Two threads run in turn

The following automaton switches control between two threads, according to the presence of an event.
The automaton switch aut has three states. State 0 resumes the first thread (initially, one assumes
that both threads are suspended). The switching event is awaited in the state 1, and the threads are
switched when the event becomes present. State 2 is similar to state 1, except that the threads are
exchanged:

DEFINE_AUTOMATON (switch_aut)
{

void **args = ARGS;
ft_event_t event = args[0];
ft_thread_t thread1 = args[1];
ft_thread_t thread2 = args[2];
BEGIN_AUTOMATON

STATE (0) {ft_scheduler_resume (thread1);}
STATE_AWAIT (1,event) {

ft_scheduler_suspend (thread1);
ft_scheduler_resume (thread2);
GOTO(2);

}
STATE_AWAIT (2,event) {

ft_scheduler_suspend (thread2);
ft_scheduler_resume (thread1);
GOTO(1);

}
END_AUTOMATON

}

If a standard thread were used instead of an automaton, one supplementary pthread would be needed
to perform the same task.

Simulation

Consider a simulation of colliding balls based on a matrix of schedulers to which the balls are linked.
Each scheduler is in charge of a part of the global simulation and the balls dynamically link to
the schedulers according to their coordinates. A special event is defined in each scheduler, which is
generated by balls linked to it in order to signal their presence for collision processing.
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Each ball is implemented as an automaton which, at each instant, moves and performs collisions
with the other balls linked to the same scheduler. A specific scheduler is dedicated to graphics, and
each ball broadcasts the draw event for being drawn on screen.

Balls have local variables of pointer type ball locals with the following fields: current is the
current area of the simulation in which the ball is; presence is the event which signals the presence
of the ball, used for collision processing; i, here and other are auxiliary variables:
DEFINE_AUTOMATON(ball_fun)
{

ball_locals ball = (ball_locals)ARGS;
BEGIN_AUTOMATON

STATE (0) {initialize (ball);}
STATE (1) {

move (ball);
ball->here = where_is (ball);
ft_scheduler_broadcast_value (draw,ball);

}
STATE (2) {

if (ball->here == ball->current) IMMEDIATE (4);
ball->current = ball->here;

}
STATE_LINK (3,scheduler_array[ball->here]);
STATE (4) {

ball->presence = collide_event_array[ball->current];
ft_thread_generate_value (ball->presence,ball);
ball->i = 0;

}
STATE_GET_VALUE (5, ball->presence, ball->i, (void**)&ball->other) {

if (RETURN_CODE != OK) IMMEDIATE (1);
if (ball != ball->other) collision (ball,ball->other);
ball->i++;
IMMEDIATE (5);

}
END_AUTOMATON

}

Below we give the description of the automaton states.

• State 0: the initialization of the ball.
• State 1: the ball is moved and the area in which it falls is stored in the auxiliary variable here.

Moreover, the event draw is broadcast to the scheduler in charge of the graphics.
• State 2: if the ball stays in the same scheduler, then the control immediately goes to state 4.

Otherwise, the current area is updated, and the control immediately flows to state 3.
• State 3: the special state in which the control stays until the automaton gets linked to the target

scheduler.
• State 4: the event for signaling the presence of the ball in the current scheduler is generated.

The ball is given as a value to the event.
• State 5: the special state to get and process the balls associated to the presence event. A possible

collision is considered for all the other balls linked to the same scheduler. At the next instant,
when all the balls have been considered (return code different from OK), the execution
immediately returns to state 1.
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One gets a simulation which can benefit from the presence of several processors, as schedulers can
then run in parallel. Note, however, that the simulation described is only partial because collisions
between balls belonging to distinct schedulers are not processed.

5. RELATED WORK

Thread libraries in C

Several thread libraries exist for C. Among them, the Pthreads Library [1] implements the POSIX
standard for preemptive threads. LinuxThreads [5] is an implementation of Pthreads for Linux; it is
based on native (kernel-level) threads. Quick Threads [6] provides programmers with minimal support
for multithreading at user-space level. Basically, it implements context-switching in assembly code,
and is thus a low-level solution to multithreading.

Gnu Portable Threads [7] (GNU Pth) is a library of purely cooperative threads which has portability
as the main objective. The Next Generation POSIX Threading project [8] proposes to extend GNU
Pth to the M:N model (M user threads, N native threads), with Linux SMP machines as the target.
The M:N model is also the basis of the Solaris OS of Sun, where kernel objects of execution are called
light weight processes. In Windows NT, threads are used at kernel level, but the unit of concurrency
at user level is not the thread but the fiber; a comparison of Solaris and NT in the context of SMP is
described in Zabatta and Ying [9].

Java threads

Java introduce threads at language level. Actually, threads are generally heavily used in Java, for
example when graphics or networking is involved. No assumption is made of the way threads are
scheduled (cooperative or preemptive schedulings are both possible), which makes Java multi-threaded
systems difficult to program and to port [10]. This difficulty is pointed out by the suppression from the
recent versions of the language of the primitives to gain fine control over threads [11]. A first version of
FairThreads has been proposed in the context of the Java Language [12] in order to simplify concurrent
programming in Java; this version was limited to cooperative threads.

Recently a new standard, called the Real-Time Specification for Java (RTSJ), has been proposed [13].
The aim of this standard is to extend Java to support real-time threads whose execution conforms to
timing constraints. A central point addressed by RTSJ is the garbage collection (more precisely, RTSJ
proposes constructs allowing certain real-time threads to circumvent the garbage collection).

Threads in functional languages

Threads are used in several ML-based languages such as CML [14]. CML is preemptively scheduled
and threads, communication is synchronous and based on channels. Threads are also introduced in
CAML [15]; they are implemented by time-sharing on a single processor, and thus cannot benefit from
multiprocessor machines.

FairThreads has been recently introduced in the Bigloo [16] implementation of Scheme. The present
version only supports linked threads, and special ‘service threads’ are introduced to deal with non-
blocking cooperative I/Os.
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Reactive approach

FairThreads actually comes from the so-called reactive approach [17], which is, itself, a ramification
of synchronous languages [3]. Instants and broadcast events are issued from Esterel [4], a synchronous
language for the specification of hardware and embedded systems. However, there are two main
differences between reactive programming and FairThreads on one hand, and Esterel and the
synchronous languages on the other hand. First, in the reactive approach, the absence of an event
during one instant cannot be decided before the end of this very instant. As a consequence, reaction to
absence is delayed to the next instant. This is a way to solve the so-called ‘causality problems’ which
are raised by synchronous languages and are obstacles to modularity. Secondly, dynamic creation of
concurrent components (of threads in the case of FairThreads) and of events is possible, while it is
forbidden by synchronous languages in which the structure of programs is always static.

The Reactive-C [18] language was the first proposal for reactive programming in C; in this respect,
FairThreads can be considered as a descendant of it.

A new approach has been recently proposed for the modeling and the simulation of physical
systems, based on reactive programming. This approach is specially useful for modeling mixed
continuous/discrete behaviors [19]. FairThreads can certainly be used with profit in this context.

Chores and filaments

Chores [20] and filaments [21] are small pieces of code that do not have a private stack and are
never preempted. Chores and filaments are designed for fine-grained parallelism programming on
shared-memory machines. Chores and filaments are completely executed and cannot be suspended or
resumed. Generally, a pool of threads is devoted to execute them. Chores and chunk-based techniques
are described in detail in the context of the Java language in Christopher and Thiruvathukal [22] and
Hollub [10]. Automata in FairThreads are close to chores and filaments, but give programmers more
freedom for direct coding of states-based algorithms. Automata are also related to mode automata [23]
in which states capture the notion of a running mode in the context of the synchronous language
Lustre [3].

Cohorts and staged computation

Cohort scheduling [24] dynamically reorganizes a series of computations on items in an input stream,
so that similar computations on different items execute consecutively. Staged computation is intended
to replace threads. In the staged model, a program is constructed from a collection of stages, and
each stage has scheduling autonomy to control the order in which operations are executed. Stages are
thus very close to instants of FairThreads, and cohort scheduling looks very much like cooperative
scheduling. In the staged model, emphasis is put on the way in which to exploit program locality by
grouping similar operations in cohorts that are executed at the same stage; in this way, cohorts and
staged computations fall into the family of data-flow models.

6. CONCLUSION

Multiprocessing

In FairThreads, users have control over the way threads are scheduled. Fair threads which are linked
to a scheduler are scheduled in a cooperative way by it. When a fair thread unlinks from a scheduler,
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it becomes an autonomous native thread which can be run in real parallelism, on a distinct processor.
An important point is that FairThreads provides users with programming primitives allowing threads
to dynamically link to schedulers and to dynamically unlink from them.

Precise semantics

Linked threads have a precise and clear semantics (the formal semantics of the cooperative part of
FairThreads is given in [25]). The point is that systems exclusively made of threads linked to one
unique scheduler are completely deterministic.

Simplicity

FairThreads offers a very simple framework for concurrent and parallel programming. Simple
cooperative systems can be coded without the need of locks to protect data. Instants give automatic
synchronizations that can also simplify programming in certain situations.

Compatibility with Pthreads

FairThreads is fully compatible with the standard Pthreads library. Indeed, unlinked fair threads are
actually just pthreads. In this respect, FairThreads is basically an extension of Pthreads, which allows
users to define cooperative contexts, with a clear and simple semantics, in which threads execute at the
same pace and events are instantaneously broadcast.

Automata

Auxiliary tasks can be implemented using automata instead of standard fair threads. Implementation
of an automaton is lightweight and does not require a dedicated native thread. Automata are useful
for short-lived small tasks or when a large number of tasks is needed. Automata are an alternative to
techniques such as ‘chunks’ or ‘chores’, sometimes used in thread-based programming.

Implementation

A first implementation of FairThreads in C is available (under the Gnu General Public License) as a
library called fthread [25], which must be used with the standard Pthreads library.

Future work

A language (named Language Over Fair Threads) is under development which should provide users
with a real syntax for programming with fair threads. In particular, some difficulties of automata coding
(mainly the use of macros) should disappear and the use of automata should become transparent to the
programmer.

An implementation of cellular automata based on FairThreads is also under development. Related to
this work, experiments are made with nondeterministic schedulers which do not preserve the order
in which threads are selected for execution (while, of course, preserving the existence of instants
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and the broadcasting of events). When large numbers of threads are considered, nondeterministic
schedulers are more efficient than standard deterministic ones. Nondeterministic schedulers actually
introduce an intermediate level between the complete determinism of standard schedulers and the total
nondeterminism of the OS.

APPENDIX A. API SUMMARY

Creation of schedulers, threads, and events

ft scheduler t ft scheduler create (void) Creation of a scheduler

ft thread t ft thread create ( Creation of a linked fair thread run by a
native threadft scheduler t,

void (*runnable)(void*),
void (*cleanup)(void*),
void *args)

ft thread t ft thread create unlinked ( Creation of an unlinked fair thread
void (*runnable)(void*),
void (*cleanup)(void*),
void *args)

ft thread t ft automaton create ( Creation of a fair thread run as an
automatonft scheduler t,

void (*automaton)(ft thread t),
void (*cleanup)(void*),
void *args)

ft event t ft event create (ft scheduler t) Creation of an event

Control over schedulers

int ft scheduler start (ft scheduler t) The scheduler is cyclically executed by a
native thread

void ft scheduler react (ft scheduler t) Only one instant of the scheduler is
executed

Control over threads

int ft scheduler stop (ft thread t) Stops a thread linked to a scheduler

int ft scheduler suspend (ft thread t) Suspends a thread linked to a scheduler

int ft scheduler resume (ft thread t) Resumes a thread linked to a scheduler

Cooperation and termination

int ft thread cooperate (void) Cooperation

int ft thread cooperate n (int num) Cooperation during exactly num instants

int ft thread join (ft thread t) Joining a thread

int ft thread join n (ft thread t,int timeout) Limited join

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:445–469



FAIRTHREADS IN C 467

Link and unlink

int ft thread link (ft scheduler t) Thread linking to a scheduler

int ft thread unlink (void) Thread unlinking

Generating, broadcasting and getting values of events

int ft thread generate (ft event t) Generation of an event

int ft thread generate value ( Generation of an event with an associated
valueft event t,void *value)

int ft scheduler broadcast (ft event t) Order to broadcast an event

int ft scheduler broadcast value (ft event t, Order to broadcast an event with an
associated valuevoid *value)

int ft thread get value (ft event t event, Attempt to get the nth value associated to
an eventint n,void **result)

Awaiting events

int ft thread await (ft event t) Waiting for an event

int ft thread await n (ft event t,int timeout) Limited waiting for an event

int ft thread select (int len, Waiting for several events
ft event t *array,int *mask)

int ft thread select n ( Limited waiting for several events
int len,ft event t *array,
int *mask,int timeout)

Automaton structure

AUTOMATON(aut) Declares the automaton aut

DEFINE AUTOMATON(aut) Starts definition of the automaton aut

BEGIN AUTOMATON Starts the list of states

END AUTOMATON Ends the list of states

Explicit control

GOTO(num) Blocks execution for current instant; next
state is state num

GOTO NEXT Blocks execution for current instant and
sets the next state to be the successor of the
current state

IMMEDIATE(num) Execution jumps to state num which is
immediately executed

RETURN Immediately terminates the automaton
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States

STATE(num) Standard state

STATE AWAIT(num,event) State to await event

STATE AWAIT N(num,event,delay) States to await event during at most delay
instants

STATE JOIN(num,thread) State to join thread

STATE JOIN N(num,thread,delay) State to join thread during at most delay
instants

STATE STAY(num,n) State to sleep for n instants

STATE GET VALUE(num,event,n,result) State to get the nth value associated to event

STATE SELECT(num,n,array,mask) Generalizes STATE AWAIT to an array of n
events

STATE SELECT N(num,n,array,mask,delay) Generalizes STATE AWAIT N

STATE LINK(num,sched) Atomically re-links the automaton to sched
(nothing done if sched is actually the current
scheduler)

Special automaton variables

SELF The automaton

LOCAL Local data of the automaton

SET LOCAL(data) Sets the local data of the automaton

ARGS Argument which is passed at creation to the
automaton

RETURN CODE Error code set by macros during automaton
execution

Miscellaneous

ft thread t ft thread self (void) The executing fair thread

ft scheduler t ft thread scheduler (void); The scheduler of the executing fair thread

void ft exit (void) The actual pthread is exited

int ft thread mutex lock ( pthread mutex t
*mutex)

Mutex lock

int ft thread mutex unlock ( pthread mutex t
*mutex)

Mutex unlock

pthread t ft pthread (ft thread t thread) The underlying pthread
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