4.3g

Bigloo

A practical Scheme compiler (4.3g)
User manual for version 4.3g
December 2019

Manuel Serrano

Copyright (© 1992-99, 2000-02 Manuel Serrano

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free

Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

Acknowledgements

Bigloo has been developed at Inria-Rocquencourt by the Icsla team from 1991 to 1994, at
the University of Montreal in 1995 and at Digital’s Western Research laboratory in 1996,
University of Geneva during 1997 and from the end of 1997 at the University of Nice.

I would like to express my gratitude to Hans J. Boehm for his Garbage Collector
[BoehmWeiser88, Boehm91|, Jean-Marie Geffroy for his pattern-matching compiler [Quein-
necGeffroy92|, Dominique Boucher for his Lalr grammar compiler, William Clinger for his
syntax expansion implementation and Dorai Sitaram for his contribution with the pregexp
package and its documentation. I also especially thank Christian Queinnec for all his useful
remarks, help, suggestions and teaching.

Other people have helped me by providing useful remarks, bug fixes or code improve-
ments. [thank all of them and especially Luc Moreau, John Gerard Malecki, David Halls
and David Gurr.

I thank Barrie Stott for his help in making much of the documentation more idiomatic.
Of course, any remaining errors are still mine.

This release of Bigloo may still contain bugs. If you notice any, please forgive me and
send a mail message to the following address: bigloo@sophia.inria.fr.

This is Bigloo documentation version 4.3g, December 2019.

mailto:bigloo@sophia.inria.fr

1 Overview of Bigloo

Bigloo is an implementation of an extended version of the Scheme programming lan-
guage. Without its extensions Bigloo does not entirely conform to Scheme as defined in
the Revised(5) Report on on the Algorithmic Language Scheme (henceforth R5RS) (see
r5rs.info). The two reasons are:

e Bigloo produces C files. C code uses the C stack, so some programs can’t be prop-
erly tail recursive. Nevertheless all simple tail recursions are compiled without stack
consumption.

e Alternatively, Bigloo may produce JVM (Java Virtual Machine byte code) class files.
These classes may use regular Java classes.

e Bigloo is a module compiler. It compiles modules into ‘.0’, ‘.class’, or ‘.obj’ files that
must be linked together to produce stand alone executable programs, JVM jar files, or
.NET programs.

However, we designed Bigloo to be as close as possible to the R5RS. Hence, when Bigloo
includes a feature that is extracted from Scheme and implemented as normal, this feature
is only mentioned in this document and not fully described.

1.1 SRFI
The Bigloo version 4.3g supports the following SRFIs:

e srfi-0 (conditional execution).
e srfi-2 (AND-LET*: an AND with local bindings, a guarded LET* special form).

(
(
(
e srfi-9 (Records specification).
e srfi-18
o srfi-22

e srfi-28
e srfi-30

e srfi-6 (Basic String Ports).

e srfi-8 (Binding to multiple values).
Multithreading support).
script interpreter invocation).

Basic Format Strings).

—~ o~

Multi-line comments).

1.2 Separate compilation

To allow and stimulate separate compilation, Bigloo compiles modules instead of entire
programs. A module is composed of a module declaration and a module body, where a
module body can be thought of as an incomplete Scheme program.

Bigloo strictly enforces variable bindings. That is, it is illegal in a body to refer to
unbound variables.

In a module declaration, some variables can be declared to be immutable functions. For
such variables, the compiler can then check if the number of arguments for some function
calls are correct or not. When an arity mismatch is detected, Bigloo signals an error and
aborts the compilation process.

4 Bigloo 4.3g

1.3 C interface

The goal of the design of Bigloo is to allow the merging of high and low level programming.
This means that Bigloo is designed to be fully connected to the already existing outside
world of C.

This connection has two components: a function call interface and a data storage inter-
face. Bigloo code is able to call C code and vice versa; Bigloo data storage is accessible from
C and vice versa. There are no frontiers between the Bigloo and C worlds. See Chapter 26
[C Interface|, page 235, for details.

1.4 Java interface

Since release 2.3, Bigloo is able to produce Java Virtual Machine byte codes in addition to
C code. By producing class files, it is possible to connect Scheme code and Java code in
the same spirit as the Scheme and C connection.

This connection has two components: a function call interface and a data storage inter-
face. Bigloo code is able to call Java code and vice versa; Bigloo data storage is accessible
from Java and vice versa. There are no frontiers between the Bigloo and Java worlds. See
Chapter 27 [Java Interface], page 247, for extra details.

1.5 Object language

Since release 1.9, Bigloo has included an object system. This system belongs to the CLOS
[Bobrow et al. 88] object system family but whose design has been mainly inspired by
C. Queinnec’s MEROON [Queinnec93]. It is based on ad-hoc polymorphism (generic func-
tions and methods), uses single inheritance and mono-dispatch, and provides the user with
introspection facilities.

1.6 Threads

Since release 2.4d, Bigloo has included a thread library. Bigloo supports Fair threads
that are cooperative threads run by a fair scheduler which gives them equal access to the
processor. Fair threads can communicate using broadcast events and their semantics does
not depends on the executing platform. Fine control over fair threads execution is possible
allowing the programming of specific user-defined scheduling strategies.

1.7 SQL

Since release 2.7b, Bigloo includes a SQL binding. Namely, the C Bigloo runtime system
can access the facilities offered by SQLite (http://www.sqlite.org/).

1.8 Type annotations

Type information, related to variable or function definitions, can be added to the source
code. If no type information is provided, runtime checks will be introduced by the compiler
to ensure normal execution, provided that the user has not used compilation flags to prevents
this. If type information is added, the compiler statically type checks the program and
refuses ones that prove to be incorrect.

http://www.sqlite.org/

Chapter 1: Overview of Bigloo 5

1.9 Unicode support

Bigloo supports UCS-2 Character encoding and also provides conversion functions between
UTF-8 and UCS-2. It still maintains traditional ISO-LATIN1 characters and strings.

1.10 DSSSL

Bigloo helps the DSSSL programmer by supporting keywords, named constants and keyword
functions.

2 Modules

A modules is a compiler and interpreter entity. Modules have been first designed for the
compiler that compiles modules and then, links them against libraries in order to produce
executables. A module may be split into several files but a file cannot contain more than
one module. A module is made of a module clause that is a list for which the car is the
symbol module and followed by any Bigloo expression (that is definitions or expressions).
The module clause names the module and defines the scope of the definitions. At last, the
module clause is also the place where foreign bindings are defined and where classes are
defined. Recent versions of Bigloo (since 2.7b) fully supports modules from the interpreter.

2.1 Program Structure

A Bigloo program is composed of one or more Bigloo modules where a module is defined
by the following grammar:

<module> — <module-declaration> <module-body>
<module-declaration> — the module declaration
<module-body> — the module body

A module is not related to a specific file and can be spread over several files if that is
convenient. In particular, there is no relationship between module names and file names.
The module declaration (see Section 2.2 [Module Declaration], page 7) must be the first
expression in the first of the files containing the module; other expressions form the body
of the module. The module body (see Chapter 3 [Core Language|, page 17) contains global
variables, function definitions and top level expressions (see Section 3.1.2 [Expressions],
page 17).

2.2 Module declaration

The module declaration form is

module name clause . .. [bigloo syntax]
This form defines a module and must be the first in the file. The argument name is a
symbol naming the module. If the same module name is used more than once, Bigloo
signals an error. The runtime library is composed of modules that are read when a
user module is compiled and hence, if a user module has the same name as one of the
library modules, an error is signaled.

A simple module can be:
(module foo)

(display "this is a module")

The first line here is the complete module definition, the last line is the complete
module body and together they form a complete Bigloo program. If these lines were
stored in file zz.scm, invoking ‘bigloo zz.scm’ would create the executable a.out
which, when obeyed, would display ‘this is a module’ on the terminal.

Note: Some special identifiers are reserved and can’t be used to name modules. If
such an identifier is used, the compiler will produce the message:

#(module t
#-

8 Bigloo 4.3g

*** ERROR:bigloo:TOP-LEVEL:Parse error

Illegal module name -- (MODULE eval ...
The list of reserved identifiers may be enlarged for next release. For the current
release that list is made of: eval, foreign and t.

Module clauses can be:

main name [bigloo module clause]
This clause defines the entry point for a stand alone application to be procedure name
of arity one. Bigloo invokes this procedure at the beginning of execution providing
the list, composed of the shell command line arguments, as its single argument.

(module foo
(main start))

(define (start argv)
(display argv)
(newline))
Then if this program is compiled into foo and invoked using the command ‘foo -t
bar’, the list which is the argument for the main procedure start would be ("foo"
"_t" "bar").

The special form args-parse helps main function argument parsing (see Chapter 13
[Command Line Parsing], page 153).

include file-name . . . [bigloo module clause]
This is a list of file-names to be included in the source file. Include files are not
modules and may have a special syntax. Thus, besides containing Bigloo expressions,
they can contain import and include clauses, which must be written in a single list
whose first element is the keyword directives. Includes files can be used to include
implementation-neutral Scheme expressions and definitions in a Bigloo module. Here
is an example of an include file.

;; foo.sch
(define-struct point x y)

and the module that includes the foo.sch file:

;; foo.scm
(module foo
(include "foo.sch"))

(print (point 1 2))
Include files, may contain module information. This is the role of the include
directives clause here illustrated with the bar.sch example:

;; bar.sch

;; the directives

(directives (include "foobar.sch")
(import hux))

;; expressions
(define (gee x) (print x))

import import ... [bigloo module clause]
An import is a list of the form:
<import> — <iclause> ...

Chapter 2: Modules 9

<iclause> — (<bind-name> ... <bind-name> <module-name> <file-name> ...)
| (<bind-name> ... <bind-name> <module-name>)
| <module-name>
| (<module-name> <file-name> ...)

<bind-name> > <rbrs-ident>
| <alias-name>

<alias-name> > (<rbrs-ident> <rbrs-ident>)

<module-name> > <rbrs-ident>

<file-name> = <string>
The first alternative in iclause imports the variable named bind-name which is defined
in the module module-name, located in the files file-name The second does the
same but without specifying the name of the file where the module is located. The
third and the fourth form import all the exported variables of the module module-
name.

Note: The need for specifying in which files modules are located comes from the fact
that there is no automatic mapping between module names and files names. Such
a mapping can be defined in a “module access file” (see Section 2.6 [Module Access
File], page 16) or in the import clause itself, as in the first and fourth alternatives in
iclause above.

Here is an example of an import clause:
(module foo
(import
;; import all bar exported bindings:
bar
;; import the hux binding exported by
;; the module hux:
(hux hux)
;; import the funl, fun2 and fun3 bindings exported by
;; the module mod:
(funl fun2 fun3 mod)
;; import the fun4 bindings that will be known in this module
;; under the alias name f
((f fun4) mod)
;; import all gee bindings. the gee module
;; is located in a file called gee.scm:
(gee "gee.scm")))

use use . .. [bigloo module clause]
use has the same meaning as import except that modules which are used are not
initialized (see Section 2.3 [Module Initialization], page 13). Used modules are read
before imported modules.

with with ... [bigloo module clause]
This clause specifies a list of modules which have to be initialized at runtime and
is used to force the initialization of modules which are never imported but which
are required by an application (see Section 26.4 [Embedded Bigloo applications],
page 245).

export export . . . [bigloo module clause]
In order to make a module’s global bindings available to other modules, they have to
be exported. Export clauses are in charge of this task and an export is a list of the
form:

10 Bigloo 4.3g

<export> + <eclause> ...
<eclause> +— <ident>

(expander <ident>)
(syntax <ident>)

| (inline <ident> <ident> ...)

| (generic <ident> <ident> <ident> ...)
| (<ident> <ident> ...)

| <class>

| (macro <ident> <ident> ...)

|

|

The first form of eclause allows the variable ident be exported, the second allows the
function ident, always regarded as immutable when exported this way, to be exported
and the third exports an inline-procedure (see Section 2.5 [Inline Procedures], page 15)
whose name is extracted from the first ident after the word inline. The last two
are both connected with Bigloo’s object system. The generic clause exports generic
functions (see Section 9.3 [Generic functions], page 121) and class clause exports
classes (see Section 9.1 [Class declaration], page 117).

Note: Only bindings defined in module m can be ezported by m (i.e. bindings imported
by m cannot be exported by m).

Type information, specified in any ident in an export clause, is used by Bigloo. Where
no type information is given, a default generic type named obj is used.

Note: The last formal argument of a multiple arity function can not be typed because
this argument is bound to be a pair or null. This union cannot be denoted by any

type.
Here is an example of the module foo that exports bindings:

(module foo

(export
;; export the bar mutable variable
bar
;; export the hux function. this
;; function takes exactly two arguments
(hux x y)
;; export the inline function gee
;; that takes at least one argument.
(inline gee x . 2)))

static static ... [bigloo module clause]
A static clause has exactly the same syntax as an export clause. However, bindings
declared static are local to the module. Since the default scope of all bindings is
static, static module clauses are useful only for program documentation.

from from . .. [bigloo module clause]
from clauses have the syntax of import clauses. The allow the re-exportation of
imported bindings. That is, any module can export any bindings imported via a from
clause.

As an example, suppose we have module bar:

(module bar
(export (fun)))

(define (fun) "bar")

Chapter 2: Modules 11

Now, suppose we have a module foo that imports bar, by the means of a from clause.
Module foo is able to re-export the bar binding of module bar:
(module foo
(from (fun bar "bar.scm")))
A third module, let’s name it gee, importing module foo, can see the binding for
function bar:

(module gee
(import (foo "foo.scm")))

(print (fun))

This feature is very useful when compiling modules exporting functions with type
annotations. In particular, one may write:

(module foo
(export (class cl x)))

Then,

(module bar
(import foo)
(from foo)
(export (fun::c1)))

(define (fun)
(instantiate::c1 (x 10)))

And,

(module gee
(import bar)
(main main))

(define (main x)
(let ((o (fun)))
(print o)
(print (c1? 0))))

load load ... [bigloo module clause]

A load is a list of the form:

<load> — <lclause> ...

<lclause> +— (<module-name> <file-name>)

| <module-name>

This clause forces Bigloo to load the module specified in the Iclause in the environment
used by the macro expansion mechanism. This means that the user’s macros can use
all the bindings of all the 1oaded modules but the 1loaded bindings remains unknown
to the compiler.

If the module foo is defined by:

(module foo
(export (foo x)))

(define (foo x)
‘(cons ,x ,Xx))

then,

(module gee
(load (foo "foo.scm")))

12 Bigloo 4.3g

(define-macro (gee x)
‘(cons ,(-fx x 1) ,(foo x)))

(gee 5) + (cons 4 (cons 5 5))
= (45 .05)

eval eval. .. [bigloo module clause]
This form allows interactions between compiled code and interpreted code. (See
the Section Chapter 22 [Eval command line options|, page 223, for a presentation
of compilation flags that enable compilation tuning for eval.) Each eval has the
following syntax:
<eval> +— (export-all)

| (export-module)

| (export-exports)

| (export <bind-name>)

| (export (@ <bind-name> <module-name>))

| (import <bind-name>)

| (class <bind-name>)

| (library 1libl ...)

The first clause, (export-all), exports all the variables bound in the module (i.e.,
the variables defined in the module and the imported variables). The second clause,
(export-module), exports all the module’s variables (those declared static and ex-
ported) to the interpreter; the third exports all the exports (i.e. the ones present
inside an export clause) variables to the interpreter; the fourth and fifth clause each
export one variable to the interpreter. The last clause imports a variable from the
interpreter and all such imported variables are immutable (i.e. they cannot be the first
argument of a set! expression with the compiled code). Variables that are exported
to the evaluators must be exported. If a variable is exported to the evaluators but
not exported within an export clause, the compiler will produce an error message.
The library clause makes the variables and functions of a library accessible from the
interpreter.
(module foo
(export (fib x))

(eval (export fib)
(import bar)))

(define (fib x) ...)
(print bar)

The clause (class <bind-name>) exports a class definition to the interpreter.
This makes the class constructor, the class predicate and the slots access functions

available from the interpreter. The form (instantiate::class ...) and
(with-access::class ...) are also available from the interpreter.
extern extern ... [bigloo module clause]

Extern (aka foreign) clauses will be explained in the foreign interface (see Chapter 26
[C Interface], page 235).

java java ... [bigloo module clause]
Java clauses will be explained in the Java interface (see Chapter 27 [Java Interface],
page 247).

Chapter 2: Modules 13

option option ... [bigloo module clause]

This clause enables variables which affect compilation to be set from inside a module
and since the expressions, option . . ., are evaluated when compiling, no code is com-
piled for them. They are allowed to make side effects and to change the values of the
global variables which describe how the compiler must compile. Usually they allow
the control variables, which are described when Bigloo is invoked with the -help2
option, to be set as in the following example:

(module examplar
(option (set! *debugx 3)
(set! *verbosex 2)))

(print ’dummy)
Whatever arguments are passed on the command line, Bigloo will compile this module
in both verbose mode and debug mode.

library library ... bigloo module clause
y Y

type

2.3

This clause enables libraries (see Chapter 28 [Bigloo Libraries|, page 255) when com-
piling and linking Bigloo modules. The expressions library ... are symbols naming
the libraries to be used.

Here is an example of a module declaration which makes use of a library named
format:

(module test
(1ibrary format)
(main test-format)
(import (test2 "test2.scm")))
Using a library does not automatically binds its variables and functions to the inter-
preter. In order to make these available to the interpreter an explicit use of an eval
library clause must be used.

type . .. [bigloo module clause]
This forms is used to define builtin Bigloo types. It is not recommended to use it in
user programs. S0, it is left undocumented.

Module initialization

Initializing a module means evaluating, at runtime, its top level forms (global bindings are
top level forms).

When a module, modulel, imports a module, module2, module2 is initialized before
modulel. Modules are initialized only once, nothing being done if a module already met
during initialization is met again. Library modules are initialized before user modules and
imported modules are initialized in the same order as they appear in import clauses.

Here is a first example with two modules. First the module foo:

;; module foo
(module foo
(main main)
(import (bar "bar.scm")))

(define (main argv)
(print "argv: " argv))

14 Bigloo 4.3g

(print "foo")
Then the module bar

;; module bar
(module bar)

(print "bar")
These can be compiled into the executable a.out with:
$ bigloo -c foo.scm
$ bigloo -c bar.scm
$ bigloo foo.o bar.o
Execution of a.out produces:

$ a.out
- bar
foo
argv: (a.out)

The explanation is:
e module foo contains the program entry point so this is where initialization begins.

e because foo imports module bar, bar must be initialized before foo. This explains
why the word bar is printed before anything else.

e module initialization for foo is completed before main is called. This explains why
word foo is printed before main is entered.

Let’s consider another example with 3 modules:

;; modulel
(module modulel
(main main)
(import (module2 "module2.scm")))

(define (main argv)
(print "argv: " argv))

(print "modulel")
The second module:

;; module?2
(module module2
(import (module3 "module3.scm")))

(print "module2")
The third module:

;; module3
(module module3
(import (modulel "modulel.scm")))

(print "module3")
Compile with:

$ bigloo modulel.scm -c
$ bigloo module2.scm -c
$ bigloo module3.scm -c
$ bigloo modulel.o module2.o module3.o

Execution produces:

$ a.out

Chapter 2: Modules 15

- module3
module?2
modulel
argv: (a.out)

The order of module initialization can be explicitly specified using with and use clauses.

2.4 Qualified notation

Global variables can be referenced using implicit notation or using qualified notation. Im-
plicit notation is used when variables are referenced just by their name whereas qualified
notation is used when variables are referenced by their name and the name of the module
which defines them. Qualified notation has the following syntax:

(@ <bind-name> <module-name>)

and is useful when several imported modules export a variable with the same name. Using
qualified notations instead of short notation only affects compilation.

When several variables are defined under the same identifier, the compiler uses the two
following rules in order to decide which variable is selected by an implicit reference: 1)
the variable defined in a module has a higher precedence than all imported variables, 2)
imported variables have a higher precedence than library variables.

2.5 Inline procedures

Bigloo allows procedures called inline and which differ from normal ones only in the type
of code planted. An inline procedure is a first class object which can be manipulated in
the same way as any other procedure but when Bigloo sees a reference to one, rather than
generating a C function call to the function, the body of the inline procedure is open-coded.
The definition of an inline is given in the following way:

define-inline (name args ...) body [bigloo syntax]

define-inline (name args arg) body [bigloo syntax]
Apart from the initial word, this form has the same syntax as that used by define
for procedures. Inline procedures are exportable which means that the compiler scans
imported files to find the bodies of all inline procedures. Here is a small example of
a module which exports an inline and a module which imports it.

;; the exporter module
(module exporter
(export (inline make-list . objs)))

(define-inline (make-list . objs) objs)

;; the importer module
(module importer
(import exporter))

(print (make-list 1 2 3 4 5))

Because of the open-coding of the exporter procedure, the above print statement is
equivalent to:

(print (let ((objs (list 1 2 3 4 5)))
objs))

16 Bigloo 4.3g

Any procedure can be an inline. Also any exported procedure can be an inline pro-
vided all global variables and functions it uses are also exported.

Note: Bigloo can decide to inline procedures declared with define but this can
be achieved only with local procedures whereas procedures declared with the
define-inline form are open-coded even through module importation.

Note: Procedures declared inline are macro expanded with the macro defined in the
module where they are invoked. That is, if module modulel declares an inline proce-
dure p and module module2 imports it, p may have two different macro-expansions:
one for modulel and one for module?2.

2.6 Module access file

Bigloo is different from languages such as C where a module is defined by a file. For Bigloo,
the module name is not necessarily the name of the file where the text of the module is
written and modules can even be split across several files.

Since modules are defined independently of files, it is necessary to make a link between a
module and its files and there are two ways of doing this. Choosing an import clause where
the file-names are specified or creating a “module access file”. Such a file must contain only
one list, each element of the list being of the form:

(module-name "file-name" ... "file-name")

Use the ‘-afile <file>’ option to specify the “module access file” when compiling. By
default Bigloo checks if a file named .afile exists. If it exists it is loaded as a module
access file.

See Chapter 31 [The Bigloo command line], page 275.

Note: The Bigloo distribution contains a tool, bglafile, that can automatically build
a “module access file”. See the manpage for bglafile for details.

2.7 Reading path

Imported, included or loaded files are sought first in the current directory and then in the
directories, sequentially from start to end, of the list in the *load-path* variable. This
variable, initially set to the empty list, can be reset by the ‘~I’ option of the compiler.

17

3 Core Language

This chapter presents the Bigloo basics. It presents the elements that compose the body of
a module (see Chapter 2 [Modules], page 7).

3.1 Syntax

The syntax of Bigloo is that of Scheme (a parenthesis based one) with two exceptions: type
information and multi-line comments. Type information is supplied when identifiers are
introduced (via lambda, let, define, ...) and those identifiers holding type information are
referred to as typed identifiers.

They are defined by the following grammar:

<ident> — <rbrs-ident> | <typed-ident>
<typed-ident> +» <rbrs-ident>::<rbrs-ident>
<rbrs-ident> +— the standard Scheme identifiers

For details of the standard Scheme identifiers, see Section “Lexical structure” in R5RS.

Multi-lines comments (see http://srfi.schemers.org/srfi-30/) are defined as:

<ident> — <rbrs-ident> | <typed-ident>

<comment> — ;<all subsequent characters up to a line break>
| #| <comment-text> (<comment> <comment-text>)* |#

<comment-text> — <character sequence not containing #| or |#>

3.1.1 Comments

Comments and whitespaces are the same as in Section “rbrs.info” in R5RS.

;53 The FACT procedure computes the factorial
;53 of a non-negative integer.
(define fact
(lambda (n)
(if (=n 0)
1 ;; Base case: return 1

(x n (fact (- n 1))))))

In addition, Bigloo supports s-ezpressions comments. These are introduced with the #;
syntax:

;53 The FACT procedure computes the factorial
;53 of a non-negative integer.
(define fact
(lambda (n)
#;(if (< n 2) 1 (* #;n (fact (- n 1))))
(if (= mn 0)
1
(* n (fact (- n 1))))))

3.1.2 Expressions

Bigloo expressions are the same as in Section “rbrs.info” in R6RS. Bigloo has more syntactic
keywords than Scheme. The Bigloo syntactic keywords are:

=> do or
and else quasiquote
begin if quote

case lambda set!

http://srfi.schemers.org/srfi-30/

18

cond
unquote-splicing
delay

labels
unwind-protect
regular-grammar
define-expander
match-lambda
assert
instantiate
widen!
let-syntax
cond-expand
define-record-type

let

define

letrec

try

bind-exit
lalr-grammar
define-macro
pragma
define-generic
duplicate
shrink!
letrec-syntax
receive
and-let*

Bigloo 4.3g

unquote

letx*

module
define-struct
define-inline
regular-search
match-case
failure
define-method
with-access
multiple-value-bind
define-syntax
args-parse
letrecx

All other non atomic Bigloo forms are evaluated as function calls or macro class.

<variable>

quote datum

’datum
<constant>

(define x 28)

X

(quote a)
(quote #(a b c))
(quote (+ 1 2))
’a

#(a b c)

70

2(+ 1 2)

>’ (quote a)

) llabcll

Ilabcll

’145932

145932

‘#t

#t

operator operand ...

(+ 3 4)
((if #f + %) 3 4)

L e e

((lambda (x) (+ 1 x)) 5)

lambda formals body

(lambda (x) (+ x x))
((lambda (x) (+ x x)) 4)

(define reverse-subtract
(lambda (x y) (- y x)))

(reverse-subtract 7 10)

(define add4
(let ((x 4))

(lambda (y) (+ x y))))

(add4 6)

oy

4u

28

A

#(A B C)
(+12)
A

#(A B C)
O
(+12)
(QUOTE A)
Ilabcll
Ilabcll
145932
145932
#t

#t

a procedure
8

10

[syntax]

[syntax]

Chapter 3: Core Language

((lambda x x) 3 4 5 6)
((lambda (x y . z) 2)
345 6)

if test consequent [alternate]

(if (> 3 2) ’yes ’no)
(if (> 2 3) ’yes ’no)
(if > 3 2)

(-32

(+ 32)

set! variable expression

(define x 2)
(+ x1)
(set! x 4)
(+x 1)

cond clause clause . ..
Bigloo considers else as a keyword. It thus ignores clauses following an else-clause.

(cond ((> 3 2) ’greater)
((< 3 2) ’less))

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal))

=

=

=

=

(cond ((assv ’b ’((a 1) (b 2))) => cadr)

(else #£))

case key clause clause . . .

(case (x 2 3)

((2 35 7) ’prime)

((1 4 6 89) ’composite))
(case (car ’(c d))

((a) ’a)

(™) b))
(case (car ’(c d))

((a e i ou ’vowel)

((w y) ’semivowel)

(else ’consonant))

and test ...

(and (=2 2) (> 2 1))
(and (= 2 2) (<2 1))
(and 1 2 ’c (£ g))
(and)

and-let* test ...

(and-let* ((x 1) (y 2)) (coms x y))
(and-let* ((x 1) (z #f)) x)

=

I

P4 ey

(and-let* ((my-list (compute-list)) ((not

(do-something my-list))

(define (look-up key alist)

(345 6)

(5 6)

yes
no

3
unspecified
5

greater

equal

composite

unspecified

consonant

#t
#f
(f g)
#t

a.2
#f

(null? my-list))))

(and-let* ((x (assq key alist))) (cdr x)))

19

[syntax]

[syntax]

[library syntax]

[library syntax]

[library syntax]

[bigloo syntax|

20 Bigloo 4.3g

(or (and-let* ((c (read-char))
((not (eof-object? c¢))))
(string-set! some-str i c)
(set! i (+ 1 1))

or test ... [library syntax]
(or (=22) (>21)) = #t
(or (=22) (<x21)) = #t
(or #f #f #f) = #f
(or (memq ’b ’(a b c))
(/ 30)) = (b ©)
let [name] (binding . ..) body [library syntax]
(let ((x 2) (y 3))
(*x x y)) = 6
(let ((x 2) (y 3))
(let ((x 7)
(z (+ xy)))
(* z x))) = 35
(let loop ((1 (1 2 3)))
(if (null? 1)
0]
(cons (+ 1 (car 1))
(Loop (cdr 1))))) = (2 3 4)
If a binding is a symbol, then, it introduces a variable bound to the #unspecified
value.
(let (x)
x) = #unspecified

Bigloo’s named let differs from R5Rs named let because name is bound in binding.
That is,

(let ((1 ’a-symbol))
(et 1 ((x 1))
x)) = #<procedure>

while R5Rs states that,

(let ((1 ’a-symbol))
(let 1 ((x 1))
x)) = a-symbol

let* (binding ...) body [library syntax]
(let ((x 2) (y 3))
(let*x ((x 7)
(z (+xy)N
(*x z x))) = 70

letrec (binding ...) body [library syntax]
(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(0dd? (- n 1)))))
(0dd?
(lambda (n)
(if (zero? n)

Chapter 3: Core Language 21

#£f
(even? (- n 1))))))
(even? 88))
= #t

letrec* (binding . ..) body [bigloo syntax]
Each binding has the form
((<variablel> <init1>) ...)

Each <init> is an expression.Any variable must not appear more than once in the
<variable>s.

The <variable>s are bound to fresh locations, each <variable> is assigned in left-
to-right order to the result of evaluating the corresponding <init>, the <body> is
evaluated in the resulting environment, and the values of the last expression in <body>
are returned. Despite the left-to-right evaluation and assignment order, each binding
of a <variable> has the entire letrec* expression as its region, making it possible to
define mutually recursive procedures.

Examples:

(letrec*x ((x 1)
(f (lambda (y) (+ x y))))
(£ 3))

(letrec* ((p (lambda (x)
+1 (@ (- x 1))
(q (lambda (y)
(if (zero? y)
0
1 Gy N
(x (p 5))
(y x))
y)
= 5

It must be possible to evaluate each <init> without assigning or referring to the value
of the corresponding <variable> or the <variable> of any of the bindings that follow
it in <bindings>. Another restriction is that the continuation of each <init> should
not be invoked more than once.

labels ((name (arg ...) body) ...) body [bigloo syntax]
The syntax is similar to the Common Lisp one [Steele90], where created bindings are
immutable.

(labels ((loop (f 1 acc)
(if (null? 1)
(reverse! acc)
(loop £ (cdr 1) (comns (f (car 1)) acc)))))
(loop (lambda (x) (+ 1 x)) (list 1 2 3) >()))
= (2 3 4)

begin expression expression . . . [library syntax]
(define x 0)

(begin (set! x 5)
(+ x 1)) = 6

22

(begin (display "4 plus 1 equals ")

(display (+ 4 1))) = unspecified
- 4 plus 1 equals 5

do ((variable init step) ...) (test expression ...) body

(do ((vec (make-vector 5))
1o (+1i1)))
((= 1 5) vec)

(vector-set! vec i i)) = #(0 1 2 3 4)

(let ((x (1 357 9)))
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) =

delay expression

quasiquote template

¢ template
‘(list ,(+ 1 2) 4) =
(let ((name ’a)) ‘(list ,name ’,name))
= (list a (quote a))
‘(a ,(+ 1 2) ,0(map abs ’(4 -5 6)) b)
= (a3456Dhb)

25

(list 3 4)

“((‘foo’ ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(coms)))

= ((foo 7) . cons)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)
= #(10 5 2 4 3 8)

‘(a ‘(b ,(+12) ,(foo ,(+ 13) d) e)

= (a ‘(b ,(+12) ,(foo 4 d) e) £)

(let ((namel ’x)
(name2 ’y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(b ,x ,’y d) e)
(quasiquote (list (unquote (+ 1 2)) 4))
= (list 3 4)
’(quasiquote (list (unquote (+ 1 2)) 4))
= ‘(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))

3.1.3 Definitions
Global bindings are introduced by the define form:

define variable expression
define (variable arg ...) body
(define add3
(lambda (x) (+ x 3)))

(add3 3) =
(define first car)
(first ’(1 2)) =

6

1

Bigloo 4.3g

[library syntax]

[library syntax]

[syntax]
[syntax]

[syntax]
[syntax]

See Section 3.1.3 [rbrs.info|, page 22, for more details. The Bigloo module language (See
Section 2.2 [Module Declaration], page 7) enables exports and imports of global definitions.

4

23

DSSSL support

Bigloo supports extensions for the DsSSL expression language [Dsssl96]:

Keywords. Bigloo supports full Dsssl keywords.

Named constants. Bigloo implements the three DSSSL named constants: #!optional,
#!rest and #!key.

Dsssl formal argument lists.

In addition, Bigloo extends DSSSL formal parameters. It supports #!rest argument

following 'key arguments. In that case, the #!rest formal parameter is bound to the list
of non-keyword values.

4.1 DSSSL formal argument lists

DsssL formal argument lists are defined by the following grammar:

<formal-argument-list> ~ <required-formal-argument>x*

[(#'!'optional <optional-formal-argument>*)]

[(#!rest <rest-formal-argument>)]

[(#'key <key-formal-argument>*) (#!rest <rest-formal-argument>?)]
<required-formal-argument> +— <ieee-ident>
<optional-formal-argument> +— <ieee-ident>

| (<ieee-ident> <initializer>)
<rest-formal-argument> > <ieee-ident>
<key-formal-argument> > <ieee-ident>

| (<ieee-ident> <initializer>)
<initializer> +— <expr>

When a procedure is applied to a list of actual arguments, the formal and actual argu-

ments are processed from left to right as follows:

Variables in required-formal-arguments are bound to successive actual arguments start-
ing with the first actual argument. It shall be an error if there are fewer actual argu-
ments than required-formal-arguments.

Next, variables in optional-formal-arguments are bound to any remaining actual argu-
ments. If there are fewer remaining actual arguments than optional-formal-arguments,
then variables are bound to the result of the evaluation of initializer, if one was spec-
ified, and otherwise to #f. The initializer is evaluated in an environment in which all
previous optional formal arguments have been bound.

If there is a rest-formal-argument, then it is bound to a list of all remaining actual
arguments. The remaining actual arguments are also eligible to be bound to keyword-
formal-arguments. If there is no rest-formal-argument and there are no keyword-formal-
arguments, the it shall be an error if there are any remaining actual arguments.

If #'!'key was specified in the formal-argument-list, there shall be an even number of
remaining actual arguments. These are interpreted as a series of pairs, where the first
member of each pair is a keyword specifying the argument name, and the second is
the corresponding value. It shall be an error if the first member of a pair is not a
keyword. It shall be an error if the argument name is not the same as a variable
in a keyword-formal-argument, unless there is a rest-formal-argument. If the same

24 Bigloo 4.3g

argument name occurs more than once in the list of actual arguments, then the first
value is used. If there is no actual argument for a particular keyword-formal-argument,
then the variable is bound to the result of evaluating initializer if one was specified,
and otherwise #f. The initializer is evaluated in an environment in which all previous
formal key arguments have been bound.

o If #!rest was specified in the formal-argument-list after a #!key formal parameter, it
is bound to the list of optional non-keyword arguments.

It shall be an error for an <ieee-ident> to appear more than once in a formal-argument-
list.

Example:

((lambda (x y #!rest z) z)

3456) = (5 6)

((lambda (x y #!optional z #!rest r #'key i (j 1))
(list x y z i: 1 j: j))

3451i: 6 i: 7) = (3451i: 6 j: 1)

((lambda (x y #'!'optional z #!key i (j 1) #!rest r)
(list x y z i: i j: j r))

345i:61i:789) = (83451i: 6 j: 1 (89)

4.2 Modules and DSSSL formal argument lists

Functions using DssSSL formal argument lists can be exported or imported in the same way
as all regular Bigloo functions. When exporting such a Dsssl function the exact prototype of
the function must be duplicated in the export clause. That is, for instance, the exportation
prototype for the function:

(define (foo x y #!optional z #'key i (j 1)) ...)
is:

(export (foo x y #'!optional z #'key i (j 1)))

25

5 Standard Library

This chapter presents the Bigloo standard library. Bigloo is mostly R5RS compliant but it
proposes many extensions to this standard. In a first section (Section 5.1 [Scheme Library],
page 25) the Bigloo R5RS support is presented. This section also contains various function
that are not standard (for instance, various functions used to manage a file system). Then, in
the following sections (Section 5.3 [Serialization|, page 70, Section 5.4 [Bit Manipulation],
page 72, and Section 5.7 [System Programming], page 76, Bigloo specific extensions are
presented. Bigloo input and output facilities constitute a large superset of the standard
Scheme definition. For this reason they are presented in a separate section (Section 5.2
[Input and Output], page 54).

5.1 Scheme Library

When the definition of a procedure or a special form is the same in Bigloo and Scheme, we
just mention its name; otherwise, we explain it and qualify it as a “bigloo procedure”.

5.1.1 Booleans
The standard boolean objects are #t and #f. Note: the empty list is true.

not obj [library procedure]
not returns #t if obj is false, and returns #f otherwise.
(not #t) = #f
(not 3) = #f
(not (1list 3)) = #f
(not #f) = #t
(not > O)) = #f
(not (1list)) = #f
(not ’nil) = #f
boolean? obj [library procedure]
Boolean? returns #t if obj is either #t or #f and returns #f otherwise.
(boolean? #f) = #t
(boolean? 0) = #f
(boolean? ’()) = #f

5.1.2 Equivalence predicates

eqv? objl obj2 [procedure]
eq? objl obj2 [procedure]
eqv? and eq? are equivalent in Bigloo.

(eq? ’a ’a) = #t
(eq? ’(a) ’(a)) = unspecified
(eq? (1list ’a) (list ’a)) = #f
(eq? "a" "a") = unspecified
(eq? "" ") = unspecified
(eq? 7O > = #t
(eq? 2 2) = unspecified
(eq? #\A #\A) = unspecified
(eq? car car) = #t
(Qet ((n (+ 2 3)))

(eq? n n)) = unspecified

26

(let ((x ’(2)))
(eq? x x))

(let ((x ’#0))
(eq? x x))

(let ((p (lambda (x)
(eq? p p))

=

=
x)))
=

Bigloo 4.3g

#t
#t

#t

Since Bigloo implements eqv? as eq?, the behavior is not always conforming to R5RS.

(eqv? ’a ’a) =
(eqv? ’a ’b) =
(eqv? 2 2) =
(eqv? 2O 7)) =
(eqv? 100000000 100000000) =
(eqv? (cons 1 2) (comns 1 2)) =
(eqv? (lambda () 1)
(lambda () 2)) =
(eqv? #f ’nil) =
(let ((p (lambda (x) x)))
(eqv? p p)) =

#t
#f
#t
#t
#t
#£

#£
#£

unspecified

The following examples illustrate cases in which the above rules do not fully specify
the behavior of ‘eqv?’. All that can be said about such cases is that the value returned
by ‘eqv?’ must be a boolean.

(equ? "" "m) =
(eqv? *#0O #(0)) =
(eqv? (lambda (x) x)

(lambda (x) x)) =
(eqv? (lambda (x) x)

(lambda (y) y)) =

(define gen-counter
(lambda ()
(1et ((n 0))

(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g))
(eqv? (gen-counter)

(define gen-loser
(lambda ()
(let ((n 0))

=
(gen-counter))
=

(lambda () (set! n (+ n 1)) 27))))
(let ((g (gen-loser)))

(eqv? g g))

=

(eqv? (gen-loser) (gen-loser))

(letrec ((f (lambda
(g (lambda
(eqv? £ g))

(letrec ((f (lambda
(g (lambda
(eqv? £ g))

(eqv? ’(a) ’(a))

(qu? g ongn

=

unspecified
unspecified

unspecified

unspecified

#t

#£

#t

unspecified

() (if (eqv? f g) ’both ’f)))
() (if (eqv? f g) ’both ’g))))

=

O (if (eqv? f g) ’f
O (if (eqv? f g) g

=
=
=

unspecified

’both)))
’both))))

#1
unspecified
unspecified

Chapter 5: Standard Library

(eqv? ’(b) (cdr ’(a b)))
(et ((x ’(a)))

(eqv?

equal? objl obj2
(equal?
(equal?
(equal?

(equal?
(equal?

(equal?

(equal?

X X))

’a ’a)

’(a) ’(a))

’(a (b) c)

>(a (b))

Ilabcll llabcll)

2 2)

(make-vector 5 ’a)
(make-vector 5 ’a))
(lambda (x) x)
(lambda (y) y))

¥

T I

I

=

See Section “rbrs.info” in R5RS, for more details.

5.1.3 Pairs and lists
The form () is illegal.

pair? obj

cons ad

pair-or-null? obj
Returns #t if obj is either a pair or the empty list. Otherwise it returns #£.

car pair
cdr pair

set-car! pair obj
set-cdr! pair obj

caar pair

cadr pair

cadar pair
caadr pair
caaar pair
caddr pair
cadar pair
cdddar pair
cddddr pair

null? obj

list? obj

list obj ...

length list

append list ...

append! list ...
A destructive

reverse list
reverse! list
A destructive

append.

reverse.

unspecified
#t
#t
#t
#t
#t
#t

#t

unspecified

27

[library procedure]

[procedure]
[procedure]

[bigloo procedure]

[

[procedure
[procedure
[

procedure

]
]
]
]
library procedure]
library procedure]
library procedure]
library procedure]
library procedure]
library procedure]
]
library procedure]
library procedure]
]
]
]
]
|
]

library procedure
library procedure
library procedure
library procedure
library procedure
[bigloo procedure

[
[
[
[
[
[
[library procedure
[
[
[
[
[
[
[

[library procedure]
[bigloo procedure]

28 Bigloo 4.3g

list-ref list k [library procedure]

take list k [library procedure]

drop list k [library procedure]

list-tail list k [library procedure]
list-ref returns the k element of the list.

take returns a new list made of the first k element of the list.

Drop and list-tail returns the sublist of list obtained by omitting the first k ele-
ments.

last-pair list [bigloo procedure]
Returns the last pair in the nonempty, possibly improper, list.

memq obj list [library procedure]
memv obj list [library procedure]
member obj list [library procedure]
assq obj alist [library procedure]
assv obj alist [library procedure]
assoc obj alist [library procedure]
remq obj list [bigloo procedure]

Returns a new list which is a copy of list with all items eq? to obj removed from it.

remq! obj list [bigloo procedure]
Same as remq but in a destructive way.

delete obj list [eq equal?) [bigloo procedure]
Returns a new list which is a copy of list with all items equal? to obj deleted from
it.

delete! obj list [eq equal?] [bigloo procedure]

Same as delete but in a destructive way.

cons* obj ... [bigloo procedure]
Returns an object formed by consing all arguments together from right to left. If only
one obj is supplied, that obj is returned.

every fun clistl clist2 ... [bigloo procedure]
Applies the function fun across the lists, returning the last non-false if the function
returns non-false on every application. If non-false, the result of every is the last
value returned by the last application of fun.

(every < (1 2 3) ’(2 3 4)) = #t
(every < *(1 2 3) ’(2 3 0)) = #f
any fun clist1 clist2 ... [bigloo procedure]

Applies the function fun across the lists, returning non-false if the function returns
non-false for at least one application. If non-false, the result of any is the first non-false
value returned by fun.

(any < ’(1 2 3) (2 3 4)) = #t
(any < (1 2 3) ’(2 3 0)) = #t

Chapter 5: Standard Library 29

find pred clist [bigloo procedure]
Return the first element of clist that satisfies predicate pred; false if no element does.
(find even? (314 15 9)) = 4

Note that find has an ambiguity in its lookup semantics — if find returns #f, you
cannot tell (in general) if it found a #f element that satisfied pred, or if it did not
find any element at all. In many situations, this ambiguity cannot arise — either the
list being searched is known not to contain any #f elements, or the list is guaranteed
to have an element satisfying pred. However, in cases where this ambiguity can arise,
you should use find-tail instead of find — find-tail has no such ambiguity:

(cond ((find-tail pred lis) => (lambda (pair) ...)) ; Handle (CAR PAIR)
(else ...)) ; Search failed.

find-tail pred clist [bigloo procedure]
Return the first pair of clist whose car satisfies pred. If no pair does, return false.

find-tail can be viewed as a general-predicate variant of the member function.

Examples:

(find-tail even? (3 1 37 -8 -5 0 0)) = (-8 -5 0 0)
(find-tail even? (3 1 37 -5)) = #f

;3 MEMBER X LIS:
(find-tail (lambda (elt) (equal? x elt)) 1lis)

In the circular-list case, this procedure "rotates" the list.

reduce f ridentity list [bigloo procedure]
If Iist if null returns ridentity, if list has one element, returns that element. Otherwise,
returns f applied to the first element of the list and to reduce of the rest of the list.

Examples:

(reduce max 0 1) = (apply max 1)

make-list n [fill] [bigloo procedure]
Returns an n-element list, whose elements are all the value fill. If the fill argument is
not given, the elements of the list may be arbitrary values.

(make-list 4 ’c) = (c ccoc)

list-tabulate n init-proc [bigloo procedure]
Returns an n-element list. Element i of the list, where 0 <= i < n, is produced by
(init-proc i). No guarantee is made about the dynamic order in which init-proc is
applied to these indices.

(list-tabulate 4 values) = (01 23)
list-split list n [filler] [bigloo procedure]
list-split list n [filler] [bigloo procedure]

Split a list into a list of lists of length n. Last smaller list is filled with filler.

(list-split (1 23456 78) 30) = ((123) (456) (7T380)
(list-split (iota 10) 3) = ((012) (345) (67 8) (9))
(list-split (iota 10 3) ’-1) = ((012) (8345) (67 8) (9-1-1))

30 Bigloo 4.3g

iota count [start step] [bigloo procedure]
Returns a list containing the elements

(start start+step ... start+(count-1)*step)

The start and step parameters default to 0 and 1, respectively. This procedure takes
its name from the APL primitive.

(iota 5) = (01 2 3 4)
(iota 5 0 -0.1) = (0 -0.1 -0.2 -0.3 -0.4)

list-copy | [bigloo procedure]

tree-copy I [bigloo procedure]
The function list-copy copies the spine of the of the list. The function tree-copy
recursively copies its arguments, descending only into the list cells.

delete-duplicates list [eq equal?] [bigloo procedure]

delete-duplicates! list [eq equal?] [bigloo procedure]
delete-duplicates removes duplicate elements from the list argument. If there are
multiple equal elements in the argument list, the result list only contains the first or
leftmost of these elements in the result. The order of these surviving elements is the
same as in the original list — delete-duplicates does not disorder the list (hence it
is useful for "cleaning up" association lists).

The equal parameter is used to compare the elements of the list; it defaults to equal?.
If x comes before y in list, then the comparison is performed (= x y). The comparison
procedure will be used to compare each pair of elements in list no more than once;
the order in which it is applied to the various pairs is not specified.

delete-duplicates is allowed to share common tails between argument and result
lists — for example, if the list argument contains only unique elements, it may simply
return exactly this list.

See Section “rbrs.info” in R6RS, for more details.

5.1.4 Symbols

Symbols are case sensitive and the reader is case sensitive too. So:
(eq? ’foo ’FO0) = #f
(eq? (string->symbol "foo") (string->symbol "F00")) = #f
Symbols may contain special characters (such as #\Newline or #\Space). Such symbols
that have to be read must be written: | [*]+|. The function write uses that notation when
it encounters symbols containing special characters.

(write ’foo) = foo
(write ’Foo) =Foo
(write ’|foo bar|) = |foo bar]

symbol? obj [procedure]

symbol->string symbol [procedure]
Returns the name of the symbol as a string. Modifying the string result of
symbol->string could yield incoherent programs. It is better to copy the string
before any physical update. For instance, don’t write:

(string-downcase! (symbol->string ’foo))

See Section “rdrs.info” in RERS, for more details.

Chapter 5: Standard Library 31

but prefer:
(string-downcase (symbol->string ’foo))
string->symbol string [procedure]
string->symbol-ci string [bigloo procedure]
symbol-append symbol . . . [bigloo procedure]
String->symbol returns a symbol whose name is string. String->symbol

respects the case of string. String->symbol-ci returns a symbol whose name is
(string-upcase string). Symbol-append returns a symbol whose name is the
concatenation of all the symbol’s names.

gensym [obj] [bigloo procedure]
Returns a new fresh symbol. If obj is provided and is a string or a symbol, it is used
as prefix for the new symbol.

genuuid [bigloo procedure]
Returns a string containing a new fresh Universal Unique Identifier (see http://
fr.wikipedia.org/wiki/Universal_Unique_Identifier).

symbol-plist symbol-or-keyword [bigloo procedure]
Returns the property-list associated with symbol-or-keyword.

getprop symbol-or-keyword key [bigloo procedure]
Returns the value that has the key eq? to key from the symbol-or-keyword’s property
list. If there is no value associated with key then #f is returned.

putprop! symbol-or-keyword key val [bigloo procedure]
Stores val using key on symbol-or-keyword’s property list.

remprop! symbol-or-keyword key [bigloo procedure]
Removes the value associated with key in the symbol-or-keyword’s property list. The
result is unspecified.

Here is an example of properties handling:

(getprop ’a-sym ’a-key) = #f

(putprop! ’a-sym ’a-key 24)

(getprop ’a-sym ’a-key) = 24

(putprop! ’a-sym ’a-key2 25)

(getprop ’a-sym ’a-key) = 24

(getprop ’a-sym ’a-key2) = 25

(symbol-plist ’a-sym) = (a-key2 25 a-key 24)
(remprop! ’a-sym ’a-key)

(symbol-plist ’a-sym) = (a-key2 25)

(putprop! ’a-sym ’a-key2 16)
(symbol-plist ’a-sym) = (a-key2 16)

5.1.5 Keywords
Keywords constitute an extension to Scheme required by Dsssl [Dsssl96]. Keywords syntax
is either <ident>: or :<ident>.

Keywords are autoquote and case sensitive. So
(eq? toto: TOTO:) = #f

The colon character (:) does not belong to they keyword. Hence
(eq? toto: :toto) = #t

http://fr.wikipedia.org/wiki/Universal_Unique_Identifier
http://fr.wikipedia.org/wiki/Universal_Unique_Identifier

32 Bigloo 4.3g

keyword? obj [bigloo procedure]
keyword->string keyword [bigloo procedure]
string->keyword string [bigloo procedure]
keyword->symbol keyword [bigloo procedure]
symbol->keyword symbol [bigloo procedure]

5.1.6 Numbers

Bigloo has only three kinds of numbers: fixnum, long fixnum and flonum. Operations on
complexes and rationals are not implemented but for compatibility purposes, the functions
complex? and rational? exist. (In fact, complex? is the same as number? and rational? is
the same as real? in Bigloo.) The accepted prefixes are #b, #0, #d, #x, #e, #ex, #1, #1x, #z,
and #zx. For each generic arithmetic procedure, Bigloo provides two specialized procedures,
one for fixnums and one for flonums. The names of these two specialized procedures is the
name of the original one suffixed by fx (fixnum), £1 (flonum), elong (exact C long), 1long
(exact C long long), and bx (big integer). A fixnum has the size of a C long minus 2 bits.
A flonum has the size of a C double. An elong has the size of a C long. An llong has the
size of a C long long. A big integer has an unbounded size.

number? obj [procedure
real? obj [procedure
integer? obj [procedure

complex? x
rational? x

fixnum? obj
flonum? obj

bigloo procedure

]
|
]
bigloo procedure]
]
]
bigloo procedure]

[
[bigloo procedure
[
[

These two procedures are type checkers on types integer and real.

elong? obj
llong? obj

[bigloo procedure]
[bigloo procedure]

The elong? procedures is a type checker for "hardware" integers, that is integers
that have the very same size has the host platform permits (e.g., 32 bits or 64 bits
integers). The 11long? procedure is a type checker for "hardware" long long integers.
Exact integers literal are introduced with the special #e and #ex prefixes. Exact long
integers literal are introduced with the special #1 and #1x prefixes.

bignum? obj

This type checker tests if its argument is a big integer.

make-elong int
make-llong int

Create an exact fixnum integer from the fixnum value int.

minvalfx
maxvalfx
minvalelong
maxvalelong
minvalllong
maxvalllong

[bigloo procedure]

[bigloo procedure]
[bigloo procedure]

igloo procedure
bigl d

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

Returns the minimal value (respectively the maximal value) for fix integers.

Chapter 5: Standard Library

exact? z
inexact? z

zero? z
positive? z
negative? z
odd? n

even? n
zerofx? z
positivefx? z
negativefx? z
oddfx? n
evenfx? n
zerofl? z
positivefl? z
negativefl? z
oddf1l? n
evenfl? n
zeroelong? z

positiveelong? z
negativeelong? z

oddelong? n
evenelong? n
zerollong? z

positivellong? z
negativellong? z

oddllong? n
evenllong? n
zerobx? z
positivebx? z
negativebx? z
0ddbx? n
evenbx? n

min xI x2 ...
max x1 x2 ...

minfx xI x2 ...
maxfx xI x2 ...
minfl xI x2 ...
maxfl xI x2 ...
minbx xI1 x2 ...
maxbx xI1 x2 ...

=z12z22z3 ...
=fx il i2
=fl rl r2
=elong rl r2
=llong rl r2
=bx rl r2

33

[procedure
[procedure

library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure
library procedure

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[library procedure
[library procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[

bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

]
]
]
]
]
|
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
]
]
]
]
]
]
]
]
]

34

<zl1z2z3 ...
<fx il i2

<fl rlr2
<elong rl r2
<1lllong rl r2
<bx rl r2

> z1 2223 ...
>fx il i2

>fl rl r2
>elong rl r2
>11long rl r2
>bx rl r2

<= z12z22z3 ...

<=fx il i2
<=fl rl r2
<=elong rl r2
<=llong rl r2
<=bx rl r2

>= 712223 ...

>=fx il i2
>=f1 rl r2
>=elong rl r2
>=1long rl r2
>=bx rl r2

+ Zz...

+fx il i2
+f1 rl r2
+elong rl r2
+llong rl r2
+bx rl r2

* Z ...

*fx i1 i2
*f1 rl r2
xelong rl r2
*1long rl r2
*xbx rl r2
-z

-zl z2 ...
-fx il i2
-f1 rl1 r2
-elong rl r2
-llong rl r2
-bx rl r2
negfx i
negfl r
negelong r

Bigloo 4.3g

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure
[bigloo procedure

[procedure

[procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure

]
]
]
|
]
]
]
]
|
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
]
]
]
]
|
]
]
]
]
]
]
]
]
]
]
]
]
]

[
[
[
[
[
[
[
[

Chapter 5: Standard Library 35

negllong r [bigloo procedure]
negbx r [bigloo procedure]
These two functions implement the unary function -.

/ zl z2 [procedure
/ zl z2 ... [procedure
/fx i1 i2 bigloo procedure

/f1 rl r2
/elong rl r2

[

[bigloo procedure

[
/1long rl r2 [bigloo procedure

[

1

[

bigloo procedure

|

]

]

]

]

|
/bx rl r2 bigloo procedure]
abs z [library procedure]
absfl z bigloo procedure]
quotient zI z2 [procedure]
quotientelong zI z2 [procedure]
quotientllong zI z2 [procedure]
remainder zl z2 [procedure]
remainderelong zl z2 [procedure]
remainderllong zl z2 [procedure]
remainderfl zI z2 [procedure]
modulo zI z2 [procedure]
ged z ... [procedure]
lem 7 ... [procedure]
floor z [procedure]
floorfl z [procedure]
ceiling z [procedure]
ceilingfl z [procedure]
truncate z [procedure]
truncatefl z [procedure]
round z [procedure]
roundfl z [procedure]
random z [bigloo procedure]
randomfl [bigloo procedure]
randombx z [bigloo procedure]
seed-random! z [bigloo procedure]

the random function returns a pseudo-random integer between 0 and z.

If no seed value is provided, the random function is automatically seeded with a value
of 1.

The function randomfl returns a double in the range [0..1].

exp z [procedure]
expfl z [procedure]
log z [procedure]
logfl z [procedure]
sin z [procedure]
sinfl z [procedure]

36 Bigloo 4.3g

integer->string i [radix 10] bigloo procedure

[
integer->string/padding i padding [radix 10] [bigloo procedure
elong->string i [radix 10] [bigloo procedure
llong->string i [radix 10] [bigloo procedure
bignum->string i [radix 10] [bigloo procedure
real->string z [bigloo procedure
unsigned->string i [radix 16] [bigloo procedure

The function integer->string/padding converts its arguments into a string with a

left padding filled of characters 0.

(integer->string/padding 3 5) = "00003"
The function unsigned->string only accepts the following radixes: 2, 8, and 16. It
converts its argument into an unsigned representation.

(unsigned->string 123 16) = "7b"

(unsigned->string -123 16) = "ffffff85"

cos z [procedure]
cosfl z [procedure]
tan z [procedure]
tanfl z [procedure]
asin z [procedure]
asinfl z [procedure]
acos z [procedure]
acosfl z [procedure]
atan zl z2 [procedure]
atanfl zl z2 [procedure]
sqrt z [procedure]
sqrtfl z [procedure]
expt zl x2 [procedure]
exptfl zI1 x2 [procedure]
exact->inexact z [procedure]
inexact->exact z [procedure]
number->string z [procedure]

]

]

|

]

]

]

]

nanfl? z [bigloo procedure]
Returns #t if the floating z is not-a-number. Returns #f otherwise.

infinitefl? z [bigloo procedure]

finitefl? z [bigloo procedure]
The predicate infinitefl? returns #t if the floating z is positive or negative infinite.
Returns #f otherwise.

The predicate finitefl? is true if and only if z is finite.

signbitfl z [bigloo procedure]
Returns 0 is z is positive or null. Returns a positive integer otherwise.

bignum->octet-string bignum [bigloo procedure]
Returns a binary big-endian representation of the given bignum bignum.
(string-hex-extern (bignum->octet-string #zx1234567)) = "01234567"

Chapter 5: Standard Library 37

double->ieee-string z [bigloo procedure]
float->ieee-string z [bigloo procedure]
Returns a big-endian representation of the given number.

string->number string [radix 10] [procedure]
string->real string [bigloo procedure]
string->elong string radix [bigloo procedure]
string->1long string radix [bigloo procedure]
string->bignum string radix [bigloo procedure]
Bigloo implements a restricted version of string->number. If string denotes a floating
point number then, the only radix 10 may be send to string->number. That is:

(string->number "1243" 16) = 4675
(string->number "1243.0" 16) .

xxx ERROR:bigloo:string->number

Only radix ‘10’ is legal for floating point number -- 16
(string->elong "234456353") = #e234456353

In addition, string->number does not support radix encoded inside string. That is:
(string->number "#x1243") = #f

octet-string->bignum string [bigloo procedure]
Counterpart to bignum->octet-string. Takes the bignum representation in big-
endian format string and returns the corresponding bignum.

(octet-string->bignum (bignum->octet-string #z1234)) = #z1234

ieee-string->double string [bigloo procedure]
ieee-string->float string [bigloo procedure]
Convert the big-endian representations to their numeric values.

fixnum->flonum i
flonum->fixnum r
elong->fixnum i bigloo procedure
fixnum->elong r bigloo procedure

[bigloo procedure]
[|
| |
llong->fixnum i [bigloo procedure]
[|
[|
[]
[]
[

bigloo procedure

fixnum->1long r bigloo procedure

elong->flonum i bigloo procedure

flonum->elong r bigloo procedure

llong->flonum i bigloo procedure

flonum->llong r bigloo procedure]
For efficiency, string->real and string->integer do not test whether the string
can be read as a number. Therefore the result might be wrong if the string cannot
be read as a number.

These last procedures implement the natural translation from and to fixnum, flonum,
elong, and llong.

double->1long-bits z [bigloo procedure]
float->int-bits z [bigloo-procedure]
Returns the double-bits as a llong.

38 Bigloo 4.3g

llong-bits->double llong [bigloo procedure]
int-bits->float int [bigloo procedure]
Converts the given llong bits to a double.

See Section “rbrs.info” in R6RS, for more details.

5.1.7 Characters
Bigloo knows named characters #\alarm, #\backspace, #\delete, #\escape, #\tab,
#\return, and #\null in addition to the #\space and #\newline of R5RS.

A new alternate syntax exists for characters: #a<ascii-code> where <ascii-code> is
the three digit decimal ASCII number of the character to be read. Thus, for instance,
the character #\space can be written #a032. Bigloo also supports the R7Rs syntax
#\x<hex-code>.

char? obj

[
char=7 charl char2 [procedure
char<? charl char2 [procedure
[
[
[

char>? charl char2 procedure
char<=7 charl char2 procedure
char>=? charl char2 procedure

library procedure
library procedure
library procedure

]

|

]

]

|

char-ci=? charl char2]
]

]

library procedure]
]

]

]

]

|

]

]

]

]

]

char-ci<? charl char2
char-ci>? charl char2
char-ci<=? charl char2

char-ci>=? charl char2 library procedure

library procedure
library procedure
library procedure
library procedure
library procedure

char-alphabetic? char
char-numeric? char

char-whitespace? char
char-upper-case? char
char-lower-case? char

[
[
[
[
[
[
[
[
[
[

char->integer char [procedure
integer->char i [procedure
char-upcase char [library procedure
char-downcase char [library procedure

5.1.8 UCS-2 Characters

UCS-2 Characters are two byte encoded characters. They can be read with the syntax:
#u<unicode> where <unicode> is the four digit hexadecimal Unicode value of the character
to be read. Thus, for instance, the character #\space can be written #u0020.

ucs2? obj bigloo procedure

[]
ucs2=7 ucs2a ucs2b [bigloo procedure]
ucs2<? ucs2a ucs2b [bigloo procedure]
ucs2>7 ucs2a ucs2b [bigloo procedure]
ucs2<=7 ucs2a ucs2b [bigloo procedure]

Chapter 5: Standard Library

ucs2>=? ucs2a ucs2b

ucs2-ci=?7 ucs2a ucs2b
ucs2-ci<? ucs2a ucs2b
ucs2-ci>? ucs2a ucs2b
ucs2-ci<=7? ucs2a ucs2b
ucs2-ci>=7? ucs2a ucs2b

ucs2-alphabetic? ucs2
ucs2-numeric? ucs2

ucs2-whitespace? ucs2
ucs2-upper-case? ucs2
ucs2-lower-case? ucs2

ucs2->integer ucs2
integer->ucs?2 i

ucs2->char ucs2
char->ucs?2 char

ucs2-upcase ucs2
ucs2-downcase ucs2

5.1.9 Strings

39

bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure
bigloo procedure

[]
[]
[]
[|
[]
[]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[|
[]
[]
[]
[]
[]

bigloo procedure
bigloo procedure

bigloo procedure
bigloo procedure

bigloo procedure
bigloo procedure

There are three different syntaxes for strings in Bigloo: traditional, foreign or Unicode. The
traditional syntax for strings may conform to the Revised Report, see Section “rbrs.info” in
R5RS. With the foreign syntax, C escape sequences are interpreted as specified by ISO-C.
In addition, Bigloo’s reader evaluate \x?? sequence as an hexadecimal escape character.
For Unicode syntax, see Section 5.1.10 [Unicode (UCS-2) Strings|, page 44. Only the reader
distinguishes between these three appearances of strings; i.e., there is only one type of
string at evaluation-time. The regular expression describing the syntax for foreign string is:
#"([""]I\")*". Escape characters are controlled by the parameter bigloo-strict-rbrs-

strings (see Chapter 24 [Parameters], page 231).

The library functions for string processing are:

string? obj

string-null? s
Is s an empty string?

make-string k
make-string k char
string char ...

string-length string
string-ref string k
string-set! string k char

string=7 stringl string?2

[procedure]

[SRFI-13 procedure]

[procedure
[procedure
[library procedure

[procedure

]
|
]
[procedure%
[procedure]

]

[library procedure

This function returns #t if the stringl and string2 are made of the same characters.

It returns #f otherwise.

40 Bigloo 4.3g

substring=7 stringl string2 len [bigloo procedure]
This function returns #t if stringl and string2 have a common prefix of size len.
(substring=7 "abcdef" "ab9989898" 2)

= #t
(substring=7? "abcdef" "ab9989898" 3)
= #f
substring-at? stringl string2 offset [len] [bigloo procedure]
substring-ci-at? stringl string2 offset [len] [bigloo procedure]

This function returns #t if string2 is at position offset in the string stringl. It
returns #f otherwise.
(substring-at? "abcdefghij" "def" 3)

= #t
(substring-at? "abcdefghij" "def" 2)
= #f
(substring-at? "abcdefghij" "defz" 3)
= #£f
(substring-at? "abcdefghij" "defz" 3 3)
= #t
string-ci=? stringl string2 [library procedure
substring-ci=? stringl string2 len [bigloo procedure

string<? stringl string?2
string>? stringl string?2
string<=? stringl string?2 library procedure
string>=? stringl string2 library procedure

|

|

[library procedure]
[]
| |
string-ci<? stringl string2 [library procedure]
[]
[]
[]
|

]

library procedure

string-ci>? stringl string2 library procedure
string-ci<=7 stringl string2 library procedure
string-ci>=? stringl string2 library procedure

string-index string charset [start 0] [count -1] [bigloo procedure
string-char-index string char [start O] [bigloo procedure
string-index-right string charset [start len-1] [bigloo procedure]

Returns the first occurrence of a character of char-or-set in string. The argument
charset is either a character or a string. If no character is found, string-index
returns #f The argument count, if provided, is the number of characters to be scanned
in the string.

string-skip string charset [start 0] [bigloo procedure]

string-skip-right string charset [start len-1] [bigloo procedure]
string-skip (resp. string-skip-right) searches through the string from the left
(resp. right), returning the index of the first occurrence of a character which

e is not equal to c (if ¢ is a character);
e is not in ¢ (if ¢ is a character set);

e does not satisfy the predicate ¢ (if ¢ is a procedure).

If no such index exists, the functions return false.

The start and end parameters specify the beginning and end indices of the search; the
search includes the start index, but not the end index. Be careful of "fencepost" con-
siderations: when searching right-to-left, the first index considered is end-1 whereas

Chapter 5: Standard Library 41

when searching left-to-right, the first index considered is start. That is, the start/end
indices describe a same half-open interval [start,end).

[bigloo procedure]
[bigloo procedure]

string-contains stringl string2 [start O]
string-contains-ci stringl string?2 [start 0]
Does string stringl contain string string2?

Return the index in stringl where string2 occurs first as a substring, or false.

string-contains-ci is the case-insensitive variant. Case-insensitive comparison is
done by case-folding characters with the operation:

(char-downcase (char-upcase c))

string-compare3 stringl string2 [bigloo procedure]

string-compare3-ci stringl string?2 [bigloo procedure]
This function compares stringl and string2. It returns a negative integer if stringl
< string2. It returns zero if the stringl equal string2. It returns a positive integer if
stringl > string2.

string-natural-compare3 stringl string?2 [startl 0] [start2 O]
string-natural-compare3-ci stringl string?2 [startl ()
[start2 O]
This function compares stringl and string2 according to a natural string order. It
returns a negative integer if stringl < string2. It returns zero if the stringl equal
string2. It returns a positive integer if stringl > string2.

"foo" "fOO")

[bigloo procedure]
[bigloo procedure]

(string-natural-compare
=0

(string-natural-compare
= -1
(string-natural-compare
=1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
=1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1
(string-natural-compare
= -1

"f000" "fool")
"fool" "foo0")
"rfc822.txt" "rfcl.txt")
"rfcl.txt" "rfc2086.txt")

"rfc2086.txt" "rfcl.txt")

"rfc822.txt" "rfc2086.txt")

"a0" "a1")

"al" "ala")
"ala" "alb")
"alb" "a2")
"a2" "a10")
"a10" "a20")
"a2" "a20")

"X2_g8" "X2—y7")

42 Bigloo 4.3g

(string-natural-compare "1.001" "1.002")
= -1

(string-natural-compare "1.002" "1.010")
= -1

(string-natural-compare "1.010" "1.02")
=1

(string-natural-compare "1.02" "1.1")
= -1

(string-natural-compare "1.1" "1.02")
=1

(string-natural-compare "1.02" "1.3")
= -1

substring string start [end] [library procedure]
string must be a string, and start and end must be exact integers satisfying:
0 <= START <= END <= (string-length STRING)

The optional argument end defaults to (string-length STRING).

substring returns a newly allocated string formed from the characters of STRING
beginning with index START (inclusive) and ending with index END (exclusive).

(substring "abcdef" 0 5)
= "abcde"

(substring "abcdef" 1 5)
= "bcde"

string-shrink! string end [library procedure]
string must be a string, and end must be an exact integers satisfying:
0 <= END <= (string-length STRING)

string-shrink! returns a new string formed from the characters of STRING begin-
ning with index 0 (inclusive) and ending with index END (exclusive). As much as
possible string-shrink! changes the argument string. That is, as much as possi-
ble, and for the back-ends that enable it, string-shrink! operates a side effect on its
argument.

(let ((s (string #\a #\b #\c #\d #\e)))
(set! s (string-shrink! s 3))
s)
= "abc"

string-append string . .. [library procedure]
string->list string [library procedure]
list->string list [library procedure]
string-copy string [library procedure]

]

string-fill! string char [bigloo procedure
Stores char in every element of the given string and returns an unspecified value.

string-downcase string [bigloo procedure]
Returns a newly allocated version of string where each upper case letter is replaced
by its lower case equivalent.

string-upcase string [bigloo procedure]
Returns a newly allocated version of string where each lower case letter is replaced
by its upper case equivalent.

Chapter 5: Standard Library 43

string-capitalize string [bigloo procedure]
Builds a newly allocated capitalized string.

string-downcase! string [bigloo procedure]
Physically downcases the string argument.

string-upcase! string [bigloo procedure]
Physically upcases the string argument.

string-capitalize! string [bigloo procedure]
Physically capitalized the string argument.

string-for-read string [bigloo procedure]
Returns a copy of string with each special character replaced by an escape sequence.

blit-string! stringl ol string2 o2 len [bigloo procedure]
Fill string string2 starting at position 02 with len characters taken out of string
stringl from position ol.

(let ((s (make-string 20 #\-)))
(blit-string! "toto" 0 s 16 4)

s)
= Memmmmmm e toto"
string-replace string charl char2 [bigloo procedure]
string-replace! string charl char2 [bigloo procedure]

Replace all the occurrence of charl by char2 in string. The function string-replace
returns a newly allocated string. The function string-replace! modifies its first

argument.
string-split string [bigloo procedure]
string-split string delimiters [bigloo procedure]

Parses string and returns a list of tokens ended by a character of the delimiters string.
If delimiters is omitted, it defaults to a string containing a space, a tabulation and a
newline characters.

(string-split "/usr/local/bin" "/") = ("usr" "local" "bin")
(string-split "once upon a time") = ("once" "upon" "a" "time")

string-cut string [bigloo procedure]

string-cut string delimiters [bigloo procedure]
The function string-cut behaves as string-split but it introduces empty strings
for consecutive occurrences of delimiters.

(string-cut "/usr//local/bin" "/") = ("usr" "" "local" "bin")
(string-cut "once upon a time") = ("once" "" "" "' "ypon" "a" "time")
string-delete string char/charset/pred s [start end] [SRFI-13 procedure]

Filter the string string, retaining only those characters that are not equal to char,
not present in charset, or not satisfying pred. This function returns a fresh string no
larger than end - start.

44 Bigloo 4.3g

string-prefix-length sl s2 [startl endl start2 end?2) [SRFI-13 procedure]

string-suffix-length sl s2 [startl endl start2 end?2) [SRFI-13 procedure]

string-prefix-length-ci sl s2 [startl endl start2 end?2) [SRFI-13 procedure]

string-suffix-length-ci sl s2 [startl endl start2 end?2) [SRFI-13 procedure]
Return the length of the longest common prefix/suffix of the two strings. For prefixes,
this is equivalent to the "mismatch index" for the strings (modulo the starti index
offsets).

The optional start/end indices restrict the comparison to the indicated substrings of
sl and s2.

string-prefix? sl s2 [start]l endl start2 end2) [SRFI-13 procedure]

string-suffix? sl s2 [start]l endl start2 end2) [SRFI-13 procedure]

string-prefix-ci? sl s2 [startl endl start2 end2] [SRFI-13 procedure]

string-suffix-ci? sl s2 [startl endl start2 end2] [SRFI-13 procedure]
Is sl a prefix/suffix of s27

The optional start/end indices restrict the comparison to the indicated substrings of

sl and s2.
string-hex-intern string [bigloo procedure]
string-hex-intern! string [bigloo procedure]

Converts an hexadecimal string of n characters into an actual string of n/2 characters.
(string-hex-intern "4a4b4c") = "JKL"

string-hex-extern string [start [end]] [bigloo procedure]
Converts a string into a hexadecimal representation.

string must be a string, and start and end must be exact integers satisfying:
0 <= START <= END <= (string-length STRING)

The optional argument start default to 0. The optional argument end defaults to
(string-length STRING).
(string-hex-extern "JKL") = "4adb4c"

5.1.10 Unicode (UCS-2) Strings

UCS-2 strings cannot be read by the standard reader but UTF-8 strings can. The special
syntax for UTF-8 is described by the regular expression: #u" (["][\")*".

The library functions for Unicode string processing are:

ucs2-string? obj bigloo procedure

make-ucs2-string k
make-ucs2-string k char
ucs2-string k ...

bigloo procedure
bigloo procedure
bigloo procedure

ucs2-string-ref s-ucs2 k bigloo procedure
ucs2-string-set! s-ucs2 k char bigloo procedure

bigloo procedure
bigloo procedure
bigloo procedure

ucs2-string=7 s-ucs2a s-ucs2b
ucs2-string-ci=7 s-ucs2a s-ucs2b

[]
[]
[]
[]
ucs2-string-length s-ucs2 [bigloo procedure]
[]
[]
[]
[]
ucs2-string<? s-ucs2a s-ucs2b []

Chapter 5: Standard Library

ucs2-string>? s-ucs2a s-ucs2b
ucs2-string<=7 s-ucs2a s-ucs2b
ucs2-string>=7 s-ucs2a s-ucs2b
ucs2-string-ci<? s-ucs2a s-ucs2b
ucs2-string-ci>? s-ucs2a s-ucs2b
ucs2-string-ci<=7 s-ucs2a s-ucs2b
ucs2-string-ci>=? s-ucs2a s-ucs2b

ucs2-substring s-ucs2 start end
ucs2-string-append s-ucs2 ...
ucs2-string->list s-ucs2
list->ucs2-string chars
ucs2-string-copy s-ucs2

ucs2-string-fill! s-ucs2 char

45

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

]

[bigloo procedure

Stores char in every element of the given s-ucs2 and returns an unspecified value.

ucs2-string-downcase s-ucs2

Builds a newly allocated ucs2-string with lower case letters.

ucs2-string-upcase s-ucs2

Builds a new allocated ucs2-string with upper case letters.

ucs2-string-downcase! s-ucs2

Physically downcases the s-ucs2 argument.

ucs2-string-upcase! s-ucs?2

Physically upcases the s-ucs2 argument.

ucs2-string->utf8-string s-ucs2
utf8-string->ucs2-string string

Convert UCS-2 strings to (or from) UTF-8 encoded ascii strings.

utf8-string? string [strict #f]

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]

Returns #t if and only if the argument string is a well formed UTF-8 string. Otherwise

returns #f£.

If the optional argument strict is #t, half utf16-surrogates are rejected. The optional

argument strict defaults to #£.

ascii-string? string

[bigloo procedure]

Returns #t if and only if the argument string is only composed of ascii characters.

Otherwise returns #f£.

utf8-string-encode string [strict #f]

[bigloo procedure]

Returns a copy of string where all the illegal UTF-8 prefix are replaced with the
Unicode Replacement Character EF BF BD. The result is a well formed UTF-8

string.

utf8-string-length string

[bigloo procedure]

Returns the number of characters of an UTF-8 string. It raises an error if the string
is not a well formed UTF-8 string (i.e., it does satisfies the utf8-string? predicate.

46 Bigloo 4.3g

utf8-codepoint-length string [bigloo procedure]
Returns the number of code points of an UTF-8 string. The code points length is the
number of 16bits long values needed to encode the utf8 strings in utfl6.

utf8-string-ref string i [bigloo procedure]
Returns the character (represented as an UTF-8 string) at the position i in string.

utf8-substring string start [end] [library procedure]

string must be a string, and start and end must be exact integers satisfying:
0 <= START <= END <= (string-length STRING)

The optional argument end defaults to (utf8-string-length STRING).
utf8-substring returns a newly allocated string formed from the characters of
STRING beginning with index START (inclusive) and ending with index END (ex-
clusive).
If the argument string is not a well formed UTF-8 string an error is raised. Otherwise,
the result is also a well formed UTF-8 string.

iso-latin->utf8 string [bigloo procedure]

iso-latin->utf8! string [bigloo procedure]

utf8->iso-latin string [bigloo procedure]

utf8->iso-latin! string [bigloo procedure]

utf8->iso-latin-15 string [bigloo procedure]

utf8->iso-latin-15! string [bigloo procedure]
Encode and decode iso-latin strings into utf8. The functions iso-latin->utf8-
string!, utf8->iso-latin! and utf8->iso-latin-15! may return, as result, the
string they receive as argument.

cpl252->utf8 string [bigloo procedure]

cpl252->utf8! string [bigloo procedure]

utf8->cpl1252 string [bigloo procedure]

utf8->cp1252! string [bigloo procedure]
Encode and decode cp1252 strings into utf8. The functions cp1252->utf8-string!
and utf8->cp1252! may return, as result, the string they receive as argument.

8bits->utf8 string table [bigloo procedure]

8bits->utf8! string table [bigloo procedure]

utf8->8bits string inv-table [bigloo procedure]

utf8->8bits! string inv-table [bigloo procedure]
These are the general conversion routines used internally by iso-latin->utf8 and
cpl1252->utf8. They convert any 8 bits string into its equivalent UTF-8 representa-
tion and vice versa.

The argument table should be either #f, which means that the basic (i.e., iso-latin-
1) 8bits -> UTF-8 conversion is used, or it must be a vector of at least 127 entries
containing strings of characters. This table contains the encodings for the 8 bits
characters whose code range from 128 to 255.

The table is not required to be complete. That is, it is not required to give the
whole character encoding set. Only the characters that need a non-iso-latin canonical
representation must be given. For instance, the CP1252 table can be defined as:

(define cp1252

Chapter 5: Standard Library

*#("\xe2\x82\xac" ;; 0x80
" ;5 0x81
"\xe2\x80\x9%a" ;; 0x82
"\xc6\x92" ;3 0x83
"\xe2\x80\x9%e" ;; 0x84
"\xe2\x80\xa6" ;; 0x85
"\xe2\x80\xa0" ;; 0x86
"\xe2\x80\xal" ;; 0x87
"\xcb\x86" ;3 0x88
"\xe2\x80\xb0" ;; 0x89
"\xc5\xa0" ;; 0x8a
"\xe2\x80\xb9" ;; 0x8b
"\xc5\x92" ;3 0x8c
nn ;3 0x8d
"\xc5\xbd" ;; 0x8e
nn ;5 0x8f
nn ;3 0x90
"\xe2\x80\x98" ;; 0x91
"\xe2\x80\x99" ;; 0x92
"\xe2\x80\x9c" ;; 0x93
"\xe2\x80\x94d" ;; 0x94
"\xe2\x80\xa2" ;; 0x95
"\xe2\x80\x93" ;; 0x96
"\xe2\x80\x94" ;; 0x97
"\xcb\x9c" ;3 0x98
"\xe2\x84\xa2" ;; 0x99
"\xcb\xal" ;3 0x9a
"\xe2\x80\xba" ;; 0x9
"\xc5\x93" ;3 0x9c
" ;3 0x9d
"\xc5\xbe" ;3 0x9e
"\xc5\xb8")) ;3 0x9f

47

The argument inv-table is an inverse table that can be build from a table and using

the function inverse-utf8-table.

inverse-utf8-table vector

[procedure]

Inverse an UTF-8 table into an object suitable for utf8->8bits and utf8->8bits!.

5.1.11 Vectors

Vectors are not autoquoted objects.

vector? obj

make-vector k
make-vector k obj
vector obj ...

vector-length vector
vector-ref vector k
vector-set! vector k obj

vector->1ist vector
list->vector list

vector-fill! vector obj [start [end]]

[procedure

[procedure
[procedure
[library procedure

[procedure
[procedure

[library procedure

]
]
]
]
[procedure]
]
]
]
[library procedure]

]

[library procedure

48 Bigloo 4.3g

Stores obj in every element of vector. For instance:

(let ((v (make-vector 5 #£f)))
(vector-fill! v #t)
v)

copy-vector vector len [bigloo procedure]
Allocate a new vector of size len and fills it with the first len element of vector. The
new length len may be bigger than the old vector length.

vector-copy vector start end [bigloo procedure]
vector must be a vector, and start and end must be exact integers satisfying:
0 <= START <= END <= (vector-length VECTOR)

vector-copy returns a newly allocated vector formed from the elements of VECTOR
beginning with index START (inclusive) and ending with index END (exclusive).

(vector-copy ’#(1 2 3 4) 0 4)
= #(1 2 3 4)

(vector-copy ’#(1 2 3 4) 1 3)
= #(2 3)

vector-copy! target tstart source [sstart [send]] [bigloo procedure]
Copies a block of elements from source to target, both of which must be vectors,
starting in target at tstart and starting in source at sstart, ending when send - sstart
elements have been copied. It is an error for target to have a length less than tstart
+ (send - sstart). Sstart defaults to 0 and send defaults to the length of source.

See Section 5.1.11 [r5rs.info], page 47, for more details.

vector-append vector . .. [bigloo procedure]
Returns a newly allocated vector that contains all elements in order from the subse-
quent locations in vector

Examples:

(vector-append ’#(x) ’'#(y)) = #(x y)
(vector-append ’#(a) ’#(b c d)) = #(a b c d)
(vector-append ’#(a #(b)) ’#(#(c))) = #(a #(b) #(c))

vector-for-each proc vector . . . [bigloo procedure]
Apply proc to all the elements of the vectors. The arity of proc must be the number
of passed vectors. All vectors must have the same length. The procedure is applied
from elements of index 0 to (vector-length vector) - 1.

vector-map proc vector . .. [bigloo procedure]

vector-map! proc vector . .. [bigloo procedure]
The function vector-map creates a new vector whose size the is the size of its ar-
gument vector. Fach elements of the new vector is the result of apply proc to the
corresponding elements of the initial vectors.

The function vector-map! modifies the elements of the argument vector.

vector-shrink! vector end [bigloo procedure]
Shrink a vector. The argument vector must be a vector, and end must be an exact
integers satisfying:
0 <= END <= (vector-length STRING)

Chapter 5: Standard Library

49

Shrink a vector. The resulting vector’s len is the minimum value of (vector-length

vec) and nlen.

vector-shrink! returns a new vector formed from the values of VECTOR beginning
with index 0 (inclusive) and ending with index END (exclusive). As much as possible
vector-shrink! changes the argument vector. That is, as much as possible, and for

the back-ends that enable it, vector-shrink! operates a side effect on its argument.

5.1.12 Homogeneous Vectors (SRFI-4)

Bigloo fully supports SRFI-4 specification of homogeneous vectors (see http://srfi.
schemers.org/srfi-4/srfi-4.html).

Each homogeneous vector is represented by a Bigloo type. That is:
e ::s8vector signed exact integer in the range -(2°7) to (2°7)-1
e ::u8vector unsigned exact integer in the range 0 to (2°8)-1
e ::sl6vector signed exact integer in the range -(2°15) to (2715)-1
e ::ul6vector unsigned exact integer in the range 0 to (2°16)-1
e ::s32vector signed exact integer in the range -(2731) to (2731)-1
e ::u32vector unsigned exact integer in the range 0 to (2°32)-1
e ::s64vector signed exact integer in the range -(2°63) to (2°63)-1
e ::ub4dvector unsigned exact integer in the range 0 to (2764)-1

f32vector inexact small real

f64vector inexact largest real

Each homogeneous vector datatype has an external representation which is supported
by the read and write procedures and by the program parser. Each datatype also has a set
of associated predefined procedures analogous to those available for Scheme’s heterogeneous

vectors.

As noted by Marc Feeley’s specification, for each value of TAG in { s8, u8, s16, ul6, s32,

u32, s64, u64, £32,f64 }, if the datatype TAGvector is supported, then

e the external representation of instances of the datatype TAGvector is #TAG(...ele-

ments...).

For example, #u8(0 100 #xff) is an u8vector of length 3 containing 0, 100 and 255;

#£64(-1.5) is an f64vector of length 1 containing -1.5.

Note that the syntax for float vectors conflicts with Standard Scheme which parses
#£32() as 3 objects: #£f, 32 and (). For this reason, conformance to this SRFI implies

this minor nonconformance to Standard Scheme.

This external representation is also available in program source code. For example,
(set! x *#u8(1 2 3)) will set x to the object #u8(1 2 3). Literal homogeneous vectors
must be quoted just like heterogeneous vectors must be. Homogeneous vectors can
appear in quasiquotations but must not contain unquote or unquote-splicing forms (i.e.
“(,x #u8(1 2)) is legal but ‘#u8(1 ,x 2) is not). This restriction is to accomomdate

the many Scheme systems that use the read procedure to parse programs.

e the following predefined procedures are available:

http://srfi.schemers.org/srfi-4/srfi-4.html
http://srfi.schemers.org/srfi-4/srfi-4.html

50 Bigloo 4.3g

TAGvector? obj [SRFI-4 procedure]
make-TAGvector n [TAGvalue | [SRFI-4 procedure]
TAGvector TAGvalue ... [SRFI-4 procedure]
TAGvector-length TAGvect [SRFI-4 procedure]
TAGvector-ref TAGvect i [SRFI-4 procedure]
TAGvector-set! TAGvect i TAGvalue [SRFI-4 procedure]
TAGvector->list TAGvect [SRFI-4 procedure]
list->TAGvector TAGlIist [SRFI-4 procedure]
where obj is any Scheme object, n is a nonnegative exact integer, i is a nonneg-
ative exact integer less than the length of the vector, TAGvect is an instance
of the TAGvector datatype, TAGvalue is a number of the type acceptable for
elements of the TAGvector datatype, and TAGlist is a proper list of numbers of
the type acceptable for elements of the TAGvector datatype.

It is an error if TAGvalue is not the same type as the elements of the TAGvector
datatype (for example if an exact integer is passed to f64vector). If the fill value
is not specified, the content of the vector is unspecified but individual elements
of the vector are guaranteed to be in the range of values permitted for that type
of vector.

5.1.13 Control features

procedure? obj [procedure]
apply proc argl ... args [procedure]
map proc listl list2 . .. [library procedure]
map! proc listl list2 . .. [bigloo procedure]
for-each proc listl1 list2 . .. [library procedure]
filter pred list ... [library procedure]
filter! pred list . .. [library procedure]

Strip out all elements of list for which the predicate pred is not true. The second
version filter! is destructive:
(filter number? ’(1 2 #\a "foo" foo 3)) = (1 2 3)

(let ((1 (list 1 2 #\a "foo" ’foo 3)))
(set! 1 (filter! number? 1))

1) = (12 3)
append-map proc listl list2 . .. [library procedure]
append-map! proc listl list2 . .. [library procedure]

The expression
(append-map f clistl clist2 ...)
is equivalent to:

(apply append (map f clistl clist2 ...))

The expression
(append-map! f clistl clist2 ...)

is equivalent to:

(apply append! (map f clistl clist2 ...))

Chapter 5: Standard Library 51

filter-map pred list ... [bigloo procedure]
As map but only none #f values are accumulated in the resulting list. The Bigloo
implementation complies with the SRFI-1 description.

(filter-map (lambda (x) (if (number? x) ’- #f)) ’(1 2 #\a "foo" foo 3)) = (- - -
)

sort proc obj [bigloo procedure]
sort obj proc [bigloo procedure]
Sorts obj according to proc test. The argument obj can either be a vector or a list.
In either case, a copy of the argument is returned. For instance:
(et ((1 ’(("foo" 5) ("bar" 6) ("hux" 1) ("gee" 4))))
(sort (lambda (x y) (string<? (car x) (car y))) 1))
= ((bar 6) (foo 5) (gee 4) (hux 1))
The second form (which uses obj before proc ensures backward compatibility with
old Lisp systems, and older Bigloo versions. It is deprecated.

force promise [library procedure]

call/cc proc [bigloo procedure]
This function is the same as the call-with-current-continuation function of the
R5RS, see Section “rbrs.info” in R5RS, but it is necessary to compile the module with
the —call/cc option to use it, see Section See Chapter 31 [The Bigloo command line],
page 275.

Note: Since call/cc is difficult to compile efficiently, one might consider using
bind-exit instead. For this reason, we decided to enable call/cc only with a com-
piler option.

bind-exit escape body [bigloo syntax]

This form provides an escape operator facility. bind-exit evaluates the body, which
may refer to the variable escape which will denote an “escape function” of one argu-
ment: when called, this escape function will return from the bind-exit form with
the given argument as the value of the bind-exit form. The escape can only be
used while in the dynamic extent of the form. Bindings introduced by bind-exit are
immutable.

(bind-exit (exit)

(for-each (lambda (x)

(if (negative? x)
(exit x)))

’(54 0 37 -3 245 19))
#t) = -3

(define list-length
(lambda (obj)
(bind-exit (return)
(letrec ((r (lambda (obj)
(cond ((null? obj) 0)
((pair? obj)
(+ (r (cdr obj)) 1))
(else (return #£))))))
(r obj)))))

(list-length ’(1 2 3 4)) = 4
(list-length ’(a b . c)) = #f

52 Bigloo 4.3g

unwind-protect expr protect [bigloo syntax]
This form provides protections. Expression expr is evaluated. If this evaluation re-
quires the invocation of an escape procedure (a procedure bounded by the bind-exit
special form), protect is evaluated before the control jump to the exit procedure. If
expr does not raise any exit procedure, unwind-protect has the same behaviour as
the begin special form except that the value of the form is always the value of expr.

(define (my-open f)
(if (file-exists? f)
(let ((port (open-input-file £f)))
(if (input-port? port)
(unwind-protect
(bar port)
(close-input-port port))))))

dynamic-wind before thunk after [procedure]
Calls thunk without arguments, returning the result(s) of this call. Before and after
are called, also without arguments, as required by the following rules (note that in
the absence of calls to continuations captured using call/cc the three arguments are
called once each, in order). Before is called whenever execution enters the dynamic
extent of the call to thunk and after is called whenever it exits that dynamic extent.
The dynamic extent of a procedure call is the period between when the call is initiated
and when it returns. In Scheme, because of call/cc, the dynamic extent of a call
may not be a single, connected time period. It is defined as follows:

e The dynamic extent is entered when execution of the body of the called procedure
begins.

e The dynamic extent is also entered when execution is not within the dynamic
extent and a continuation is invoked that was captured (using call/cc) during
the dynamic extent.

e [t is exited when the called procedure returns.

e It is also exited when execution is within the dynamic extent and a continuation
is invoked that was captured while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the afters from these
two invocations of dynamic-wind are both to be called, then the after associated with
the second (inner) call to dynamic-wind is called first.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called, then the before associated
with the first (outer) call to dynamic-wind is called first.

If invoking a continuation requires calling the before from one call to dynamic-wind
and the after from another, then the after is called first.

The effect of using a captured continuation to enter or exit the dynamic extent of a
call to before or after is undefined.
(let ((path ’(Q))
(c #£))
(let ((add (lambda (s)
(set! path (cons s path)))))

Chapter 5: Standard Library 53

(dynamic-wind
(lambda () (add ’connect))
(lambda ()
(add (call/cc
(lambda (c0)
(set! c c0)
’talk1))))
(lambda () (add ’disconnect)))
(if (< (length path) 4)
(c ’talk2)
(reverse path))))

= (connect talkl disconnect connect talk2 disconnect)

unspecified [bigloo procedure]
Returns the unspecified (noted as #unspecified) object with no specific property.

try exp handler [bigloo syntax]
This form is documented in Section Chapter 15 [Errors Assertions and Traces],
page 173.

values obj ... [procedure]

Delivers all of its arguments to its continuation. Except for continuations created by
the call-with-values procedure, all continuations take exactly one value. Values
might be defined as follows:

(define (values . things)
(call/cc
(lambda (cont) (apply cont things))))

call-with-values producer consumer [procedure]
Calls its producer argument with no values and a continuation that, when passed some
values, calls the consumer procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call to call-with-values.

(call-with-values (lambda () (values 4 5))
(lambda (a b) b))

=5
(call-with-values * -)
= -1
multiple-value-bind (var ...) producer exp . .. [bigloo syntax]
receive (var ...) producer exp . .. [bigloo syntax]
Evaluates exp ... in a environment where var ... are bound from the evaluation

of producer. The result of producer must be a call to values where the number of
argument is the number of bound variables.

(define (bar a)
(values (modulo a 5) (quotient a 5)))

(define (foo a)
(multiple-value-bind (x y)
(bar a)
(print x " " y)))

(foo 354)
- 4 70

54 Bigloo 4.3g

5.2 Input and output

This section describes Scheme operation for reading and writing data. The section
Section 5.7.2 [Files|, page 79, describes functions for handling files.

5.2.1 Library functions

call-with-input-file string proc [library procedure]
call-with-input-string string proc [bigloo procedure]
call-with-output-file string proc [library procedure]
call-with-append-file string proc [library procedure]
call-with-output-string proc [library procedure]

These two procedures call proc with one argument, a port obtained by opening string.
See Section “rdrs.info” in RERS, for more details.
(call-with-input-file "/etc/passwd"
(lambda (port)
(let loop ((line (read-line port)))
(if (not (eof-object? line))
(begin
(print line)
(loop (read-line port)))))))

input-port? obj [procedure
input-string-port? obj [procedure
output-port? obj [procedure
output-string-port? obj [procedure
port? obj [

input-port-name obj
input-port-name-set! obj name
output-port-name obj
output-port-name-set! obj name
Returns/sets the file name for which obj has been opened.

bigloo procedure
bigloo procedure
bigloo procedure

]
]
|
]
procedure]
]
]
|
bigloo procedure]

[
[
[
[

input-port-length obj [bigloo (>=3.8d) procedure]
Returns the source number of bytes, i.e., the number characters contains in the source.
Returns -1 if that number is unknown (typically for a pipe).

input-port-timeout-set! port time [bigloo (>=2.8b) procedure]
output-port-timeout-set! port time [bigloo (>=2.8b) procedure]
These two functions limit the time an read or write operation may last. If the time
limit (expressed in microseconds) exceeded, an exception of time &io-timeout-error
is raised.
Setting a timeout equal to 0, restore the socket in blocking mode. Setting a timeout
with a value lesser than 0 is ignored.

Note: ports created from sockets share their internal file descriptor. Hence it is
erroneous to set a timeout for only one of the two ports. Both must be set.

output-port-flush-hook port [bigloo procedure]
output-port-flush-hook-set! port hook [bigloo procedure]
Returns (resp. sets) the flush hook of the output port. The flush hook is a procedure of
two arguments, the output port and the number of characters that are to be actually

Chapter 5: Standard Library 55

written out during the flush. It is unspecified when the hook is invoked, however,
one may expect the C back-end to invoke the hook only when output buffers are full.
The other back-ends (JVM and DOTNET) are likely to invoke the hook as soon as a
character is to be written.
A flush hook can return two types of values:
e A string, which is then directly displayed to the system stream associated with
the output port.
e An integer, which denotes the number of characters of the output port flush
buffer (see output-port-flush-buffer) that have to be displayed on the system

stream.
output-port-flush-buffer port [bigloo procedure]
output-port-flush-buffer-set! port buffer [bigloo procedure]

These functions gets and sets a buffer that can be used by program by the flush hooks.
The runtime system makes no provision for automatically allocated these buffers that
hence must be manually allocated by programs. The motivation for flush buffer is
to allow programs to write flush hooks that don’t have to allocate a new string each
time invoked.

output-port-close-hook port [bigloo procedure]

output-port-close-hook-set! port proc [bigloo procedure]
Returns (resp. sets) the close hook of the output port. The close hook is a procedure
of one argument, the closed port. The hook is invoked after the port is closed.

input-port-close-hook port [bigloo procedure]

input-port-close-hook-set! port proc [bigloo procedure]
Returns (resp. sets) the close hook of the input port. The close hook is a procedure
of one argument, the closed port.

Example:

(let ((p (open-input-string "/etc/passwd")))
(input-port-close-hook-set! p (lambda () (display ’done)))

(close-input-port p))

input-port-reopen! obj [bigloo procedure]
Re-open the input port obj. That is, re-start reading from the first character of the
input port.

current-input-port [procedure

current-output-port [procedure

current-error—-port [bigloo procedure

]
]
]
with-input-from-file string thunk [optional procedure]
with-input-from-string string thunk [optional procedure]
with-input-from-procedure procedure thunk [optional procedure]
with-output-to-file string thunk [optional procedure]
with-append-to-file string thunk [optional procedure]
with-error-to-file string thunk [bigloo procedure]
with-output-to-string thunk [bigloo procedure]

56 Bigloo 4.3g

with-output-to-procedure procedure thunk [bigloo procedure]
with-error-to-string thunk [bigloo procedure]
with-error-to-procedure procedure thunk [bigloo procedure]

A port is opened from file string. This port is made the current input port (resp.
the current output port or the current error port) and thunk is called. See Section
“r5rs.info” in R5RS, for more details.

(with-input-from-file "/etc/passwd"
(lambda ()
(let loop ((line (read-line (current-input-port))))
(if (not (eof-object? line))
(begin
(print line)
(loop (read-line (current-input-port))))))))

with-input-from-port port thunk [bigloo procedure]
with-output-to-port port thunk [bigloo procedure]
with-error-to-port port thunk [bigloo procedure]

with-input-from-port, with-output-to-port and with-error-to-port all sup-
pose port to be a legal port. They call thunk making port the current input (resp.
output or error) port. None of these functions close port on the continuation of thunk.

(with-output-to-port (current-error-port)
(lambda () (display "hello")))

open-input-file file-name [buffer #f] [timeout 5000000) [procedure]
If file-name is a regular file name, open-input-file behaves as the function defined
in the Scheme report. If file-name starts with special prefixes it behaves differently.
Here are the recognized prefixes:

e | (astring made of the characters #\| and #\space) Instead of opening a regular
file, Bigloo opens an input pipe. The same syntax is used for output file.

(define pin (open-input-file "| cat /etc/passwd"))
(define pout (open-output-file "| wc -1"))

(display (read pin) pout)
(close-input-port pin)
(newline pout)
(close-output-port pout)

e pipe: Same as | .
e file: Opens a regular file.
e gzip: Opens a port on a gzipped filed. This is equivalent to open-input-gzip-
file. Example:
(with-input-from-file "gzip:bigloo.tar.gz"
(lambda O
(send-chars (current-input-port) (current-output-port))))
e string: Opens a port on a string. This is equivalent to open-input-string.
Example:
(with-input-from-file "string:foo bar Gee"
(lambda ()
(print (read))

(print (read))
(print (read))))

Chapter 5: Standard Library 57

- foo
- bar
- Gee

e http://server/path

Opens an hitp connection on server and open an input file on file path.
e http://server:port-number/path
e http://user:password@server:port-number/path

Opens an hitp connection on server, on port number port with an authentica-
tion and open an input file on file path.

e ftp://server/path
e ftp://user:password@server/path

Opens an ftp connection on server and open an input file on file path. Log in
as anonymous.

® ressource:

Opens a JVM ressource file. Opening a ressource: file in non JVM backend
always return #f. On the JVM backend it returns a input port if the ressource
exists. Otherwise, it returns #f.

The optional argument buffer can either be:
e A positive fixnum, this gives the size of the buffer.
e The boolean #t, a buffer is allocated.
e The boolean #f, the socket is unbufferized.

e A string, it is used as buffer.

The optional argument timeout, an integer represents a microseconds timeout for the
open operation.

open-input-gzip-file file-name [buffer #t] [bigloo procedure]
open-input-gzip-port input-port [buffer #t] [bigloo procedure]
Open respectively a gzipped file for input and a port on a gzipped stream. Note that
closing a gzip port opened from a port pi does not close the pi port.
(let ((p (open-input-gzip-file "bigloo.tar.gz")))
(unwind-protect
(read-line pl)
(close-input-port p)))
(let* ((p1l (open-input-file "bigloo.tar.gz"))
(p2 (open-input-gzip-port pl)))
(unwind-protect
(read-line p2)
(close-input-port p2)
(close-input-port p1)))

open-input-zlib-file file-name [buffer #t] [bigloo procedure]

open-input-zlib-port input-port [buffer #t] [bigloo procedure]
Open respectively a zlib file for input and a port on a zlib stream. Note that closing
a zlib port opened from a port pi does not close the pi port.

58 Bigloo 4.3g

open-input-string string [start 0] [end] [bigloo procedure]
open-input-string! string [start 0] [end] [bigloo procedure]
string must be a string, and start and end must be exact integers satisfying:
0 <= START <= END <= (string-length STRING)

The optional argument end defaults to (string-length STRING).
Returns an input-port able to deliver characters from string.
The function open-input-string! acts as open-input-string but it might modify
the string it receives as parameter.

open-input-c-string string [bigloo procedure]
Returns an input-port able to deliver characters from C string. The buffer used
by the input port is the exact same string as the argument. That is, no buffer is

allocated.

open-input-ftp-file file-name [buffer #t| [bigloo procedure]
Returns an input-port able to deliver characters from a remote file located on a
FTP server.
Example:

(let ((p (open-input-ftp-file "ftp-sop.inria.fr/ls-1R.gz’’)))
(unwind-protect
(read-string p)
(close-input-port p)))
The file name may contain user authentication such as:

(let ((p (open-input-ftp-file "anonymous:foo@ftp-sop.inria.fr/ls-1R.gz’’)))
(unwind-protect
(read-string p)
(close-input-port p)))

open-input-procedure procedure [buffer #t] [bigloo procedure]
Returns an input-port able to deliver characters from procedure. Each time a char-
acter has to be read, the procedure is called. This procedure may returns a string of
characters, or the boolean #f. This last value stands for the end of file.

Example:

(let ((p (open-input-procedure (let ((s #t))
(lambda ()
(if s
(begin
(set! s #f)
"foobar")
s))))))
(read))

unread-char! char [input-port] [bigloo procedure]
unread-string! string [input-port] [bigloo procedure]
unread-substring! string start end [input-port] [bigloo procedure]
Pushes the given char, string or substring into the input-port. The next read char-
acter(s) will be the pushed ones. The input-port must be buffered and not be closed.

Example:
(define p (open-input-string "a ymbol c"))

Chapter 5: Standard Library 59

(read p) = a
(read-char p) = #\space
(unread-char! #\s p)
(read p) = symbol
(read-char p) = #\space
(read p) = c
(char-ready? p) = #f
(unread-string! "syml sym2" p)
(char-ready? p) = #t
(read p) = syml
(read p) = sym2
open-output-file file-name [procedure]
The same syntax as open—-input-file for file names applies here. When a file name
starts with ‘| ’, Bigloo opens an output pipe instead of a regular file.
append-output-file file-name [bigloo procedure]

If file-name exists, this function returns an output-port on it, without removing it.
New output will be appended to file-name. If file-name does not exist, it is created.

open-output-string [bigloo procedure]
This function returns an output string port. This object has almost the same pur-
pose as output-port. It can be used with all the printer functions which accept
output-port. An output on a output string port memorizes all the characters writ-
ten. An invocation of flush-output-port or close-output-port on an output string
port returns a new string which contains all the characters accumulated in the port.

get-output-string output-port [bigloo procedure]
Given an output port created by open-output-string, returns a string consisting of
the characters that have been output to the port so far.

open-output-procedure proc [flush [close]] [bigloo procedure]
This function returns an output procedure port. This object has almost the same
purpose as output-port. It can be used with all the printer functions which accept
output-port. An output on a output procedure port invokes the proc procedure
each time it is used for writing. That is, proc is invoked with a string denoting the
displayed characters. When the function flush-output-port is called on such a port,
the optional flush procedure is invoked. When the function close-output-port is
called on such a port, the optional close procedure is invoked.

close-input-port input-port [procedure]

close-output-port output-port [procedure]
According to R5RS, the value returned is unspecified. However, if output-port was
created using open-output-string, the value returned is the string consisting of all
characters sent to the port.

closed-input-port? input-port [procedure]
closed-output-port? output-port [procedure]
Predicates that return #t if and if their associated port is closed. Return #£ otherwise.

input-port-name input-port [bigloo procedure]
Returns the name of the file used to open the input-port.

60 Bigloo 4.3g

input-port-position port [bigloo procedure]
output-port-position port [bigloo procedure]
Returns the current position (a character number), in the port.

set-input-port-position! port pos [bigloo procedure]

set-output-port-position! port pos [bigloo procedure]
These functions set the file position indicator for port. The new position, measured
in bytes, is specified by pos. It is an error to seek a port that cannot be changed (for
instance, a procedure or a console port). The result of these functions is unspecified.
An error is raised if the position cannot be changed.

input-port-reopen! input-port [bigloo procedure]
This function re-opens the input input-port. That is, it reset the position in the
input-port to the first character.

read [input-port] [procedure]
read/case case [input-port] [bigloo procedure]
read-case-sensitive [input-port] [bigloo procedure]
read-case-insensitive [input-port] [bigloo procedure]

Read a lisp expression. The case sensitivity of read is unspecified. If have to to
enforce a special behavior regarding the case, use read/case, read-case-sensitive
or read-case-insensitive. Let us consider the following source code: The value
of the read/case’s case argument may either be upcase, downcase or sensitive.
Using any other value is an error.

(define (main argv)
(let loop ((exp (read-case-sensitive)))
(if (not (eof-object? exp))
(begin
(display "exp: ")
(write exp)
(display " [™)
(display exp)
(display "1")
(print " eq?: " (eq? exp ’F00) " " (eq? exp ’foo))
(loop (read-case-sensitive))))))

Thus:
> a.out
foo
- exp: foo [foo] eq?: #f #t
FOO
- exp: FOO [FOO] eq?: #t #f
read/rp grammar port [bigloo procedure]
read/lalrp lalrg rg port [emptyp] [bigloo procedure]

These functions are fully explained in Chapter 10 [Regular Parsing], page 129, and
Chapter 11 [Lalr Parsing], page 137.

define-reader-ctor symbol procedure [bigloo procedure]
Note: This feature is experimental and might be removed in feature versions.

Chapter 5: Standard Library 61

set-read-syntax! char procedure

The present SRFI-10 (http://srfi.schemers.org/srfi-10/srfi-10.

html) proposes an extensible external representation of Scheme values, a notational
convention for future SRFIs. This SRFI adds #, (as a new token and extends pro-
duction rules of the grammar for a Scheme reader. The #, () form can be used for
example to denote values that do not have a convenient printed representation, as
well for conditional code compilation. It is proposed that future SRFIs that contain
new read syntax for values use the #, () notation with an appropriate tag symbol.

As a particular example and the reference implementation for the #, () convention,
this SRFI describes an interpretation of the #, () external form as a read-time appli-
cation.

Examples:

(define-reader-ctor ’list list)
(with-input-from-string "#,(list 1 2 #f \"4 5\")" read) = (1 2 #f "4 5")

(define-reader-ctor ’+ +)
(with-input-from-string "#,(+ 1 2)" read) = 3

[bigloo procedure]
Note: This feature is experimental and might be removed in feature versions.

Registers a function procedure to be invoked with one argument, an input-port, that
is invoked when the reader hits an unparsed character.

Example:

(set-read-syntax! #\{
(lambda (port)
(let loop ((c (peek-char port)) (exps ’()))
(cond ((eof-object? c)
(error "{" "EOF encountered while parsing { ...
((char=7 c #\})
(read-char port) ; discard
‘(begin ,@(reverse exps)))
((char-whitespace? c)
(read-char port) ; discard whitespace
(loop (peek-char port) exps))
(else
(let ((exp (read port)))
(loop (peek-char port)
(cons exp exps))))))))

} clause" port))

read-char [port] [procedure]
read-byte [port] [procedure]
peek-char [port] [procedure]
peek-byte [port] [procedure]
eof-object? obj [procedure]
char-ready? [port] [procedure]

As specified in the R5Rs, Section “rbrs.info” in RBRS, char-ready? returns #t if a
character is ready on the input port and returns #f otherwise. If ‘char-ready’ returns
#t then the next ‘read-char’ operation on the given port is guaranteed not to hang.
If the port is at end of file then ‘char-ready?’ returns #t. Port may be omitted, in
which case it defaults to the value returned by ‘current-input-port’.

http://srfi.schemers.org/srfi-10/srfi-10.html
http://srfi.schemers.org/srfi-10/srfi-10.html

62 Bigloo 4.3g

When using char-ready? consider the latency that may exists before characters are
available. For instance, executing the following source code:

(let* ((proc (run-process "/bin/ls" "-1" "/bin" output: pipe:))
(port (process-output-port proc)))
(let loop ((line (read-line port)))
(print "char ready " (char-ready? port))
(if (eof-object? line)
(close-input-port port)
(begin
(print line)
(loop (read-line port))))))

Produces outputs such as:
char ready #f

total 7168

char ready #f

-I'WXI-Xr-x 1 root root 2896 Sep 6 2001 arch
char ready #f

-rwxr-xr-x 1 root root 66428 Aug 25 2001 ash

char ready #t

For a discussion of Bigloo processes, see Section 5.7.3 [Process|, page 83.

Note: Thanks to Todd Dukes for the example and the suggestion of including it this

documentation.
read-line [input-port] [bigloo procedure]
read-line-newline [input-port] [bigloo procedure]

Reads characters from input-port until a #\Newline, a #\Return or an end of file
condition is encountered. read-line returns a newly allocated string composed of
the characters read.

The strings returned by read-1ine do not contain the newline delimiters. The strings
returned by read-line-newline do contain them.

read-lines [input-port] [bigloo procedure]
Accumulates all the line of an input-port into a list.

read-of-strings [input-port] [bigloo procedure]
Reads a sequence of non-space characters on input-port, makes a string of them and
returns the string.

read-string [input-port] [bigloo procedure]
Reads all the characters of input-port into a string.

read-chars size [input-port] [bigloo procedure]

read-chars! buf size [input-port] [bigloo procedure]

The function read-chars returns a newly allocated strings made of size characters
read from input-port (or from (current-input-port) if input-port is not provided).
If less than size characters are available on the input port, the returned string is
smaller than size. Its size is the number of available characters.

The function read-chars! fills the buffer buf with at most size characters.

Chapter 5: Standard Library 63

read-fill-string! s o len [input-port] [bigloo procedure]
Fills the string s starting at offset o with at most len characters read from the input
port input-port (or from (current-input-port) if input-port is not provided). This
function returns the number of read characters (which may be smaller than len if
less characters are available) or the end of file object. The argument len is a small
integer.

The function read-fill-string! is similar to read-chars! except that it returns
the end-of-file object on termination while read-chars! returns 0.

Example:

(let ((s (make-string 10 #\-)))
(with-input-from-string "abcdefghijlkmnops"
(lambda ()
(read-fill-string! s 3 5)
s)))
= --—abcde--

port->string-list input-port [bigloo procedure]
Returns a list of strings composed of the elements of input-port.

port->list input-port reader [bigloo procedure]

port->sexp-list input-port [bigloo procedure]

Port->list applies reader to port repeatedly until it returns EOF, then returns a
list of results. Port->list-sexp is equivalent to (port->list read port).

file->string path [bigloo procedure]
This function builds a new string out of all the characters of the file path. If the file
cannot be open or read, an I0_EXCEPTION is raised.

send-chars input-port output-port [len] [offset] [bigloo procedure]

send-file filename output-port [len] [offset] [bigloo procedure]
Transfer the characters from input-port to output-port. This procedure is sometimes
mapped to a system call (such as sendfile under Linux) and might thus be more
efficient than copying the ports by hand. The optional argument offset specifies an
offset from which characters of input-port are sent. The function send-chars returns
the number of characters sent.

The function send-file opens the file filename in order to get its input port. On
some backends, send-file might be more efficient than send-chars because it may
avoid creating a full-fledged Bigloo input-port.

Note that the type of len and offset is elong (i.e., exact long), which is also returned
by file-size.

write obj [output-port] [library procedure]
display obj [output-port] [library procedure]
print obj ... [bigloo procedure]

This procedure allows several objects to be displayed. When all these objects have
been printed, print adds a newline.

display* obj ... [bigloo procedure]
This function is similar to print but does not add a newline.

64 Bigloo 4.3g

fprint output-port obj . .. [bigloo procedure]
This function is the same as print except that a port is provided.

write-char char [output-port] [procedure]

write-byte byte [output-port] [procedure]

These procedures write a char (respec. a byte, i.e., in integer in the range 0..255) to
the output-port.

newline [output-port] [procedure]

flush-output-port output-port [bigloo procedure]
This procedure flushes the output port output-port. This function does not reset
characters accumulated in string port. For this uses, reset-output-port.

newline [output-port] [procedure]

reset-output-port output-port [bigloo procedure]
This function is equivalent to flush-output-port but in addition, for string ports,
it reset the internal buffer that accumulates the displayed characters.

format format-string [objs] [bigloo procedure]
Note: Many thanks to Scott G. Miller who is the author of SRFI-28. Most of the
documentation of this function is copied from the SRFI documentation.

Accepts a message template (a Scheme String), and processes it, replacing any escape
sequences in order with one or more characters, the characters themselves dependent
on the semantics of the escape sequence encountered.

An escape sequence is a two character sequence in the string where the first character
is a tilde ~. Each escape code’s meaning is as follows:

e ~a The corresponding value is inserted into the string as if printed with display.
e ~s The corresponding value is inserted into the string as if printed with write.
e “% or “n A newline is inserted A newline is inserted.

e ~~ A tilde ~ is inserted.

e “r A return (#\Return) is inserted.

e “v The corresponding value is inserted into the string as if printed with display
followed by a newline. This tag is hence equivalent to the sequence ~“a™n.

e “c The corresponding value must be a character and is inserted into the string
as if printed with write-char.

e “d, “x, "o, b The corresponding value must must be a number and is printed
with radix 16, 8 or 2.

e "1 If the corresponding value is a proper list, its items are inserted into the
string, separated by whitespaces, without the surrounding parenthesis. If the
corresponding value is not a list, it behaves as ~s.

e “(<sep>) If the corresponding value is a proper list, its items are inserted into the
string, separated from each other by sep, without the surrounding parenthesis.
If the corresponding value is not a list, it behaves as ~s.

e “Ndxob Print a number in N columns with space padding.

e “N,<padding>dxob Print a number in num columns with padding padding.

Chapter 5: Standard Library 65

“a and ~s, when encountered, require a corresponding Scheme value to be present
after the format string. The values provided as operands are used by the escape
sequences in order. It is an error if fewer values are provided than escape sequences
that require them.

~% and ~~ require no corresponding value.

(format "Hello, ~a" "World!")
- Hello, World!
(format "Error, list is too short: ~“s~%" ’(one "two" 3))
-4 Error, list is too short: (one "two" 3)
(format "a ~1: ~1" "list" ’(1 2 3))
4 a list: 1 2 3
(format "a ~1: ~(,)" "list" ’(1 2 3))
4 a list: 1, 2, 3
(format "~3d" 4)

- 4
(format "~3,-d" 4)
- --4
(format "~3x" 16)
-4 10
(format "~3,0d" 5)
- 005
printf format-string [objs] [bigloo procedure]
fprintf port format-string [objs] [bigloo procedure]

Formats objs to the current output port or to the specified port.

pp obj [output-port] [bigloo procedure]
Pretty print obj on output-port.

xpp-casex [bigloo variable]
Sets the variable to respect, lower or upper to change the case for pretty-printing.

pp-width [bigloo variable]
The width of the pretty-print.

write-circle obj [output-port] [bigloo procedure]
Display recursive object obj on output-port. FEach component of the object is dis-
played using the write library function.

display-circle obj [output-port| [bigloo procedure]
Display recursive object obj on output-port. Each component of the object is dis-
played using the display library function.
For instance:

(define 1 (list 1 2 3))

(set-car! (cdr 1) 1)

(set-car! (cddr 1) 1)

(display-circle 1) H #0=(1 #0# #0#)

display-string string output-port [bigloo procedure]
display-substring string start end output-port [bigloo procedure]
String must be a string, and start and end must be exact integers satisfying 0 <=
start <= end <= (string-length string).
Display-substring displays a string formed from the characters of string beginning
with index start (inclusive) and ending with index end (exclusive).

66 Bigloo 4.3g

password [prompt] [bigloo procedure]
Reads a password from the current input port. The reading stops when the user hits
the ,(code "Enter") key.

open-pipes [name] [bigloo procedure]
Opens a bi-directional pipes. Returns two values, an input-port and an
output-port. The optional argument name is only used for debugging.

Example:

(multiple-value-bind (in out)
(open-pipes "my pipe")
(write-char #\z out)
(flush-output-port out))

select [:timeout 0] [:read ()] [:write ()] [:except ()] [bigloo procedure]
A wrapper of the Posix select function. Returns three values, the three lists of
objects that are ready for reading, respectively writing, or that are in error.

Example:
(define *inpipex* #f)
(define *outpipex #f)
(define *watch-mutex* (make-mutex "watch"))
(define *sockets* ’())

(define (watch socket onclose)
(synchronize *watch-mutex*
(set! *sockets* (cons socket *socketsx*))
(if *outpipe*
(begin
(write-char *outpipe*)
(flush-output-port *outpipe*))
(thread-start!
(instantiate: :hopthread
(body (watch-thread onclose)))))))

(define (watch-thread onclose)
(let loop ()
(synchronize *watch-mutex*
(unless *inpipex
(multiple-value-bind (in out)

(open-pipes)

(set! *inpipe* in)

(set! *outpipe* out))))

(multiple-value-bind (readfs _ _)
(select :read (cons *inpipe* *sockets#*))
(let ((socks (filter socket? readfs)))

(for-each onclose socks)
(synchronize *watch-mutex*

(for-each (lambda (s)

(set! *sockets* (remq! s *sockets*)))
socks)

(unless (pair? *socketsx)
(close-input-port *inpipex)
(close-output-port *outpipe*)

(set! *inpipex #f)
(set! *outpipe* #f)))
(when *outpipe*

(Loop))))))

Chapter 5: Standard Library 67

lockf output-port command [len 0] [bigloo procedure]
Lock a file descriptor or an output port. It is an error to call lockf with an port not
open on a plain file (i.e., a port open with open-output-file, or its variants).

The command argument is one of:
e lock: locks the file, raises an error on failure.
e ulock: unlocks the file, raises an error on failure.
e test: tests whether a file is locked or not.

e tlock: tries to lock a file, return #t upon success and #f otherwise.

The argument len is the portion of the file to be locked.

95.2.2 mmap

The mmap function asks to map a file into memory. This memory area can be randomly
accessed as a string. In general using mmap improves performance in comparison with
equivalent code using regular ports.

mmap? obj [bigloo procedure]
Returns #t if and only if obj has been produced by open-mmap. Otherwise, it returns
#f.

open-mmap path [mode] [bigloo procedure]

Maps a file path into memory. The optional argument mode specifies how the file is
open. The argument can be:

e read: #t The memory can be read

read: #f The memory cannot be read
e write: #t The memory can be written

e write: #f The memory is read-only.

string->mmap string [mode] [bigloo procedure]
Wrap a Bigloo string into a mmap object.

mmap-name mm [bigloo procedure]
Returns the file name of the memory map mm.

close-mmap mm [bigloo procedure]
Closes the memory mapped. Returns #t on success, #f otherwise.

mmap-length mm [bigloo procedure]
Returns the length, an exact integer, of the memory mapped.

mmap-read-position mm [bigloo procedure]

mmap-read-position-set! mm offset [bigloo procedure]

mmap-write-position mm [bigloo procedure]

mmap-write-position-set! mm offset [bigloo procedure]
Returns and sets the read and write position of a memory mapped memory. The
result and the argument are exact integers.

68 Bigloo 4.3g

mmap-ref mm offset [bigloo procedure]
Reads the character in mm at offset, an exact long (::elong). This function sets the
read position to offset + 1.

mmap-set! mm offset char [bigloo procedure]
Writes the character char in mm at offset, an exact long (::elong). This function sets
the write position to offset + 1.

mmap-substring mm start end [bigloo procedure]
Returns a newly allocated string made of the characters read from mm starting at po-
sition start and ending at position end - 1. If the values start and end are not ranged
in [0...(mmap-length mm)], an error is signaled. The function mmap-substring sets
the read position to end.

mmap-substring-set! mm start str [bigloo procedure]
Writes the string str to mm at position start. If the values start and start
+ (string-length str) are not ranged in [O...(mmap-length mm)[, an error
is signaled. The function mmap-substring sets the write position to start +
(string-length str).

mmap-get-char mm [bigloo procedure

mmap-put-char! mm c [bigloo procedure

mmap-get-string mm len [bigloo procedure

mmap-put-string! mm str [bigloo procedure
These functions get (resp. put) character and strings into a memory mapped area.
They increment the read (resp. write) position. An error is signaled if the characters
read (resp. writen) outbound the length of the memory mapped.

[l AL AL AL

5.2.3 Zip

port->gzip-port input-port [buffer #t] [bigloo procedure]
port->zlib-port input-port [buffer #t] [bigloo procedure]
port->inflate-port input-port [buffer #t| [bigloo procedure]

These functions take a regular port as input (input-port). They construct a new port
that automatically unzip the read characters. The inflate version does not parse a
gunzip-header before inflating the content.

open-input-inflate-file path [buffer #t] [bigloo procedure]
These function open a gzipped file for input. The file is automatically unzipped when
the characters are read. It is equivalent to:
(let ((p (open-input-port path)))
(port->gzip-port p))
The function open-input-inflate-file is similar to open-input-gzip-£file but it
does not parse a gunzip-header before inflating the content.

gunzip-sendchars input-port output-port [bigloo procedure]
inflate-sendchars input-port output-port [bigloo procedure]
Transmit all the characters from the gzipped input-port to the output-port.

Note that the function send-chars can also be used on gzipped input-ports.

Chapter 5: Standard Library

gunzip-parse-header input-port

69

[bigloo procedure]

Parse the header of input-port. Returns #f if and only if the port is not gzipped.

5.2.4 Tar

tar-read-header [input-port]

[bigloo procedure]

Reads a tar header from input-port. If the input-port does not conform the tar format,
an 1O exception is raised. On success a tar-header descriptor is returned.

tar-read-block tar-header [input-port]
Reads the content of the tar-header block.

tar-round-up-to-record-size int
Rounds up tar-block sizes.

tar-header-name tar-header
tar-header-mode tar-header
tar-header-uid tar-header
tar-header-gid tar-header
tar-header-size tar-header
tar-header-mtim tar-header
tar-header-checksum tar-header
tar-header-type tar-header
tar-header-linkname tar-header
tar-header-uname tar-header
tar-header-gname tar-header
tar-header-devmajor tar-header
tar-header-devminir tar-header
Return various information about tar-header.

The following example simulates the Unix command tar xvfz:

(define (untar path)
(let ((pz (open-input-gzip-port path)))
(unwind-protect
(let loop ((1st (D))
(let ((h (tar-read-header pz)))
(if (not h)
1st
(case (tar-header-type h)
((dir)
(let ((path (tar-header-name h)))
(if (make-directory path)
(loop 1st)
(error ’untar
"Cannot create directory"
path))))
((normal)
(let* ((path (tar-header-name h))
(dir (dirname path)))

(when (and (file-exists? dir) (not (directory? dir)))

(delete-file dir))
(unless (file-exists? dir)
(make-directory dir))

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

70 Bigloo 4.3g

(with-output-to-file path
(lambda ()
(display (tar-read-block h pz))))
(loop (cons path 1st))))
(else
(error ’untar
(format "Illegal file type
(tar-header-type h))
(tar-header-name h)))))))
(close-input-port pz))))

t~vgon

untar input-port [:directory (pwd)| [:file #] [bigloo procedure]
Untars the archive whose content is provided by the input port input-port.

e If :file is provided, untar extract the content of the file named :file and returns
a string. The file name must exactly matches the files of the archive files names.
If the file does not exist, untar returns #f.

e If :file is not provided, it untars the whole content, in the directory denoted by
:directory, which defaults to (pwd). The function untar, returns the whole list
of created directories and files.

5.3 Serialization

string->obj string #loptional extension [bigloo procedure]
This function converts a string which has been produced by obj->string into a
Bigloo object.

New in Bigloo 4.2a: The extension parameter is used to decode extension sequences.
Theses sequences of characters are introduced by the X character. To decode an ex-
tension, the unserializer starts decoding the item following the X as a regular serialized
item. Then, if the extension parameter is bound to a function, the unserializer calls
that function and use the returned value as the unserialized object. If the extension
argument is not a function, the unserializer return the ream item.

obj->string object [bigloo procedure]
This function converts into a string any Bigloo object which does not contain a
procedure.

The implementation of the last two functions ensures that for every Bigloo object obj
(containing no procedure), the expression:

(equal? obj (string->obj (obj->string obj)))
= #t

binary-port? obj [bigloo procedure]
open-output-binary-file file-name [bigloo procedure]
append-output-binary-file file-name [bigloo procedure]
open-input-binary-file file-name [bigloo procedure]
close-binary-port binary-port [bigloo procedure]
flush-binary-port binary-port [bigloo procedure]

[]

input-obj binary-port bigloo procedure

Chapter 5: Standard Library 71

output-obj binary-port obj [bigloo procedure]
Bigloo allows Scheme objects to be dumped into, and restored from, files. These
operations are performed by the previous functions. The dump and the restore use
the two functions obj->string and string->obj.

It is also possible to use a binary file as a flat character file. This can be done by the
means of output-char, input-char, output-string, and input-string functions.

input-char binary-port [bigloo procedure]
output-char binary-port char [bigloo procedure]
output-byte binary-port byte [bigloo procedure]

The function input-char reads a single character from a binary-port. It returns
the read character or the end-of-file object. The function output-char and
output-byte writes a character, respectively a byte, into a binary-port.

input-string binary-port len [bigloo procedure]

output-string binary-port [bigloo procedure]
The function input-string reads a string from a binary-port of maximum length
len. It returns a newly allocated string whose length is possibly smaller than len.
The function output-string writes a string into a binary-port.

input-fill-string! binary-port string [bigloo procedure]
Fills a string with characters read from binary-port with at most the length of string.
The function returns the number of filled characters.

register-procedure-serialization! serializer unserializer [bigloo procedure]

register-custom-serialization! ident serializer [bigloo procedure]
unserializer

register-process-serialization! serializer unserializer [bigloo procedure]

register-opaque-serialization! serializer unserializer [bigloo procedure]

There is no existing portable method to dump and restore a procedure. Thus, if
obj->string is passed a procedure, it will emit an error message. Sometime, using
strict restrictions, it may be convenient to use an ad-hoc framework to serialize and
unserialize procedures. User may specify there own procedure serializer and unse-
rializer. This is the role of register-procedure-serialization!. The argument
serializer is a procedure of one argument, converting a procedure into a characters
strings. The argument unserializer is a procedure of one argument, converting a char-
acters string into a procedure. It belongs to the user to provide correct serializer and
unserializer.

Here is an example of procedure serializer and unserializer that may be correct under
some Unix platform:

(module foo
(extern (macro %sprintf::int (::string ::string ::procedure) "sprintf")))

(define (string->procedure str)
(pragma "(obj_t) (strtoul (BSTRING_TO_STRING($1), 0, 16))" str))

(define (procedure->string proc)
(let ((item (make-string 10)))
(%sprintf item "#pJlx" proc)

72 Bigloo 4.3g

item))
(register-procedure-serialization! procedure->string string->procedure)

(let ((x 4))
(let ((obj (coms "toto" (lambda (y) (+ x y)))))
(let ((nobj (string->obj (obj->string obj))))
(print ((cdr nobj) 5)))))

register-class-serialization! class serializer unserializer [bigloo procedure]
Register a serializer /unserializer for a class. Subclasses of class inherit this serializer.

(module class-serialization-example
(static (class point::object (x (default 10)) (y (default 20)))))

(register-class-serialization! point
(lambda (o)
(with-access::point o (x y)
(cons x y)))
(lambda (1)
(instantiate: :point
(x (car 1))
(y (cdr 1)))))

(let ((o (instantiate::point)))
(let ((s (obj->string (list o 0))))
(print (string-for-read s))
(let ((1 (string->obj s)))
(print 1)
(eq? (car 1) (cadr 1))))) = #t

get-procedure-serialization
get-custom-serialization ident
get-process—serialization
get-opaque-serialization
get-class-serialization class

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

Returns the a multiple-values whose first element is the current procedure serial-
izer and whose second element is the current procedure unserializer. If no serial-
izer /unserializer is defined, these procedures return the values #f #f.

5.4 Bit manipulation

These procedures allow the manipulation of fixnums as bit-fields.

bit-or il i2
bit-orelong il i2
bit-orllong il i2
bit-xor il i2
bit-xorelong il i2
bit-xorllong il i2
bit-and il i2
bit-andelong il i2
bit-andllong il i2
bit-not i

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

Chapter 5: Standard Library 73

bit-notelong i
bit-notllong i
bit-1sh il i2

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
bit-1lshelong il i2 [bigloo procedure]
bit-1shllong il i2 [bigloo procedure]
bit-rsh il i2 [bigloo procedure]
bit-ursh il i2 [bigloo procedure]
bit-rshelong il i2 [bigloo procedure]
bit-rshllong il i2 [bigloo procedure]
bit-urshelong il i2 [bigloo procedure]
bit-urshllong il i2 [bigloo procedure]

(bit-or 5 3) =7
(bit-orelong #e5 #e3) = #e7
(bit-xor 5 3) = 6
(bit-andllong #15 #13) = #11
(bit-not 5) = -6
(bit-1sh 5 3) = 40
(bit-rsh 5 1) = 2

5.5 Weak Pointers

Bigloo may support weak pointers. In order to activate this support, Bigloo must be config-
ured with the finalization enabled. That is, the configure script must be invoked with
the option —--finalization=yes. When the finalization and weak pointers support is en-
abled, Bigloo defines the cond-expand properties bigloo-finalizer and bigloo-weakptr.
Then a program may test the support with expressions such as:

(cond-expand

(bigloo-weakptr <something>)
(else <something-else>))

Weak pointers are pointers to objects which can be collected by the garbage collector if
they are weakly pointed to. An object is weakly pointed to if the only pointers to it are
weak pointers. Weakly pointed objects can be collected by the garbage collector, and all the
weak pointers to such objects will cease to point to it and point to #unspecified instead.

make-weakptr data [bigloo procedure]
Creates a weak pointer to data.

weakptr? obj [bigloo procedure]
Returns #t if obj is a weak pointer, constructed by make-weakptr.

weakptr-data ptr [bigloo procedure]
Returns the data object pointed to by ptr. If the object has been collected, it returns
#unspecified.

5.6 Hash Tables

Bigloo offers hash tables with support for weak pointers. Here are described functions which
define and use them.

74 Bigloo 4.3g

make-hashtable [bucket-len| [max-bucket-len|] [eqtest] [hash] [bigloo procedure]
[weak-keys] [weak-data]
create-hashtable [:size] [:max-bucket-len] [:eqtest] [:hash] [bigloo procedure]

[:weak| [:max-length] [:bucket-expansion]
Defines an hash table for which the number of buckets is size. The variable max-
bucket-len specify when the table should be resized. If provided, these two values
have to be exact integers greater or equal to 1. Normally you could ignore size
and max-bucket-len arguments and call make-hashtable with no argument at all.
The argument eqtest enables the specification of a comparison function. The first
argument of this function is the keys contained in the table. The second argument is
the searched key. By default hash tables rely on hashtable-equal?, which is defined
as:
(define (hashtable-equal? objl obj2)
(or (eq? objl obj2)
(and (string? objl)
(string? obj2)
(string=? objl obj2))))

The argument hash specifies an hashing function. It defaults to get-hashnumber.
The arguments weak-keys, weak-data, and weak-both specify respectively whether
the hash table should use weak pointers to store the keys and/or the data. By default
a hash table uses strong pointers for both keys and data. Each optional arguments
size, max-bucket-len, eqtest, hash, weak-keys, and weak-data can be bound to the
Bigloo value #unspecified which forces its default.

The argument max-length specifies a maximum length (in number of buckets) for
this hashtable. It defaults to 16384. If during the execution, the hashtable tries
to expand itself more than max-length, an exception is raised. This feature helps
debugging incorrect hashtable uses because excessive expansion is generally the signs
of an incorrect behavior. Excessive expansions, cause the garbage collector to crash
at some point. This debugging feature can be disabled by specifying a negative max
length, in which case, no check is performed at runtime.

The argument bucket-expansion controls how max-bucket-len is expanded each time
the table grows. This is a floating point number that is a multiplicative coefficient.
It defaults to 1.2.

The function create-hashtable is equivalent to make-hashtable but it uses a key-
word interface. The keyword argument weak can either be none, data, or keys.

hashtable? obj [bigloo procedure]
Returns #t if obj is an hash table, constructed by make-hashtable.

hashtable-weak-keys? table [bigloo procedure]
Returns #t if table is a hash table with weakly pointed keys.

hashtable-weak-data? table [bigloo procedure]
Returns #t if table is a hash table with weakly pointed data.

hashtable-size table [bigloo procedure]
Returns the number of entries contained in table. Note that for a weak hash table
the size does not guarantee the real size, since keys and/or data can dissapear before
the next call to the hash table.

Chapter 5: Standard Library 75

hashtable-contains? table key [bigloo procedure]
Returns the boolean #t if it exists at least one entry whose key is key in table. If not
entry is found #f is returned. Note that for a weak hash table, the fact this procedure
returns #t does not guarantee that the key (or its associated data) will not dissapear
before the next call to the hash table.

hashtable-get table key [bigloo procedure]
Returns the entry whose key is key in table. If no entry is found, or if the key and/or
value is weakly pointed to and has dissapeard, #£f is returned.

hashtable-put! table key obj [bigloo procedure]
Puts obj in table under the key key. This function returns the object bound in the
table. If there was an object obj-old already in the table with the same key as obj,
this function returns obj-old; otherwise it returns obj.

hashtable-remove! table key [bigloo procedure]
Removes the object associated to key from table, returning #t if such object was
bound in table and #f otherwise.

hashtable-add! table key update-fun obj init-value [bigloo procedure]
If key is already in table, the new value is calculated by (update-fun obj current-
value). Otherwise the table is extended by an entry linking key and (update-fun
obj init-value).

hashtable-update! table key update-fun init-value [deprecated bigloo procedure]
If key is already in table, the new value is calculated by (update-fun current-
value). Otherwise the table is extended by an entry linking key and init-value.

hashtable->vector table [bigloo procedure]

hashtable->list table [bigloo procedure]
Returns the hash table table’s data as a vector (respectively a list). If the hash table
is weak, the result will consist only of the data which haven’t dissapeared yet and
whose keys haven’t dissapeared either.

hashtable-key-list table [bigloo procedure]
Returns the list of keys used in the table. If the hash table is weak, the result
will consist only of the keys which haven’t dissapeared yet and whose data haven’t
dissapeared either.

hashtable-map table fun [bigloo procedure]
Returns a list whose elements are the result of applying fun to each of the keys and
elements of table (no order is specified). In consequence, fun must be a procedure of
two arguments. The first one is a key and the second one, an associated object. If
the hash table is weak, fun will only be mapped on sets of key/datum which haven’t
dissapeared yet.

hashtable-for-each table fun [bigloo procedure]
Applies fun to each of the keys and elements of table (no order is specified). In
consequence, fun must be a procedure of two arguments. The first one is a key and
the second one, an associated object. If the hash table is weak, fun will only be called
on sets of key/datum which haven’t dissapeared yet.

76 Bigloo 4.3g

hashtable-filter! table fun [bigloo procedure]
Filter out elements from table according to predicate fun. If the hash table is weak,
fun will only be called on sets of key/datum which haven’t dissapeared yet.

hashtable-clear! table [bigloo procedure]
Remove all the elements from table.

Here is an example of hash table.
(define *table* (make-hashtable))

(hashtable-put! *table* "toto" "tutu")
(hashtable-put! *table* "tata" "titi")
(hashtable-put! *table* "titi" 5)
(hashtable-put! *table* "tutu" ’tutu)
(hashtable-put! *table* ’foo ’foo)

(print (hashtable-get *table* "toto"))
- "tutu"

(print (hashtable-get *table* ’foo))
- ’foo

(print (hashtable-get *table* ’bar))
- #£

(hashtable-for-each *table* (lambda (key obj) (print (cons key obj))))
- ("toto" . "tutu")
("tata" . "titi")
("titi" . 5)
("tutu" . TUTU)
(foo . foo)

object-hashnumber object [bigloo generic]
This generic function computes a hash number of the instance object.

Example:

(define-method (object-hashnumber pt::point)
(with-access::point pt (x y)
(+fx (xfx x 10) y)))

string-hash string [start 0] [len (string-length string)] [bigloo procedure]
Compute a hash value for string, starting at index start, ending at length len.

5.7 System programming

5.7.1 Operating System interface

bigloo-config [bigloo procedure]

bigloo-config key [bigloo procedure]
The function bigloo-config returns an alist representing the configuration of the
running Bigloo system. When used with one parameter, the function bigloo-config
returns the value associated with the key.

Examples:
(bigloo-config) = ((release-number . 3.4b) ... (endianess . little-endian))
(bigloo-config ’endianess) = little-endian
(bigloo-config ’int-size) = 61

Chapter 5: Standard Library 7

register-exit-function! proc [bigloo procedure]

unregister-exit-function! proc [bigloo procedure]
Register proc as an exit functions. Proc is a procedure accepting of one argument.
This argument is the numerical value which is the status of the exit call. The registered
functions are called when the execution ends.

exit int [bigloo procedure]
Apply all the registered exit functions then stops an execution, returning the integer
int.

signal n proc [bigloo procedure]

Provides a signal handler for the operating system dependent signal n. proc is a
procedure of one argument.

get-signal-handler n [bigloo procedure]
Returns the current handler associated with signal n or #f if no handler is installed.

system . strings [bigloo procedure]
Append all the arguments strings and invoke the native host system command on
that new string which returns an integer.

system->string . strings [bigloo procedure]
Append all the arguments strings and invoke the native host system command on
that new string. If the command completes, system->string returns a string made
of the output of the command.

getenv [name] [bigloo procedure]
Returns the string value of the Unix shell’s name variable. If no such variable is bound,
getenv returns #£f. If name is not provided, getenv returns an alist composed of all
the environment variables.

putenv string val [bigloo procedure]
Adds or modifies the global environment variable string so that it is bound to val
after the call. This facility is not supported by all back-end. In particular, the JVM
back-end does not support it.

date [bigloo procedure]
Returns the current date in a string. See also Section 5.8 [Date|, page 95.

sleep micros [bigloo procedure]
Sleeps for a delay during at least micros microseconds.

command-line [bigloo procedure]
Returns a list of strings which are the Unix command line arguments.

executable-name [bigloo procedure]
Returns the name of the running executable.

os-class [bigloo procedure]
Gives the OS class (e.g. ‘unix’).

78 Bigloo 4.3g

os—name [bigloo procedure]
Gives the OS name (e.g. ‘Linux’).

os-arch [bigloo procedure]
Gives the host architecture (e.g. ‘1386’).

os-version [bigloo procedure]
Gives the operating system version (e.g. ‘RedHat 2.0.27).

os—tmp [bigloo procedure]
Gives the regular temporary directory (e.g. ‘/tmp’).

os-charset [bigloo procedure]
Gives the charset used for encoding names of the file system (e.g. ‘UTF-8’).

file-separator [bigloo procedure]
Gives the operating system file separator (e.g. ‘#\/’).

path-separator [bigloo procedure]
Gives the operating system file path separator (e.g.‘#\:’).

For additional functions (such as directory->1list) see Section 5.2 [Input and Output],
page H4.

unix-path->1list [bigloo procedure]
Converts a Unix path to a Bigloo list of strings.
(unix-path->list ".") = (.M
(unix-path->list ".:/usr/bin") = ("." "/usr/bin")
hostname [bigloo procedure]

Returns the fully qualified name of the current host.

time thunk [bigloo procedure]
Evaluates the thunk and returns four values: the result of calling thunk, the actual
execution time, the system time, and the user time in millisecond.

(multiple-value-bind (res rtime stime utime)
(time (lambda () (fib 35)))

(print "real: " rtime " sys: " stime " user: " utime))
getuid [bigloo procedure]
getgid [bigloo procedure]
setuid uid [bigloo procedure]
setgid uid [bigloo procedure]

The procedure getuid (resp. getgid) returns the UID (resp. GID) of the user the
current process is executed on behalf of.

The procedure setuid (resp. setgid) set the UID (resp. GID) of the current process.
In case of failure, this procedure raises an error.

getpid [bigloo procedure]
Get the current process identifier.

Chapter 5: Standard Library 79

getppid [bigloo procedure]
Get the parent process identifier.

getgroups [bigloo procedure]
Maps the Posix getgroups function, which returns the supplementary group IDs of
the calling process. The result is a vector of IDs. On error, an IO exception is raised.

getpwnam name [bigloo procedure]

getpwuid uid [bigloo procedure]
These two procedures returns information about a user. The procedure getpwname
accepts a string denoting the user name as argument. The procedure getpwuid
accepts an UID as returned by the procedure getuid.

If the user is found, these two procedures returns a list of seven elements:
e the user name,
e his encrypted password,
e his uid,
e his group id,
e his real name,
e his home directory,

e his preferred shell.

When no user is found, these procedures returns #£.

openlog name option facility [bigloo procedure]
syslog level . obj [bigloo procedure]
closelog [bigloo procedure]
syslog-option [bigloo procedure]
syslog-level [bigloo procedure]
syslog-facility [bigloo procedure]
Wrapper to Unix syslog facilities. See the syslog man page for detail. Example.

(openlog "foo.scm" (syslog-option ’LOG_PID ’LOG_ODELAY) (syslog-facility ’LOG_MAIL))
(syslog (syslog-level ’LOG_INFO) "this is a log message")
(closelog)

5.7.2 Files

See Section 5.2 [Input and Output], page 54, for file and directory handling. This section
only deals with name handling. Four procedures exist to manipulate Unix filenames.

basename string [bigloo procedure]
Returns a copy of string where the longest prefix ending in ‘/’ is deleted if any existed.

prefix string [bigloo procedure]
Returns a copy of string where the suffix starting by the char ‘#\.’ is deleted. If no
prefix is found, the result of prefix is a copy of string. For instance:

(prefix "foo.scm")
= "foo"
(prefix "./foo.scm")

80 Bigloo 4.3g

= "./foo"
(prefix "foo.tar.gz")
= "foo.tar"

suffix string [bigloo procedure]
Returns a new string which is the suffix of string. If no suffix is found, this function
returns an empty string. For instance,

(suffix "foo.scm")

= "scm"
(suffix "./foo.scm")
= "scm"
(suffix "foo.tar.gz")
i llgzll
dirname string [bigloo procedure]

Returns a new string which is the directory component of string. For instance:

(dirname "abc/def/ghi")
= "abc/def"
(dirname "abc")
= (]
(dirname "abc/")
é |labcll
(dirname "/abc")
= u/n

pwd [bigloo procedure]

Returns the current working directory.

chdir dir-name [bigloo procedure]
Changes the current directory to dir-name. On success, chdir returns #t. On failure
it returns #£.

make-file-name dir-name name [bigloo procedure]
Make an absolute file-name from a directory name dir-name and a relative name
name.

make-file-path dir-name name . names [bigloo procedure]
Make an absolute file-name from a directory name dir-name and a relative name
names.

file-name->1list name [bigloo procedure]

Explodes a file name into a list.

(file-name->list "/etc/passwd")
= :(nn "etc" "passwd")

(file-name->list "etc/passwd")
= ’("etc" "passwd")

file-name-canonicalize name [bigloo procedure]

file-name-canonicalize! name [bigloo procedure]

file-name-unix-canonicalize name [bigloo procedure]

file-name-unix-canonicalize! name [bigloo procedure]
Canonicalizes a file name. If the file name is malformed this function raises an
&io-malformed-url-error exception.

Chapter 5: Standard Library 81

The function file-name-canonicalize! may returns its argument if no changes in
the string is needed. Otherwise, as file-name-canonicalize is returns a new string.

In addition to handling .. directory name, the function file-name-unix-
canonicalize also handles the ~ character.

(file-name-canonicalize "/etc/passwd")
= "/etc/passwd"
(file-name-canonicalize "/etc/../tmp/passwd")
= "/tmp/passwd"
(file-name-canonicalize "~/passwd")
= "~ /passwd"
(file-name-unix-canonicalize "~/passwd")
= "/home/a-user/passwd"
(file-name-unix-canonicalize "“foo/passwd")
= "/home/foo/passwd"

relative-file-name name base [bigloo procedure]
Builds a file name relative to base.

(relative-file-name "/etc/passwd" "/etc"
= "passwd"

find-file/path name path [bigloo procedure]
Search, in sequence, in the directory list path for the file name. If name is an absolute
name, then path is not used to find the file. If name is a relative name, the function
make-file-name is used to build absolute name from name and the directories in
path. The current path is not included automatically in the list of path. In conse-
quence, to check the current directory one may add "." to the path list. On success,
the absolute file name is returned. On failure, #£ is returned. Example:

(find-file/path "/etc/passwd" ’("/toto" "/titi"))
= "/etc/passwd"

(find-file/path "passwd" ’("/toto" "/etc"))
= "/etc/passwd"

(find-file/path "pass-wd" ’("." "/etc"))
= #f
make-static-library-name name [bigloo procedure]

Make a static library name from name by adding the static library regular suffix.

make-shared-library-name name [bigloo procedure]
Make a shared library name from name by adding the shared library regular suffix.

file-exists? string [bigloo procedure]
This procedure returns #t if the file (respectively directory, and link) string exists.
Otherwise it returns #f£.

file-gzip? string [bigloo procedure]
This procedure returns #t if and only if the file string exists and can be unzip by
Bigloo. Otherwise it returns #f.

delete-file string [bigloo procedure]
Deletes the file named string. The result of this procedure is #t is the operation
succeeded. The result is #f otherwise.

82 Bigloo 4.3g

rename-file stringl string?2 [bigloo procedure]
Renames the file stringl as string2. The two files have to be located on the same file
system. If the renaming succeeds, the result is #t, otherwise it is #f.

truncate-file path size [bigloo procedure]
Truncates shall cause the regular file named by path to have a size which shall be
equal to length bytes.

Returns #t on success. Returns #f otherwise.

copy-file stringl string2 [bigloo procedure]
Copies the file stringl into string2. If the copy succeeds, the result is #t, otherwise
it is #f.

make-symlink target linkpath [bigloo procedure]
Creates a symbolic link named linkpath which contains the string target.

directory? string [bigloo procedure]
This procedure returns #t if the file string exists and is a directory. Otherwise it
returns #f.

make-directory string [bigloo procedure]

Creates a new directory named string. It returns #t if the directory was created. It
returns #f otherwise.

make-directories string [bigloo procedure]
Creates a new directory named string, including any necessary but nonexistent parent
directories. It returns #t if the directory was created. It returns #f otherwise. Note
that if this operation fails it may have succeeded in creating some of the necessary
parent directories.

delete-directory string [bigloo procedure]
Deletes the directory named string. The directory must be empty in order to be
deleted. The result of this procedure is unspecified.

directory->list string [bigloo procedure]

directory->path-list string [bigloo procedure]
If file string exists and is a directory, the function directory->1list returns the list
of files in string. The function directory->path-list returns a list of files whose
dirname is string.

file-modification-time string [bigloo procedure

file-change-time string [bigloo procedure

file-access-time string [bigloo procedure

file-times-set! string atime mtime [bigloo procedure
The date (in second) of the last modification (respec. access) for file string. The
number of seconds is represented by a value that may be converted into a date by the
means of seconds->date (see Section 5.8 [Date], page 95).

]
]
|
]

Chapter 5: Standard Library 83

file-size string [bigloo procedure]
Returns the size (in bytes) for file string. The return type is long. If an full-sized
integer is needed, one may write:

(let ((sz::1llong (file-size <PATH>)))
L)

On error, -1 is returned.

file-uid string [bigloo procedure]

file-gid string [bigloo procedure]
The functions return the user id (an integer) and group id (an integer) for file string.
On error, -1 is returned.

file-mode string [bigloo procedure]
Returns the file access mode (an integer). On error -1 is returned.

file-type string [bigloo procedure]
Returns the file type (a symbol). The possible returned values are:

e regular

e directory
e link

e block

o fifo

e character
e socket

e resource
e unknown

e does—not-exist

chmod string [option] [bigloo procedure]
Change the access mode of the file named string. The option must be either a list
of the following symbols read, write and execute or an integer. If the operation
succeeds, chmod returns #t. It returns #f otherwise. The argument option can also
be an integer that represents the native file permission. Example:

(chmod (make-file-name (getenv "HOME") ".bigloorc") ’read ’write)
(chmod (make-file-name (getenv "HOME") ".bigloorc") #0777)

5.7.3 Process support

Bigloo provides access to Unix-like processes as first class objects. The implementation and
this documentation are to a great extent copies of the STk [Gallesio95] process support.
Basically, a process contains four informations: the standard Unix process identification
(aka PID) and the three standard files of the process.

run-process command arg. . . [bigloo procedure]
run-process creates a new process and run the executable specified in command.
The arg correspond to the command line arguments. When is process completes its
execution, non pipe associated ports are automatically closed. Pipe associated ports

Bigloo 4.3g

have to be explicitly closed by the program. The following values of p have a special
meaning:

e input: permits to redirect the standard input file of the process. Redirection
can come from a file or from a pipe. To redirect the standard input from a file,
the name of this file must be specified after input:. Use the special keyword
pipe: to redirect the standard input from a pipe.

e output: permits to redirect the standard output file of the process. Redirection
can go to a file or to a pipe. To redirect the standard output to a file, the name
of this file must be specified after output:. Use the special keyword pipe: to
redirect the standard output to a pipe.

e error: permits to redirect the standard error file of the process. Redirection can
go to a file or to a pipe. To redirect the standard error to a file, the name of this
file must be specified after error:. Use the special keyword pipe: to redirect
the standard error to a pipe.

e wait: must be followed by a boolean value. This value specifies if the process
must be ran asynchronously or not. By default, the process is run asynchronously
(i.e. wait: if #f).

e host: must be followed by a string. This string represents the name of the
machine on which the command must be executed. This option uses the external
command rsh. The shell variable PATH must be correctly set for accessing it
without specifying its absolute path.

e fork: must be followed by a boolean value. This value specifies if the process
must substitute the current execution. That is, if the value is #t a new pro-
cess is spawned otherwise, the current execution is stopped and replaced by the
execution of command. It defaults to #t.

e env: must be followed by a string of the form var=val. This will bound an
environment variable in the spawned process. A run-process command may
contain several env: arguments. The current variables of the current process are
also passed to the new process.

The following example launches a process which execute the Unix command 1s with
the arguments -1 and /bin. The lines printed by this command are stored in the file
tmp/X.

(run-process "1ls" "-1" "/bin" output: "/tmp/X")

The same example with a pipe for output:

(let* ((proc (run-process "ls" "-1" "/bin" output: pipe:))
(port (process-output-port proc)))
(let loop ((line (read-line port)))
(if (eof-object? line)
(close-input-port port)
(begin
(print line)
(loop (read-line port))))))

One should note that the same program can be written with explicit process handling
but making use of the | notation for open-input-file.

(let ((port (open-input-file "| 1ls -1 /bin")))
(let loop ((line (read-line port)))

Chapter 5: Standard Library 85

(if (eof-object? line)
(close-input-port port)
(begin
(print line)
(loop (read-line port))))))

Both input and output ports can be piped:

(let* ((proc (run-process "/usr/bin/dc" output: pipe: input: pipe:))
(inport (process-input-port proc))
(port (process-output-port proc)))

(fprint inport "16 o")
(fprint inport "16 i")
(fprint inport "10")
(fprint inport "10")
(fprint inport "+ p")
(flush-output-port inport)
(let loop ((line (read-line port)))
(if (eof-object? line)
(close-input-port port)
(begin
(print line)
(loop (read-line port)))))) -4 20

Note: The call to flush-output-port is mandatory in order to get the dc process
to get its input characters.

Note: Thanks to Todd Dukes for the example and the suggestion of including it this
documentation.

process? obj [bigloo procedure]
Returns #t if obj is a process, otherwise returns #f£.

process-alive? process [bigloo procedure]
Returns #t if process is currently running, otherwise returns #£.

close-process-ports command arg. . . [bigloo procedure]
Close the three ports associated with a process. In general the ports should not be
closed before the process is terminated.

process-pid process [bigloo procedure]
Returns an integer value which represents the Unix identification (PID) of the process.

process-input-port process [bigloo procedure]
process-output-port process [bigloo procedure]
process—error-port process [bigloo procedure]

Return the file port associated to the standard input, output and error of process
otherwise returns #£. Note that the returned port is opened for reading when calling
process-output-port or process-error-port. It is opened for writing when calling
process-input-port.

process-wait process [bigloo procedure]
This function stops the current process until process completion. This function re-
turns #f when process is already terminated. It returns #t otherwise.

86 Bigloo 4.3g

process-exit-status process [bigloo procedure]
This function returns the exit status of process if it is has finished its execution. It
returns #f otherwise.

process-send-signal process s [bigloo procedure]
Sends the signal whose integer value is s to process. Value of s is system dependent.
The result of process-send-signal is undefined.

process-kill process [bigloo procedure]
This function brutally kills process. The result of process-kill is undefined.

process-stop process [bigloo procedure]

process-continue process [bigloo procedure]
Those procedures are only available on systems that support job control. The function
process-stop stops the execution of process and process-continue resumes its
execution.

process-list [bigloo procedure]
This function returns the list of processes which are currently running (i.e. alive).

5.7.4 Socket support

Bigloo defines sockets, on systems that support them, as first class objects. Sockets permits
processes to communicate even if they are on different machines. Sockets are useful for
creating client-server applications. The implementation and this documentation are, to a
great extent copies of the STk [Gallesio95] socket support.

Bigloo supports both stream-oriented sockets and datagram sockets (see Section “The
GNU C Library Reference Manual” in libc). Stream-oriented sockets are created and
manipulated with the following procedures.

make-client-socket hostname port-number #!key (timeout [bigloo procedure]
0) (inbuf #t) (outbuf #t) (domain ’inet)
make-client-socket returns a new socket object. This socket establishes a link be-
tween the running application listening on port port-number of hostname. If keyword
arguments inbuf and outbuf describe the buffer to be used. Each can either be:

e A positive fixnum, this gives the size of the buffer.

e The boolean #t, a buffer is allocated by the Bigloo runtime system with a default
size.

e The boolean #f, the socket is unbufferized.

e A string, it is used as buffer.

Unbuffered sockets are useful for socket clients connected to servers that do not emit
#\Newline character after emissions. If the optional argument timeout is missing
or is 0, the execution blocks until the connection is established. If the timeout is
provided, the execution unblocks after timeout microseconds unless the connection is
established.

The domain argument specifies the protocol used by the socket. The supported
domains are:

e inet: IPv4 Internet protocols.

Chapter 5: Standard Library 87

e unix: Unix sockets for local inter-process communications.

e local: Same as unix.

If the connection cannot be established, an &io-error is raised (see Chapter 15
[Errors Assertions and Traces|, page 173).

When a socket is used in unbufferized mode the characters available on the input port
must be read exclusively with read-char or read-line. It is forbidden to use read
or any regular grammar. This limitation is imposed by Rgc (see Chapter 10 [Regular
Parsing], page 129) that intrinsicly associates buffers with regular grammars. If the
current Rgc implementation is improved on the coming version this restriction will
be eliminated.

Example:

;; open a client socket on port 80:

(make-client-socket "www.inria.fr" 80)

;; open an unbufferized connection

(make-client-socket "www.inria.fr" 80 :inbuf #f :outbuf #f)

socket? obj [bigloo procedure]
socket-server? obj [bigloo procedure]
socket-client? obj [bigloo procedure]

Returns #t if obj is a socket, a socket server a socket client. Otherwise returns #f.
Socket servers and socket clients are sockets.

socket-hostname socket [bigloo procedure]
Returns a string which contains the name of the distant host attached to socket. If
socket has been created with make-client-socket this procedure returns the official
name of the distant machine used for connection. If socket has been created with
make-server-socket, this function returns the official name of the client connected
to the socket. If no client has used yet the socket, this function returns #f.

socket-host-address socket [bigloo procedure]
Returns a string which contains the IP number of the distant host attached to socket.
If socket has been created with make-client-socket this procedure returns the IP
number of the distant machine used for connection. If socket has been created with
make-server-socket, this function returns the address of the client connected to the
socket. If no client has used yet the socket, this function returns #f£.

socket-local-address socket [bigloo procedure]
Returns a string which contains the IP number of the local host attached to socket.

socket-port-number socket [bigloo procedure]
Returns the integer number of the port used for socket.

socket-input socket [bigloo procedure]
socket-output socket [bigloo procedure]
Returns the file port associated for reading or writing with the program connected
with socket. If no connection has already been established, these functions return #f.

88 Bigloo 4.3g

The following example shows how to make a client socket. Here we create a socket
on port 13 of the machine “kaolin.unice.fr”?:

(let ((s (make-client-socket "kaolin.unice.fr" 13)))
(print "Time is: " (read-line (socket-input s)))
(socket-shutdown s))

make-server-socket #loptional (port 0) #!key (name #f) [bigloo procedure]
(backlog 5)
make-server-socket returns a new socket object. The socket will be listening on
the network interface name, either on the specified port, or on a port chosen by the
system (usually the first port available on the network interface). The name can be
an IP number as a string, or a host name, whose first IP address will be used (as
returned by the name server lookup).

The backlog argument specifies the size of the wait-queue used for accepting connec-
tions.

socket-accept socket #lkey (errp #t) (inbuf #t) (outbuf #t) [bigloo procedure]
socket-accept waits for a client connection on the given socket. It returns a
client-socket. If no client is already waiting for a connection, this procedure
blocks its caller; otherwise, the first connection request on the queue of pending
connections is connected to socket. This procedure must be called on a server socket
created with make-server-socket.

The arguments inbuf and outbuf are similar to the ones used by make-client-
socket. That is, each can either be:

e A positive fixnum, this gives the size of the buffer.
e The boolean #t, a buffer is allocated.
e The boolean #f, the socket is unbufferized.

e A string, it is used as buffer.

The keyword argument errp is a boolean. The value #t means that if an error is
raised it is signaled. Otherwise, it is omitted.

Note: When a socket is used in unbufferized mode the characters available on the
input port must be read exclusively with read-char or read-line. It is forbidden to
use read or any regular grammar. This limitation is imposed by Rgc (see Chapter 10
[Regular Parsing], page 129) that intrinsicly associate buffers with regular grammars.
If the current Rgc implementation is improved on the coming version this restriction
will be suppressed.

The following exemple is a simple server which waits for a connection on the port
12342, Once the connection with the distant program is established, we read a line
on the input port associated to the socket and we write the length of this line on its
output port.

(let* ((s (make-server-socket 1234))

! Port 13 is generally used for testing: making a connection to it permits to know the distant system’s
idea of the time of day.

2 Under Unix, you can simply connect to listening socket with the telnet command. With the given
example, this can be achived by typing the following command in a window shell: $ telnet localhost
1234

Chapter 5: Standard Library 89

(s2 (socket-accept s)))
(let ((1 (read-line (socket-input s2))))
(fprint (socket-output s2) "Length is: " (string-length 1))
(flush-output-port (socket-output s2)))
(socket-close s2)
(socket-shutdown s))

socket-close socket [bigloo procedure]
The function socket-close closes the connection established with a socket-client.

socket-shutdown socket #loptional (how #t) [bigloo procedure]
Socket-shutdown shutdowns the connection associated to socket.

Close is either a boolean or one of the symbols RDWR, RD, or WR. The meaning of the
optional how (which defaults to #t) is as follows:

e #t, the socket is shutdown for reading and writing and the socket is closed.
e #f, the socket is shutdown for reading and writing.

e RDWR, the socket is shutdown for reading and writing.

e RD, the socket is shutdown for reading.

e WD, the socket is shutdown for writing.

The function socket-shutdown returns an integer which is 0 is the operation has
succeeded and a positive integer otherwise.

socket-down? socket [bigloo procedure]
Returns #t if socket has been previously closed with socket-shutdown. It returns
#f otherwise.

Here is another example of making use of stream sockets:

(define s1 (make-server-socket))
(define s2 #unspecified)

(dynamic-wind
;; Init: Launch an xterm with telnet running
;; on the s listening port and connect
(lambda ()
(run-process "/usr/X11R6/bin/xterm" "-display" ":0" "-e" "telnet" "localhost"
(number->string (socket-port-number si)))
(set! s2 (socket-accept s1))
(display #"\nWelcome on the socket REPL.\n\n> " (socket-output s2))
(flush-output-port (socket-output s2)))

;; Action: A toplevel like loop
(lambda ()
(let loop ()

(let ((obj (eval (read (socket-input s2)))))
(fprint (socket-output s2) "; Result: " obj)
(display "> " (socket-output s2))
(flush-output-port (socket-output s2))
(Loop))))

;; Termination: We go here when
HH -a: an error occurs
N -b: connection is closed

90 Bigloo 4.3g

(lambda ()
(print #"Shutdown \n")
(socket-close s2)
(socket-shutdown s1)))

Here is a second example that uses sockets. It implements a client-server architecture
and it uses unbufferized (see socket-accept) input ports.

First, here is the code of the client:
(module client)

(let* ((s (make-client-socket "localhost" 8080 :outbuf #f))
(p (socket-output s)))
(display "string" p)
(newline p)
(display "abc" p)
(flush-output-port p)
(let loop ()
(loop)))

Then, here is the code of the server:

(module server)

(let* ((s (make-server-socket 8080))
(s2 (socket-accept s :inbuf #f)))
(let ((pin (socket-input s2)))
(let loop ()
(display (read-char pin))
(flush-output-port (current-output-port))
(Loop))))

At, to conclude here the source code for a server waiting for multiple consecutive con-
nections:
(define (main argv)
(let ((n (if (pair? (cdr argv))
(string->integer (cadr argv))
10))
(s (make-server-socket)))
(print "s: " s)
(let loop ((i 0))
(if (<fx i n)
(let ((s2 (socket-accept s)))
(print "i: " i " " s2)
(print (read-line (socket-input s2)))
(socket-close s2)
(loop (+fx i 1)))
(socket-shutdown s)))))
Bigloo also provides primitives dealing with datagram sockets, for use with transports

such as UDP. These are shown below:

make-datagram-server-socket port [bigloo procedure]
Return a datagram server socket bound to the loopback address on port, and whose
address family and protocol family are those normally used for services on port.

make-datagram-unbound-socket [(domain ’inet)] [bigloo procedure]
Return an unbound datagram socket. It may then be used in conjunction with
datagram-socket-send and datagram-socket-receive, for instance send to and
receive from a UDP multicast address.

Chapter 5: Standard Library 91

datagram-socket-receive sock size [bigloo procedure]
Receive up to size bytes from datagram socket sock, and return them as a string.

datagram-socket-send sock message host port [bigloo procedure]
Send string message over datagram socket sock to host and port. host must be a
string denoting an IPv4 or IPv6 address. On success, return the number of bytes
actually sent.

host hostname [bigloo procedure]
hostinfo hostname [bigloo procedure]
Returns the IP number of hostname. When hostname is not found, the

io-unknown-host-error exception is raided (see Chapter 15 [Errors Assertions and
Traces|, page 173).

The function hostinfo possibly returns more information about the host. It returns
an association list made out the information about the host. This list might contain
a name entry, an addresses entry, and a aliases entry.

Some back-ends (e.g., the C back-end) implements DNS caching. This may dramat-
ically improve the performance of intensive networking applications. DNS caching
can be control by the means of two parameters: bigloo-dns-enable-cache and
bigloo-dns-cache-validity-timeout (see Chapter 24 [Parameters|, page 231).

get-interfaces [bigloo procedure]
Returns the list of configured interfaces, their associated IP addresses, their protocol,
and, if supported by the system, the hardware address (the mac address).

get-protocols [bigloo procedure]
Reads all the entries from the protocols database and returns a list of protocol entries.
Fach entries consists in a list of three elements:

e a string denoting the protocol name,
e an integer denoting the protocol number,

e a list of strings denoting the protocol aliases.

get-protocol number-or-name [bigloo procedure]
Returns the protocol entry found in the protocols database. The argument number-
of-name is either an integer or a string.

socket-option socket option-name [bigloo procedure]

socket-option-set! socket option-name val [bigloo procedure]
These two functions get and set socket option. The argument option-name must
be a keyword. If the option-name is not supported by the Bigloo runtime system,
the function socket-option returns the value #unspecified otherwise, it returns the
option value. If the option-name is not supported, the function socket-option-set!
returns false. Otherwise it returns a non false value.

Here is a list of possibly supported option-name values:
e :SO_KEEPALIVE
e :SO_OOBINLINE
e :SO_RCVBUF

92 Bigloo 4.3g

e :SO_SNDBUF

e :SO_REUSEADDR

e :SO_TIMEOUT

e :SO_SNDTIMEQ

e :SO_RCVTIMEO

e :TCP_CORK

e :TCP_QUICKACK

e :TCP_NODELAY
The :SO0_KEEPALIVE option can be use to implement automatic notification of client
disconnection. It requires system tuning for enabling TCP keeplive support. On

Linux additional information may be found on the “TCP Keepalive HOWTO” (see
http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/).

5.7.5 SSL

Bigloo allows access to SSL sockets, certificates and private keys, in order to build secure
encrypted and/or signed communications.

ssl-version [SSL library procedure]
Returns a string representing the SSL library version number.

5.7.5.1 SSL Sockets

Bigloo defines SSL sockets, on systems that support them, as first class objects. SSL
Sockets permits processes to communicate even if they are on different machines securely via
encrypted connections. SSL Sockets are useful for creating secure client-server applications.

ssl-socket? obj [SSL library procedure]
Returns #t if an only if obj is a SSL socket (either client or server). Returns #f
otherwise.

make-ssl-client-socket hostname port-number #!key [SSL library procedure]

(buffer #t) (timeout 0) (protocol ’sslv23) (cert #f) (pkey #f) (CAs /())
(accepted-certs #f)
make-ssl-client-socket returns a new client socket object. This object satisfies the
socket? predicate (see Section 5.7.4 [Socket], page 86) can be used in any context
where a socket created by make-client-socket can be used.

A SSL client socket establishes a link between the running application (client) and a
remote application (server) listening on port port-number of hostname. If optional
argument bufsiz is lesser or equal to 1 then the input port associated with the socket
is unbuffered. This is useful for socket clients connected to servers that do not emit
#\Newline character after emissions. The optional argument buffer can either be:

e A positive fixnum, this gives the size of the buffer.

e The boolean #t, a buffer is allocated.

e The boolean #£, the socket is unbufferized.

e A string, it is used as buffer.

http://tldp.org/HOWTO/html_single/TCP-Keepalive-HOWTO/

Chapter 5: Standard Library 93

If the optional argument timeout is 0, the execution blocks until the connection is
established. If the timeout is provided, the execution unblocks after timeout microsec-
onds unless the connection is established. If the protocol option argument is given,
it specifies the encryption protocol. Accepted values are ’sslv2, ’sslv3, ’sslv23
(alias ’ssl), *tlsvl (alias ’tls), *tlsvl_1, *tlsvi_2, *tlsv1_3, or *dtlsvl (alias
’dtls). The default value is ’sslv23.

The SSL socket will sign the connection using the optional arguments cert (for the
certificate) and pkey (for the private key). The certificate cert must be of type
certificate, and the private key pkey must be of type private-key. If any of
those two arguments is given, they must both be given. If those optional arguments
are missing the connection will be encrypted but not signed from the client side.

The CAs optional argument specifies the list of certificates to trust as CA (Certificate
Authority) for the connection. It must be a list of values of type certificate. If
the list is empty, the default list of trusted CA is used (set by the system). Note that
giving a list of trusted certificates turns on the peer (server) certificate validation:
an &io-error will be raised if the peer (server) certificate is not signed directly or
indirectly by one of the certificates in CAs.

The accepted-certs optional argument gives a list of certificate objects (of type
certificate) which are accepted as peer (server) certificate. If accepted-certs is
#f then every peer (server) certificate is accepted (aside from eventual certificate
validation). If accepted-certs is a list, the peer (server) certificate must match one of
the given certificates. Otherwise, an &io-error will be raised.

If the connection cannot be established, an &io-error is raised (see Chapter 15
[Errors Assertions and Traces|, page 173).

When a socket is used in unbufferized mode the characters available on the input port
must be read exclusively with read-char or read-line. It is forbidden to use read
or any regular grammar. This limitation is imposed by Rgc (see Chapter 10 [Regular
Parsing], page 129) that intrinsicly associates buffers with regular grammars. If the
current Rgc implementation is improved on the coming version this restriction will
be eliminated.

The function make-ssl-client-socket is defined in the SSL library. A module that
needs this facility must then use a library clause (see Chapter 2 [Modules], page 7).
The SSL library can also be loaded from the interpreter using the library-load
function (see Chapter 28 [Bigloo Libraries|, page 255).

(module imap
(library ssl)
(main main))

(let* ((s (make-ssl-client-socket "localhost" 993))

(p (socket-output s)))

(display "string" p)

(newline p)

(display "abc" p)

(flush-output-port p)

(let loop O
(loop)))

94 Bigloo 4.3g

client-socket-use-ssl! socket #!key (protocol [SSL library procedure]
'sslv23) (cert #1) (pkey #f) (CAs () (accepted-certs #f)
Returns an SSL socket built from a socket obtained by make-client-socket (see
Section 5.7.4 [Socket], page 86). Depending on the implementation and back-end the
returned socket may or may not be eq? to socket.

make-ssl-server-socket #lkey (port 0) (name #f) [SSL library procedure]
(protocol sslv23) (cert #f) (pkey #f) (CAs ()) (accepted-certs #f)
make-ssl-server-socket returns a new server socket object which satisfies the
socket? predicate and which can be used in any context where a socket created
by make-server-socket can be used (see Section 5.7.4 [Socket], page 86).

A SSL server socket opens the port port on the current host name (the server), and
allows remote applications (clients) to connect to it. listening on port port-number
of hostname. If the optional argument port is not given or is 0, the server socket will
use the first availailable port number. If the optional argument name is given, the
server socket will be bound to the network interface representing the given host name.
If it is #f (the default) the socket will be bound on every local network interface. If
the protocol option argument is given, it specifies the encryption protocol. Accepted
values are ’sslv2, ’sslv3, ’sslv23 (alias ’ssl), ’tlsvl (alias ’tls), *tlsvi_1,
’tlsvl_2 ’tlsvl_3, or *dtlsvl (alias ’dtls). The default value is ’sslv23.

The SSL socket will sign the connection using the optional arguments cert (for the
certificate) and pkey (for the private key). The certificate cert must be of type
certificate, and the private key pkey must be of type private-key. If any of
those two arguments is given, they must both be given. If those optional arguments
are missing the connection will be encrypted but not signed from the server side,
which means the peer (client) will have to provide a certificate/private key pair to
encrypt the connection, and that seldom happens. Typical SSL servers provide their
certificate and private key.

Note that since the peer (client) certificate is only known when we are accepting a
client socket (with socket-accept) the CAs and accepted-certs optional arguments
are only checked during the accept operation of a server socket.

The CAs optional argument specifies the list of certificates to trust as CA (Certificate
Authority) for the connection. It must be a list of values of type certificate. If
the list is empty, the default list of trusted CA is used (set by the system). Note that
giving a list of trusted certificates turns on the peer (client) certificate validation:
an &io-error will be raised if the peer (client) certificate is not signed directly or
indirectly by one of the certificates in CAs when accepting the client socket.

The accepted-certs optional argument gives a list of certificate objects (of type
certificate) which are accepted as peer (client) certificate. If accepted-certs is
#f then every peer (client) certificate is accepted (aside from eventual certificate
validation). If accepted-certs is a list, the peer (client) certificate must match one of
the given certificates. Otherwise, an &io-error will be raised when accepting the
client socket.

If the connection cannot be established, an &io-error is raised (see Chapter 15
[Errors Assertions and Traces|, page 173).

Chapter 5: Standard Library 95

The function make-ssl-server-socket is defined in the SSL library. A module that
needs this facility must then use a library clause (see Chapter 2 [Modules], page 7).
The SSL library can also be loaded from the interpreter using the library-load
function (see Chapter 28 [Bigloo Libraries|, page 255).

(module secure-echo
(library ssl))

(let* ((cert (read-certificate "/etc/ssl/my_cert.crt"))
(pkey (read-private-key "/etc/ssl/my_key.pkey"))
(cas (read-pem-file "/etc/ssl/ca.cert"))

(s (make-ssl-server-socket 1055 :CAs cas :cert cert :pkey pkey))
(cs (socket-accept s))
(ip (socket-input cs))
(op (socket-output cs)))
(let loop ((e (read ip)))
(when (not (eof-object? e))
(write e op)
(loop (read ip))))
(socket-close s))

5.7.5.2 Certificates

Certificates are instances of the certificate class. There type can be checked with (isa?
expr certificate).

read-certificate file [SSL library procedure]
Reads an X509 certificate stored in PEM format in the given file name. If the file
cannot be read, it raises an &io-error condition. Otherwise the certificate is returned.

read-pem-file file [SSL library procedure]
Reads a list of X509 certificate stored in PEM format in the given file name. If the
file cannot be read, it raises an &io-error condition. Otherwise the list of certificate
contained in the file is returned.

certificate-subject cert [SSL library procedure]
Returns the CommonName (CN) part of the subject of the given certificate.

certificate-issuer cert [SSL library procedure]
Returns the CommonName (CN) part of the issuer of the given certificate.

5.7.5.3 Private Keys

Private keys are instances of the private-key class. There type can be checked with (isa?
expr private-key).

read-private-key file [SSL library procedure]
Reads a private key stored in PEM format in the given file name. If the file cannot
be read, it raises an &io-error condition. Otherwise the private key is returned.

5.8 Date

date? obj [bigloo procedure]
Returns #t if and only if obj is a date as returned by make-date, current-date, or
seconds->date. It returns #f otherwise.

96 Bigloo 4.3g

make-date #!key (nsec 0) (sec 0) (min 0) (hour 0) (day 1) [bigloo procedure]
(month 1) (year 1970) timezone (dst -1)
Creates a date object from the integer values passed as argument.
The argument timezone, if provided, is expressed in minute.

Example:

(write (make-date :sec O :min 22 :hour 17 :day 5 :month 2 :year 2003 :dst 0))
- #<date:Wed Feb 5 17:22:00 2003>

The argument dst is either -1 when the information is not available, 0 when daylight
saving is disabled, 1 when daylight saving is enabled.

date-copy date #!key sec min hour day month year timezone [bigloo procedure]
Creates a new date from the argument date.

Example:
(date-copy (current-date) :sec 32 :min 24 :day 5)

current-date [bigloo procedure]
Returns a date object representing the current date.

current-seconds [bigloo procedure]
current-microseconds [bigloo procedure]
current-nanoseconds [bigloo procedure]

Returns an elong integer representing the current epoch (i.e., the date since 0:00:00
UTC on the morning of 1 January 1970, expressed in seconds (resp. in micro seconds).

date->seconds [bigloo procedure]

date->nanoseconds [bigloo procedure]

seconds->date [bigloo procedure]

nanoeconds->date [bigloo procedure]
Convert from date and elong.

date->string date [bigloo procedure]

date->utc-string date [bigloo procedure]

seconds->string elong [bigloo procedure]

seconds->utc-string elong [bigloo procedure]
Construct a textual representation of the date passed in argument

date-second date [bigloo procedure]
Returns the number of seconds of a date, in the range 0. ..59.

date-nanosecond date [bigloo procedure]
Returns the number of nano seconds of a date (to be added to date-second).

date-minute date [bigloo procedure]
Returns the minute of a date, in the range 0. ..59.

date-hour date [bigloo procedure]
Returns the hour of a date, in the range 0. ..23.

date-day date [bigloo procedure]
Returns the day of a date, in the range 1...31.

Chapter 5: Standard Library

date-wday date
date-week-day date
Returns the week day of a date, in the range 1...7.

date-yday date
date-year-day date
Returns the year day of a date, in the range 1...366.

date-month date
Returns the month of a date, in the range 1...12.

date-year date
Returns the year of a date.

date-timezone date
Returns the timezone (in seconds) of a date.

date-is-dst date

97

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

Returns -1 if the information is not available, 0 is the date does not contain daylight

saving adjustment, 1 if it contains a daylight saving adjustment.

integer->second
Converts a Bigloo fixnum integer into a second number.

day-seconds
Returns the number of seconds contained in one day.

day-name int
day-aname int

Return the name and the abbreviated name of a week day.

month-name int
month-aname int
Return the name and the abbreviated name of a month.

date-month-length date
Return the length of the month of date.

leap-year? int

[bigloo procedure]

[bigloo procedure]

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]
[bigloo procedure]

[bigloo procedure]

[bigloo procedure]

Returns #t if and only if the year int is a leap year. Returns #f otherwise.

rfc2822-date->date string
rfc2822-parse-date input-port

[bigloo procedure]
[bigloo procedure]

Parses RFC2822 string representing a date. These functions produce a Bigloo date

object.

date->rfc2822-date date

[bigloo procedure]

Converts a Bigloo date into a string representation compliant with the RFC2822

format.

98 Bigloo 4.3g

is08601-date->date string [bigloo procedure]

iso8601-parse-date input-port [bigloo procedure]
Parses ISO8601 string representing a date. These functions produce a Bigloo date
object.

date->iso8601-date date [bigloo procedure]

Converts a Bigloo date into a string representation compliant with the iso8601 format.

5.9 Digest
base64-encode string [padding 64) [bigloo procedure]
base64-decode string [no-eof-padding] [bigloo procedure]

Encodes (respec. decodes) a string into a base64 representation.

When decoding, if the optional parameter no-eof-padding is #t, the decoding success
even if the input stream is not padded with = characters.

base64-encode-port input-port output-port [padding 64] [bigloo procedure]
baseb4-decode-port input-port output-port [no-eof-padding] [bigloo procedure]
Encodes (respec. decodes) an input port into a base64 representation.

When decode succeeds, base64-decode-port returns #t, it returns #f otherwise.

When decoding, if the optional parameter no-eof-padding is #t, the decoding success
even if the input stream is not padded with = characters.

pem-read-file file-name [bigloo procedure]
pem-decode-port input-port output-port [bigloo procedure]
Reads a PEM (Privacy Enhanced Mail) base64 encoded file.

md5sum obj bigloo procedure
md5sum-string string bigloo procedure

mdbsum-file string bigloo procedure
md5sum-port input-port bigloo procedure
Computes MD5 message digest.

[]
[]
md5sum-mmap mmap {bigloo procedure}
[]

The function md5sum dispatches over its argument and invokes the ad-hoc function.
That is, it invokes md5sum-string if its argument is a string, md5sum-mmap if it is a
mmap, md5sum-port if its argument is an input port.

hmac-md5sum-string key string [bigloo procedure]
Computes the Hmac MD5 authentication:

(hmac-md5sum-string (make-string 16 #a011) "Hi There")
= "9294727a3638bb1c13f48e£8158bfc9d"

cram-md5sum-string user key string [bigloo procedure]
Challenge-Response Authentication Mechanism as specified in RFC 2195.

The function cram-md5sum-string assumes that data is base64 encoded. The result
is also base64 encoded.

Chapter 5: Standard Library 99

shalsum obj [bigloo procedure]
shalsum-string string [bigloo procedure]
shalsum-mmap mmap [bigloo procedure]
shalsum-file string [bigloo procedure]
shalsum-port input-port [bigloo procedure]
Computes SHA1 message digest.
The function shalsum dispatches over its argument and invokes the ad-hoc function.
That is, it invokes shalsum-string if its argument is a string, shalsum-mmap if it is
a mmap, shalsum-port if its argument is an input port.

hmac-shalsum-string key string [bigloo procedure]
Computes the Hmac SHA1 authentication:

sha256sum obj [bigloo procedure]

sha256sum-string string [bigloo procedure]

sha256sum-mmap mmap [bigloo procedure]

sha266sum-file string [bigloo procedure]

sha256sum-port input-port [bigloo procedure]
Computes SHA256 message digest.

The function sha256sum dispatches over its argument and invokes the ad-hoc function.
That is, it invokes sha256sum-string if its argument is a string, sha256sum-mmap if
it is a mmap, sha256sum-port if its argument is an input port.

hmac-sha256sum-string key string [bigloo procedure]
Computes the Hmac SHA256 authentication:

5.10 Cyclic Redundancy Check (CRC)

Bigloo provides several known cyclic redundancy checks as well as means to create custom
checks.

Usually CRCs are executed starting with the leftmost bit inside a byte (big endian).
However, especially for serial-port transmissions, a scheme where the least-significant bit is
processed first is desirable. Bigloo’s CRC procedures accept a key-parameter (:big-endian)
(by default #t) which allows to change this behavior.

The following CRCs (given with the associated polynomial) are provided:
o itu-4: 0x3

e epc-5: 0x9

e itu-5: 0x15

e usb-5: 0xb

e itu-6: 0x3

e 7:0x9

e atm-8: 0x7

e ccitt-8: 0x8d

e dallas/maxim-8: 0x31
8: 0xd5

100 Bigloo 4.3g

e sae-j1850-8: Ox1d

e 10: 0x233

e 11: 0x385

o 12: 0x80f

e can-15: 0x4599

e ccitt-16: 0x1021

e dnp-16: 0x3d65

e ibm-16: 0x8005

e 24: 0xbd6dcb

e radix-64-24: 0x864cfb
e 30: 0x2030b9cf

e ieee-32: Ox4clldb7

e c-32: Oxledc6f41

e k-32: 0x741b8cd7

e g-32: 0x814141ab

e iso-64: Oxlb

e ecma-182-64: 0x42f0eleba9eald693

crc-names [bigloo procedure]
Returns a list of all provided CRCs (itu-4, epc-5, etc.).

crc-polynomial name [bigloo procedure]
crc-polynomial-le name [bigloo procedure]
Returns the polynomial for the given name. The -1le variant returns the little endian
polynomial.
(crc-polynomial ’ieee-32)
- #e79764439 ;; == #ex4cllbd7

(crc-polynomial 24)
- 6122955 ;3 == #x5d6dcb

crc-length name [bigloo procedure]
Returns the length of the specified CRC.

crc name obj [:init 0] [:final-xor 0] [:big-endian? #t] [bigloo procedure]

crc-string name str::bstring [:init 0] [:final-xor O] [bigloo procedure]
[:big-endian? #t]

crc-port name p:input-port [:init 0] [:final-xor 0] [bigloo procedure]
[:big-endian? #t]

crc-mmap name m:mmap [init 0] [:final-xor 0] [big-endian? [bigloo procedure]
7]

crc-file name f::bstring [init 0] [:final-xor 0] [big-endian? #t] [bigloo procedure]
Computes the CRC of the given object. name must be one of the provided CRC-
algorithms. The optional parameter init can be used to initialize the CRC. The result
of the CRC will be XORed with final-xor. The result will however be of the CRC’s
length. That is, even if final-xor is bigger then the CRC’s length only the relevant
bits will be used to perform the final XOR.

Chapter 5: Standard Library 101

The result will be a number. Depending on the CRC this number can be a fixnum,
an elong, or an llong.

The following example mimicks the UNIX cksum command:

(module cksum (main main))
(define (main args)
(let loop ((sum (crc-file ’ieee-32 (cadr args)))
(size (elong->fixnum (file-size (cadr args)))))
(if (=fx size 0)
(printf "“a “a “a\n"
(bit-andllong #1xFFFFFFFF (elong->1long (bit-notelong sum)))
(file-size (cadr args))
(cadr args))
(loop (crc-string ’ieee-32
(string (integer->char-ur (bit-and size #xFF)))
:init sum)
(bit-rsh size 8)))))
In the following example we implement OpenPGP’s CRC-24:
(define (openpgp-crc-24 str)
(crc-string ’radix-64-24 str :init #xB704CE))
Be aware that many common CRCs use -1 as init value and invert the result. For
compatibility with other implementations you might want to try one of the following
alternatives:

(define (altl name obj) (crc name obj :init -1))
(define (alt2 name obj) (crc name obj :final-xor -1))
(define (alt3 name obj) (crc name obj :init -1 :final-xor -1))

Bigloo provides means to create additional CRCs: one can either simply provide a new
polynomial or use Bigloo’s low level functions.

register-crc! name poly len [bigloo procedure]
Adds the given CRC to Bigloo’s list. Name can be of any type (crc will use assoc
to find it in its list). The polynomial can be either a fixnum, an elong or an llong.
len should give the CRCs size. The type of the polynomial and the given len must be
consistent. On a 32 bit machine the following CRC registration would be invalid and
yield undefined results:
(register-crc! ’invalid 1337 55)

As 55 is bigger than the fixnum’s bit-size calling crc with this CRC will yield un-
definde results.

crc-long: :long c::char crc::long poly::long len::long [bigloo procedure]

crc-elong: :elong c::char crc::elong poly::elong len::long [bigloo procedure]

crc-1llong: :1long c::char crc::llong poly::llong len::long [bigloo procedure]

crc-long-le: :long c::char crc::long poly::long len::long [bigloo procedure]

crc-elong-le: :elong c::char crc::elong poly::elong len::long [bigloo procedure]

crc-1llong-le::1long c::char crc::llong poly::llong len::long [bigloo procedure]
These function perform a CRC operation on one byte. The previously described
functions are based on these low level functions. The result of all the low level
functions will return values that are not cut to the correct length. Usually a crc is
done in a loop, and one needs to bit-and only when returning the result. Polynomials
can be given with or without the high-order bit.

102 Bigloo 4.3g

For instance we could implement openpgp-crc24 as follows:

(define *openpgp-init* #xB704CE)
(define *radix-64-24-poly* #x864CFB)
(define (openpgp-crc-24 str)
(let loop ((i 0)
(crc *openpgp-init*))
(if (=fx i (string-length str))
(bit-and crc #xFFFFFF) ;; cut to correct length (24 bits)
(loop (+fx i 1)
(crc-long (string-ref str i) crc *radix-64-24-poly* 24)))))

crc-polynomial-be->le len polynomial [bigloo procedure]
Returns the little endian variant of a given polynomial.

5.11 Internet

This section presents the Bigloo function aimed at helping internet programming.

5.12 URLs

url-parse url [bigloo procedure]
The argument url can either be a string or an input-port. The function url-parse
parses the url and returns four values:

e the protocol,

e the optional user info,
e the host name,

e the port number,

e the absolute path

Example

(multiple-value-bind (protocol uinfo host port abspath)
(url-parse "http://www.inria.fr/sophia/teams/indes/index.html")
(list protocol uinfo host port abspath))
= ("http" #f "www.inria.fr" 80 "/sophia/teams/indes/index.html’’)
(multiple-value-bind (protocol uinfo host port abspath)
(url-parse "https://foo:bar@uww.inria.fr/sophia/teams/indes/index.html")
(1ist protocol uinfo))
= ("https" "fooGbar")

url-sans-protocol-parse url protocol [bigloo procedure]
The argument url can either be a string or an input-port.

This function behaves as url-parse except it assumes that the protocol part of the url
has already been extracted from the URI. It is explicitly provided using the protocol
argument.

http-url-parse url [bigloo procedure]
The argument url can either be a string or an input-port. As url-parse, it returns
four values.

This function parses URL found in HTTP GET responses.

Chapter 5: Standard Library

url-path-encode path
Encode a path that can be used in valid URL.

(url-path-encode "/tmp/foo") = "/tmp/foo"

(url-path-encode "/tmp/foo&bar") = "/tmp/foo%26bar"
(url-path-encode "http:///tmp/foo") = "httpl%3A//tmp/foo"

url-encode url
uri-encode url

uri-encode-component url
Encode a URL by removing any illegal character.

(url-encode "http:///tmp/foo") = "http://tmp:80/foo"
(url-encode "http:///tmp/foo&bar") = "http://tmp:80/foo%26"

url-decode url

url-decode! url

uri-decode url

uri-decode! url

uri-decode-component url

uri-decode-component! url
Decode a URL. The function url-decode! may return its argument unmodified if no
decoding is for the URL.

The variants -component treat do not escape URI reserved characters (i.e., #, /, 7,
5 @ &, =, +, and $).

5.13 HTTP

http [:in #1] [:out #{] [:socket #1|
[:protocol ’http]| [:method ’get] [:timeout O] [:proxy #f] [:host "localhost"] [:port
80] [:path "/"] [:login #f] [:authorization #f] [:username #f] [:password #f] [:http-
version "HTTP/1.1"] [:content-type #f] [:connection "close"] [:header ’((user-agent:
"Mozilla/5.0"))] [:args ’()] [:body #f{]

Opens an HTTP connection. Returns a socket.

103

[bigloo procedure]

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]
[bigloo procedure]

[bigloo procedure]

It is an error to specify a header twice. In particular, it is illegal to re-define keyword-
ed arguments in the :header list. For instance, it is illegal to include in the :header

actual list value a value for the Connection HTTP connection.

(define (wget url)

(define (parser ip status-code header clen tenc)

(if (not (and (>=fx status-code 200) (<=fx status-code 299)))

(case status-code
((401)

(proc

(raise (instantiate::&io-port-error
’open-input-file)

(msg "Cannot open URL, authentication required")
(obj url))))
((404)

(proc

(raise (instantiate::&io-file-not-found-error
’open-input-file)

(msg "Cannot open URL")
(obj url))))

104 Bigloo 4.3g

(else
(raise (instantiate::&io-port-error
(proc ’open-input-file)
(msg (format "Cannot open URL ("a)" status-code))
(obj url)))))
(cond
((not (input-port? ip))
(open-input-string ""))
(clen
(input-port-fill-barrier-set! ip (elong->fixnum clen))
ip)
(else

ip))))

(multiple-value-bind (protocol login host port abspath)
(url-parse url)
(let* ((sock (http :host host :port port :login login :path abspath))
(ip (socket-input sock))
(op (socket-output sock)))
(with-handler
(lambda (e)
(if (isa? e &http-redirection)
(with-access: :&http-redirection e (url)
(wget url))
(raise e)))
(read-string (http-parse-response ip op parser))))))
The optional argument args is used for post method. The actual value should be a

list of lists. Each of these sublists must have two values:
e the argument name

e the argument actual value

The argument name can be either a string which is the name of the argument or a
list of two elements. In that case, the first element of these list is the argument name.
The second element should be a string that denotes additional parameter.

Example:

(http :host "localhost" :port 8080 :method ’post
:header ’((enctype: "multipart/form-data"))
rargs ‘(("x" "foo") (("foo.scm" "filename=\"foo.scm\"\nContent-type: application/octet-stream"

L)

An http connection blocks until the connection is established. If the optional argu-
ment timeout is provided, the connection must be established before the specified
time interval elapses. The timeout is expressed in microseconds.

http-read-line input-port [bigloo procedure]
http-read-crlf input-port [bigloo procedure]
Reads a line or an end-of-line of an HT'TP response.

http-parse-status-line input-port [bigloo procedure]
Parses the status-line of an HTTP response. This returns a three values:

e The http version
e The status code

e the explanation phrase

105

http-parse-header input-port output-port [bigloo procedure]
Parses the whole header of an HTTP response. It returns multiple values which are:

e the whole header as an alist.

e the host given in the host header.

e the port given host field.

e the optional content-length header field.

e the optional transfer-encoding header field.

e the optional authorization header field.

e the optional proxy-authorization header field.

e the optional connection header field.

http-parse-response input-port output-port procedure [bigloo procedure]
Parses the whole response of an HT'TP request. The argument procedure is invoked
with five arguments:

e the input port to read the characters of the response,
e the status code,
e the header of the response,
e the content length,
e the type encoding.
http-response-body->port input-port output-port [bigloo procedure]

Parses an HTTP response and build an output port that delivers the characters of
the content.

http-chunks->procedure input-port [bigloo procedure]
http-chunks->port input-port [bigloo procedure]
http-send-chunks input-port output-port [bigloo procedure]

107

6 Pattern Matching

Pattern matching is a key feature of most modern functional programming languages since
it allows clean and secure code to be written. Internally, “pattern-matching forms” should
be translated (compiled) into cascades of “elementary tests” where code is made as efficient
as possible, avoiding redundant tests; Bigloo’s “pattern matching compiler” provides this.
The technique used is described in details in [QueinnecGeffroy92|, and the code generated
can be considered optimal' due to the way this “pattern compiler” was obtained.

The “pattern language” allows the expression of a wide variety of patterns, including:

e Non-linear patterns: pattern variables can appear more than once, allowing comparison
of subparts of the datum (through eq?)

e Recursive patterns on lists: for example, checking that the datum is a list of zero or
more as followed by zero or more bs.

e Pattern matching on lists as well as on vectors and structures, and record types.

6.1 Bigloo pattern matching facilities

Only two special forms are provided for this in Bigloo: match-case and match-lambda.

match-case key clause. . . [bigloo syntax]
The argument key may be any expression and each clause has the form

(pattern s-expression...)

Semantics: A match-case expression is evaluated as follows. key is evaluated and
the result is compared with each successive pattern. If the pattern in some clause
yields a match, then the expressions in that clause are evaluated from left to right in
an environment where the pattern variables are bound to the corresponding subparts
of the datum, and the result of the last expression in that clause is returned as the
result of the match-case expression. If no pattern in any clause matches the datum,
then, if there is an else clause, its expressions are evaluated and the result of the
last is the result of the whole match-case expression; otherwise the result of the
match-case expression is unspecified.

The equality predicate used is eq?.
(match-case ’(a b a)
((?x ?x) ’foo)
((?x ?7- 7x) ’bar))
= bar

The following syntax is also available:

match-lambda clause. . . [bigloo syntax]
It expands into a lambda-expression expecting an argument which, once applied to
an expression, behaves exactly like a match-case expression.
((match-lambda
((?x ?x) ’foo)
((?x ?7- ?x) ’bar))
’(a b a))
= bar

L' n the cases of pattern matching in lists and vectors, not in structures for the moment.

108 Bigloo 4.3g

6.2 The pattern language

The syntax for <pattern> is:

<pattern> — Matches:
<atom> the <atom>.
| (kwote <atom>) any expression eq? to <atom>.
| (and <patl> ... <patn>) if all of <pati> match.
| (or <patl><patn>) if any of <pat1> through <patn> matches.
| (not <pat>) if <pat> doesn’t match.
| (? <predicate>) if <predicate> is true.
| (<pat1l> ... <patn>) a list of n elements. Here, ... is a

meta-character denoting a finite repetition
of patterns.

| <pat> ... a (possibly empty) repetition
of <pat> in a list.

| #(<pat> ... <patn>) a vector of n elements.

| #{<struct> <pat> ... } a structure.

| 7<id> anything, and binds id as a variable.

| 7- anything.

| 77— any (possibly empty) repetition of anything
in a list.

| 777- any end of list.

Remark: and, or, not, check and kwote must be quoted in order to be treated as literals.
This is the only justification for having the kwote pattern since, by convention, any atom
which is not a keyword is quoted.

?- matches any s-expr
a matches the atom ’a.
7a matches any expression, and binds the variable a to this expression.
(? integer?) matches any integer
(a (a b)) matches the only list > (a (a b)).
?77- can only appear at the end of a list, and always succeeds. For instance, (a 777-)
is equivalent to (a . ?-).
when occurring in a list, 77- matches any sequence of anything: (a 77— b) matches
any list whose car is a and last car is b.
(a ...) matches any list of a’s, possibly empty.
(7% 7x) matches any list of length 2 whose car is eq to its cadr
((and (not a) ?x) 7x) matches any list of length 2 whose car is not eq to ’a but is
eq to its cadr
#(7- 7- 777-) matches any vector whose length is at least 2.
#{foo (?- . 7-) (7 integer?)} matches any structure or record foo whose first and
second fields are respectively a pair and an integer. You can provide only the fields you
want to test. The order is not relevant.
Remark: 77- and ... patterns can not appear inside a vector, where you should use

?777-: For example, #(a 77— b) or #(a...) are invalid patterns, whereas #(a 777-) is valid
and matches any vector whose first element is the atom a.

109

7 Fast search

This chapters details the Bigloo’s API for fast string search algorithms.

7.1 Knuth, Morris, and Pratt

Bigloo supports an implementation of the Knuth, Morris, and Pratt algorithm on strings
and memory mapped area, See Section 5.2.2 [Memory mapped area], page 67.

kmp-table pattern [bigloo procedure]
This function creates a kmp-table used for fast search.

kmp-mmap kmp-table mmap offset [bigloo procedure]

kmp-string kmp-table string offset [bigloo procedure]

This function searches the pattern described by kmp-table in the memory mapped
area mmap (respec. in the string). The search starts at offset. If an occurrence is
found, its position in the mmap is returned. Otherwise -1 is returned.

For the sake of the example, here is a prototypal implementation of the Usenix com-
mand grep:
(define (main args)
(cond
((null? (cdr args))
(fprintf (current-error-port) "Usage: grep STRING [FILE]...")
(exit 0))
(else
(let ((t (kmp-table (cadr args))))
(for-each (lambda (f) (grep-file t f)) (cddr args))))))

(define (grep-file t file)
(let* ((mm (open-mmap file read: #t write: #f))
(1s (mmap-length mm)))
(let loop ((o 0))
(unless (>=fx o 1s)
(let ((n (kmp-mmap t mm o)))
(when (>fx n 0)
(print file ":" (mmap-line mm 1ls n))
(Loop (+fx n 1))))))
(close-mmap mm)))

(define (mmap-line mm 1ls n)
(let ((b 0)
(e (elong->fixnum 1s)))
;; beginning
(let loop ((i n))
(wvhen (>fx i 0)
(if (char=? (mmap-ref mm i) #\Newline)
(set! b (+fx i 1))
(loop (-fx i 1)))))
;5 end
(let loop ((i n))
(when (<fx i 1s)
(if (char=? (mmap-ref mm i) #\Newline)
(set! e i)
(loop (+fx i 1)))))
(mmap-substring mm b (- e b))))

110 Bigloo 4.3g

7.2 Boyer - Moore

Bigloo supports an implementation of the Boyer, Moore algorithm on strings and memory
mapped area, See Section 5.2.2 [Memory mapped area|, page 67.

bm-table pattern [bigloo procedure]
This function creates a bm-table used for fast search.

bm-mmap bm-table mmap offset [bigloo procedure]

bm-string bm-table string offset [bigloo procedure]

This function searches the pattern described by bm-table in the memory mapped area
mmap (respec. in the string). The search starts at offset. If an occurrence is found,
its position in the mmap is returned. Otherwise -1 is returned.

For the sake of the example, here is a prototypal implementation of the Usenix com-
mand grep:
(define (main args)
(cond
((null? (cdr args))
(fprintf (current-error-port) "Usage: grep STRING [FILE]...")
(exit 0))
(else
(let ((t (bm-table (cadr args))))
(for-each (lambda (f) (grep-file t £)) (cddr args))))))

(define (grep-file t file)
(let* ((mm (open-mmap file read: #t write: #f))
(1s (mmap-length mm)))
(let loop ((o 0))
(unless (>=fx o 1s)
(let ((n (bm-mmap t mm 0)))
(when (>fx n 0)
(print file ":" (mmap-line mm ls n))
(loop (+fx n 1))))))
(close-mmap mm)))

(define (mmap-line mm 1s n)
(let ((b 0)
(e (elong->fixnum 1s)))
;; beginning
(let loop ((i n))
(when (>fx i 0)
(if (char=? (mmap-ref mm i) #\Newline)
(set! b (+fx i 1))
(loop (-fx i 1)))))
;5 end
(let loop ((i n))
(when (<fx i 1s)
(if (char=7 (mmap-ref mm i) #\Newline)
(set! e i)
(loop (+fx i 1)))))
(mmap-substring mm b (- e b))))

7.3 Boyer - Moore - Horspool

Bigloo supports an implementation of the Boyer, Moore, Horspool algorithm on strings and
memory mapped area, See Section 5.2.2 [Memory mapped areal, page 67.

111

bmh-table pattern [bigloo procedure]
This function creates a bmh-table used for fast search.

bmh-mmap bm-table mmap offset [bigloo procedure]

bmh-string bm-table string offset [bigloo procedure]

This function searches the pattern described by bmh-table in the memory mapped
area mmap (respec. in the string). The search starts at offset. If an occurrence is
found, its position in the mmap is returned. Otherwise -1 is returned.

113

8 Structures and Records

Bigloo supports two kinds of enumerated types: the structures and the records. They offer
similar facilities. Structures were pre-existing to records and they are maintained mainly for
backward compatiblity. Recors are compliant with the Scheme request for implementation
9.

8.1 Structures

There is, in Bigloo, a new class of objects: structures, which are equivalent to C struct.

define-struct name field. . . [bigloo syntax]|
This form defines a structure with name name, which is a symbol, having fields
field. .. which are symbols or lists, each list being composed of a symbol and a
default value. This form creates several functions: creator, predicate, accessor and
assigner functions. The name of each function is built in the following way:

e Creator: make-name

e Predicate: name?

e Accessor: name-field

e Assigner: name-field-set!

Function make-name accepts an optional argument. If provided, all the slots of the
created structures are filled with it. The creator named name accepts as many argu-
ments as the number of slots of the structure. This function allocates a structure and
fills each of its slots with its corresponding argument.

If a structure is created using make-name and no initialization value is provided, the
slot default values (when provided) are used to initialize the new structure. For
instance, the execution of the program:

(define-struct ptl a b)
(define-struct pt2 (h 4) (g 6))

(make-pt1)

= #{PT1 O O}
(make-ptl 5)

= #{PT1 5 5}
(make-pt2)

= #{PT2 4 6}
(make-pt2 5)

= #{PT2 5 5}

struct? obj [bigloo procedure]
Returns #t if and only if obj is a structure.

8.2 Records (SRFI-9)

Bigloo supports records has specified by SRFI-9. This section is a copy of the SRFI-9
specification by Richard Kelsey. This SRFI describes syntax for creating new data types,
called record types. A predicate, constructor, and field accessors and modifiers are defined
for each record type. Each new record type is distinct from all existing types, including
other record types and Scheme’s predefined types.

114 Bigloo 4.3g

define-record-type expression. . . [syntax]
The syntax of a record-type definition is:
<record-type-definition> +— (define-record-type <type-name>
(Kconstructor-name> <field-tag> ...)
<predicate-name>
<field-spec> ...)

<field-spec> — (<field-tag> <accessor-name>)
| (<field-tag> <accessor-name> <modifier-name>)
<field-tag> — <identifier>
<accessor-name> > <identifier>
<predicate-name> — <identifier>
<modifier-name> — <identifier>
<type-name> — <identifier>

Define-record-type is generative: each use creates a new record type that is distinct
from all existing types, including other record types and Scheme’s predefined types.
Record-type definitions may only occur at top-level (there are two possible semantics
for ‘internal’ record-type definitions, generative and nongenerative, and no consensus
as to which is better).

an instance of define-record-type is equivalent to the following definitions:

e <type-name> is bound to a representation of the record type itself. Operations
on record types, such as defining print methods, reflection, etc. are left to other

SRFIs.
e <constructor-name> is bound to a procedure that takes as many arguments
as the re are <field-tag>s in the (<constructor-name> ...) subform

and returns a new <type-name> record. Fields whose tags are listed with
<constructor-name> have the corresponding argument as their initial value.
The initial values of all other fields are unspecified.

e <predicate-name> is a predicate that returns #t when given a value returned
by <constructor-name> and #f for everything else.

e Fach <accessor-name> is a procedure that takes a record of type <type-name>
and returns the current value of the corresponding field. It is an error to pass an
accessor a value which is not a record of the appropriate type.

e FEach <modifier-name> is a procedure that takes a record of type <type-name>
and a value which becomes the new value of the corresponding field; an unspec-
ified value is returned. It is an error to pass a modifier a first argument which is
not a record of the appropriate type.

Records are disjoint from the types listed in Section 4.2 of R5RS.

Seting the value of any of these identifiers has no effect on the behavior of any of their
original values.

The following

(define-record-type pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))

defines kons to be a constructor, kar and kdr to be accessors, set-kar! to be a
modifier, and pare? to be a predicate for pares.
(pare? (kons 1 2)) = #t

115

(pare? (cons 1 2)) = #f
(kar (kons 1 2)) =1
(kdr (kons 1 2)) = 2
(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) = 3

117

9 Object System

Bigloo’s object system is designed to be as simple as possible and belongs to the CLOS
[Bobrow et al. 88] object system family in that it uses classes, generic functions and
methods. Its design has been strongly influenced by C. Queinnec’s MEROON [Queinnec93]
It does not include any meta object protocol.

9.1 Class declaration

Classes are defined in a module declaration. A class declaration can take place in a compiled
or interpreted module. If a class declaration takes place in a static module clause (see Section
Section 2.2 [Module Declaration], page 7) its scope is limited to the current module but if
it takes place in an export module clause, its scope is extended to all modules that import
the current module. The syntax of a class declaration is:

class ident field . .. [bigloo module clause]
<class> + (class <ident> <constructor>? <field>+)
| (final-class <ident> <constructor>? <field>+)
| (wide-class <ident> <comstructor>? <field>+)
| (abstract-class <ident> <constructor>? <field>+)
<comnstructor> — (<expr>)
<field> +~ <ident>
| (<ident> <field-prop>)
<field-prop> +— read-only
| (get <bigloo-exp>)
| (set <bigloo-exp>)
| (default <bigloo-exp>)
| (info <bigloo-exp>)
A class is a Bigloo type (see Section Section 26.1.6.1 [Atomic types], page 237) and
the class identifier is extracted from the <ident> of the class definition. If <ident> is
also a <typed-ident>, the type part of this identifier denote the super-class of the class
If <ident> is a <IEEE-ident>, the super-class of the class is the root of the inheritance
tree, the object class. This object class is the only pre-existing class.

Final classes can only be sub-classed by wide classes. Wide classes (only for compiled
modules) can only inherit from final classes. abstract classes can’t be instantiated.

Wide-classes cannot be defined within the interpreter.

The optional constructor is an expression that must evaluate to a one argument
function. This function is automatically invoked each time a new class instance is
created. The constructor is passed the fresh instance. If a class has not defined a
constructor the super class’ constructors are searched. The first constructor found is
invoked. A constructor may be a generic function with a method specified for one or
more classes.

A class field may be a typed class field which is achieved by using a <typed-ident>
instead of a <IEEE-ident> for the <ident> value.

Field marked with read-only declaration are immutables.

Default declarations allow default field values.

118

Bigloo 4.3g

For the means of an example, the traditional points and colored points can be defined
as:

(module example
(static (abstract-class pt)
(class point::pt
x::double
y::double)
(class point-C::point
(color::string read-only))))

We illustrate final and wide classes by the example:

(module example
(export (final-class person
(name: :string (default "Jones"))
(sex read-only)
children: :pair-nil)
(wide-class married-person: :person
mate: :person)))

Fields may be virtual. A field is virtual as soon as its declaration contain a get
attribute. Virtual fields have no physical implementation within the instance. When
defining a virtual field, the class declaration implements a getter and a setter if that
field is not a read only field. Access to the virtual field will rely on invocation of the
user getter and user setter. For instance:

(module example
(static (class complex
mag: :double
angle: :double
(real::double (get (lambda (p)
(with-access::complex p (mag angle)
(* mag (cos angle)))))
read-only)
(imag: :double (get (lambda (p)
(with-access::complex p (mag angle)
(* mag (sin angle)))))
read-only))))

(let ((p (instantiate::complex (mag 1.0) (angle 2.18))))
(with-access::complex p (real imag)
(print "real: " real)
(print "imag: " imag)))

Virtual fields cannot be associated default values. If a virtual field is not provided
with a setter it must be annotated as read only.

Info declarations allow arbitrary user information field values. This value can be re-
trieved by introspection, by the means of the class-field-info introspection func-
tion.

For the means of an example, with add to information to the slot of the point class.

(module example
(static (class point
(x::double (info ’(range 0.0 10.0)))
(y::double (info ’(range -1.0 1.0)))))

Chapter 9: Object System 119

9.2 Creating and accessing objects

Objects and classes are created and manipulated via library functions and forms created
automatically by Bigloo when a new class is defined.

isa? obj class [bigloo procedure]
This function returns #t if obj is an instance of class or an instance of a sub-class of
class, otherwise, it returns #f£.

instantiate::class (ident value). . . [bigloo syntax]
This forms allocates object of class class and fills the fields with values found in the
list of parameters (note that field are explicitly named and that there is no ordering
for field naming). Field values which are not provided in the parameter list must have
been declared with a default value which is used to initialize the corresponding field.

For instance:

(module example
(export
(class point (x (default 0)))
(class point2d::point y)))

(instantiate::point (x 0) (y 0))
(instantiate::point (y 0))
(instantiate::point (x 0))

= Error because y has no default value

class-nil class [bigloo procedure]
This function returns the NIL pre-existing class instance. This instance plays the role
of void * in C or null in Java. The value of each field is unspecified but correct with
respect to the Bigloo type system. Each call to class-nil returns the same object
(in the sense of eq?).
(module example
(export

(class point x)
(class point2d::point y)))

(eq? (class-nil point) (class-nil point))

= #t
(eq? (class-nil point) (class-nil point2d))
= #f
with-access::class obj (binding. ..) body [bigloo syntax]

A reference to any of the variables defined in as a binding is replaced by the appro-
priate field access form. This is true for both reference and assignment. A binding is
either a symbol or a list of two symbols. In the first place, it denotes a field. In the
second case, it denotes an aliases field.

For instance:

(with-access::point p (x (y1 y))
(with-access: :point p2 (y)
(set! x (- x))
(set! y1 (- y1 y¥))))

120 Bigloo 4.3g

-> var field [bigloo syntax]
Class instances can be accesses using the -> special form. The the first argument
must be the identifier of a local typed variable, otherwise an error is raised. The form
-> can be used to get or set value of an instance field. For instance:

(define (example pl::point p2::point)
(set! (> pl x) (- (-> p1 x)))
(set! (=> pl y) (= (=> pl y) (=> p2 y))))
This is equivalent to:

(define (example pl::point p2::point)
(with-access::point pl (x (y1 y))
(with-access::point p2 (y)

(set! x (- x))
(set! y1 (- y1 y)))))

co-instantiate ((var value) ...) body [bigloo syntax]
This form is only available from compiled modules. In other words, it is not available
from the interpreter. It permits the creation of recursive instances. It is specially
useful for creating instances for which class declarations contain cyclic type references
(for instance a class c1 for a which a field is declared of class c2 and a class c¢2 for
which a class is declared of type c1). The syntax of a co-instantiate form is similar
to a let form. However the only legal values are instantiate forms. The variables
introduced in the binding of a co-instantiate form are bound in body. In addition,
they are partially bound in the values expressions. In a value position, a variable var
can only be used to set the value of a field of an instantiated class. It cannot be used
in any calculus. Example:

(module obj-example

(export (class cl a b 02::c2)
(class c2 x y ol::cl1)))

(co-instantiate ((ol (instantiate::cil
(a 10)
(b 20)
(02 02)))
(02 (instantiate::c2
(x 10)
(y 20)
(o1 o1))))
(with-access::cl ol (02)
(with-access::c2 02 (x y)
+xy)))
= 30

duplicate::class obj (ident value). .. [bigloo syntax]
This forms allocates an instance of class class. The field values of the new object are
picked up from the field values of the old object unless they are explicitly given in
the parameter list.

For instance:

(with-access: :point old (x)
(instantiate: :point
(x x)
(y 10)))

Chapter 9: Object System 121

is equivalent to:
(duplicate: :point old (y 10))

The duplicated instance might be a subclass of duplicated instance. Example:

(module foo
(export (class point x y)
(class point3::point z)
(class pointé4::point3 t))
(main main))

(define (main x)
(let ((p (instantiate::point (x 1) (y 2))))
(print (duplicate::point4 p (z 6) (t 55)))))

9.3 Generic functions

A generic function is a bag of specific functions known as methods. When invoked on
a Bigloo object, a generic function determines the class of the discriminating variable
(corresponding to the first argument of the generic function) and invokes the appropri-
ate method. Generic functions implement single inheritance and each is defined using the
define-generic Bigloo syntax.

define-generic (name arg. ..) default-body [bigloo syntax]
A generic function can be defined with a default body which will be evaluated if no
method can be found for the discriminating variable. The default default-body signals
an error.

As an example, here is a possible definition of the object-display generic function:
(define-generic (object-display obj::object . op)
(let ((port (if (pair? op)

(car op)
(current-output-port))))

(display "#\|" port)

(display (class-name (object-class obj)) port)

(display "\I|" port)))

Methods can be defined to specialize a generic function and such methods must have a
compatible variable list. That is, the first argument of the method must be a sub-type (i.e.
belong to a sub-class) of the first argument of the generic function. Other formal parameters
must be of same types. Moreover, the result type of the method must be a sub-type of the
result of the generic function.

define-method (name arg...) body [bigloo syntax]
call-next-method [bigloo syntax]
If there is no appropriate method, an error is signaled.

Methods can use the form (call-next-method) to invoke the method that would
have been called if not present. The (call-next-method) cannot be used out of
method definition. example:
(define-method (object-display p::person . op)
(let ((port (if (pair? op)
(car op)

(current-output-port))))
(fprint port "firstname : " (-> p fname))

122 Bigloo 4.3g

(fprint port "name : " (-> p name))
(fprint port "sex : " (=> p sex))
P))

9.4 Widening and shrinking

Bigloo introduces a new kind of inheritance: widening. This allows an object to be tem-
porarily widened (that is transformed into an object of another class, a wide-class) and
then shrink-ed (that is reshaped to its original class). This mechanism is very useful for
implementing short-term data storage. For instance, Bigloo compilation passes are imple-
mented using the widening/shrinking mechanism. On entry to a pass, objects are widened
with the specific pass fields and, on exit from a pass, objects are shrunk in order to forget
the information related to this pass.

Only instances of final classes can be widened and objects can only be widened in order
to become instances of wide classes. Widening is performed by the widen! syntax:

widen!::wide-class obj (id value) . .. [bigloo syntax]
The object obj is widened to be instance of the wide class wide-class. Fields values
are either picked up from the parameter list of the widen! form or from the default
values in the declaration of the wide class.

Objects are shrunk using the shrink! syntax:

shrink! obj [bigloo syntax]
Here is a first example:

(module example
(static (final-class point
(x (default 0))
(y (default 0)))
(wide-class named-point::point name)))

(define *point* (instantiate::point))

Two classes have been declared and an instance *point* of point has been allocated.
For now, *point* is an instance of point but not an instance of named-point and this can
be checked by:

(print (isa? *point* named)) — #t
(print (isa? *point* named-point)) — #f

Now, we widen *pointx*...

(let ((n-point (widen!::named-point *pointx*
(name "orig"))))

And we check that now, n-point is an instance of named-point. Since named-point is

a subclass of point, n-point still is an instance of point.
(print (isa? n-point named-point)) > #t
(print (isa? n-point named)) — #t

Widening affects the objects themselves. It does not operate any copy operation. Hence,

xpoint* and n-point are eq?.
(print (eq? n-point *pointx*)) — #t
To end this example, we shrink n-point and check its class.

(shrink! n-point)

Chapter 9: Object System 123

(print (isa? *point* named-point))) —> #f
Here is a more complex example:

We illustrate widening and shrinking using our “wedding simulator”. First let us define
three classes, person (for man and woman), married-woman and married-man:

(module wedding
(static (final-class person

name: :string
fname: :string
(sex::symbol read-only))

(wide-class married-man: :person
mate: :person)

(wide-class married-woman::person
maiden-name: :string
mate: :person)))

As we can see people are allowed to change their name but not their sex.

The identity of a person can be printed as

(define-method (object-display p::person . op)
(with-access::person p (name fname sex)

(print "firstname : " fname)
(print "name : " name)
(print "sex : " sex)
p))

A married woman’s identity is printed by (we suppose an equivalent method definition
for married-man)

(define-method (object-display p::married-woman . op)
(with-access: :married-woman p (name fname sex mate)
(call-next-method)
(print "married to: " mate)

p))
We create a person with the birth function:

(define (birth name::string fname::string sex)
[assert (sex) (memq sex ’(male female))]
(instantiate: :person

(name name)
(fname fname)
(sex sex)))

We celebrate a wedding using the get-married! function:

(define (get-married! woman::person man::person)
(if (not (and (eq? (-> woman sex) ’female)
(eq? (-> man sex) ’male)))
(error "get-married"
"Illegal wedding"
(cons woman man))
(let* ((mname (-> woman name))
(wife (widen!::married-woman woman
(maiden-name mname)
(mate man))))
(person-name-set! wife (-> man name))
(widen!: :married-man man
(mate woman)))))

We can check if two people are married by

(define (couple? woman::person man: :person)

124 Bigloo 4.3g

(and (isa?” woman married-woman)
(isa? man married-man)
(eq? (with-access::married-woman woman (mate) mate) man)
(eq? (with-access::married-man man (mate) mate) woman)))

Now let us study the life a Junior Jones and Pamela Smith. Once upon a time...

(define *junior* (birth "Jones" "Junior" ’male))
(define *pamela* (birth "Smith" "Pamela" ’female))

Later on, they met each other and ... they got married:

(define *old-boy-junior* *juniorx)
(define *o0ld-girl-pamela* *pamelax)
(get-married! *pamela* *junior*)

This union can be checked:

(couple? *pamela* *juniorx)
= #t

We can look at the new identity of *pamelax

(print *pamelax)

- name : Jones
firstname : Pamela
sex : FEMALE

married to: Junior Jones

But *pamelax* and *juniorx* still are the same persons:

(print (eq? *old-boy-junior* *juniorx*)) = #t
(print (eq? *old-girl-pamela* *pamela*)) = #t

Unfortunately all days are not happy days. After having been married *pamela* and
xjuniorx have divorced:

(define (divorce! woman::person man::person)
(if (not (couple? woman man))
(error "divorce!"
"Illegal divorce"
(cons woman man))
(with-access: :married-woman woman (maiden-name)
(begin
(shrink! woman)
(set! (-> woman name) maiden-name))
(shrink! man))))

(divorce! *pamela* *junior)

We can look at the new identity of *pamelax

(print *pamelax)

- name : Smith
firstname : Pamela
sex : FEMALE

And *pamelax and *junior* still are the same persons:

(print (eq? *old-boy-junior* *juniorx*)) = #t
(print (eq? *old-girl-pamela* *pamela*)) = #t

9.5 Object library

Chapter 9: Object System 125

9.5.1 Classes handling

No type denotes Bigloo’s classes. These objects are handled by the following library func-
tions:

find-class symbol [bigloo procedure]
Returns, if any, the class named symbol.

class? obj [bigloo procedure]
Returns #t if and only if obj is a class.

class-super class [bigloo procedure]
Returns the super-class of class.

class-subclasses class [bigloo procedure]
Returns the subclasses of class.

class-name class [bigloo procedure]
Returns the name (a symbol) of class.

object-constructor class [bigloo procedure]
Returns class’s constructor.

object-class object [bigloo procedure]
Returns the class that object belongs to.

9.5.2 Object handling

wide-object? object [bigloo procedure]
Returns #t if object is a wide object otherwise it returns #f.

object-display object [port] [bigloo generic]
This generic function is invoked by display to display objects.

object-write object [port] [bigloo generic]
This generic function is invoked by write to write objects.

object->struct object [bigloo generic]
struct->object struct [bigloo procedure]
These functions converts objects into Scheme structures and vice-versa.

object-equal? object obj [bigloo generic]
This generic function is invoked by equal? when the first argument is an instance of
object.

object-hashnumber object [bigloo generic]

This generic function returns an hash number of object.

is-a? obj class [bigloo procedure]
Returns #t if obj belongs to class otherwise it returns #£.

126 Bigloo 4.3g

9.6 Object serialization

Objects can be serialized and un-serialized using the regular string->obj and obj->string
functions. Objects can be stored on disk and restored from disk by the use of the output-obj
and input-obj functions.

In addition to this standard serialization mechanism, custom object serializers and un-
serializers can be specified by the means of the register-class-serialization! function
(see Section Section 5.3 [Serialization], page 70.

9.7 Equality

Two objects can be compared with the equal? function. Two object are equal if and only
if they belong to a same class, all their field values are equal and all their super class’s field
values are equal.

9.8 Introspection

Bigloo provides the programmer with some object introspection facilities. See section see
Section 9.5 [Object library|, page 124, for information on classes and objects handling.
Introspection facilities are, by default, available for all classes. However, in order to shrink
the code size generation, it may be useful to disable class introspection. This decision can
be taken on a per class basis (i.e., one class may be provided with introspection facilities
while another one is not). The compiler option -fno-reflection (see Chapter Chapter 31
[Compiler Description], page 275) prevents the compiler to generate the code required for
introspecting the classes defined in the compiled module.

class-fields class [bigloo procedure]
Returns the a description of the fields of class. This description is a list of field
descriptions where each field description can be accessed by the means of the following
library functions. The fields are those directly defined in class. That is class-fields
does not return fields defined in super classes of class.

class-all-fields class [bigloo procedure]
Returns the a description of the fields of class. This description is a list of field
descriptions where each field description can be accessed by the means of the following
library functions. By contrast with class-fields, this function returns fields that
are also defined in the super classes of class. in th

find-class-field class symbol [bigloo procedure]
Returns the field named symbol from class class. Returns #£f is such a field does not
exist,.

class-field? obj [bigloo procedure]

Returns #t if obj is a class field descriptor. Otherwise returns #f.

class-field-name field [bigloo procedure]
Returns the name of the field. The name is a symbol.

class-field-accessor field [bigloo procedure]

Returns a procedure of one argument. Applying this function to an object returns
the value of the field described by field.

Chapter 9: Object System 127

class-field-mutable? field [bigloo procedure]
Returns #t if the described field is mutable and #f otherwise.

class-field-mutator field [bigloo procedure]
Returns a procedure of two arguments. Applying this function to an object changes
the value of the field described by field. It is an error to apply class-field-mutator
to an immutable field.

class-field-info field [bigloo procedure]
Returns the information associated to field (this the class declaration info attribute).

For means of an example, here is a possible implementation of the equal? test for objects:
(define (object-equal? objl obj2)
(define (class-field-equal? £d)
(let ((get-value (class-field-accessor fd)))
(equal? (get-value objl) (get-value obj2))))
(let ((classl (object-class objl))
(class2 (object-class obj2)))
(cond
((not (eq? classl class2))
#£)
(else
(let loop ((fields (class-fields classl))
(class classl))
(cond
((null? fields)
(let ((super (class-super class)))
(if (class? super)
(loop (class-fields super)
super)
#t)))
((class-field-equal? (car fields))
(loop (cdr fields) class))
(else

#£)))))))

class-creator class [bigloo procedure]
Returns the creator for class. The creator is a function for which the arity depends
on the number of slots the class provides (see Section see Section 9.2 [Creating and
accessing objects|, page 119).

When an instance is allocated by the means of the class-creator, as for direct
instantiation, the class constructor is automatically invoked. Example:

(module foo
(main main)
(static (class c1 (cl-comstructor))))

(define cl-constructor
(let ((count 0))
(lambda (inst)
(set! count (+ 1 count))
(print "creating instance: " count)
inst)))

(define (main argv)
(let ((o1 (instantiate::c1))

128 Bigloo 4.3g

(o2 (instantiate::cl))
(03 ((class-creator c1))))
’done))
-1 creating instance: 1
creating instance: 2
creating instance: 3

class-predicate class [bigloo procedure]
Returns the predicate for class. This predicate returns #t when applied to object of
type class. It returns #f otherwise.

129

10 Regular parsing

Programming languages have poor reading libraries since the lexical information that can
be specified is directly tied to the structure of the language. For example, in C it’s hard
to read a rational number because there is no type rational. Programs have been written
to circumvent this problem: Lex [Lesk75], for example, is one of them. We choose to
incorporate in Bigloo a set of new functions to assist in such parsing. The syntax for
regular grammar (also known as regular analyser) of Bigloo 2.0 (the one described in this
document) is not compatible with former Bigloo versions.

10.1 A new way of reading

There is only one way in Bigloo to read text, reqular reading, which is done by the new
form:

read/rp regular-grammar input-port [bigloo procedure]
The first argument is a regular grammar (also known as regular analyser) and the
second a Scheme port. This way of reading is almost the same as the Lex’s one. The
reader tries to match the longest input, from the stream pointed to by input-port,
with one of several regular expressions contained in regular-grammar. If many rules
match, the reader takes the first one defined in the grammar. When the regular rule
has been found the corresponding Scheme expression is evaluated.

remark: The traditional read Scheme function is implemented as:

(define-inline (read port)
(read/rp scheme-grammar port))
10.2 The syntax of the regular grammar

A regular grammar is built by the means of the form regular-grammar:

regular-grammar (binding ...) rule ... [bigloo syntax]
The binding and rule are defined by the following grammar:
<binding> > (<variable> <re>)

| <option>
<option> + <variable>
<rule> > <define>
| (<cre> <s-expression> <s-expression> ...)
| (else <s-expression> <s-expression> ...)
<define> + (define <s-expression>)
<cre> — <re>

| (context <symbol> <re>)
| (when <s-expr> <re>)
| (bol <re>)
| (eol <re>)
| (bof <re>)
| (eof <re>)
<re> +— <variable>
| <char>
| <string>
| (: <re> ...)
| (or <re> ...)
| (* <re>)

130 Bigloo 4.3g

(+ <re>)

(7 <re>)

(= <integer> <re>)

(>= <integer> <re>)

(** <integer> <integer> <re>)

(... <integer> <re>)
(uncase <re>)

(in <cset> ...)

(out <cset> ...)

(and <cset> <cset>)
(but <cset> <cset>)
(posix <string>)
<variable> > <symbol>
<cset> — <string>

| <char>

| (<string>)

| (<char> <char>)

Here is a description of each construction.

(context <symbol> <re>)
This allows us to protect an expression. A protected expression matches
(or accepts) a word only if the grammar has been set to the corresponding
context. See Section 10.3 [The Semantics Actions], page 133, for more
details.

(when <s-expr> <re>)
This allows us to protect an expression. A protected expression matches
(or accepts) a word only if the evaluation of <s-expr> is #t. For instance,
(define *g*
(let ((armed #£f))
(regular-grammar ()
((when (not armed) (: "#!" (+ (or #\/ alpha))))
(set! armed #t)
(print "start [" (the-string) "1")
(ignore))
((+ (in #\Space #\Tab))
(ignore))
(else
(the-failure)))))

(define (main argv)
(let ((port (open-input-string "#!/bin/sh #!/bin/zsh")))
(print (read/rp *g+* port))))

(bol <re>)
Matches <re> at the beginning of line.

(eol <re>)
Matches <re> at the end of line.

(bof <re>)
Matches <re> at the beginning of file.

(eof <re>)
Matches <re> at the end of file.

Chapter 10: Regular parsing 131

<variable>

<char>

<string>

(: <re> ..

(or <re> ..

(* <re>)

This is the name of a variable bound by a <binding> construction. In
addition to user defined variables, some already exist. These are:

all = (out #\Newline)

lower = (in ("az"))

upper = (in ("AZ"))

alpha = (or lower upper)

digit = (in ("09"))

xdigit = (uncase (in ("af09")))
alnum = (uncase (in ("az09")))
punct = (in ".,;!?")

blank = (in #" \t\n")

space = #\Space

It is a error to reference a variable that it is not bound by a <binding>.
Defining a variable that already exists is acceptable and causes the former
variable definition to be erased. Here is an example of a grammar that
binds two variables, one called ‘ident’ and one called ‘number’. These two
variables are used within the grammar to match identifiers and numbers.
(regular-grammar ((ident (: alpha (* alnum)))
(number (+ digit)))
(ident (cons ’ident (the-string)))

(number (cons ’number (the-string)))
(else (cons ’else (the-failure))))

The regular language described by one unique character. Here is an ex-
ample of a grammar that accepts either the character #\a or the character
#\b:
(regular-grammar ()
(#\a (cons ’a (the-string)))
(#\b (cons ’b (the-string)))
(else (cons ’else (the-failure))))

This simple form of regular expression denotes the language represented
by the string. For instance the regular expression "Bigloo" matches only
the string composed of #\B #\1i #\g #\1 #\o #\o. The regular expression
".x[" matches the string #\. #* #\[.

)

This form constructs sequence of regular expression. That is a form <rei1>
<re2> ... <ren> matches the language construction by concatenation of
the language described by <rel>, <re2>, <ren>. Thus, (: "x" all "y")
matches all words of three letters, started by character the #\x and ended
with the character #\y.

D)
This construction denotes conditions. The language described by (or
rel re2) accepts words accepted by either rel or re2.

This is the Kleene operator, the language described by (* <re>) is the
language containing, 0 or more occurrences of <re>. Thus, the language
described by (* "abc") accepts the empty word and any word composed
by a repetition of the abc (abc, abcabc, abcabcabe, ...).

132

Bigloo 4.3g

(+ <re>) This expression described non empty repetitions. The form (+ re) is
equivalent to (: re (*x re)). Thus, (+ "abc") matches the words abc,
abcabc, etc.

(? <re>) This expression described one or zero occurrence. Thus, (7 "abc")
matches the empty word or the words abc.

~
Il

<integer> <re>)
This expression described a fix number of repetitions. The form (= num
re) is equivalent to (: re re ... re). Thus, the expression (= 3 "abc")
matches the only word abcabcabc. In order to avoid code size explosion
when compiling, <integer> must be smaller than an arbitrary constant.
In the current version that value is 81.

(>= <integer> <re>)
The language described by the expression (>= int re) accepts word that
are, at least, int repetitions of re. For instance, (>= 10 #\a), accepts
words compound of, at least, 10 times the character #\a. In order to
avoid code size explosion when compiling, <integer> must be smaller
than an arbitrary constant. In the current version that value is 81.

(** <integer> <integer> <re>)
The language described by the expression (** min max re) accepts word
that are repetitions of re; the number of repetition is in the range min,
max. For instance, (** 10 20 #\a). In order to avoid code size explosion
when compiling, <integer> must be smaller than an arbitrary constant.
In the current version that value is 81.

(... <integer> <re>)
The subexpression <re> has to be a sequence of characters. Sequences
are build by the operator : or by string literals. The language described
by (... int re), denotes, the first letter of re, or the two first letters
of re, or the three first letters of re or the int first letters of re. Thus,
(... 3 "begin") is equivalent to (or "b" "be" "beg").

(uncase <re>)
The subexpression <re> has to be a sequence construction. The language
described by (uncase re) is the same as re where letters may be upper
case or lower case. For instance, (uncase "begin"), accepts the words
"begin", "beGin", "BEGIN", "BegiN", etc.

(in <cset> ...)

Denotes union of characters. Characters may be described individually
such as in (in #\a #\b #\c #\d). They may be described by strings. The
expression (in "abcd") is equivalent to (in #\a #\b #\c #\d). Charac-
ters may also be described using a range notation that is a list of two
characters. The expression (in (#\a #\d)) is equivalent to (in #\a #\b
#\c #\d). The Ranges may be expresses using lists of string. The ex-
pression (in ("ad")) is equivalent to (in #\a #\b #\c #\d).

Chapter 10: Regular parsing 133

(out <cset> ...)
The language described by (out cset ...) is opposite to the one de-
scribed by (in cset ...). For instance, (out ("azAZ") (#\0 #\9)) ac-
cepts all words of one character that are neither letters nor digits. One
should not that if the character numbered zero may be used inside regular
grammar, the out construction never matches it. Thus to write a rule
that, for instances, matches every character but #\Newline including the
character zero, one should write:
(or (out #\Newline) #a000)

(and <cset> <cset>)
The language described by (and csetl cset2) accepts words made of
characters that are in both cset1 and cset2.

(but <cset> <cset>)
The language described by (but csetl cset2) accepts words made of
characters of csetl that are not member of cset2.

(posix <string>)
The expression (posix string) allows one to use Posix string notation
for regular expressions. So, for example, the following two expressions
are equivalent:
(posix "[az]+|x*|y{3,5}")

(OI' (+ (1n (llazll))) (* "X") (** 35 nyu))

string-case string rule ... [bigloo syntax]
This form dispatches on strings. it opens an input on string a read into it according
to the regular grammar defined by the binding and rule. Example:

(define (suffix string)
(string-case string
(¢ (xall) ".")
(ignore))
((+ (out #\.))
(the-string))
(else

IIII)))

10.3 The semantics actions

The semantics actions are regular Scheme expressions. These expressions appear in an
environment where some “extra procedures” are defined. These procedures are:

the-port [bigloo rgc procedure]
Returns the input port currently in used.

the-length [bigloo rgc procedure]
Get the length of the biggest matching string.

the-string [bigloo rgc procedure]
Get a copy of the last matching string. The function the-string returns a fresh copy
of the matching each time it is called. In consequence,
(let ((11 (the-string)) (12 (the-string)))

134 Bigloo 4.3g

(eq? 11 12))
= #£f

the-substring start len [bigloo rgc procedure]
Get a copy of a substring of the last matching string. If the len is negative, it is
subtracted to the whole match length. Here is an example of a rule extracting a part
of a match:
(regular-grammar ()

(C: #\" (x (out #\")) #\")

(the-substring 1 (-fx (the-length) 1))))
Which can also be written:

(regular-grammar ()
(G #\" (x (out #\")) #\")
(the-substring 1 -1)))

the-character [bigloo rgc procedure]
the-byte [bigloo rgc procedure]
Returns the first character of a match (respectively, the first byte).

the-byte-ref n [bigloo rgc procedure]
Returns the n-th bytes of the matching string.

the-symbol [bigloo rgc procedure]
the-downcase-symbol [bigloo rgc procedure]
the-upcase-symbol [bigloo rgc procedure]
the-subsymbol start length [bigloo rgc procedure]

Convert the last matching string into a symbol. The function the-subsymbol obeys
the same rules as the-substring.

the-keyword [bigloo rgc procedure]
the-downcase-keyword [bigloo rge procedure]
the-upcase-keyword [bigloo rgc procedure]

Convert the last matching string into a keyword.

the-fixnum [bigloo rgc procedure]
The conversion of the last matching string to fixnum.

the-flonum [bigloo rgc procedure]
The conversion of the last matching string to flonum.

the-failure [bigloo rgc procedure]
Returns the first char that the grammar can’t match or the end of file object.

ignore [bigloo rgc procedure]
Ignore the parsing, keep reading. It’s better to use (ignore) rather than an expression
like (read/rp grammar port) in semantics actions since the (ignore) call will be
done in a tail recursive way. For instance,

(let ((g (regular-grammar ()
(Il)ll
*O)
(Il(ll

Chapter 10: Regular parsing 135

(let* ((car (ignore))
(cdr (ignore)))
(cons car cdr)))
((+ (out "O"))
(the-string))))
(p (open-input-string "(foo(bar(gee)))")))

(read/rp g p))
i (llfoo" (llbar" (Ilgeell)))

rgc-context [context) [bigloo rge procedure]
If no context is provide, this procedure reset the reader context state. That is the
reader is in no context. With one argument, context set the reader in the context
context. For instance,

(let ((g (regular-grammar ()
((context foo "foo") (print ’foo-bis))
("foo" (rgc-context ’foo) (print ’foo) (ignore))
(else ’done)))
(p (open-input-string "foofoo")))
(read/rp g p))
- foo
foo-bis

Note that RGC context are preserved across different uses of read/rp.

the-context [bigloo rgc procedure]
Returns the value of the current Rge context.

10.4 Options and user definitions

Options act as parameters that are transmitted to the parser on the call to read/rp. Local
defines are user functions inserted in the produced parser, at the same level as the pre-
defined ignore function.

Here is an example of grammar using both

(define gram
(regular-grammar (x y)

(define (foo s)
(cons* ’foo x s (ignore)))
(define (bar s)
(cons* ’bar y s (ignore)))

((+ #\a) (foo (the-string)))
((+ #\b) (bar (the-string)))
(else > ())))
This grammar uses two options x and y. Hence when invokes it takes two additional
values such as:
(with-input-from-string "aabb"

(lambda ()
(read/rp gram (current-input-port) ’option-x ’option-y)))

= (foo option-x aa bar option-y bb)

10.5 Examples of regular grammar

The reader who wants to find a real example should read the code of Bigloo’s reader. But
here are small examples

136 Bigloo 4.3g

10.5.1 Word count

The first example presents a grammar that simulates the Unix program wc.

(let ((*charx* 0)
(*word* 0)
(*linex 0))

(regular-grammar ()

((+ #\Newline)

(set! *char* (+ *char* (the-length)))
(set! *line* (+ *line* (the-length)))
(ignore))

((+ (in #\space #\tab))

(set! *char* (+ *char* (the-length)))
(ignore))

((+ (out #\newline #\space #\tab))
(set! *char* (+ *char* (the-length)))
(set! *word* (+ 1 *wordx))
(ignore))))

10.5.2 Roman numbers

The second example presents a grammar that reads Arabic and Roman number.

(let ((par-open 0))
(regular-grammar ((arabic (in ("09")))
(roman (uncase (in "ivxlcdm"))))
((+ (in #" \t\n"))
(ignore))
((+ arabic)
(string->integer (the-string)))
((+ roman)
(roman->arabic (the-string)))
G\ (
(let ((open-key par-open))
(set! par-open (+ 1 par-open))
(context ’pair)
(let loop-pair ((walk (ignore)))
(cond
((= open-key par-open)
>O)
(else
(cons walk (loop-pair (ignore))))))))
(#\)
(set! par-open (- par-open 1))
(if (< par-open 0)

(begin
(set! par-open 0)
(ignore))
#£))
(GEn "+-+\\")
(string->symbol (the-string)))
(else

(let ((char (the-failure)))
(if (eof-object? char)
char
(error "grammar-roman" "Illegal char" char))))))

137

11 Lalr(1) parsing

Regular grammar generators, like Lex, are often coupled with tools, such as Yacc and Bison,
that can generate parsers for more powerful languages, namely (a subset of) context-free
languages. These tools take as input a description of the language to be recognized and
generate a parser for that language, written in some other language (for example, Yacc
and Bison generate parsers written in C). The user must always be aware of the generated
parser and that is a nuisance. Bigloo provides such a tool that overcomes this annoyance.
It generates parsers for the class of Lalr(1) grammars in a more opaque way.

11.1 Grammar definition
An lalr(1) grammar is defined by the form:

lalr-grammar term-def non-term-def. . . [bigloo syntax]
term-def is a list of terminal elements of the grammar. Terminals can grouped to-
gether to form precedence groups by including the related symbols in a sub-lists of
the term-def list. Each precedence group must start with one of the keywords left:,
right: or none:— this indicates the associativity of the terminal symbol. Here is a
sample term-def which declares eight terminals:
(terminal-1 terminal-2
(left: terminal-3 terminal-4)
terminal-5
(right: terminal-6)
(none: terminal-7)
terminal-8)
In this case, terminal-3 and terminal-4 both have the same precedence, which is
greater than the precedence assigned to terminal-6. No precedence was assigned to

symbols terminal-1, terminal-2, terminal-5 or terminal-8.
Each non-term-def is a list whose first element is the non-terminal being defined, i.e.
a symbol. The remaining elements are the production rules associated with this non-
terminal. Each rule is a list whose first element is the rule itself (a list of symbols)
and the other elements are the semantic actions associated with that particular rule.
For example, consider the following grammar:

E — E1 + id {E.val := El.val + id.val}

| id {E.val := id.val}

With Bigloo, it would be written:

(lalr-grammar

(plus id)

(e

((e plus id) (+ e id))
(D) id)))

The semantic value of a symbol in a rule can be accessed by simply using the name
of the symbol in the semantic action associated with the rule. Because a rule can
contain multiple occurrences of the same symbol, Bigloo provides a way to access
these occurrences separately. To do so, the name of each occurrence must be suffixed
by @var where var is the name of a variable that will be bound to the semantic value
of the occurrence. For example, if the rule is

ifstmt — if E then Stmt else Stmt

138 Bigloo 4.3g

then, in Bigloo, it would look like

(if-stmt
((if e then stmt@conseq else stmt@altern)
(if (eval e)
(eval conseq)
(eval altern))))

11.2 Precedence and associativity

The bigloo lalr(1) parser generator supports operator precedence and associativity. The
method for specifying the precedence for terminal symbols is described in Section 11.1
[Grammar Definition|, page 137. Precedence is assigned to each non-terminal production
from the precedence of the last terminal symbol appearing in that production.

Typically, when the parser generator encounters a shift/reduce conflict, it produces a
warning message, then chooses to reduce. When a parser generator has precedence and
associativity information, it can make a much more sophisticated decision.

Let’s use this simple calculator grammar as an example:

(lalr-grammar
((left: op-mult op-div)
(left: op-add op-sub)
op-lparen op-rparen
op-semicolon
number)

(file
(€0))
((file stmt)))
(stmt
((expr op-semicolon) (print expr)))
(expr
((number) number)
((expr@a op-add expr@b) (+ a b))
((expr@a op-sub expr@) (- a b))
((expr@a op-mult expr@b) (* a b))
((expr@a op-div expr@b) (/ a b))
((op-lparen expr op-rparen) expr))))

Let’s start with this input:
1+ 2 % 3;
At the point where the parser has read 1 + 2 and the lookahead symbol is *, the parser

encounters a shift /reduce conflict. Should it first reduce by the (expr op-add expr) pro-
duction or shift the * in the hopes of reducing the latter expression first?

The (expr op-add expr) production has gotten its precedence from the op-add terminal
symbol. This is the precedence of the reduce. The precedence of the shift comes from the
precedence assigned to the lookahead terminal symbol, which is op-mult. Since op-mult
has higher precedence, the parser generator in this state chooses to shift and does not
produce a warning.

Here’s an example which we can use to demonstrate associativity:

1+2 - 3;

The parser generator encounters a similar shift/reduce conflict this time, except that

when it tries to determine whether to shift or reduce, it finds that both actions have the same

Chapter 11: Lalr(1) parsing 139

precedence. In this case, the parser generator looks at the associativity of the precedence
group containing the op-add and op-sub. Since these are declared to be left-associative,
the parser generator chooses to reduce from this state, effectively calculating the 1 + 2.
Had these symbols been right-associative, the parser would have chosen to shift, effectively
calculating 2 - 3 first. If these symbols had been declared non-associative with the none:
keyword, the parser would generate an error if it ever encountered this state.

11.3 The parsing function

Once a grammar has been defined, it can be used to parse some input using the following
function:

read/lalrp Ig rg port [emptyp] [bigloo procedure]
This function takes three, possibly four, arguments. The first, g, is the Lalr(1)
grammar. The second, rg, is the lexical analyzer that feeds the grammar with tokens.
The third argument, port, is the port that contains the input to be parsed. The last
argument, emptyp, if provided, should be a function of one argument. It is called
with each new token read from the port and should return #t if the token denotes the
end of input. The result of the call is the value computed by the semantic actions of
the production rules.

11.4 The regular grammar

In order to work properly, the regular grammar used with an Lalr(1) grammar should follow
some conventions:

e If a semantic value is to be associated with the token just parsed, the regular grammar
should return a pair whose car is the token name (a symbol) and the cdr is the semantic
value.

e If there is no value associated with the token, the regular grammar can return just
the token name. When used in conjunction with an Lalr grammar, regular grammar
should never return #f as a token value. This is specially true when the regular grammar
detects the end of parsing. In that case, the regular grammar must not return the #£
value. A good way to handle end-of-file is illustrated in the following example:

(let ((g (regular-grammar ()
(else
(let ((c (the-failure)))
(if (eof-object? c)
C
(error ’rgc "Illegal character" c¢))))))

(1 (lalr-grammar ...)))
(read/lalrp 1 g (current-input-port)))

This way, the Lalr grammar will automatically handles the end-of-file.

11.5 Debugging Lalr Grammars

Currently the debugging facility for debugging Lalr grammars is very limited. When the
parameter bigloo-debug is set to a value greater or equal to 100, the Lalr engine outputs
all of the state changes the parser is going through.

140 Bigloo 4.3g

11.6 A simple example

Here is the code for a simple calculator implemented by an Lalr(1) grammar:
(begin
(read/lalrp
(lalr-grammar
(nl plus mult minus div const lpar rpar)
(lines
(€0))
((lines expression nl) (display "--> ")
(display expression)
(newline))
((lines nl)))
(expression
((expression plus term) (+ expression term))
((expression minus term) (- expression term))

((term) term))
(term

((term mult factor) (* term factor))
((term div factor) (/ term factor))
((factor) factor))

(factor

((1par expression rpar) expression)
((const) const)))

(regular-grammar ()
((+ (or #\tab #\space)) (ignore))

(#\newline ’nl)

((+ digit) (cons ’const (string->number (the-string))))
(#\+ ’plus)

(#\- ’minus)

(#* ’mult)

#\/ ’div)

#\(’1par)

#\) ’rpar))

(current-input-port))
(reset-eof (current-input-port)))

141

12 Posix Regular Expressions

This whole section has been written by Dorai Sitaram. It consists in the documentation of
the pregexp package that may be found at http://www.ccs.neu.edu/ dorai/pregexp/
pregexp.html.

The regexp notation supported is modeled on Perl’s, and includes such powerful direc-
tives as numeric and nongreedy quantifiers, capturing and non-capturing clustering, POSIX
character classes, selective case- and space-insensitivity, backreferences, alternation, back-
track pruning, positive and negative lookahead and lookbehind, in addition to the more
basic directives familiar to all regexp users. A regexp is a string that describes a pattern.
A regexp matcher tries to match this pattern against (a portion of) another string, which
we will call the text string. The text string is treated as raw text and not as a pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves
in the text string. Thus, the pattern "abc" matches a string that contains the characters
a, b, c in succession.

In the regexp pattern, some characters act as metacharacters, and some character se-
quences act as metasequences. That is, they specify something other than their literal selves.
For example, in the pattern "a.c", the characters a and ¢ do stand for themselves but the
metacharacter . can match any character (other than newline). Therefore, the pattern
"a.c" matches an a, followed by any character, followed by a c.

If we needed to match the character . itself, we escape it, ie, precede it with a backslash
(\). The character sequence \. is thus a metasequence, since it doesn’t match itself but
rather just .. So, to match a followed by a literal . followed by c, we use the regexp pattern
"a\\.c".! Another example of a metasequence is \t, which is a readable way to represent
the tab character.

We will call the string representation of a regexp the U-regexp, where U can be taken to
mean Uniz-style or universal, because this notation for regexps is universally familiar. Our
implementation uses an intermediate tree-like representation called the S-regexp, where
S can stand for Scheme, symbolic, or s-expression. S-regexps are more verbose and less
readable than U-regexps, but they are much easier for Scheme’s recursive procedures to
navigate.

12.1 Regular Expressions Procedures

Four procedures pregexp, pregexp-match-positions, pregexp-match, pregexp-replace,
and pregexp-replace#* enable compilation and matching of regular expressions.

pregexp U-regexp . opt-args [bigloo procedure]
The procedure pregexp takes a U-regexp, which is a string, and returns an S-regexp,
which is a tree.
(pregexp "c.r") = (:sub (:or (:seq #\c :any #\r)))

1 The double backslash is an artifact of Scheme strings, not the regexp pattern itself. When we want a
literal backslash inside a Scheme string, we must escape it so that it shows up in the string at all. Scheme
strings use backslash as the escape character, so we end up with two backslashes — one Scheme-string
backslash to escape the regexp backslash, which then escapes the dot. Another character that would
need escaping inside a Scheme string is ".

http://www.ccs.neu.edu/~dorai/pregexp/pregexp.html
http://www.ccs.neu.edu/~dorai/pregexp/pregexp.html

142 Bigloo 4.3g

There is rarely any need to look at the S-regexps returned by pregexp.

The opt-args specifies how the regular expression is to be matched. Until documented
the argument should be the empty list.

pregexp-match-positions regexp string [beg 0] [end -1] [bigloo procedure]
The procedure pregexp-match-positions takes a regexp pattern and a text string,
and returns a match if the pattern matches the text string. The pattern may be either
a U- or an S-regexp. (pregexp-match-positions will internally compile a U-regexp
to an S-regexp before proceeding with the matching. If you find yourself calling
pregexp-match-positions repeatedly with the same U-regexp, it may be advisable
to explicitly convert the latter into an S-regexp once beforehand, using pregexp, to
save needless recompilation.)

pregexp-match-positions returns #f if the pattern did not match the string; and a
list of index pairs if it did match. Eg,

(pregexp-match-positions "brain" "bird")

= #f

(pregexp-match-positions "needle" "hay needle stack")

= ((4 . 10))
In the second example, the integers 4 and 10 identify the substring that was matched.
1 is the starting (inclusive) index and 2 the ending (exclusive) index of the matching
substring.

(substring "hay needle stack" 4 10)

= '"needle"
Here, pregexp-match-positions’s return list contains only one index pair, and that
pair represents the entire substring matched by the regexp. When we discuss subpat-
terns later, we will see how a single match operation can yield a list of submatches.

pregexp-match-positions takes optional third and fourth arguments that specify
the indices of the text string within which the matching should take place.

(pregexp-match-positions "needle"
"his hay needle stack -- my hay needle stack -- her hay needle stack"
24 43)

= ((31 . 37)

Note that the returned indices are still reckoned relative to the full text string.

pregexp-match regexp string [bigloo procedure]

The procedure pregexp-match is called like pregexp-match-positions but instead
of returning index pairs it returns the matching substrings:

(pregexp-match "brain" "bird")

= #f

(pregexp-match "needle" "hay needle stack")

= ("needle")
pregexp-match also takes optional third and fourth arguments, with the same mean-

ing as does pregexp-match-positions.

pregexp-replace regexp stringl string2 [bigloo procedure]
The procedure pregexp-replace replaces the matched portion of the text string by
another string. The first argument is the regexp, the second the text string, and the
third is the insert string (string to be inserted).
(pregexp-replace "te" "liberte" "ty")

Chapter 12: Posix Regular Expressions 143

= "liberty"

If the pattern doesn’t occur in the text string, the returned string is identical (eq?)
to the text string.

pregexp-replace* regexp stringl string2 [bigloo procedure]
The procedure pregexp-replace* replaces all matches in the text stringl by the
insert string2:
(pregexp-replace* "te" "liberte egalite fraternite" "ty")
= "liberty egality fratyrnity"
As with pregexp-replace, if the pattern doesn’t occur in the text string, the returned
string is identical (eq?) to the text string.

pregexp-split regexp string [bigloo procedure]
The procedure pregexp-split takes two arguments, a regexp pattern and a text
string, and returns a list of substrings of the text string, where the pattern identifies
the delimiter separating the substrings.

(pregexp-split ":" "/bin:/usr/bin:/usr/bin/X11:/usr/local/bin")
= ("/bin" "/usr/bin" "/usr/bin/X11" "/usr/local/bin")

(pregexp-split " " "pea soup")
: (Ilpeall Ilsoupll)

If the first argument can match an empty string, then the list of all the single-character
substrings is returned.
(pregexp-split "" "smithereens")

= ("S" ! Mg NN RN gl N gt gt N "S")

To identify one-or-more spaces as the delimiter, take care to use the regexp " +", not

n *ll'
(pregexp-split " +" "split pea soup")
= ("Split" npeau "soup")
(pregexp-split " *" "split pea soup")
:> (llS” llp" ||1|| ’li" ||t|l ’lpll "ell ’lall "S" ||0’| llull |lp’|)
pregexp-quote string [bigloo procedure]

The procedure pregexp-quote takes an arbitrary string and returns a U-regexp
(string) that precisely represents it. In particular, characters in the input string
that could serve as regexp metacharacters are escaped with a backslash, so that they
safely match only themselves.

(pregexp-quote "cons")
= "cons"

(pregexp-quote "list?")

= "list\\?"
pregexp-quote is useful when building a composite regexp from a mix of regexp
strings and verbatim strings.

12.2 Regular Expressions Pattern Language

Here is a complete description of the regexp pattern language recognized by the pregexp
procedures.

144 Bigloo 4.3g

12.2.1 Basic assertions

-~

The assertions ~ and $ identify the beginning and the end of the text string respectively.
They ensure that their adjoining regexps match at one or other end of the text string.
Examples:

(pregexp-match-positions "“contact" "first contact") = #f
The regexp fails to match because contact does not occur at the beginning of the text
string.

(pregexp-match-positions "laugh$" "laugh laugh laugh laugh") = ((18 . 23))
The regexp matches the last laugh.

The metasequence \b asserts that a word boundary exists.
(pregexp-match-positions "yack\\b" "yackety yack") = ((8 . 12))

The yack in yackety doesn’t end at a word boundary so it isn’t matched. The second yack
does and is.

The metasequence \B has the opposite effect to \b. It asserts that a word boundary
does not exist.
(pregexp-match-positions "an\\B" "an analysis") = ((3 . 5))

The an that doesn’t end in a word boundary is matched.

12.2.2 Characters and character classes

Typically a character in the regexp matches the same character in the text string. Some-
times it is necessary or convenient to use a regexp metasequence to refer to a single char-
acter. Thus, metasequences \n, \r, \t, and \. match the newline, return, tab and period
characters respectively.

The metacharacter period (.) matches any character other than newline.
(pregexp-match "p.t" "pet") = ("pet")
It also matches pat, pit, pot, put, and p8t but not peat or pfffft.

A character class matches any one character from a set of characters. A typical format
for this is the bracketed character class [...], which matches any one character from the non-
empty sequence of characters enclosed within the brackets.? Thus "p[aeiou]t" matches
pat, pet, pit, pot, put and nothing else.

Inside the brackets, a hyphen (-) between two characters specifies the ascii range between
the characters. Eg, "ta[b-dgn-p]" matches tab, tac, tad, and tag, and tan, tao, tap.

An initial caret (~) after the left bracket inverts the set specified by the rest of the
contents, ie, it specifies the set of characters other than those identified in the brackets. Eg,
"do[~g]" matches all three-character sequences starting with do except dog.

Note that the metacharacter ~ inside brackets means something quite different from
what it means outside. Most other metacharacters (., *, +, 7, etc) cease to be metachar-
acters when inside brackets, although you may still escape them for peace of mind. - is a
metacharacter only when it’s inside brackets, and neither the first nor the last character.

Bracketed character classes cannot contain other bracketed character classes (although
they contain certain other types of character classes — see below). Thus a left bracket ([)

2 Requiring a bracketed character class to be non-empty is not a limitation, since an empty character class
can be more easily represented by an empty string.

Chapter 12: Posix Regular Expressions 145

inside a bracketed character class doesn’t have to be a metacharacter; it can stand for itself.
Eg, "[a[b]" matches a, [, and b.

Furthermore, since empty bracketed character classes are disallowed, a right bracket (1)
immediately occurring after the opening left bracket also doesn’t need to be a metacharacter.
Eg, "[Jab]" matches], a, and b.

12.2.3 Some frequently used character classes

Some standard character classes can be conveniently represented as metasequences instead
of as explicit bracketed expressions. \d matches a digit ([0-9]); \s matches a whitespace
character; and \w matches a character that could be part of a “word”.?

The upper-case versions of these metasequences stand for the inversions of the corre-
sponding character classes. Thus \D matches a non-digit, \S a non-whitespace character,
and \W a non-“word” character.

Remember to include a double backslash when putting these metasequences in a Scheme
string:

(pregexp-match "\\d\\d" "O dear, 1 have 2 read catch 22 before 9") = ("22")

These character classes can be used inside a bracketed expression. Eg, "[a-z\\d]"
matches a lower-case letter or a digit.

12.2.4 POSIX character classes

A POSIX character class is a special metasequence of the form [:...:] that can be used
only inside a bracketed expression. The POSIX classes supported are

:alnum:] letters and digits
:alpha:] letters

:word:] letters, digits, and underscore, same as \w
:xdigit:] hex digits

[

[

[:algor:] the letters c, h, a and d

[:ascii:] 7-bit ascii characters

[:blank:] widthful whitespace, ie, space and tab
[:ecntrl:] f‘‘control’’ characters, viz, those with code < 32
[:digit:] digits, same as \d

[:graph:] characters that use ink

[:lower:] 1lower-case letters

[:print:] ink-users plus widthful whitespace
[:space:] whitespace, same as \s

[:upper:] upper-case letters

[

[

For example, the regexp " [[:alpha:]_]1" matches a letter or underscore.

(pregexp-match "[[:alpha:]_]1" "--x--") = ("x")
(pregexp-match "[[:alpha:]_]" "--_--") = ("_")
(pregexp-match "[[:alpha:]_]" "--:--") = #f

The POSIX class notation is valid only inside a bracketed expression. For instance,
[:alpha:], when not inside a bracketed expression, will not be read as the letter class.
Rather it is (from previous principles) the character class containing the characters :, a, 1,
p, h.

(pregexp-match "[[:alpha:]]" "--a--") = ("a")
(pregexp-match "[[:alpha:]]" "--_--") = #f

3 Following regexp custom, we identify “word” characters as [A-Za-z0-9_], although these are too restric-
tive for what a Schemer might consider a “word”.

146 Bigloo 4.3g

By placing a caret (") immediately after [:, you get the inversion of that POSIX char-
acter class. Thus, [:~alpha] is the class containing all characters except the letters.

12.2.5 Quantifiers

The quantifiers *, +, and ? match respectively: zero or more, one or more, and zero or one
instances of the preceding subpattern.

(pregexp-match-positions "c[ad]l*r" "cadaddadddr") = ((0 . 11))
(pregexp-match-positions "c[ad]*r" "cr") = (0 . 2))
(pregexp-match-positions "c[ad]+r" "cadaddadddr") = ((0 . 11))
(pregexp-match-positions "c[ad]+r" "cr") = #f

(pregexp-match-positions "c[ad]?r" "cadaddadddr") = #f

(pregexp-match-positions "c[ad]l?r" "cr") = (0 . 2))
(pregexp-match-positions "c[ad]?r" "car") = (0 . 3))

12.2.6 Numeric quantifiers
You can use braces to specify much finer-tuned quantification than is possible with *, +, 2.

The quantifier {m} matches exactly m instances of the preceding subpattern. m must be
a nonnegative integer.

The quantifier {m,n} matches at least m and at most n instances. m and n are nonnegative
integers with m <= n. You may omit either or both numbers, in which case m defaults to 0
and n to infinity.

It is evident that + and 7 are abbreviations for {1, } and {0, 1} respectively. * abbreviates
{,}, which is the same as {0, }.

(pregexp-match "[aeiou]{3}" "vacuous") = ("uou"
(pregexp-match "[aeiou]l{3}" "evolve") = #f
(pregexp-match "[aeioul{2,3}" "evolve") = #f
(pregexp-match "[aeiou]l{2,3}" "zeugma") = ("eu")

12.2.7 Non-greedy quantifiers

The quantifiers described above are greedy, ie, they match the maximal number of instances
that would still lead to an overall match for the full pattern.
(pregexp-match "<.*>" '"<tagl> <tag2> <tag3>")
= ("<tagl> <tag2> <tag3>")
To make these quantifiers non-greedy, append a ? to them. Non-greedy quantifiers match
the minimal number of instances needed to ensure an overall match.
(pregexp-match "<.x7>" "<tagl> <tag2> <tag3>") = ("<tagl>")

The non-greedy quantifiers are respectively: *7, +7, 77, {m}?, {m,n}?. Note the two
uses of the metacharacter 7.

12.2.8 Clusters

Clustering, ie, enclosure within parens (...), identifies the enclosed subpattern as a single
entity. It causes the matcher to capture the submatch, or the portion of the string matching
the subpattern, in addition to the overall match.

(pregexp-match "([a-z]+) ([0-9]+), ([0-9]+)" "jan 1, 1970")
= ("ja-n 1, 1970" "janll nqgn o n1970")

Chapter 12: Posix Regular Expressions 147

Clustering also causes a following quantifier to treat the entire enclosed subpattern as
an entity.

(pregexp-match "(poo)*" "poo poo platter") = ("poo poo " "poo ")

The number of submatches returned is always equal to the number of subpatterns speci-
fied in the regexp, even if a particular subpattern happens to match more than one substring
or no substring at all.

(pregexp-match "([a-z]+;)*" "lather; rinse; repeat;")

= ("lather; rinse; repeat;" " repeat;")
Here the *-quantified subpattern matches three times, but it is the last submatch that is
returned.

It is also possible for a quantified subpattern to fail to match, even if the overall pattern
matches. In such cases, the failing submatch is represented by #f.

(define date-re
;match ‘month year’ or ‘month day, year’.
;subpattern matches day, if present
(pregexp "([a-z]+) +([0-9]+,)7 *([0-9]+)"))

(pregexp-match date-re "jan 1, 1970")
:> (Iljan 1’ 1970" lljanll II1,II lI1970lI)

(pregexp-match date-re "jan 1970")
= ("jan 1970" "jan" #f "1970")

12.2.9 Backreferences

Submatches can be used in the insert string argument of the procedures pregexp-replace
and pregexp-replace*. The insert string can use \n as a backreference to refer back to the
nth submatch, ie, the substring that matched the nth subpattern. \0 refers to the entire
match, and it can also be specified as \&.

(pregexp-replace "_(.+7)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

= "the *nina*, the _pinta_, and the _santa maria_ "

(pregexp-replacex "_(.+7)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

= "the *nina*, the *pinta*, and the *santa mariax"
;recall: \S stands for non-whitespace character

(pregexp-replace "(\\S+) (\\3+) (\\S+)"
"eat to live"
"\\3 \\2 \\1")

= "live to eat"

Use \\ in the insert string to specify a literal backslash. Also, \$ stands for an empty
string, and is useful for separating a backreference \n from an immediately following number.
Backreferences can also be used within the regexp pattern to refer back to an already
matched subpattern in the pattern. \n stands for an exact repeat of the nth submatch.*
(pregexp-match "([a-z]+) and \\1"

4\0, which is useful in an insert string, makes no sense within the regexp pattern, because the entire
regexp has not matched yet that you could refer back to it.

148 Bigloo 4.3g

"billions and billions")
= ("billions and billions" "billions")
Note that the backreference is not simply a repeat of the previous subpattern. Rather it is
a repeat of the particular substring already matched by the subpattern.

In the above example, the backreference can only match billions. It will not match
millions, even though the subpattern it harks back to — ([a-z]+) — would have had no
problem doing so:

(pregexp-match "([a-z]+) and \\1"
"billions and millions")
= #£
The following corrects doubled words:

(pregexp-replacex "(\\S+) \\1"
"now is the the time for all good men to to come to the aid of of the party"
II\\1II)
= "now is the time for all good men to come to the aid of the party"
The following marks all immediately repeating patterns in a number string:

(pregexp-replace* "(\\d+)\\1"
"123340983242432420980980234"
"0\,

= "12{3,3}40983{24,24}3242{098,098}0234"

12.2.10 Non-capturing clusters

It is often required to specify a cluster (typically for quantification) but without triggering
the capture of submatch information. Such clusters are called non-capturing. In such cases,
use (7: instead of (as the cluster opener. In the following example, the non-capturing
cluster eliminates the “directory” portion of a given pathname, and the capturing cluster
identifies the basename.

(pregexp-match "~ (7:[a-z]*/)*([a-z]+)$"
"/usr/local/bin/mzscheme")
= ("/usr/local/bin/mzscheme" "mzscheme")

12.2.11 Cloisters

The location between the ? and the : of a non-capturing cluster is called a cloister.® You
can put modifiers there that will cause the enclustered subpattern to be treated specially.
The modifier i causes the subpattern to match case-insensitively:

(pregexp-match "(?i:hearth)" "HeartH") = ("HeartH")

The modifier x causes the subpattern to match space-insensitively, ie, spaces and com-
ments within the subpattern are ignored. Comments are introduced as usual with a semi-
colon (;) and extend till the end of the line. If you need to include a literal space or
semicolon in a space-insensitized subpattern, escape it with a backslash.

(pregexp-match "(7x: a lot)" "alot")
= ("alot")

(pregexp-match "(?x: a \\ lot)" "a lot")
= ("a lot")

(pregexp-match "(7x:

5 A useful, if terminally cute, coinage from the abbots of Perl.

Chapter 12: Posix Regular Expressions 149

a \\ man \\; \\ # ignore
a \\ plan \\; \\ # me
a \\ canal # completely
)u
"a man; a plan; a canal")
= ("a man; a plan; a canal")

You can put more than one modifier in the cloister.

(pregexp-match "(7ix:
a \\ man \\; \\ # ignore
a \\ plan \\; \\ # me
a \\ canal # completely
)ll
"A Man; a Plan; a Canal")
= ("A Man; a Plan; a Canal")

A minus sign before a modifier inverts its meaning. Thus, you can use -i and -x in a
subcluster to overturn the insensitivities caused by an enclosing cluster.
(pregexp-match "(?7i:the (?7-i:TeX)book)"
"The TeXbook")
= ("The TeXbook")

This regexp will allow any casing for the and book but insists that TeX not be differently
cased.

12.2.12 Alternation

You can specify a list of alternate subpatterns by separating them by |. The | separates
subpatterns in the nearest enclosing cluster (or in the entire pattern string if there are no
enclosing parens).

(pregexp-match "f(eelilo|lum)" "a small, final fee")
= (Ilfill "i")

(pregexp-replace* "([yil)s(e[sdr]?|inglation)"
"it is energising to analyse an organisation
pulsing with noisy organisms"

"\\1z\\2")

= "it is energizing to analyze an organization

pulsing with noisy organisms"

Note again that if you wish to use clustering merely to specify a list of alternate subpat-

terns but do not want the submatch, use (7: instead of (.
(pregexp-match "f(?7:eelilolum)" "fun for all")
= ("fo")

An important thing to note about alternation is that the leftmost matching alternate is
picked regardless of its length. Thus, if one of the alternates is a prefix of a later alternate,
the latter may not have a chance to match.

(pregexp-match "calll|call-with-current-continuation"

"call-with-current-continuation")
= ("call")

To allow the longer alternate to have a shot at matching, place it before the shorter one:

(pregexp-match "call-with-current-continuation|call"
"call-with-current-continuation")
= ("call-with-current-continuation")

150 Bigloo 4.3g

In any case, an overall match for the entire regexp is always preferred to an overall
nonmatch. In the following, the longer alternate still wins, because its preferred shorter
prefix fails to yield an overall match.

(pregexp-match "(7:call|call-with-current-continuation) constrained"

"call-with-current-continuation constrained")
= ("call-with-current-continuation constrained")

12.2.13 Backtracking

We'’ve already seen that greedy quantifiers match the maximal number of times, but the
overriding priority is that the overall match succeed. Consider

(pregexp-match "axa" "aaaa")

The regexp consists of two subregexps, a* followed by a. The subregexp a* cannot be
allowed to match all four a’s in the text string "aaaa", even though * is a greedy quantifier.
It may match only the first three, leaving the last one for the second subregexp. This
ensures that the full regexp matches successfully.

The regexp matcher accomplishes this via a process called backtracking. The matcher
tentatively allows the greedy quantifier to match all four a’s, but then when it becomes
clear that the overall match is in jeopardy, it backtracks to a less greedy match of three a’s.
If even this fails, as in the call

(pregexp-match "a*aa" "aaaa")

the matcher backtracks even further. Overall failure is conceded only when all possible
backtracking has been tried with no success.

Backtracking is not restricted to greedy quantifiers. Nongreedy quantifiers match as few
instances as possible, and progressively backtrack to more and more instances in order to
attain an overall match. There is backtracking in alternation too, as the more rightward
alternates are tried when locally successful leftward ones fail to yield an overall match.

12.2.14 Disabling backtracking

Sometimes it is efficient to disable backtracking. For example, we may wish to commit
to a choice, or we know that trying alternatives is fruitless. A nonbacktracking regexp is
enclosed in (7>...).

(pregexp-match "(7>a+)." "aaaa"
= #£

In this call, the subregexp ?>a* greedily matches all four a’s, and is denied the oppor-
tunity to backpedal. So the overall match is denied. The effect of the regexp is therefore
to match one or more a’s followed by something that is definitely non-a.

12.2.15 Looking ahead and behind

You can have assertions in your pattern that look ahead or behind to ensure that a sub-
pattern does or does not occur. These “look around” assertions are specified by putting
the subpattern checked for in a cluster whose leading characters are: 7= (for positive looka-
head), 7! (negative lookahead), 7<= (positive lookbehind), ?<! (negative lookbehind). Note
that the subpattern in the assertion does not generate a match in the final result. It merely
allows or disallows the rest of the match.

Chapter 12: Posix Regular Expressions 151

12.2.16 Lookahead

Positive lookahead (?=) peeks ahead to ensure that its subpattern could match.
(pregexp-match-positions "grey(?=hound)"
"i left my grey socks at the greyhound")
= ((28 . 32))
The regexp "grey (?=hound)" matches grey, but only if it is followed by hound. Thus, the
first grey in the text string is not matched.

Negative lookahead (?!) peeks ahead to ensure that its subpattern could not possibly
match.

(pregexp-match-positions "grey(?!hound)"
"the gray greyhound ate the grey socks")
= ((27 . 31))

The regexp "grey(7'hound) " matches grey, but only if it is not followed by hound. Thus
the grey just before socks is matched.

12.2.17 Lookbehind

Positive lookbehind (?<=) checks that its subpattern could match immediately to the left
of the current position in the text string.

(pregexp-match-positions " (?<=grey)hound"
"the hound in the picture is not a greyhound")
= ((38 . 43))

The regexp (?<=grey)hound matches hound, but only if it is preceded by grey.
Negative lookbehind (?<!) checks that its subpattern could not possibly match immedi-
ately to the left.

(pregexp-match-positions "(?<!grey)hound"
"the greyhound in the picture is not a hound")
= ((38 . 43))

The regexp (7<!grey)hound matches hound, but only if it is not preceded by grey.

Lookaheads and lookbehinds can be convenient when they are not confusing.

12.3 An Extended Example

Here’s an extended example from Friedl that covers many of the features described above.
The problem is to fashion a regexp that will match any and only IP addresses or dotted
quads, ie, four numbers separated by three dots, with each number between 0 and 255. We
will use the commenting mechanism to build the final regexp with clarity. First, a subregexp
n0-255 that matches 0 through 255.

(define n0-255

"(7x:
\\d ; 0 through 9
I \\d\\d ; 00 through 99

| [011\\d\\d ;000 through 199
| 2[0-41\\d ;200 through 249
| 25[0-5] ;260 through 255
)"
The first two alternates simply get all single- and double-digit numbers. Since 0-padding
is allowed, we need to match both 1 and 01. We need to be careful when getting 3-digit

152 Bigloo 4.3g

numbers, since numbers above 255 must be excluded. So we fashion alternates to get 000
through 199, then 200 through 249, and finally 250 through 255.5

An TP-address is a string that consists of four n0-255s with three dots separating them.
(define ip-rel
(string-append
"o ;nothing before

n0-255 ;the first n0-255,
"(rx:" ;then the subpattern of
"\\. " ;a dot followed by
n0-255 ;an n0-255,
mn ;which is
"{3}" ;repeated exactly 3 times
"$;with nothing following
)

Let’s try it out.

(pregexp-match ip-rel "1.2.3.4") = ("1.2.3.4")

(pregexp-match ip-rel "55.155.255.265") = #f

which is fine, except that we also have
(pregexp-match ip-rel "0.00.000.00") = ("0.00.000.00")

All-zero sequences are not valid IP addresses! Lookahead to the rescue. Before starting
to match ip-rel, we look ahead to ensure we don’t have all zeros. We could use positive
lookahead to ensure there is a digit other than zero.

(define ip-re
(string-append
"(?=.%[1-9])" ;ensure there’s a non-0 digit
ip-rel))

Or we could use negative lookahead to ensure that what’s ahead isn’t composed of only

zeros and dots.
(define ip-re
(string-append
"(?1[0.1%$)" ;not just zeros and dots
; (note: dot is not metachar inside [])
ip-rel))
The regexp ip-re will match all and only valid IP addresses.

(pregexp-match ip-re "1.2.3.4") = ("1.2.3.4")
(pregexp-match ip-re "0.0.0.0") = #f

6 Note that n0-255 lists prefixes as preferred alternates, something we cautioned against in section
Section 12.2.12 [Alternation], page 149. However, since we intend to anchor this subregexp explicitly to
force an overall match, the order of the alternates does not matter.

153

13 Command Line Parsing

Bigloo supports command line argument parsing. That is, when an application is spawn
from an Unix shell, the main function is called and its argument is bound to the list of the
command line arguments, See Chapter 2 [Module declaration|, page 7. The args-parse
form may be used to parse these.

args-parse list rules [null-rule] [else-rule] . . . [bigloo syntax]
The argument list is a list of strings. Rules is defined by the following grammar:

<rule> — (section <string>)

| ((<option> <help>) <s-expression>)

| ((<option>) <s-expression>)

| ((<flag> <var> <var> ...) <s-expression>)

| ((<flag> <var> <var> ... <help>) <s-expression>)
<null-rule> — (() <s-expression>)
<else-rule> — (else <s-expression>)

<option> — <flag>
| <string><var>
<flag> — <string>
| (<string>+)
<var> — an identifier leaded by the ? character
<help> — (help <s-expression>)

| (help <string> <s-expression>)

Each elements of list are match against the rules. If one of these matches, args-parse
proceeds as follows:

1. The matched argument elements of list are removed from the list.

2. The <s-expression> associated to the matching rule is evaluated in an environ-
ment where the rule variables are bound.

3. The argument parsing is resumed with the rest of Iist.

In addition to parsing the command line arguments, args-parse enables help message
printing.

args-parse-usage fmt [bigloo procedure]
This is a procedure of one argument, an boolean. Args-parse-usage constructs an
help message from all the option described in a args-parse form. Args-parse-usage
is only defined in the <s-expression> of an args-parse form.

At last, if no rule matches an argument and if the args-parse form contains an else
rule, this is evaluated. In the <s-expression> part of that rule, the pseudo-variable else
is bound to the first unmatched argument and the pseudo-variable rest is bound to all the
unmatched arguments.

Here is an example of argument parsing deploying all the possible rules:

(module args-example
(main main))

(define (main argv)
(args-parse (cdr argv)
(section "Help")
((n?u)

(args-parse-usage #f£))

154 Bigloo 4.3g

((("-h" "--help") (help "?,-h,--help" "This help message"))
(args-parse-usage #f))

(section "Misc")

((("-v" "--version") (help "Version number"))
(print *versionx))

(("-o" 7file (help "The output file"))
(set! *destx* file))

(("--input=7file" (help "The input file"))
(set! *input* file))

(else
(print "Illegal argument ‘" else "’. Usage:")
(args-parse-usage #f))))

Invoking the compiled args-example module could produce:
> bigloo.new args.scm
args.scm:

> a.out toto
Illegal argument ‘toto’. Usage:

Help:
?7-h,~help — This help message

Misc:
-v,—version — Version number
-o <file> — The output file

—input=<file> — The input file

155

14 Cryptography

Bigloo provides several functions for encrypting and decrypting documents. These are de-
scribed in the chapter. Unless explicitly mentioned all functions presented in this document
are accessible via the crypto library.

None of the cryptographic functions are protected against timing attacks. No effort has
been spent on protecting used memory.

Here is an example of a module that uses this library:

;; Encrypt a string using AES.
(module aes-encrypt

(library crypto)

(main main))

(define (main argv)
(when (and (pair? (cdr argv)) (pair? (cddr argv)))

(let ((encrypt? (string=7 "-e" (cadr argv)))
(passwd (caddr argv))
(input (read-string)))

(if encrypt?

(display (encrypt ’aes input passwd))
(display (decrypt ’aes input passwd))))))

14.1 Symmetric Block Ciphers

Bigloo supports some common block ciphers. Block ciphers work on blocks of fixed size.
A mode of operation defines the way bigger input is handled. For instance in ECB (Elec-
tronic Codebook mode) the blocks are all encrypted separately, whereas CBC (Cipher-Block
Chaining) chains all blocks.

All modes that chain the blocks need an IV (Initial Vector) to “bootstrap” the chaining.

Block ciphers by themselves can only work on full blocks. Some modes are constructed
in a way that even incomplete blocks can be safely processed. For the remaining blocks a
padding function needs to be given.

Most block ciphers only work with keys of specific length. The following functions take
passwords (strings of arbitrary length) as input, and preprocess the given password by a
:string->key function. The result must then be of correct length.

encrypt: :bstring cipher plain password [Bigloo Cryptography procedure]
[:string->key] [:mode ‘cfb] [:IV #{] [:pad 'none] [:nonce-init!]
[:nonce-updatel|

encrypt-string: :bstring cipher [Bigloo Cryptography procedure]
plaintext::bstring password [:string->key| [:mode ’cfb] [:IV #1] [:pad
‘none| [:nonce-init!] [:nonce-updatel]

encrypt-mmap: :bstring cipher [Bigloo Cryptography procedure]
plaintext::mmap password [:string->key] [:mode ’cfb] [:IV #] [:pad
‘none| [:nonce-init!] [:nonce-update!]

encrypt-port: :bstring cipher [Bigloo Cryptography procedure]
plaintext::input-port password [:string->key| [:mode ’cfb] [:IV #1] [:pad
‘none| [:nonce-init!] [:nonce-updatel]

156 Bigloo 4.3g

encrypt-file: :bstring cipher [Bigloo Cryptography procedure]
filename::bstring password [:string->key] [:mode ’cfb] [:IV #1] [:pad
‘none| [:nonce-init!] [:nonce-updatel]
encrypt-sendchars cipher in::input-port [Bigloo Cryptography procedure]
out::output-port password [:string->key] [:mode ’ctb] [:IV #{] [:pad
‘none| [:nonce-init!] [:nonce-updatel]
The procedure encrypt encrypts its input using the chosen cipher. The result is
returned as string. encrypt dispatches depending on the type of plain. Strings are
processed by encrypt-string (and not encrypt-file).

The function encrypt-sendchars reads from an input-port in and encrypts its output
directly into an output-port out.

The symbol cipher can be one of:

e des: Data Encryption Standard (DES). DES works on blocks of 64 bits. DES
requires keys of length 64 (bits), but only 56 of these bits are actually used.
Bigloo’s implementation therefore accepts both. DES is considered to be insecure
and its usage is discouraged.

e des3: Triple DES, Triple Data Encryption Algorithm (DES3, TDEA). DES3
works on blocks of 64 bits. DES3 requires keys of length 128 or 192 (bits), but
only 112/168 of these bits are actually used. Bigloo’s implementation therefore
accepts the smaller keys too.

Bigloo’s DES3 implementation has been changed with release 3.4b. Earlier ver-
sions did not use the full key for en/decryption.

e des-np: Same as des, but the initial and final permutations are not performed.
e des3-np: Same as des3, but the initial and final permutations are not performed.

e aes: Advanced Encryption Standard (AES). AES works on blocks of 128 bits.
AES requires keys of length 128, 192 or 256 bits.

e cast-128: CAST-128 (CAST5). CAST-128 works on blocks of 64 bits. CAST-
128 requires a key-length of 40-128 bits.

e idea: International Data Encryption Algorithm (IDEA). IDEA works on blocks
of 64 bits. It requires keys of length 128 (in bits). IDEA is patented in many

countries (including the USA and most European countries) but it is free for
non-commercial use.

The given password must be a string. An optional parameter :string->key should
transform this password so that it has the correct length for the cipher. A small list
of possible functions are provided in the Section 14.1.1 [String to Key], page 159,
section.

By default string->key-hash with SHA-1 will be used. The key-length will depend
on the chosen cipher:

e des: 56 bits.

e des3: 112 bits.

e des-np: Same as des.

e des3-np: Same as des3.
e aes: 192 bits.

Chapter 14: Cryptography 157

e cast—-128: 128 bits.
e idea: 128 bits.

Bigloo supports the following block cipher modes (:mode):
e ecb: Electronic codebook.
e cbc: Cipher-block chaining.
e pcbc: Propagating cipher-block chaining.
e cfb: Cipher feedback.
e ofb: Output feedback.

e ctr: Counter.

By default cfb is chosen.

Electronic codebook mode en/decodes each block independently and is hence the
closest to the block cipher. It is however inherently unsafe as blocks with the same
content are encrypted to the same output.

With the exception of ecb all other modes can be initialized with an IV (Initialization
vector). If :IV is false, then a random one will be generated. During encryption this
randomly generated IV will be prefixed to the result. When calling the decryption
routine without any IV the procedure will use the first block of the input as I'V.

In ctr (counter) mode the IV parameter serves as nonce. Two additional key-
parameters :nonce-init and :nonce-update are then used to initialize and update
the block-sized nonce string. Before encrypting the first block nonce-init will be
invoked with an empty block-sized string and the initial nonce (IV). It must initial-
ize the string with the nonce. For each block nonce-update will be called with the
string, the nonce, and the number of already encrypted blocks (hence 0 at the very
beginning). By default nonce-init takes the IV-string and blits it into the given
string. nonce-update simply increments the string (treating the given string as one
big number).

Note that the initial nonce (passed using IV) may be of any type. As long as
nonce-init and nonce-update correctly initialize and update the passed string.

The input’s length of modes ecb, cbc and pcbec must be a multiple of the block-size.
Should this not be the case a padding algorithm must be specified (:pad). Currently
are implemented (examples for hexadecimal string “DD” and cipher block size 4):

e none: No padding. Raises an error should the input not be a multiple.
e bit: Bit padding. Add a ’1’ bit and then ’0’ bits. Example: “DD 80 00 00”.

e ansi-x.923: Byte padding. Fill with #x00s followed by the number of added
bytes (the counter inclusive). Example: “DD 00 00 03”.

e is0-10126: Fill with random characters followed by the number of added bytes
(the counter inclusive). Example: “DD 42 31 03”.

e pkcs7: Fill with the number of added bytes. Example: “DD 03 03 03”.
e zero: Fill with zeros. This is only reversible if the input is guaranteed not to
finish with a zero character. Example: “DD 00 00 00”.

Alternatively users can supply their own (un)pad functions (instead of a symbol). The
signature of a padding function is (pad::bool str::bstring valid-chars::long).

158 Bigloo 4.3g

It receives the last block of the input. Should the input be of correct length then
the an empty block will be sent to the padding function. valid-chars indicates the
number of read characters. It ranges from 0 to blocksize-1. The padding function
should fill the block and return #t if this last block should be encoded. By returning
#f the last block will be discarded. This makes only sense if valid-chars was equal
to 0.

The unpadding procedure has the signature (unpad::long str::bstring). The in-
put string will have the length of the block-size. The unpadding function may modify
the string and must return the number of characters that are valid.

decrypt: :bstring cipher ciphertext password [Bigloo Cryptography procedure]
[:string->key] [:mode ’cfb] [:IV #{] [:pad 'none] [:nonce-init!]
[:nonce-updatel|
decrypt-string: :bstring cipher [Bigloo Cryptography procedure]
ciphertext::bstring password [:string->key] [:mode ’cfb] [:IV #1] [:pad
‘none| [:nonce-init!] [:nonce-updatel]
decrypt-mmap: :bstring cipher [Bigloo Cryptography procedure]
ciphertext::mmap password [:string->key] [:mode ’ctb] [:IV #{] [:pad
‘none| [:nonce-init!] [:nonce-update!]
decrypt-port: :bstring cipher [Bigloo Cryptography procedure]
ciphertext::input-port password [:string->key| [:mode ’cfb] [:IV #1] [:pad
‘none| [:nonce-init!] [:nonce-updatel]
decrypt-file: :bstring cipher [Bigloo Cryptography procedure]
filename::bstring password [:string->key] [:mode ’cfb| [:IV #] [:pad
‘none| [:nonce-init!] [:nonce-update!]
decrypt-sendchars cipher in::input-port [Bigloo Cryptography procedure]
out::output-port password [:string->key] [:mode ’ctb] [:IV #{] [:pad
‘none| [:nonce-init!] [:nonce-update!]
Counterpart to the encryption functions. With the same parameters the decrypt
function will decrypt the result of an encrypt call. Without :IV (Initial Vector) the
decrypt function will use the first block as IV.

For compatibility the following functions remain in Bigloo. They are in the default
library and not inside the crypto library.

aes-ctr-encrypt text password [nbits 128] [bigloo procedure]

aes-ctr-encrypt-mmap mmap password [nbits 128] [bigloo procedure]

aes-ctr-encrypt-string string password [nbits 128§] [bigloo procedure]

aes-ctr-encrypt-port iport password [nbits 128] [bigloo procedure]

aes-ctr-encrypt-file filename password [nbits 128] [bigloo procedure]
These functions are equivalent to a call to aes-encrypt with mode set to ctr and a
special :string->key parameter. The optional argument nbits must either be 128,
192, or 256 and determines the size of the key.

aes-ctr-decrypt text password [nbits 128] [bigloo procedure]
aes-ctr-decrypt-mmap mmap password [nbits 128] [bigloo procedure]
aes-ctr-decrypt-string string password [nbits 128§] [bigloo procedure]
aes-ctr-decrypt-port iport password [nbits 128] [bigloo procedure]

Chapter 14: Cryptography 159

aes-ctr-decrypt-file filename password [nbits 12§] [bigloo procedure]
Counterpart to aes-ctr-encrypt.

14.1.1 String to Key

The following string->key algorithms take a password string and transform it to a key string
of a given length. In all the functions the len is expressed in bytes.

string->key-zero str len [Bigloo Cryptography procedure]
If the length of the input string str is greater or equal to len bytes then the first str
characters are returned. Otherwise str is suffixed with '0’ (#a000) characters.

string->key-hash str len hash-fun [Bigloo Cryptography procedure]
The input string str is run through the given hash function hash-fun. The result
is then concatenated multiple times (with itself) until a string of the len bytes is
obtained.

In the following example we encrypt some-message using a password "my password".
The password will be transformed to 256 bits (32 bytes) using the string->key256
function.
(define (string->key256 password)
(string->key-hash password 32

(lambda (str) (string-hex-intern (shalsum str)))))
(encrypt ’aes some-message "my password" :string->key string->key256)

Note that the following example yields an identical result:

(define (string->key256 password)
(string->key-hash password 32
(lambda (str) (string-hex-intern (shalsum str)))))
(encrypt ’aes some-message (string->key256 "my password")
:string->key (lambda (x) x))

string->key-simple str len hash-fun [Bigloo Cryptography procedure]
This function implements the simple s2k algorithm of OpenPGP (RFC 2440). Ba-
sically str is run through the hash-fun several times until the concatenation of the
results is long enough. At each iteration the string is prefixed with count ’0’-bytes
(where count is the iteration counter).

string->key-salted str len hash-fun salt [Bigloo Cryptography procedure]
This function implements the salted s2k algorithm of OpenPGP (RFC 2440). Similar
to string->key-simple but the input string is first prefixed with salt.

string->key-iterated-salted str len hash-fun [Bigloo Cryptography procedure]
salt count
This function implements the iterated salted s2k algorithm of OpenPGP (RFC 2440).
The variable count must be a long. This algorithm is an extension of string->key-
salted where the hash function is applied repeatedly.

This function has changed with release 3.4b. Earlier versions could be incompatible
with RFC 2440.

160 Bigloo 4.3g

14.2 Public Key Cryptography

14.2.1 Rivest, Shamir, and Adleman (RSA)

Bigloo’s implementation of RSA is based on RFC 3447, PKCS #1 v2.1. It does not feature
multiprime RSA, though.

Bigloo’s implementation is not secure against timing attacks. Furthermore some error
codes might reveal information to attackers.

14.2.1.1 RSA Keys

There are two kinds of RSA keys inside Bigloo: complete and partial keys. A complete
key contains the information of both the public and the private key (together with other
information that could be reconstructed out of the private key). A partial key just contains
the modulus and the private or public exponent.

RSA-Key [Bigloo Cryptography class]
Complete-RSA-Key [Bigloo Cryptography class]
(class Rsa-Key modulus::bignum exponent::bignum)
(final-class Complete-Rsa-Key::Rsa-Key
;; for the complete-rsa-key "exponent" takes the role of ’d’
e::bignum p::bignum q::bignum

expl::bignum ;; d mod (p-1)
exp2::bignum ;; d mod (g-1)
coeff::bignum) ;; (inverse of q) mod p

RSA keys can be read and written using read-pem-key and write-pem-key
(Section 14.2.4 [PEM], page 164).

generate-rsa-key [:key 1024] [:show-trace] [Bigloo Cryptography procedure]
This function generates a new RSA key (with its public and private components).
Do not use this function for critical applications. No special effort has been undertaken
to guarantee the randomness of the generated prime numbers, nor to weed out insecure
keys.

Complete keys can be accessed using the following functions:

extract-public-rsa-key complete-key [Bigloo Cryptography procedure]
Returns the public partial key of the given complete key.
This procedure is implemented as follows:
(define (extract-public-rsa-key::Rsa-Key key::Complete-Rsa-Key)
(with-access::Complete-Rsa-Key key (modulus e)
(make-Rsa-Key modulus e)))

extract-private-rsa-key complete-key [Bigloo Cryptography procedure]
Returns the private partial key of the given complete key.

rsa-key=7 keyl key?2 [Bigloo Cryptography procedure]
Returns true if the two keys have the same modulus and public exponent. The
exponent of a partial key is considered to be public.

rsa-key-length key [Bigloo Cryptography procedure]
Returns the key length in bytes.

Chapter 14: Cryptography 161

14.2.1.2 RSA basic operations

RSA only works on bignums (up to the size of the modulus). The following procedures
implement basic encryption, decryption, signing and signature verification.

rsa-encrypt key m [Bigloo Cryptography procedure]
Encrypts the bignum m using the given key. If the key is a complete key then its
public exponent is used. For partial keys only one exponent is available (which is
assumed to be the public ’e’ of the recipient). The result is again a bignum.

rsa-decrypt key c [Bigloo Cryptography procedure]
Decrypts the bignum c using the given key. If the key is a complete key then its
private exponent is used. For partial keys only one exponent is available (which is
assumed to be the private ’d’). The result is again a bignum.

rsa-sign km [Bigloo Cryptography procedure]
Signs the bignum m using key k. Uses the private exponent of complete keys. The
result is a bignum.

rsa-verify km s [Bigloo Cryptography procedure]
Verifies the signature s. Returns true if s is the signature of m. The key k should be
the public key of the signer.

14.2.1.3 Examples

In this section we will present an example of using RSA.
Let’s start by generating an RSA key in openssl:
$ openssl genrsa -out my_rsa_key.pem 1024

Our key will have 1024 bits (for the public modulus), and therefore RSA will only be
able to work with bignums up to 1024 bits (128 bytes).

Now some Bigloo code that uses this key.

Start by loading the library.

(module rsa-example (library crypto))

Now read the key:
(define *key* (read-pem-key "my_rsa_key.pem"))
(define *public-key* (extract-public-rsa-key *key*))
The public portion of the key can be distributed:
;5 publish the *public-keyx*:
(write-pem-key-string *public-key*)
Now let’s sign the message “My Important Message”. This message is sufficiently short
to be signed directly, but in general it is better to get a hash of the message:
(define msg-hash (shalsum "my message"))
(define msg-hash-bignum (octet-string->bignum msg-hash))
The result of shalsum returns a human readable representation of the hash. It would
hence be possible to transform it back to an internal representation before applying the
octet-string->bignum function:

(define msg-hash-bignum (octet-string->bignum (string-hex-intern msg-hash)))

162 Bigloo 4.3g

In our case both variants are small enough to fit into our keys. The latter version is
however more often used.

Now that we have a message hash in bignum form we can sign it.

(define signature (rsa-sign *key* msg-hash-bignum))

The signature is again in bignum form. If needed there are several ways to transform it
into string-form (for instance bignum->string or bignum->octet-string).

The signature can now be distributed. Anyone wanting to verify the signature simply
has to create the same message-hash and call rsa-verify with our public key:

(rsa-verify *public-key* msg-hash-bignum signature) = #t

Encryption and decryption work in a similar way.

Suppose someone (let’s say “Alice”) wants to send us the following secret message “Cryp-
tography”. The encryption and decryption functions work, similar to the signature func-
tions, on bignums. We could, as before, simply transform this short string into a bignum
and directly encrypt the bignum. This approach would however not work for longer strings.
In the following we will present the generic version that works with strings of any size.

Public key cryptography is relatively slow and Alice thus starts by encrypting our mes-
sage a fast block cipher with a “random” password:

(define encrypted (encrypt ’aes "Cryptography" "my random password"))

Alice can already send us the encrypted message. We will just not yet be able to decrypt
it, as we don’t have the random password yet.

Alice now takes her random password string and encrypts it with our public key:

(define encrypted-key (rsa-encrypt *public-key* (octet-string->bignum "my random password")))

Alice simply sends us the encrypted-key. On our side we can now decrypt the key:

(define aes-key (bignum->octet-string (rsa-decrypt *key* encrypted-key)))
We can now decrypt the previously received message:
(decrypt ’aes aes-key encrypted) = "Cryptography"

14.2.1.4 RSA RFC 3447
The following functions have been defined in RFC 3447.

RSAEP k m [Bigloo Cryptography procedure]
RSADP k ¢ [Bigloo Cryptography procedure]
RSASP1 km [Bigloo Cryptography procedure]
RSAVP1 ks [Bigloo Cryptography procedure]

These are the RFC 3447 names for encryption, decryption, signature and signature
verification. Note that the verification does not receive the original message as pa-
rameter.

In fact rsa-verify is implemented as follows:

(define (rsa-verify k m s)
(=bx m (RSAVP1 k s)))

PKCS1-v1.5-pad m-str key-len mode [Bigloo Cryptography procedure]

PKCS1-v1.5-unpad em-str mode [Bigloo Cryptography procedure]
Pads (resp. unpads) the given string using PKCS1-v1.5 specifications. Mode must
be 0, 1 or 2.

Chapter 14: Cryptography 163

RSAES-PKCS1-v1.5-encrypt key m-str [Bigloo Cryptography procedure]

RSAES-PKCS1-v1.5-decrypt key c-str [Bigloo Cryptography procedure]

RSASSA-PKCS1-v1.5-sign key msg-str [Bigloo Cryptography procedure]
[:hash-algo ’sha-1]

RSASSA-PKCS1-v1.5-verify key msg-str S-str [Bigloo Cryptography procedure]

RSASSA-PKCS1-v1.5-sign-bignum key msg-str [Bigloo Cryptography procedure]
[:hash-algo ’sha-1]

RSASSA-PKCS1-v1.5-verify-bignum key [Bigloo Cryptography procedure]
msg-str S

RSAES-PKCS1-v1.5 functions work on strings. However their length is limited by
the size of the modulus (to be exact: by key-len - 11). The -bignum functions skip
the last step of converting the internal bignum to strings.

The optional :hash-algo must be either sha-1 or md5 (RFC 3447 allows other hash
algorithms, but they are not yet implemented).

RSAES-0AEP-encrypt key m-str [:label ""] [Bigloo Cryptography procedure]

RSAES-0AEP-decrypt key cypher-str [:label ""] [Bigloo Cryptography procedure]

RSASSA-PSS-sign key msg-str [Bigloo Cryptography procedure]

RSASSA-PSS-verify key msg-str sig-str [Bigloo Cryptography procedure]
These functions pad, mask, etc the input string before they perform their operation
on them. See RFC 3447 for more information.

14.2.2 Digital Signature Algorithm (DSA)

Bigloo has rudimentary (but usually sufficient) support for DSA. While it is not possible
to generate new DSA keys inside Bigloo one can sign or verify with Bigloo.

DSA keys can be read and written using read-pem (Section 14.2.4 [PEM], page 164).

For consistency with RSA we have named DSA keys in a similar way as the RSA keys.
The public part of a DSA key can be found in the class DSA-Key while the private part is
added in the Complete-DSA-Key subclass.

DSA-Key [Bigloo Cryptography class]

Complete-DSA-Key [Bigloo Cryptography class]
(class Dsa-Key
p::bignum q::bignum g::bignum y::bignum)
(final-class Complete-Dsa-Key::Dsa-Key
x::bignum)) ;; the private key

extract-public-dsa-key complete-key [Bigloo Cryptography procedure]
Returns a DSA-Key without the private x.

dsa-sign m key [Bigloo Cryptography procedure]
Signs the bignum m using the private dsa key key. The result are two values: r and
S.

A typical call to dsa-sign is hence of the following form

(receive (r s)
(dsa-sign secret-key hashed-msg-bignum)
(process-signature r s))

164 Bigloo 4.3g

dsa-verify m key r s [Bigloo Cryptography procedure]
Verifies a signature (consisting of r and s).

DSA works very similar to RSA. Have a look at RSA’s example section.
14.2.3 ElGamal

Bigloo supports ElGamal encryption (but not signing). Bigloo’s implementation is minimal.

For consistency with RSA ElGamal keys are similarly named as their RSA counterparts.

ElGamal-Key [Bigloo Cryptography class]
Complete-ElGamal-Key [Bigloo Cryptography class]
(class ElGamal-Key
p::bignum
g: :bignum
y::bignum)
(final-class Complete-ElGamal-Key: :ElGamal-Key
x::bignum)) ;; the private key
extract-public-elgamal-key complete-key [Bigloo Cryptography procedure]
Returns a copy of the public part (as ElGamal Key).
elgamal-encrypt key m [Bigloo Cryptography procedure]
Encrypts the bignum m using the given public key. The result are two values c1 and
c2.

Note that ElGamal encryption needs random bytes for every encryption. This means
that this function may return different results with the same parameters. It further-
more implies that the result is insecure if the operating system provides bad random
numbers, or if Bigloo’s random-number generation is buggy. For critical applications
be sure to verify both requirements.

elgamal-decrypt complete-key cl c2 [Bigloo Cryptography procedure]
Decrypts an ElGamal encrypted message (consisting of the two bignums c1 and ¢2)
with the given private key.

elgamal-key-length key [Bigloo Cryptography procedure]
Returns the key length in bytes.

ElGamal works very similar to RSA. Have a look at RSA’s example section.

14.2.4 PEM
Bigloo is able to read and write RSA and DSA keys in PEM format. This is the default
format used by OpenSSL.

The following example creates a new DSA key pair in OpenSSL and stores it in PEM
format.

$ openssl dsaparam 1024 -out /tmp/dsaparam
$ openssl gendsa /tmp/dsaparam

read-pem-key in [Bigloo Cryptography procedure]
read-pem-key-port input-port [Bigloo Cryptography procedure]
read-pem-key-file filename [Bigloo Cryptography procedure]

Chapter 14: Cryptography 165

read-pem-key-string str [Bigloo Cryptography procedure]
These functions will read a PEM encoded key. The encoded file may contain a private
or public RSA key, or a private or public DSA key.

The procedure read-pem-key accepts input-ports and strings. In the case of a string
it will invoke read-pem-key-file (and not read-pem-key-string).

write-pem-key key out [public-key-only?] [Bigloo Cryptography procedure]
write-pem-key-port key out [public-key-only?] [Bigloo Cryptography procedure]
write-pem-key-file key out [public-key-only?] [Bigloo Cryptography procedure]
write-pem-key-string key [public-key-only?) [Bigloo Cryptography procedure]

These functions write the given key. The key may be a private/public RSA /DSA key.

The procedure write-pem-key accepts output-ports and strings as out parameter. If
out is a string it will delegate to write-pem-key-file.

14.3 OpenPGP

Bigloo implements parts of OpenPGP (RFC 2440, RFC 4880). All OpenPGP functions are
accessible via the openpgp library.

Here is an example of a module that uses this library:

;; Encrypt a string using openpgp default encryption.
(module pgp-encrypt

(library openpgp)

(main main))

(define (main argv)
(when (and (pair? (cdr argv)) (pair? (cddr argv)))
(let ((encrypt? (string=7 "-e" (cadr argv)))
(passwd (caddr argv))
(input (read-string)))
(if encrypt?

(display (pgp-write-string (pgp-encrypt input
>() ;; no public keys
(list passwd))))

(let ((composition (pgp-read-string input)))

(display (pgp-decrypt composition
:passkey-provider (lambda () passwd))))))))

pgp-read-string str [Bigloo OpenPGP procedure]
pgp-read-port iport [Bigloo OpenPGP procedure]
pgp-read-file file-name [Bigloo OpenPGP procedure]

These functions read and decode PGP data. OpenPGP allows several keys to be
stored in the same message. Therefore pgp-read will return keys always in a list
(even if the message only contains one key).

The return value is either a list of PGP-compositions (PGP-Keys), or a single PGP-

composition.
pgp-write-string composition [:format ’armored] [Bigloo OpenPGP procedure]
pgp-write-port oport composition [:format [Bigloo OpenPGP procedure]

‘armored]

166 Bigloo 4.3g

pgp-write-file file-name composition [:format [Bigloo OpenPGP procedure]
‘armored]
The counter-part of pgp-read. These functions encode PGP-compositions. By de-
fault the result is armored (i.e. encoded with ASCII characters). If the optional
:format parameter is different than the symbol armored, then the composition is
encoded in binary.

Note that there is no means to encode a list of PGP-keys.

pgp-encrypt msg-string keys passwords [:hash-algo [Bigloo OpenPGP procedure]
'sha-1] [:symmetric-algo ’cast5]
Encrypts the given string. The returned composition can be decrypted by the owners
of the keys, or with one of the passwords.

In the following example Alice and Bob may use their private key to decrypt the
secret message. Users knowing the one of the passwords (“foo” and “bar”) will also
be able to decrypt the message.

(pgp-write-file "encrypted.pgp"
(pgp-encrypt "my secret message"
(1ist alice-key bob-key)
’("fOO" "bar")))

The given keys should be subkeys of a PGP-key, but if a PGP-key is given Bigloo will
do its best to pick the correct subkey for encryption.

e If only one subkey exists (the main-key) then this subkey is used.

e If two subkeys exist, and the non-main key is suitable for encryption, then the
non-main key is used.

e If only one of many subkeys (including the main-key) is suitable for encryption,
then this subkey is used.

e Else Bigloo raises an error.

pgp-password-encrypt msg-string password [Bigloo OpenPGP procedure]
[:hash-algo ’sha-1] [:symmetric-algo ’castd] [:mdc #t]
Deprecated. Encrypts msg-string with the given password. The returned PGP-
composition does not contain any information which hash-algorithm and symmetric
encryption algorithm has been used. RFC 4880 specifies that IDEA and MD5 should
be used. However GnuPG uses SHA-1 and CAST5. Therefore Bigloo defaults to the
latter algorithms.

Even though the usage of this PGP message is deprecated it yields the smallest
encrypted data. It may be of interest when compatibility with other tools is not a
requirement (but why use OpenPGP then).

The optional mdc flag triggers the usage of a modification detection code. It is more
secure against tampering but requires more space and might not be recognized by old
openpgp implementations.

Chapter 14: Cryptography 167

pgp-decrypt encrypted [:passkey-provider (lambda [Bigloo OpenPGP procedure]

() #1)] [:password-provider (lambda (key) #f)] [:key-manager (lambda
(key-id) ()] [:hash-algo ’sha-1] [:symmetric-algo ’cast5]

Decrypts a PGP-composition that has been generated by pgp-encrypt or by

pgp-password-encrypt. The function returns the decrypted message (a string) or

#f if decryption was not possible.

If the message can be decrypted with a private key, then Bigloo will call the

key-manager and request a list of PGP-subkeys that match the given key-id.

If a subkey (returned by the key-manager) is not yet decrypted, Bigloo will invoke the
password-provider with the subkey, and request a password to decrypt the private
part of the subkey.

If the message can be decrypted with a password Bigloo will then request a passkey
by invoking the passkey-provider.

The optional arguments hash-algo and symmetric-algo are only used for messages
that have been encrypted with pgp-password-encrypt.

pgp-sign msg-string key password-provider [Bigloo OpenPGP procedure]
[:detached-signature? #t| [:one-pass? #1] [:hash-algo ’sha-1]
Signs msg-string with the given key. Ideally the key should be a subkey, but if a
complete PGP-Key is given, Bigloo will use the main-key instead. If the main-key is
not suitable for signing, then an error is raised.

If the private part of the key has not yet been decrypted then Bigloo will call the
password-provider (a procedure) with the subkey to get a password (a string).

The function returns a PGP-composition.

If the optional detached-signature? parameter is set to #f then the msg-string is
not included in the returned composition.

The one-pass? and hash-algo parameters are usually left at its default values.

Example:

(let ((my-key (car (pgp-read-file "my-key.pgp"))))
(pgp-write-file "msg.sig"
(pgp-sign "my signed message"
my-key
(lambda (key) "my-password")
:detached-signature? #£)))

pgp-verify signature key-manager [:msg #1] [Bigloo OpenPGP procedure]
Verifies a signature.
The key-manager is a function that takes a substring identifier and returns a list of
keys matching this id. Since a signature composition may contain several signatures
this function may be invoked several times.
The result is a list of subkeys that signed the message. If the key-manager doesn’t
have any of the signature-keys then the result is the empty list.
A message (string) needs only be given if the signature is detached. Otherwise the
original message is encoded in the signature-composition.

Example:
(let ((sig (pgp-read-file "msg.sig")))

168 Bigloo 4.3g

(let ((signers (pgp-verify sig my-key-manager)))
(for-each (lambda (subkey)
(print (subkey->string subkey) " signed the message"))
signers)))

pgp-signature-message signature [Bigloo OpenPGP procedure]
Returns the signature’s message, or #£f if the signature is a detached signature.

pgp-key? key [Bigloo OpenPGP procedure]
pgp-subkey? key [Bigloo OpenPGP procedure]
Predicates for PGP-Key and PGP-Subkey.

pgp-subkeys key [Bigloo OpenPGP procedure]
Returns a list of PGP-Subkeys of the PGP-Key. The first key in the list is the
main-key. The main-key is used as default for signatures.

pgp-key->string key [Bigloo OpenPGP procedure]
pgp-subkey->string key [Bigloo OpenPGP procedure]
Returns a string representation of the key (resp. subkey).

Example outputs:

(pgp-key->string key)

= John Doe john.doe@gmail.com

= bd4df3b2ddef790c RSA (Encrypt or Sign)
= 424610a65032c42e RSA (Encrypt or Sign)

(pgp-subkey->string (car (pgp-subkeys key)))
= John Doe john.doe@gmail.com
= bd4df3b2ddef790c RSA (Encrypt or Sign)

pgp-key-id subkey [Bigloo OpenPGP procedure]
pgp-key-fingerprint subkey [Bigloo OpenPGP procedure]
Returns the id (resp. fingerprint) of a subkey.
A subkey-id is a 8-character binary string.

A fingerprint is a 20-character binary string.

pgp—make-key-db [Bigloo OpenPGP procedure]

pgp-add-key-to-db db key [Bigloo OpenPGP procedure]

pgp-add-keys-to-db db keys [Bigloo OpenPGP procedure]

pgp-resolve-key db id [Bigloo OpenPGP procedure]

pgp-db-print-keys db [Bigloo OpenPGP procedure]
A simple key-manager implementation based on lists.

14.3.1 Examples

14.3.1.1 Signatures

Unless you already have a gpg key create a new PGP key with gpg. Note that DSA with
a keysize greater than 1024 does not work with SHA-1. SHA-224,256,384,512 would work,
but are not yet implemented in Bigloo.

$ gpg —gen-key

Chapter 14: Cryptography 169

pub 1024D/A2DA694E 2010-08-07 [expires: 2010-08-27]

Key fingerprint = DFAF 5894 9003 8640 D45B 6199 07CA 0495 A2DA 694E
uid Bigloo Example
sub 1024g/0B8985E5 2010-08-07 [expires: 2010-08-27]

We export both the public and the private key.

$ gpg -a -0 A8453FAB_Bigloo_Example_User.pkey —export A8453FAB
$ gpg -a -o A8453FAB_Bigloo_Example_User.skey —export-secret-keys A8453FAB

This small program will simply read the key and print a human-readable representation.

;; contents of print-key.scm
(module print-key

(library openpgp)

(main my-main))

(define (my-main args)
(let ((public-key (car (pgp-read-file "A2DA694E_Bigloo_Example.pkey")))
(secret-key (car (pgp-read-file "A2DA694E_Bigloo_Example.skey"))))
(display (pgp-key->string public-key))
(display (pgp-key->string secret-key))))

The compilation is straight-forward and does not require any special flags:
$ bigloo print-key.scm -o print-key
$./print-key
Bigloo Example
07ca0495a2da694e DSA (Digital Signature Standard)
5fa4e8c90b8985e5 ElGamal (Encrypt-Only)
Bigloo Example
07ca0495a2da694e DSA (Digital Signature Standard)
5fa4e8c90b8985e5 ElGamal (Encrypt-Only)

As can be seen, the pgp—key->string routine does not differentiate between public and
private keys.

We can also sign a message:

(let ((my-key (car (pgp-read-file "A2DA694E_Bigloo_Example.skey"))))
(pgp-write-file "msg.sig"
(pgp-sign (read-string)
my-key
(lambda (key) "<Bigloo Example Password>")
:detached-signature? #£)))

Signatures from Bigloo follow RFC 4880 and can therefore be verified by gpg.
$ echo "Gpg can verify Bigloo’s signature" | ./sign
$ gpg —verify msg.sig
gpg: Signature made Sat 07 Aug 2010 10:12:21 PM CEST using DSA key ID A2DA694E
gpg: Good signature from "Bigloo Example"
Inversely Bigloo can verify pgp’s signature. Here we first generate a signature with gpg.

$ echo "Bigloo can verify gpg’s signatures." | \
gpg -0 msg_gpg.sig -a \
—default-key "Bigloo Example" \
—passphrase <Bigloo Example Password> \
—sign

170 Bigloo 4.3g

You need a passphrase to unlock the secret key for

user: "Bigloo Example"
1024-bit DSA key, ID A2DAG94E, created 2010-08-07

The following program reads OpenPGP signatures and verifies them. For simplicity the
key database will only contain one key, but it could contain any number of keys.

(let ((my-key (car (pgp-read-file "A2DA694E_Bigloo_Example.pkey")))
(sig (pgp-read-file "msg_gpg.sig"))
(db (pgp-make-key-db)))
(pgp-add-key-to-db db my-key)
(print "Signature message: " (pgp-signature-message sig))
(let ((signers (pgp-verify sig (lambda (id) (pgp-resolve-key db id)))))
(for-each (lambda (subkey)
(display (pgp-subkey->string subkey)))
signers)))

As expected, the program verifies the correct signature.

$. /verify
Signature message: Bigloo can verify gpg’s signatures.

Bigloo Example
07ca0495a2da694e DSA (Digital Signature Standard)

14.3.1.2 Email Usage
Usage of OpenPGP within mails is described in RFC 3156.

Encrypted parts and signatures are encoded with their separate content-types. Sig-
natures are done over a canonicalized version of the message. They also hash over the
content-type headers.

OpenPGP’s recette program has an example for a signature from kmail, that can be
succesfully verified with Bigloo.

14.3.1.3 Encryption

OpenPGP allows messages to be encrypted with passwords (in this context “passkey”) or
public keys. It is also possible to encrypt a message for more than one recipient. In such
a case the data will be encrypted by a session-key which in turn is encrypted separately
for each recipient. Since the session-key is not very big (compared to the data) the size
overhead is usually insignificant.
Let’s start by encrypting a message with a simple passkey.
(let* ((secret-data "My secret data\n")

(composition (pgp-encrypt secret-data ’() ’("My secret passkey"))))
(pgp-write-file "secret.pgp" composition))

As usual the pgp message is compatible with gpg:

$ gpg secret.pgp
gpg: CAST5 encrypted data

Enter passphrase: <My secret passkey>
gpg: encrypted with 1 passphrase

$ cat secret

My secret data

Chapter 14: Cryptography 171

As expected, Bigloo can decrypt password protected files that have been generated by

gpg:
$ echo "A secret message encrypted with gpg." | \
gpg -0 encrypted.pgp —symmetric \
—passphrase "secret key"

The Bigloo code to decrypt the message is very simple:

(print (pgp-decrypt (pgp-read-file "encrypted.pgp")
:passkey-provider (lambda () "secret key"))))

In a similar vein it is possible to use public key encryption. The following example tests
the encryption and decryption part of Bigloo.

(let* ((my-key (car (pgp-read-file "A2DA694E_Bigloo_Example.skey")))
(db (pgp—make-key-db))
(secret-data "My secret message")
(encrypted (pgp-encrypt secret-data ‘(,my-key) ’())))

(pgp-add-key-to-db db my-key)

(let* ((key-manager (lambda (id) (pgp-resolve-key db id)))
(password-provider (lambda (key) <Bigloo Example Password>))
(decrypted (pgp-decrypt encrypted

:key-manager key-manager
:password-provider password-provider)))
(if (not (string=7? decrypted secret-data))
(error "decrypt-test"
"Something went horribly wrong"
decrypted))))

Note that a secret secret key has a part that is encrypted by a password. During
decryption Bigloo needs access to this encrypted data and therefore invokes the password-
provider so it can decrypt it. In many cases this will trigger an interactive callback with
the user. Here, in this toy example, we know that the password that is needed is for the
Bigloo Example key. In a more general case the password-provider will have to print the

key to give more information to the user.

In the following example we show how to encrypt data for 3 passwords and one key.

(let* ((my-key (car (pgp-read-file "A2DA694E_Bigloo_Example.skey")))
(db (pgp-make-key-db))
(secret-data "My secret message")
(encrypted (pgp-encrypt secret-data ‘(,my-key)
’("passl" "pass2" "pass3"))))
(pgp-write-file "multi_receiver.pgp" encrypted))
We believe that gpg has a bug and does not know how to handle such messages correctly.

Bigloo, however, decrypts the message with any of the possible options.

14.4 Development

Bigloo’s OpenPGP implementation only exposes few library functions. As a consequence
some features are not accessible. The key-management system is very rough, and there are
no means to inspect messages in more detail. It should be possible to expose or implement
many of those missing features with little effort. The most time-consuming part is generally
designing a clean API and the testing/debugging of new features: when something goes
wrong it can take a huge amount of time to find the reason.

Developers interested in improving Bigloo’s OpenPGP library can print a huge amount
of debugging information by enabling the debug-macro in util.scm. Bigloo’s OpenPGP

172 Bigloo 4.3g

implementation is not designed for speed and takes no shortcuts. The debugging output
can therefore be used to follow the specification of RFC 4880 (or 2440).

173

15 Errors, Assertions, and Traces

15.1 Errors and Warnings

Bigloo permits to signal an error via the error function. Errors are implemented by the
means of exceptions (see with-exception-handler, with-handler, and raise forms). As-
sertions allow the checking of predicates at certain points in programs.

typeof obj [bigloo procedure]
Returns a string which is the name of the dynamic type of obj.

error proc msg obj [bigloo procedure]
This form signals an error by calling the current error handler with proc, msg and
obj as arguments.

(define (foo 1)
(if (not (pair? 1))
(error "foo" "argument not a pair" 1)

(car 1)))
(foo 4)
*** ERROR:bigloo:foo:
argument not a pair -- 4

Switching on the —-g compilation switch enables stack dumping when the error func-
tion is invoked. That is, when a program is compiled with -g and when, at runtime,
the shell variable BIGLOOSTACKDEPTH is set and contains a number, an execution stack
of depth BIGLOOSTACKDEPTH is printed when an error is raised.

error/location proc msg obj file location [bigloo procedure]
This form signals an error by calling the current error handler with proc, msg and
obj as arguments. The error is prompted in file, at character position location.

(define (foo 1)
(if (not (pair? 1))
(error/location
"foo" "argument not a pair" 1 "foo.scm" 115)
(car 1)))

(foo 4)
File "foo.scm", line 4, character 115:
(car 1)))
-
*xx ERROR:bigloo:foo
argument not a pair -- 4
0. FOO
1. DYNAMIC-WIND
2. INTERP
3. ENGINE
4. MAIN

get-trace-stack size [bigloo procedure]
dump-trace-stack output-port size [bigloo procedure]
Switching on the -g compilation switch enables stack dumping Chapter 31 [Compiler
Description|, page 275. That is, the list of the pending calls can be dumped by the

174 Bigloo 4.3g

runtime-system. The function get-trace-stack builds such a trace. The list built
by get-trace-stack only contains the size top most pending calls. The function
dump-trace-stack displays a representation of this stack on the output-port.

warning/location file location [arg]. . . [bigloo procedure]
This form signals a warning. That is, is arg are displayed on the standard error port.
The warning is prompted in file at character position location.

(define (foo 1)
(if (not (pair? 1))

(begin
(warning/location
"foo.scm" 154 "foo:" "argument not a pair -- " 1)
>O)
(car 1)))
(foo 4)
- File "foo.scm", line 6, character 154:
(car 1)))
-
*xx WARNING:bigloo:foo:
argument not a pair -- 4
=0
exception-notify exc [bigloo procedure]
error-notify err [bigloo procedure]
warning-notify err [bigloo procedure]

Display a message describing the error or warning on the default error port.

15.2 Exceptions

current-exception-handler [SRFI-18 function]
Returns the current exception handler with is a 0-ary procedure.

with-exception-handler handler thunk [SRFI-18 function]
Returns the result(s) of calling thunk with no arguments. The handler, which must
be a procedure, is installed as the current exception handler in the dynamic envi-
ronment in effect during the call to thunk. When possible, prefer with-handler to
with-exception-handler because the former provides better debugging support and
because its semantics is more intuitive.

with-handler handler body [bigloo form]
Returns the result(s) of evaluating body. The handler, which must be a procedure, is
installed as the current exception handler in the dynamic environment in effect during
the evaluation of body. Contrarily to with-exception-handler, if an exception is
raised, the handler is invoked and the value of the with-handler form is the value
produced by invoking the handler. The handler is executed in the continuation of the
with-handler form.

JVM note: When executed within a JVM, the form with-handler also catches Java
exceptions.

Chapter 15: Errors, Assertions, and Traces 175

Important note: Since Bigloo version 3.2¢, error handlers are executed after the exe-
cution stack is unwound. Hence, error handlers are executed after protected blocks.
For instance in the following code:

(with-handler
(lambda (e) action)
(unwind-protect
body
protect))

The action is executed after protect.

raise obj [SRFI-18 function]
Calls the current exception handler with obj as the single argument. obj may be
any Scheme object. Note that invoking the current handler does not escape from
the current computation. It is up the to handler to perform the escape. It an error,
signaled by the runtime system, if the current exception handler returns.

(define (f n)
(if (< n 0) (raise "negative arg") (sqrt n))))

(define (g)
(bind-exit (return)
(with-exception-handler
(lambda (exc)

(return
(if (string? exc)
(string-append "error: " exc)
"unknown error")))
(lambda ()

(write (£ 4.))
(write (£ -1.))
(write (£ 9.))))))

(g) - 2. and returns "error: negative arg"

The standard Bigloo runtime system uses the following classes for signaling errors and
warnings:

e &exception which is defined as:

(class &exception
(fname read-only (default #f))
(location read-only (default #£)))

e &error defined as:

(class &error: :&exception
(proc read-only)
(msg read-only)
(obj read-only))

&type-error defined as:

(class &type-error: :&error
(type read-only))

e &io-error defined as:
(class &io-error::&error)

e &io-port-error defined as:

(class &io-port-error::&io-error)

176

15.

&io-read-error defined as:

(class &io-read-error::&io-port-error)
&io-write-error defined as:

(class &io-write-error::&io-port-error)
&io-closed-error defined as:

(class &io-closed-error: :&io-port-error)
&io-file-not-found-error defined as:

(class &io-file-not-found-error::&io-error)
&io-parse-error defined as:

(class &io-parse-error::&io-error)
&io-unknown-host-error defined as:

(class &io-unknown-host-error::&io-error)
&io-malformed-url-error defined as:

(class &io-malformed-url-error::&io-error)
&http-error defined as:

(class &http-error: :&error)
&http-redirection-error defined as:

(class &http-redirection-error: :&http-error)
&http-status-error defined as:

(class &http-status-error::&http-error)
&http-redirection defined as:

(class &http-redirection::&exception
(port: :input-port read-only)
(url::bstring read-only))
&process-exception defined as:
(class &process-exception: :&error)
&warning defined as:

(class &warning::&exception
(args read-only))

&eval-warning defined as:

(class &warning::&warning)

3 Deprecated try form

try exp handler
This form is deprecated. As much as possible, it should be replaced with true excep-
tions (i.e., with-exception-handler and raise). The argument exp is evaluated.
If an error is raised, the handler is called. The argument handler is a procedure of
four arguments. Its first argument is the continuation of try. The other arguments
are proc, mes and obj. Invoking the first argument will resume after the error.

(let ((handler (lambda (escape proc mes obj)
(print "***ERROR:" proc ":" mes " -- " obj)

(escape #£))))
(try (car 1) handler))
- *x*ERROR:CAR:not a pair -- 1

Bigloo 4.3g

[bigloo syntax]

Chapter 15: Errors, Assertions, and Traces 177

= #f

The argument handler is not evaluated in the dynamic scope of its try form. That
is:
(let ((handler (lambda (escape proc mes obj)

(escape (car obj)))))
(try (car 1) handler))

*** ERROR:bigloo:CAR

Type ‘PAIR’ expected, ‘BINT’ provided -- 1

Some library functions exist to help in writing handlers:

warning |arg|. .. bigloo procedure
g larg

This form signals a warning. That is, is arg are displayed on the standard error port.

(define (foo 1)
(if (not (pair? 1))

(begin
(warning "foo:" "argument not a pair -- " 1)
0))
(car 1)))
(foo 4)
| **x* WARNING:bigloo:foo:
argument not a pair -- 4
=0

15.4 Assertions

assert (var...) s-expression [bigloo syntax]

Assertions can be enabled or disabled using Bigloo’s compilation flags -g flag to
enable them). If the assertions are disabled they are not evaluated. If an assertion is
evaluated, if the expression exp does not evaluate to #t, an error is signaled and the
interpreter is launched in an environment where var. .. are bound to their current
values.

Assertion forms are legal expressions which always evaluate to the unspecified ob-
ject.

Here is an example of assertion usage:

(module foo
(eval (export fo0o)))

(define (foo x y)
[assert (x y) (< x y)]
(labels ((gee (t)
[assert (t) (>=t 0)]
(let ((res (+ x t)))
[assert (res t) (> res 10)]
res)))
(set! x (gee y))
[assert (x) (> x 10)]
x))

(repl)

178 Bigloo 4.3g

This module is compiled with the -g flag to enable assertions, then the produced
executable is run:

$ a.out

1:=> (foo 1 2)

File "foo.scm", line 9, character 158:

[assert (res t) (> res 10)]
4 -

*** ERROR:bigloo:assert

assertion failed — (BEGIN (> RES 10))
0. GEE
1. FOO

Variables’ value are :
RES: 3
T:2

*.=> "D

File "foo.scm", line 12, character 228:

[assert (x) (> x 10)]

4 -

*** ERROR:bigloo:assert

assertion failed - (BEGIN (> X 10))
0. FOO

Variables’ value are :

X:3
*=>3
1:=> (foo 1 2)
File "foo.scm", line 9, character 158:
[assert (res t) (> res 10)]
~

*** ERROR:bigloo:assert

assertion failed — (BEGIN (> RES 10))
0. GEE
1. FOO

Variables’ value are :
RES : 3
T:2

*::>

Chapter 15: Errors, Assertions, and Traces 179

15.5 Tracing

Bigloo provides a trace facility whose is intended for simple debugging tasks. It is a re-
placement for user displays that clutters the source code. Here is a typical example using
it:
(define (foo x)
(with-trace 1 ’foo
(let loop ((n x))
(with-trace 2 ’loop
(trace-item "n=" n)
(when (> n 0)
(let 1liip ((m n))
(with-trace 2 ’liip
(trace-item "m=" m))
(when (> m 0)
(liip (- m 1))))
(loop (- n 1))

(foo 3)
which produces the following output:

+ foo

|-+ loop

| I- n=3
| |-—+ 1liip
|l | |- m=3
| |-—+ 1liip
I | |- m=2
| |--+ 1liip
I |- m=1
| |-—+ 1liip
| | |- m=0
| |--+ loop
I | |- n=2
| | |--+ liip
I 1 |- m=2
| | |--+ liip
I 1 |- m=1
| | |--+ liip
1 1 |- m=0
| | |--+ loop
1 | |-n=1
I I |--+ 1liip
1 11 I-m=1
I | |--+ liip
I 1 1 |-m=0
| | | |--+ loop
l I 1 | |-mn=0

Traces generation is controlled by a set of functions and parameters (see Chapter 24
[Parameters], page 231). The functions are described in this chapter.

180 Bigloo 4.3g

with-trace level label . body [bigloo syntax]
The variable level is the level of a trace. It is a positive integer. It enables simple
filtering for traces. A trace is displayed if and only if the debugging level used to
compile or to execute the program is greater than the trace level. The variable label
is a label, .e.i., an identifier denoting the trace. This identifier will be displayed in
debug mode. The variable body is the body of the form, that is, the expression to be
evaluated.

Unless a trace is activated (with-trace 1v la body) (when its level Iv is greater than
the current debug level) is equivalent to (begin body). When traces are activated,
before executing body.

The debugging level is controlled by two parameters: bigloo-debug and
bigloo-compiler-debug (see Chapter 24 [Parameters], page 231).

trace-item . args [bigloo function]
This function displays all its arguments. It has to be used nested in a with-trace
form.

trace-bold s [bigloo function]

trace-string s [bigloo function]
These two functions are provided for convenience. They returns strings made of their
parameters.

trace-color color . args [bigloo function]

The color argument is a positive integer. This function returns a string which is the
representation of args and that appears on the terminal in color color.

Colors can be enable or disabled using the bigloo-trace-color parameter (see
Chapter 24 [Parameters|, page 231).

trace-margin [bigloo function]

trace-margin-set! [bigloo function]
The trace-margin parameter is used to control the characters that are displayed in
the margin of a trace. Usual applications should not use this. However, it may be
convenient to set the margin by hands in some context. For instance, it can be used
to distinguished threads in a multi-threaded application such as:

(make-thread (lambda ()
(trace-margin-set! (trace-color 1 "="))
o))

(make-thread (lambda ()
(trace-margin-set! (trace-color 2 "="))

o))

trace-port [bigloo function]
trace-port-set! [bigloo function]
These functions return and set the output port used by traces.

181

16 Threads

Bigloo supports multithreaded programming. Two different libraries programming are avail-
able. The first one, the Fair Thread (see Section Section 16.2 [Fair Threads], page 185),
enables, simple, easy to develop and to maintain code. The second one, the Posix Thread
(see Section Section 16.3 [Posix Threads], page 193) enables more easily to take benefit
of the actual parallelism that is now available on stock hardware. Because it is easier to
program with fthread than with pthread, we strongly recommend to use the former as
much as possible and leave the former for specially demanding applications. Both libraries
are described in this chapter.

16.1 Thread Common Functions

Bigloo implements SRFI-18 (Multithreading support). This SRFI is available at http://
srfi.schemers.org/srfi-18/srfi-18.html. As Bigloo’s threads are objects (see Section
Chapter 9 [Object System]|, page 117), the SRFI-18’s thread specific functions can be used
with either the pthread or the fthread library.

This section describes the functions that are available independently of the
multi-threading library.

16.1.1 Thread API

Bigloo uses a set of primitive functions and methods to create, run and handle thread. For
the sake of standardization the name and semantic of SRFI-18 has been used. This section
presents only the mandatory functions to program with threads in Bigloo.

The most important difference with SRFI-18, is the missing of the function make-thread,
which is not available for all libraries, as it can be hard to predict the type of thread which
will be created if several thread libraries are used simultaneously. As threads are regular
Bigloo objects, they can be created using the instantiate syntax. See the Section 16.2
[Fair Threads|, page 185, and Section 16.3 [Posix Threads|, page 193, specific sections for
more details about thread creation and examples.

The examples given in this section use a generic syntax with instantiate: :thread, to
run the examples, you will have to put them in a function in a module (see Section Chapter 2
[Modules|, page 7, and import one of the libraries using library module declaration.

current-thread [SRFI-18 function]
Returns the current thread.

thread? obj [SRFI-18 function]
Returns #t if obj is a thread, otherwise returns #f.

thread-name thread [SRFI-18 function]
Returns the name of the thread.

thread-specific thread [SRFI-18 function]

thread-specific-set! thread obj [SRFI-18 function]

Returns and sets value in the specific field of the thread. If no value has been set,
thread-specific returns an unspecified value.
(let ((t (instantiate::thread

http://srfi.schemers.org/srfi-18/srfi-18.html
http://srfi.schemers.org/srfi-18/srfi-18.html

182 Bigloo 4.3g

(body (lambda ()
(print (thread-specific (current-thread))))))))
(thread-specific-set! t ’foo)
(thread-start! t)) - foo

thread-cleanup thread [Bigloo function]

thread-cleanup-set! thread fun [Bigloo function]
Associates a cleanup function to a thread. The cleanup function is called with the
thread itself. The cleanup function is executed in a context where current-thread
is the thread owning the cleanup function.

(let ((t (instantiate::thread (body (lambda () ’done) ’fo00))))
(thread-cleanup-set! t (lambda (v) (print (thread-name (current-thread))
" exit value: " v)))
(thread-start! t)) - foo, exit value: done

thread-parameter ident [Bigloo function]

thread-parameter-set! ident value [Bigloo function]
Returns the value of the parameter ident in the current thread. If no value is bound
to this parameter, #f is returned.

A thread parameter is implemented by a chunk of memory specific to each thread.
All threads are created with an empty set of parameters.

The next functions have different behaviors depending in the library used, more details
will be given in the specific sections below.

thread-start! thread [args] [SRFI-18 function)]
thread-start-joinable! thread [Bigloo function]
thread-join! thread [timeout] [SRFI-18 function]
thread-terminate! thread [SRFI-18 function]
thread-yield! [SRFI-18 function]
thread-sleep! timeout [SRFI-18 function]

16.1.2 Mutexes

Thread locking mechanism is common to Fair Threads and Posix Threads.

mutex? obj [SRFI-18 function]
make-mutex [name| [SRFI-18 function]
make-spinlock [name] [SRFI-18 function)]
mutex-name mutex [SRFI-18 function]
mutex-specific mutex [SRFI-18 function]
mutex-specific-set! mutex obj [SRFI-18 function]
mutex-state mutex [SRFI-18 function]
mutex-lock! mutex [timeout [thread]|| [SRFI-18 function, deprecated]
mutex-unlock! mutex [SRFI-18 function, deprecated|
The function make-spinlock creates a spin lock on architectures on support it, oth-
erwise it creates a regular mutex as if make-mutex was called. The support for spin
lock can be checked with:

bigloo-config ’have-spinlock
(let ((m (make-mutex)))

Chapter 16: Threads 183

(thread-start!
(instantiate: :thread
(body (lambda ()
(let loop O
(if (mutex-lock! m 0)
(begin
(display "locked")
(mutex-unlock! m))
(begin
(thread-yield!)
(Toop) NN
- locked

(let ((res ’Q0)))
(define (mutex-lock-recursively! mutex)
(if (eq? (mutex-state mutex) (current-thread))
(let ((n (mutex-specific mutex)))
(mutex-specific-set! mutex (+ n 1)))
(begin
(mutex-lock! mutex)
(mutex-specific-set! mutex 0))))
(define (mutex-unlock-recursively! mutex)
(let ((n (mutex-specific mutex)))
(if (=n 0)
(mutex-unlock! mutex)
(mutex-specific-set! mutex (- n 1)))))
(thread-start!
(instantiate: :thread
(body (lambda ()

(let ((m (make-mutex)))
(mutex-lock-recursively! m)
(mutex-lock-recursively! m)
(mutex-lock-recursively! m)

(set! res (cons (mutex-specific m) res))
(mutex-unlock-recursively! m)
(mutex-unlock-recursively! m)
(mutex-unlock-recursively! m)
(set! res (cons (mutex-specific m) res)))))))
res)
= (0 2)

synchronize mutex expl exp2 ... [Bigloo form)|
The function synchronize evaluates the expressions expl, exp2, etc. The mutex mutex
is acquired and released before expl gets evaluated. Its value is the value of the
evaluated expression. The form synchronize ensures that however the form returns,
the mutex mutex is always unlocked.

(synchronize mutex
(print "before read...")
(read p))

with-lock mutex thunk [Bigloo function, deprecated]
The form with-lock is similar to synchronize into which it is expanded.

The function with-lock evaluates the body of the thunk. The mutex mutex is acquired
and released before thunk gets invoked. The function with-lock might be implemented
as:

(define (with-lock mutex thunk)

184 Bigloo 4.3g

(synchronize mutex
(thunk)))

16.1.3 Condition Variables

condition-variable? obj [SRFI-18 function]
make-condition-variable [name] [SRFI-18 function]
condition-variable-name cv [SRFI-18 function]
condition-variable-specific cv [SRFI-18 function]
condition-variable-specific-set! cv obj [SRFI-18 function]
condition-variable-wait! cv mutex [timeout] [Bigloo function]
condition-variable-signal! cv [SRFI-18 function]

]

condition-variable-broadcast! cv [SRFI-18 function
(let ((res 0))
(define (make-semaphore n)
(vector n (make-mutex) (make-condition-variable)))
(define (semaphore-wait! sema)
(mutex-lock! (vector-ref sema 1))
(let ((n (vector-ref sema 0)))
(if (> n 0)
(begin
(vector-set! sema 0 (- n 1))
(mutex-unlock! (vector-ref sema 1)))
(begin
(condition-variable-wait! (vector-ref sema 2) (vector-ref sema 1))
(mutex-unlock! (vector-ref sema 1))
(semaphore-wait! sema)))))
(define (semaphore-signal-by! sema increment)
(mutex-lock! (vector-ref sema 1))
(let ((n (+ (vector-ref sema 0) increment)))
(vector-set! sema O n)
(if (> n 0)
(condition-variable-broadcast! (vector-ref sema 2)))
(mutex-unlock! (vector-ref sema 1))))
(let ((sema (make-semaphore 10)))
(let ((t1 (thread-start!
(instantiate: :thread
(body (lambda ()
(semaphore-wait! sema)
(set! res (current-time)))))))
(t2 (thread-start!
(instantiate: :thread
(body (lambda ()
(let loop ((n 10))
(if (> n 0)
(begin
(semaphore-signal-by! sema 1)
(thread-yield!)
(loop (= DI
(scheduler-start!)
res)))
= 2

Chapter 16: Threads 185

16.2 Threads

Bigloo supports fair threads (see Section Section 16.2.2.1 [Thread], page 186), a specification
of cooperative threads. In this framework a thread must explicitly or implicitly yield the
processor to the scheduler (see Section Section 16.2.2.2 [Scheduler|, page 191). Explicit
cooperation is achieved by library functions such as thread-yield! or thread-sleep!.
The scheduler does not preempt a running thread to allocate the processor to another
waiting thread. Fair threads have two drawbacks over preemptive threads:

e Cooperative threads are not able to benefit of multi-processors platforms.

e Single threads programs must be adapted in order to be run concurrently.

On the other hand, Fair threads have advantages that make them suitable for a high
level programming language such as Scheme:

e Fair threads have a strong and well defined semantic. Multi threaded programs using
Fair threads are deterministic thus programs that deploy Fair threads are predictable.

e Fair threads are easier to program with because they hide most the of the concurrent
programming pitfalls. In particular, since Fair threads enforce a strong synchronization,
there is no need to deploy techniques such as mutex, semaphore or condition variables.

This whole chapter has been written in collaboration with F. Boussinot. It uses materials
on Fair threads that can be found at http://www-sop.inria.fr/indes/rp/FairThreads/
html/FairThreads.html.

16.2.1 Introduction to Fair Threads

Fair threads are cooperative threads run by a fair scheduler which gives them equal access
to the processor. Fair threads can communicate using broadcast events. Their semantics
does not depends on the executing platform. Fine control over fair threads execution is
possible allowing the programming of specific user-defined scheduling strategies.

Contrary to standard sequential programming where the processor executes a single
program, in concurrent programming the processor is a shared resource which is dispatched
to several programs. The term concurrent is appropriate because programs can be seen as
concurrently competing to gain access to the processor, in order to execute.

Threads are a basic means for concurrent programming, and are widely used in operating
systems. At language level, threads offer a way to structure programs by decomposing
systems in several concurrent components; in this respect, threads are useful for modularity.

However, threads are generally considered as low-level primitives leading to over-complex
programming. Moreover, threads generally have loose semantics, in particular depending
on the underlying executing platform; to give them a precise semantics is a difficult task,
and this is a clearly identified problem to get portable code.

Bigloo proposes a new framework with clear and simple semantics, and with an efficient
implementation. In it, threads are called fair; basically a fair thread is a cooperative thread
executed in a context in which all threads always have equal access to the processor. Fair
threads have a deterministic semantics, relying on previous work belonging to the so-called
reactive approach.

http://www-sop.inria.fr/indes/rp/FairThreads/html/FairThreads.html
http://www-sop.inria.fr/indes/rp/FairThreads/html/FairThreads.html

186 Bigloo 4.3g

16.2.2 Fair Threads Api

The Fair Thread library relies on the Posix Thread one, but you don’t need to import the
pthread library, as it is done automatically when importing the fthread one.

The functions listed in Section 16.1 [Thread Common Functions], page 181, can be used
to manipulates the Fair Thread, but thread-start-joinable!, as a fair thread can always
join any other fair thread in the same scheduler.

16.2.2.1 Thread

instantiate::fthread (body thunk) [(name name)] [Bigloo syntax]

Returns a new thread which is not started yet. The body of the thread is the body of
the procedure thunk. The optional argument name can be use to identify the thread.
It can be any Bigloo value.

(instantiate::fthread (body (lambda () (print 1) (thread-yield!)

(print 2)))

(name ’my-thread))

The former thread-start function can be rewritten as follow:

(define (make-thread body . name)
(if (pair? name)
(instantiate::fthread (body body) (name (car name)))
(instantiate::fthread (body body))))

thread-start! thread [scheduler] [SRFI-18 function]
Runs a thread created with make-thread. If scheduler is provided, the thread is
started in this particular scheduler. Otherwise, it is started in the current sched-
uler (see Section Section 16.2.2.2 [Scheduler], page 191). Threads are started at the
beginning of reactions (see Section Section 16.2.2.2 [Scheduler]|, page 191).

thread-yield! [SRFI-18 function]
The current thread cooperates. That is, it is suspended for the reaction and the
scheduler selects a new thread to be resumed. The scheduler resumes the next avali-
able thread. If there is only one thread started in the scheduler, the same thread is
resumed. A reaction corresponds to the invocation of a scheduler-react! call (see
Section Section 16.2.2.2 [Scheduler], page 191).

thread-sleep! timeout [SRFI-18 function]
The current thread cooperates during ezactly timeout reactions (see Section 16.2.2.2
[Scheduler], page 191). It is suspended and the scheduler selects a new thread to be
resumed. If there is only one thread started in the scheduler, the same thread will be
resumed.

(let ((t1 (instantiate::fthread
(body (lambda () (thread-sleep! 2) (display ’£f00)))))
(t2 (instantiate::fthread
(body (lambda () (let loop ((n 1))
(display n)
(thread-yield!)
(if (< n 5)
(loop (+ n DI
(thread-start! t1)
(thread-start! t2)
(scheduler-start!)) - 12foo034

Chapter 16: Threads 187

thread-terminate! thread [SRFI-18 function]
Terminates thread at the end of the current reaction.

thread-join! thread [timeout [timeout-vall| [SRFI-18 function]
The current thread waits until thread terminates or until timeout is reached (when
supplied). If the timeout is reached, thread-join! returns timeout-val. If thread
terminates, thread-join! returns the end-result of the thread or the end-exception
if that thread terminates abnormally.

If several threads wait for the termination of the same thread, they are all notified of
the termination during the current reaction.

(let* ((t1 (thread-start!
(instantiate: :fthread
(body (lambda () (thread-sleep! 3) ’fo0)))))
(t2 (thread-start!
(instantiate: :fthread
(body (lambda () (print "t1: " (thread-join! t1 1)))))))
(t3 (thread-start!
(instantiate: :fthread
(body (lambda () (print "t2: " (thread-join! tl1 2 ’bar)))))))
(t3 (thread-start!
(instantiate: :fthread
(body (lambda () (print "t3: " (thread-join! t1)))))))
(t4 (thread-start!
(instantiate: :fthread
(body (lambda () (print "t4: " (thread-join! t1))))))))
(scheduler-start!))
- t1: #|%uncaught-exception [reason: (exception . join-timeout)]|
t2: bar
t3: foo
t4: foo

thread-join! can be used to wait for a Posix Thread termination. The pthread
object must be started with thread-start-joinable!.

thread-suspend! thread [Bigloo function]

thread-resume! thread [Bigloo function]
Suspends/resumes the thread at the end of reaction. While suspended a thread is
not eligible to get the processor by the scheduler.

thread-await! signal [timeout] [Bigloo function]
Blocks the thread until signal has been broadcast or until timeout has elapsed. The
function thread-await! returns the value associated with the previous emissions of
the signal that took place during the reaction.

(let ((t1 (thread-start! (instantiate::fthread
(body (lambda ()
(display (thread-await! ’foo))
(display (thread-await! ’bar)))))))
(t2 (thread-start! (instantiate::fthread
(body (lambda ()
(broadcast! ’foo ’vall-foo)
(broadcast! ’foo ’val2-foo0))))))
(t3 (thread-start! (instantiate::fthread
(body (lambda ()
(thread-sleep! 2)

188 Bigloo 4.3g

(broadcast! ’bar ’val-bar)))))))
(let loop ((n 1))
(display n)
(scheduler-react! (default-scheduler))
(loop (+ n 1))))
- 1val2-foo23val-bar456. ..

The function thread-await! cannot be used to intercept all the signals broadcast
during a reaction. This is illustrated by the following example where obviously
thread-await! cannot intercept the emission of the signal:

(thread-start! (instantiate::fthread (body (lambda ()
(thread-await! ’foo)
(broadcast! ’foo 1)))))
(thread-start! (instantiate::fthread (body (lambda ()
(broadcast! ’foo 2)))))

thread-get-values! signal [Bigloo function]
Terminates the instant for the thread (as thread-yield!) and returns, hence
at the next instant, all the values associated with broadcast signal (see Section
Section 16.2.2.3 [Signal], page 192) during the previous scheduler reaction (see
Section Section 16.2.2.2 [Scheduler], page 191).

Example:

(thread-start! (instantiate::fthread
(body (lambda ()
(for-each print (thread-get-values! ’f00))))))
(thread-start! (instantiate::fthread
(body (lambda ()
(broadcast! ’foo 1)
(broadcast! ’foo ’foo)
(broadcast! ’foo "blabla")))))
-4 1
foo
blabla

Example:

(let ((t1 (thread-start!
(instantiate: :fthread
(body (lambda ()
(for-each print (thread-get-values! ’fo00))))
(name ’t1))))
(t2 (thread-start!
(instantiate: :fthread
(body (lambda ()
(broadcast! ’foo (current-thread))
(thread-yield!)
;; this second broadcast won’t be intercepted
;; because it occurs during the next reaction
(broadcast! ’foo (current-thread))))
(name ’t2))))
(t3 (thread-start!
(instantiate: :fthread
(body (lambda ()
(broadcast! ’foo (current-thread))
(broadcast! ’foo (current-thread))))
(name ’t3)))))
(scheduler-start!))
- #<thread:t2>

Chapter 16: Threads 189

#<thread:t3>
#<thread:t3>

thread-await-values! signal [timeout] [Bigloo function]
This blocks the current thread until signal has been broadcast. It then returns, at the
next instant, all the values associated with all the broadcasts that took place during
the instant. It can be defined as:

(define (thread-await-values! signal . tmt)
(apply thread-await! signal tmt)
(thread-get-values signal))

thread-await*! signals [timeout] [Bigloo function]
Wait for one of a list of signals. The function thread-await*! can be compared to
the Unix select function. The argument signals is a list of signal identifier. The
function thread-await*! blocks the current thread until one of the signal in the
list signals is broadcast or until the optional numerical argument timeout is elapsed.
If the thread unblocks because the timeout is elapsed, thread-await*! returns #f.
Otherwise it returns two values that have to be collected with multiple-value-bind
(see Section 5.1.13 [Control Features], page 50). The first one is the value of the
broadcast signal. The second one is the broadcast signal.

Example:

(let ((res #f))
(thread-start!
(instantiate::fthread
(body (lambda ()
(let ((sig*x (list ’foo ’bar)))
(multiple-value-bind (vall sigl)
(thread-await*! sigx)
(multiple-value-bind (val2 sig2)
(thread-await*! sigx)
(thread-yield!)
(multiple-value-bind (val3 sig3)
(thread-await*! sig#)
(set! res (list sigl sig2 sig3))))))))))
(thread-start!
(instantiate::fthread
(body (lambda ()
(thread-sleep! 2)
(broadcast! ’foo 1)))))
(thread-start!
(instantiate::fthread
(body (lambda ()
(thread-sleep! 3)
(broadcast! ’bar 2)))))
(scheduler-start!)
res)
= ’(foo foo bar)

A second example using timeouts:

(let ((res #f))
(thread-start!
(instantiate: :fthread
(body (lambda ()
(let ((sig* (list ’foo ’bar)))
(multiple-value-bind (vall sigl)

190 Bigloo 4.3g

(thread-await*! sig* 1)
(thread-yield!)
(multiple-value-bind (val2 sig2)
(thread-await*! sig*x 1)
(thread-yield!)
(multiple-value-bind (val3 sig3)
(thread-await*! sig*x 2)
(set! res (list sigl sig2 sig3))))))))))
(thread-start!
(instantiate: :fthread
(body (lambda ()
(thread-sleep! 2)
(broadcast! ’foo 1)))))
(thread-start!
(instantiate::fthread
(body (lambda ()
(thread-sleep! 3)
(broadcast! ’bar 2)))))
(scheduler-start!)
res)
= ’(#f foo bar)

thread-get-values*! signals [Bigloo function]
Terminates the instant for the thread (as thread-yield!) and returns, hence at
the next instant, all the values associated with all broadcast signals (see Section
Section 16.2.2.3 [Signal], page 192) during the previous scheduler reaction (see Section
Section 16.2.2.2 [Scheduler], page 191). The function thread-get-values*! returns
an alist made of the scanned signal and their values. That is the length of the returns
list is the length of the list signals. If a signal of the list signals has not been broadcast,
its associated entry the list returned by thread-get-values*! has an empty cdr.

Example:
(let ((s1 ’foo)
(s2 ’bar)
(s3 ’gee)
(res #£))

(thread-start!
(instantiate: :fthread
(body (lambda ()
(thread-sleep! 2)
(broadcast! ’foo (current-time))
(broadcast! ’bar 0)))))
(thread-start!
(instantiate: :fthread
(body (lambda ()
(thread-await*! (list s1 s2 s3))
(set! res (thread-get-values*! (list sl s2 s3)))))))
(thread-start!
(instantiate: :fthread
(body (lambda ()
(thread-sleep! 2)
(broadcast! ’bar (current-time))))))
(scheduler-start!)
res)
= ((foo 3) (bar 3 0) (gee))

Chapter 16: Threads 191

Used with asynchronous signal, the functions thread-await*! and thread-get-
values*! can be used to read concurrently, in a non blocking way, several files.

thread-await-values*! signals [timeout] [Bigloo function]
This blocks the current thread until at least one of signals has been broadcast. It
then returns, at the next instant, all the values associated with all the broadcasts
that took place during the instant. It can be defined as:

(define (thread-await-values*! signal . tmt)
(apply thread-await*! signal tmt)
(thread-get-values*! signal))

16.2.2.2 Scheduler

make-scheduler [strict-order? [envs] [Bigloo function]
Creates a new scheduler. The optional boolean argument strict-order? is used to
ask the scheduler to always schedule the threads in the same order, it defaults to #f.
The optional arguments envs are fair thread environments which will be defined in
forthcoming Bigloo releases.

scheduler-strict-order? [Bigloo function]

scheduler-strict-order?-set! bool [Bigloo function]
Gets or sets the strict scheduling policy of the scheduler. If set, the threads will
always be scheduled in the same order, until their termination. By default, it is set
to false, which improve performances when there is a lot of thread to schedule.

scheduler? obj [Bigloo function]
Returns #t if obj is a scheduler. Otherwise returns #f.

scheduler? obj [Bigloo function]
Returns #t if obj is a scheduler. Otherwise returns #£.

current-scheduler [Bigloo function]
Returns the current scheduler. The current scheduler is the scheduler which currently
schedules the current thread. This value is not mutable, as it is set during the call to
thread-start!.

default-scheduler [scheduler] [Bigloo function]
Sets or gets the default scheduler. The default scheduler is the scheduler that will be
used in the calls to scheduler-react!, scheduler-start! or thread-start! if not
specified. It always exists a default scheduler. That is, it is optional for an application
to create a scheduler.

scheduler-react! [scheduler] [Bigloo function]
Executes all the threads started (see thread-start!, Section Section 16.2.2.1
[Thread], page 186) in the scheduler until all the threads are blocked. A thread is
blocked if the has explicitly yield the processor (thread-yield! and thread-sleep!)
or because it is waiting a signal (thread-await!). A thread can be selected several
times during the same reaction. The function scheduler-react! returns a symbol
denoting the state of the scheduler. The possible states are:

e ready The Scheduler is ready to execute some threads.

192 Bigloo 4.3g

e done All the threads started in the scheduler have terminated.

e await All the threads started in the scheduler are waiting for a signal.

An invocation of scheduler-react! is called a reaction.

scheduler-start! [arg [scheduler]] [Bigloo function]
Executes scheduler-react! as long as the scheduler is not done. If the optional
argument scheduler is not provided, scheduler-start! uses the current scheduler
(see current-scheduler). The optional arg can either be:

e An integer standing for the number of times scheduler-react! must be called.

e A procedure f of one argument. The procedure f is invoked after each reaction.
It is passed a value i which is the iteration number of the scheduler. The reactions
of the scheduler continue while f returns #f.

(let* ((s (make-scheduler))
(t (instantiate::fthread
(body (lambda ()
(let loop ((n 0))
(display n)
(thread-yield!)
(loop (+ 1 n)))))N))
(scheduler-start! 10 s))
- 0123456789

(let* ((s (make-scheduler))
(t (instantiate::fthread
(body (lambda ()
(let loop ((n 0))

(display n)
(thread-yield!)
(loop (+ 1 1))))))))

(scheduler-start! (lambda (i) (read-char)) s))

- 0123456789

scheduler-terminate! [scheduler] [Bigloo function]
Terminates all the threads in scheduler.

scheduler-instant [scheduler] [Bigloo function]
Returns the current reaction number of scheduler. The reaction number is the number
of times scheduler-react! has been invoked passing scheduler as argument.

16.2.2.3 Signal

broadcast! signal [val] [Bigloo function]
Broadcasts signal to all threads started in scheduler immediately, that is during the
reaction. This function can only be called from within a running thread. If the
optional argument val is omitted, the signal is broadcast with an unspecified value.
(thread-start! (instantiate::fthread
(body (lambda ()
(thread-await! ’foo)
(print (scheduler-instant (current-scheduler)))))))
(thread-start! (instantiate::fthread

(body (lambda ()
(broadcast! ’fo00)))))

Chapter 16: Threads 193

(scheduler-start!)
-4 1

scheduler-broadcast! scheduler signal [val] [Bigloo function]
At the next react broadcasts signal to all threads started in scheduler. This is used
to impact running threads from outside any threads. If the optional argument val is
omitted, the signal is broadcast with an unspecified value.

make-asynchronous-signal proc [Bigloo function]
This function invokes in the background, the procedure proc. This function takes
one parameter which is the signal that is broadcast when the invocation returns.
When the host operating system supports parallel executions, the invocation of proc
is executed in parallel with the waiting thread.

Asynchronous signals can be used to implement non blocking system operations, such
as input/output. Here is an example that illustrates how to implement concurrent
programs that behaves similarly with Fair Threads and Posix Threads.

(define-expander read
(lambda (x e)
(cond-expand
(fthread
(thread-await!
(make-aynchronous-signal
(lambda (s)
(read ,0(map (lambda (x) (e x e)) (cdr x)))))))
(else
‘(read ,@(map (lambda (x) (e x e)) (cdr x)))))))

16.2.3 SRFI-18

This section presents the functions that are not necessary to Bigloo but supported for
compliance with SRFI-18, provided by the Fair Thread library.

current-time [scheduler] [SRFI-18 function]
Returns the reaction number of scheduler.

SRFI-18 function
SRFI-18 function

join-timeout-exception? obj SRFI-18 function

time? obj []
[]
[]
abandoned-mutex-exception? obj [SRFI-18 function]
[|
[]
[]

time->seconds obj

terminated-thread-exception? obj SRFI-18 function
uncaught-exception? obj SRFI-18 function
uncaught-exception-reason exc SRFI-18 function

16.3 Posix Threads

This section describes two Posix-Like multi-threading Bigloo libraries. The two libraries,
pthread, and srfi-18 are all the same but the mutex-state function that returns different
results. Because of these differences that might seem thin at first glance, the pthread library
is significantly faster than the srfi-18 library. For that reason, it is recommended to use
the pthread library instead of the srfi-18 library that is mostly supported for backward
compatibility.

194 Bigloo 4.3g

As much as possible, the names exported by this library are compatible with the Fair
Threads library (see Section Section 16.2 [Fair Threads|, page 185).

16.3.1 Using Posix Threads

The Bigloo modules initialization model does not permit to create threads before the main
function is started. In other words, it is unsafe to use the Posix Threads API at the top
level of modules. On some particular applications this might work correctly. On other it
could produce an error message stating the threads cannot be created or started before the
pthread library is initialized.

16.3.2 Threads

instantiate: :pthread (body thunk) [(name name)] [Bigloo syntax]

make-thread thunk [name] [SRFI-18 function]
Returns a new thread which is not started yet. The body of the thread is the body of
the procedure thunk. The optional argument name can be use to identify the thread.
It can be any Bigloo value.

Warning: the make-thread function is deprecated, but still provided for a back-
ward compatibility with previous release of Bigloo. The use of this function is highly
discouraged, in favor of the instantiate: :pthread form.

(module example
(library pthread)
(main main))

(define (main argv)
(make-thread
(lambda ()
(print 1)
(thread-yield!)
(print 2))
’my-thread))

thread-start! thread [SRFI-18 function]

thread-start-joinable! thread [SRFI-18 function]
Runs a thread created with instantiate::pthread. By default, threads are de-
tached, and thus, they cannot be joined.

thread-yield! [SRFI-18 function]
The current thread cooperates.

thread-sleep! timeout [SRFI-18 function]
The current thread sleeps for a certain period. It is suspended and the scheduler is
free to select a new thread to be resumed. If there is only one thread started in the
scheduler, the same thread will be resumed. The time of timeout is used to determine
the time the thread must sleep.

Here are the possible types for timeout.
e date: the thread sleeps at least until the date timeout.
e real: the thread sleeps at least timeout seconds.

e fixum, elong, 1long: the thread sleeps at least timeout milli-seconds.

Chapter 16: Threads 195

thread-terminate! thread [SRFI-18 function]
Terminates thread as soon as possible.

thread-join! thread [timeout] [SRFI-18 function]
The current thread waits until the thread terminates. If thread terminates,
thread-join! returns the end-result of the thread or the end-exception if that
thread terminates abnormally.

It is possible to wait for the termination of the a thread if and only if it has been started
with thread-start-joinable!. In particular, threads started with thread-start!
cannot be joined.

The optional argument timeout, forces to wait at for timeout milli-seconds for the
thread to terminate. Note that not all systems support this facility. When supported,
the cond-expand (see see Chapter 30 [SRFIs|, page 269) pthread-timedjoin is de-
fined. When the timeout expires some systems, raise an error. Other systems abort

silently.
terminated-thread-exception? obj [SRFI-18 function]
uncaught-exception? obj [SRFI-18 function]
uncaught-exception-reason exc [SRFI-18 function]

16.3.3 Mutexes

Thread locking mechanism is common to Fair Threads and Posix Threads (see Section 16.1
[Thread Common Functions|, page 181).

mutex-state mutex [SRFI-18 function]
Returns the symbol locked when the mutex is locked by a thread. Otherwise, it
returns the symbol unlocked.

16.3.4 Condition Variables

Posix thread condition variables follows the common thread API (see Section 16.1 [Thread
Common Functions], page 181).

(module example
(library pthread)
(main main))

(define (main argv)
(let ((res #f)
(lock (make-mutex))
(cv (make-condition-variable)))
(thread-join!
(thread-start-joinable!
(instantiate: :pthread
(body (lambda ()
(mutex-lock! lock)
(thread-start!
(instantiate: :pthread
(body (lambda ()
(mutex-lock! lock)
(condition-variable-signal! cv)
(mutex-unlock! lock)))))
(condition-variable-wait! cv lock)

196

(set! res 23)
(mutex-unlock! lock))))))
res))

16.3.5 Semaphores

open-semaphore name [create #t] [excl #t] [read #t] [write
#t] [value 1]
close-semaphore sem
delete-semaphore name
Opens, closes, and deletes a named semaphore.

semaphore? obj
Returns #t if obj is a semaphore, returns #f otherwise.

semaphore-post sem
semaphore-wait sem
semaphore-trywait sem

Wait and post for a semaphore.

semaphore-value sem
Returns the current value of the semaphoe

16.3.6 SRFI-18

mutex-state mutex

Bigloo 4.3g

[Bigloo function]

[Bigloo function]
[Bigloo function]

[Bigloo function]

[Bigloo function]
[Bigloo function]
[Bigloo function]

[Bigloo function]

[SRFI-18 function]

Returns information about the state of the mutex. The possible results are:

e thread T: the mutex is in the locked /owned state and thread T is the owner of

the mutex

e symbol not-owned: the mutex is in the locked /not-owned state

e symbol abandoned: the mutex is in the unlocked/abandoned state

e symbol not-abandoned: the mutex is in the unlocked /not-abandoned state

Examples:

(mutex-state (make-mutex))
= not-abandoned

(define (thread-alive? thread)
(let ((mutex (make-mutex)))
(mutex-lock! mutex #f thread)
(let ((state (mutex-state mutex)))
(mutex-unlock! mutex) ; avoid space leak
(eq? state thread))))

16.4 Mixing Thread APIs

The Section 16.2 [Fair Threads|, page 185, library is “Posix Threads” safe, which means it
is possible to use at the same time both libraries. In other words, it is possible to embed

one fair scheduler into a Posix thread.

Chapter 16: Threads 197

Here is a little example with two schedulers started into two different Posix threads, each
schedulers running two fair threads.

(module mix_threads
(library fthread pthread)
(main main))

(define *fi1x 0)
(define *£f2x 0)

(define (main args)
(let ((s1 (make-scheduler #t))
(s2 (make-scheduler #t))

(fla (instantiate::fthread
(body (lambda ()
(let loop O
(print "fla: " *fix " " (current-thread))
(set! *f1x (+ 1 *f1x))
(thread-yield!)
(Loop))))))

(f1b (instantiate::fthread
(body (lambda ()
(let loop O
(print "f1b: " *fi1x " " (current-thread))
(set! *f1x (+ 1 *f1x))
(thread-yield!)
(Loop))))N))

(f2a (instantiate::fthread
(body (lambda ()
(let loop O
(print "f2a: " *f2* " " (current-thread))
(set! *f2% (+ 1 *f2x%))
(thread-yield!)
(Loop))))N)

(f2b (instantiate::fthread
(body (lambda ()
(let loop O
(print "f2b: " *f2x " " (current-thread))
(set! *£2% (+ 1 *f2x%))
(thread-yield!)
(Loop)))))))

(let* ((pl (instantiate::pthread
(body (lambda ()
;3 Sets the thread’s specific scheduler
(default-scheduler s1)
(scheduler-start! 5)))))

(p2 (instantiate::pthread

(body (lambda ()

;5 Sets the thread’s specific scheduler
(default-scheduler s2)

;; One reaction for s2
(scheduler-react!)

;3 Starts si1

198 Bigloo 4.3g

(thread-start-joinable! p1l)

;; Do three reactions
(scheduler-start! 3)

;3 Waits for pl/sl termination
(thread-join! p1)

;3 The final reaction
(scheduler-react!))))))

(thread-start! fla s1)
(thread-start! fib s1)
(thread-start! f2a s2)
(thread-start! f2b s2)

(thread-join! (thread-start-joinable! p2)))))

199

17 Database

Bigloo supports database programming. The current version proposes a SQLite binding.

17.1 SQLite

The Bigloo’s C back-end supports SQL queries. It relies on the SQLite library (http://
www.sqlite.org/). The SQLite binding is accessible to Bigloo via the sqlite library. Here
is an example of module that uses this library.

(module examplel
(library sqlite))

(let ((db (instantiate::sqlite)))
)

sqlite [Bigloo Sqlite class]
(class sqlite
(path: :bstring read-only (default ":memory:")))
The instances of the class sqlite hold SQLite databases. A database may be perma-
nently stored on a disk or loaded in memory. The class attribute path is the location
on the disk where the database is stored. The special path :memory: denotes in-
memory databases. When an instance is created a SQLite database is opened.

Example:

(define dbl (instantiate::sqlite (path "/tmp/foo.db")))

(define db2 (instantiate::sqlite))
Binds the global variable dbl to a database that is stored on the file system at
location /tmp/foo.db. This example also binds the global variable db2 to an in-
memory SQLite database.

sqlite-close sqlite [Bigloo Sqlite function]
This function closes a database previously opened by creating an instance of the class
sqlite.
Example:

(let ((db (instantiate::sqlite)))
(sqlite-exec db "CREATE TABLE tablel (x INTEGER, y INTEGER)")
(sqlite-exec db "INSERT INTO tablel VALUES(“a, “a)" 1 4)
(sqlite-close db))

sqlite-format string arg ... [Bigloo Sqlite function]
Constructs a string of characters representing an SQLite commands. This function
acts as format (see Section 5.2 [Input and Output], page 54). It is augmented with
three additional escape sequence: “q, "k, and “1. The first one build a string of
characters where the characters denoting SQL strings (i.e., the character ’) is auto-
matically escaped. The escape character "k introduces a list of SQL strings. The
escape character ~1 introduces a SQL list.

Summary of all escape codes:
e ~a The corresponding value is inserted into the string as if printed with display.

e ~s The corresponding value is inserted into the string as if printed with write.

http://www.sqlite.org/
http://www.sqlite.org/

200 Bigloo 4.3g
e 7 A newline is inserted.
e ~~ A tilde ~ is inserted.
e “g An SQL escaped string.
e ~1 Introduces a list (comma separated).
e “k Introduces a list of SQL strings.
Examples:
(module example
(library sqlite))
(sqlite-format "~a" "foo’bar") = "foo’bar"
(sqlite-format "“q" "foo’bar") = "’foo’’bar’"
(sqlite-format "~a" ’("foo’bar" "foo")) = "(foo’bar foo)"
(sqlite-format "“k" ’("foo’bar" "foo")) = "’foo’’bar’,’foo’"
(sqlite-format "~1" ’("foo’bar" "foo")) = "foo’bar,foo"
sqlite-exec sqlite string arg ... [Bigloo Sqlite function]

The function sqlite-exec executes an SQLite command. The command is the built
by implicitly invoking sqlite-format on string and the optional arg arguments. This
function returns a single element, the first one returned by the SQL engine.

Example:

(module example
(library sqlite))

(define *db* (instantiate::sqlite))
(sqlite-exec *db*x "CREATE TABLE foo (x INTEGER, y INTEGER)")

(for-each (lambda (x)
(sqlite-exec *db* "INSERT INTO foo VALUES("A, “A)" x (* x x)))

(iota 10))
(sqlite-exec *db* "SELECT * FROM foo")
=9
sqlite-eval sqlite procedure string arg ... [Bigloo Sqlite function]

The function sqlite-eval invokes a SQLite command built by implicitly invoking
sqlite-format on string and the optional arg arguments. The result of the function
is built by applying procedure to the first value returned by the SQLite call.

Note: user callback (procedure) must not exit. That is they must not invoke a
function create by bind-exit. Exiting from a callback will leave the database in a
inconsistent state that prevent transactions to be rolled back.

sqlite-map sqlite procedure string arg ... [Bigloo Sqlite function]

The function sqlite-map invokes a SQLite command built by implicitly invoking
sqlite-format on string and the optional arg arguments. The result is a list whose
elements are built by applying procedure to all the values returned by the SQLite
call.

Note: user callback (procedure) must not exit. That is they must not invoke a
function create by bind-exit. Exiting from a callback will leave the database in a
inconsistent state that prevent transactions to be rolled back. Example:

(module example

201

(library sqlite))
(define *db* (instantiate::sqlite))

(sqlite-exec *db* "CREATE TABLE foo (x INTEGER, y INTEGER)")
(for-each (lambda (x)
(sqlite-exec *db* "INSERT INTO foo VALUES("A, “A)" x (* x x)))
(iota 10))
(sqlite-map *db*
(lambda (s1 s2) (+ (string->integer sl1) (string->integer s2)))
"SELECT * FROM foo")
= (0 2 6 12 20 30 42 56 72 90)

Example2:

(module example
(library sqlite))

(define *db* (instantiate::sqlite))

(sqlite-exec *db* "CREATE TABLE foo (x INTEGER, y INTEGER)")
(for-each (lambda (x)
(sqlite-exec *dbx "INSERT INTO foo VALUES("A, “A)" x (* x x)))

(iota 10))
(sqlite-map *db* vector "SELECT * FROM foo")
= :(#(lloll IIOII)
#("1" ||1n)
#(l|2|l ||4n)
#(u3u ||9u)
#(ll4ll "16")
#(l|5n 1125")
#(usu "36")
#(II?II ll49ll)
#("8" "64")
#(ugu "81"))
sqlite-name-of-tables sqlite [Bigloo Sqlite function]

Returns the name of tables in the database. This list can also be obtained with

(sqlite-map db
(lambda (x) x)
"SELECT name FROM sqlite_master WHERE type=’table’")

sqlite-table-name-of-columns sqlite table [Bigloo Sqlite function]
Returns the name of columns in the table.

sqlite-last-insert-rowid sqlite [Bigloo Sqlite function]
Returns the SQLite rowid of the last inserted row.

203

18 Multimedia

Bigloo provides various facilities for programming multimedia applications. It provides func-
tions for parsing images and sounds and functions for controlling music players. All the func-
tions, variables, and classes presented in the document are accessible via the multimedia
library. Here is an example of module that uses this library:

;3 Extract the thumbnail of a digital photography.
(module thumbnail

(library multimedia)

(main main))

(define (main argv)
(when (and (pair? (cdr argv)) (file-exists? (cadr argv)))
(let ((ex (jpeg-exif (cadr argv))))
(when (exif? ex)
(display (exif-thumbnail ex))))))

18.1 Photography

The multimedia library provides functions for accessing the metadata generated by digital
camera.

jpeg-exif file-name [Bigloo Multimedia procedure]
The function jpeg-exif extracts the EXIF (http://en.wikipedia.org/wiki/
Exif) metadata of a JPEG file as created by digital camera. The argument file-name
is the name of the JPEG file. If the file contains an EXIF section it is returned as an
instance of the exif class. Otherwise, this function returns #f.

jpeg-exif-comment-set! file-name text [Bigloo Multimedia procedure]
Set the comment of the EXIF metadata section of the file file-name to text.

exif [Bigloo Multimedia class]
(class exif

(version (default #f))
(jpeg-encoding (default #f))
(jpeg-compress (default #f))
(comment (default #f))
(commentpos (default #f))
(commentlen (default #f))
(date (default #f))
(make (default #f))
(model (default #f))
(orientation (default ’landscape))
(width (default #f))
(height (default #f))
(ewidth (default #f))
(eheight (default #£))
(xresolution (default #f£))
(yresolution (default #f))
(resolution-unit (default #f))
(focal-length (default #f))
(flash (default #f))
(fnumber (default #f))
(iso (default #f))
(shutter-speed-value (default #f))

http://en.wikipedia.org/wiki/Exif
http://en.wikipedia.org/wiki/Exif

204 Bigloo 4.3g

(exposure-time (default #f£))
(exposure-bias-value (default #f))
(aperture (default #f£))
(metering-mode (default #f))
(cdd-width (default #f))
(focal-plane-xres (default #f))
(focal-plane-units (default #f))
(thumbnail (default #f£))
(thumbnail-path (default #f))
(thumbnail-offset (default #f))
(thumbnail-length (default #f)))
The instance of the exif class maps the EXIF metadata found in JPEG files into

Bigloo objects. Since all fields are optional they are untyped.

exif-date->date [Bigloo Multimedia procedure]
Parses an exif date, i.e., a string of characters, and returns corresponding date. Raises
an &io-parse-error if the string does not represents an exif date whose syntax is given
by the following regular expression:
[0-9] [0-9] [0-9]: [0-9] [0-9]: [0-91 [0-9] :[0-9][0-9]:[0-9]1[0-9]:[0-9][0-9]

18.2 Music

The multimedia library provides an extensive set of functions for dealing with music. It
provides functions for accessing the metadata of certain music file formats, it provides
functions for controlling the volume of the hardware mixers and it provides functions for
playing and controlling music playback.

18.2.1 Metadata and Playlist

read-m3u input-port [Bigloo Multimedia procedure]

write-m3u list output-port [Bigloo Multimedia procedure]
The function read-m3u reads a playlist expressed in the M3U format from input-port
and returns a list of songs. The function write-m3u encode such a list encoded in
the M3U format to an output port.

file-musictag file-name [Bigloo Multimedia procedure]
mp3-musictag file-name [Bigloo Multimedia procedure]
ogg-musictag file-name [Bigloo Multimedia procedure]
flac-musictag file-name [Bigloo Multimedia procedure]

These functions extract the metadata of a music file named file-name.

The function mp3-musictag returns the ID3 tag section if it exists. Otherwise, it
returns #£. The function ogg-musictag and flac-musictag returns the vorbis com-
ment if it exists.

musictag [Bigloo Multimedia class]
(abstract-class musictag
(title::bstring read-only)
(artist::bstring read-only)
(orchestra::obj read-only (default #f))
(interpret::obj read-only (default #f))
(album: :bstring read-only)
(year::int read-only)

Chapter 18: Multimedia 205

(comment: :bstring read-only)
(genre: :bstring read-only)
(track::int (default -1)))

This class is used as the base class of music tag formats.

id3: :musictag [Bigloo Multimedia class]
(class id3::musictag
version: :bstring
(orchestra::obj read-only (default #f))
(conductor: :obj read-only (default #f))
(recording read-only (default #f))
(cd::obj (default #f)))

This class is used to reify the ID3 metadata used in the MP3 format.

vorbis: :musictag [Bigloo Multimedia class]
(class vorbis::musictag)

This class is used to reify the Vorbis comments of OGG and Flac files.

18.2.2 Mixer

Bigloo proposes various functions and classes for controlling the audio volume of sound
cards.

mixer [Bigloo Multimedia class]
(class mixer
(devices::pair-nil (default ’())))

The field devices is a list of available channels.

mixer-close mix [Bigloo Multimedia procedure]
Closes a mixer. The argument mix must be an instance of the mixer class.

mixer-volume-get mix channel [Bigloo Multimedia procedure]

mixer-volume-set! mix channel leftv rightv [Bigloo Multimedia procedure]
The function mixer-volume-get returns the left and right volume levels (two values) of
the channel of the mixer mix. The channel is denoted by its name and is represented
as a string of characters. The argument mix is an instance of the mixer class.

The function mixer-volume-set! changes the audio level of a mixer channel.

soundcard: :mixer [Bigloo Multimedia class]
(class soundcard: :mixer
(device: :bstring read-only))
The instances of the class soundcard, a subclass of the mixer class, are used to access
physical soundcard as supported by operating systems. The class field device stands
for the name of the system device (e.g., "/dev/mixer" for the Linux OS). During the
initialization of the instance, the device is opened and initialized.

18.2.3 Playback

Bigloo supports various functions for playing music. These functions rely on two data
structure: music players and music status. The first ones are used to control player back-
ends. The second ones are used to get information about the music being played. The

206

Bigloo 4.3g

following example shows how a simple music player using either MPlayer, MPG123, or

MPC can be programmed with Bigloo.

(module musicplay
(library multimedia)
(main main))

(define (main args)
(let ((files ’())
(backend ’mplayer)
(command #f))
(args-parse (cdr args)
(("--mpg123" (help "Select the mpgl23 back-end"))
(set! backend ’mpgl23))
(("--mpc" (help "Select the mpc back-end"))
(set! backend ’mpc))
(("--mplayer" (help "Select the mplayer back-end"))
(set! backend ’mplayer))
(("--command" 7cmd (help "Set the command path"))
(set! command cmd))
(("--help" (help "This help"))
(print "usage: music [options] file ...")
(args-parse-usage #f)
(exit 0))
(else
(set! files (cons else files))))
;; create a music player
(let ((player (case backend
((mpg123)
(if command
(instantiate: :mpgl23
(path command))
(instantiate: :mpgl23)))
((mplayer)
(if command
(instantiate: :mplayer
(path command))
(instantiate: :mplayer)))
((mpc)
(instantiate::mpc)))))
;3 £ill the music play list

(for-each (lambda (p) (music-playlist-add! player p)) (reverse files))

;; start playing
(music-play player)

;3 run an event loop with call-backs associated to some events

(music-event-loop player
:onstate (lambda (status)

(with-access: :musicstatus status (state song volume)

(print "state : " state)
(print "song : " song)))
:onmeta (lambda (meta)
(print "meta : " meta))
:onvolume (lambda (volume)
(print "volume : " volume))))))
music [Bigloo Multimedia abstract class]

(abstract-class music
(frequency: :long (default 2000000))

This abstract class is the root class of all music players.

Chapter 18: Multimedia 207

musicproc: :music [Bigloo Multimedia class]
(class musicproc: :music
(charset: :symbol (default ’ISO-LATIN-1)))

This class is used to reify player that are run in an external process.

mplayer: :musicproc [Bigloo Multimedia class]
(class mplayer: :musicproc
(path: :bstring read-only (default "mplayer"))
(args::pair-nil read-only (default ’("-vo" "null" "-quiet" "-slave" "-idle")))
(ao::0bj read-only (default #unspecified))
(ac::0obj read-only (default #unspecified)))

A player based on the external software MPlayer. Creating such a player spawns in
background a MPlayer process.

mpgl123: :musicproc [Bigloo Multimedia class]
(class mpgl23::musicproc
(path: :bstring read-only (default "mpgl23"))
(args::pair-nil read-only (default ’("--remote"))))

A player based on the external software mpg123.

mpc: :music [Bigloo Multimedia class]
(class mpc::music
(hello read-only (default #f))
(host read-only (default "localhost"))
(port read-only (default 6600))
(timeout read-only (default 10008993))
(prefix (default #f£)))

A MPC client.

e hello: an optional string written when the connection is establish with the MPD
server.

e prefix: an optional path prefix to be removed from music playlist. This is needed
because MPD can only play music files registered in is private database. The file
names used by MPD are relative a root directory used to fill the database. The
prefix field allows programmer to write portable code that manages play list
file names independently of the player selected.

musicstatus [Bigloo Multimedia class]
(class musicstatus

(state::symbol (default ’stop))
(volume: :obj (default -1))
(repeat::bool (default #f))
(random: :bool (default #f))
(playlistid::int (default -1))
(playlistlength::int (default 0))
(xfade::int (default 0))
(song::int (default 0))
(songid::int (default 0))
(songpos (default 0))
(songlength::int (default 0))
(bitrate::int (default 0))
(khz::int (default 0))
(err::obj (default #£)))

The instances of the class musicstatus denote that state of a player.

208 Bigloo 4.3g

music-close music [Bigloo Multimedia procedure]
music-reset! music [Bigloo Multimedia procedure]
music-closed? music [Bigloo Multimedia procedure]

Closes, resets, and tests the state of a music player.

music-playlist-get music [Bigloo Multimedia procedure]

music-playlist-add! music song [Bigloo Multimedia procedure]

music-playlist-delete! music int [Bigloo Multimedia procedure]

music-playlist-clear! music [Bigloo Multimedia procedure]
These functions controls the playlist used by a player.

Note: The song argument is an UTF8 encoded string (see Section Section 5.1.10
[Unicode (UCS-2) Strings], page 44) whatever the local file system encoding is. The
function music-playlist-get returns a list of UTF8 encoded names.

e music-playlist-get: returns the list of songs (UTF8 names) of the current
playlist.

e music-playlist-add!: adds an extra song (UTF8 name) at the end of the
playlist.

e music-delete!: removes the song number int from the playlist.

e music-clear!: erases the whole playlist.

music-play music [song] [Bigloo Multimedia procedure
music-seek music time [song] [Bigloo Multimedia procedure
music-stop music [Bigloo Multimedia procedure
music-pause music [Bigloo Multimedia procedure
music-next music [Bigloo Multimedia procedure
music-prev music [Bigloo Multimedia procedure

These functions changes the state of the music player. The function music-seek seeks

the playback position to the position time, which is an integer denoting a number of

]
]
]
]
]
]

seconds.
music-crossfade music int [Bigloo Multimedia procedure]
music-random-set! music bool [Bigloo Multimedia procedure]
music-repeat-set! music bool [Bigloo Multimedia procedure]

These functions controls how songs playback should follow each other.

music-volume-get music [Bigloo Multimedia procedure]
music-volume-set! music vol [Bigloo Multimedia procedure]
Get and set the audio volume of a player. Some player use the native mixer supported
by the operating system some others use a software mixer unrelated to the hardware.

music-status music [Bigloo Multimedia procedure]

music-update-status! music status [Bigloo Multimedia procedure]
The function music-status returns an instance of the musicstatus class which de-
notes the state of the player. The function music-update-status! updates this
status.

Chapter 18: Multimedia 209

music-song music [Bigloo Multimedia procedure]

music-songpos music [Bigloo Multimedia procedure]
These two functions return the number of the song being played and the position in
the song. These functions are somehow redundant with the function music-status
because the status also contains information about the playback song and playback
position. However, for some players getting the music song and the playback position
is cheaper than getting the whole player status.

music-meta music [Bigloo Multimedia procedure]
Returns the metadata the current song.

music-reset-error! music [Bigloo Multimedia procedure]
Reset the previous errors detected by a player.

music-event-loop music [:onstate] [:onmeta] [Bigloo Multimedia procedure]
[:onerror] [:onvolume]
The function music-event-loop enable event notifications when the state of a player
changes. The keyword arguments are:

e :onstate, a function of one parameter. When the player state changes, this
function is called with an instance of musicstatus as first actual parameter.

e :ommeta, a function of two parameters. This function is called when a metadata
is detected in the music currently played.

e :omerror, a function of one parameter, invoked when an error is detected.

e :onvolume, a function of one parameter, invoked when the volume changes.

18.2.4 Music Player Daemon

Music Player Daemon (MPD in short) allows remote access for playing music http://
www.musicpd.org. MPD is designed for integrating a computer into a stereo system that
provides control for music playback over a local network. The Bigloo class mpc implements
a mpd client. All Bigloo players can be access via the MPD protocol, using the

The following example shows how to access a MPlayer music player using the MPD
protocol with a simple Bigloo program:

(module mpd
(library multimedia pthread)
(main main))

(define (main argv)
(let ((db (instantiate::mpd-database
(directories (cdr argv))))
(serv (make-server-socket 6600))
(music (instantiate::mplayer)))
(let loop ()
(thread-start! (make-mpd-connection-thread music db sock))

(loop))))

(define (make-mpd-connection-thread music db sock)
(instantiate: :pthread
(body (lambda ()
(let ((pi (socket-input sock))
(po (socket-output sock)))

http://www.musicpd.org
http://www.musicpd.org

210 Bigloo 4.3g

(input-timeout-set! pi 10000)
(output-timeout-set! po 10000)
(unwind-protect
(mpd music pi po db)
(socket-close sock)))))))

mpd music input-port output-port database [:log] [Bigloo Multimedia procedure]
The function mpd implements a MPD server. It reads commands from the input-
port and write results to output-port. The argument database, an instance of the
mpd-database class, describes the music material that can be delivered by this player.

mpd-database [Bigloo Multimedia class]
(class mpd-database
(directories::pair-nil read-only)

The field directories contains the list of the directories that contains music files.

18.3 Color

The multimedia library provides functions for dealing with colors.

hsv->rgb hsv Bigloo Multimedia procedure

[]
hsl->rgb h sl [Bigloo Multimedia procedure]
rgb-hsv rghb [Bigloo Multimedia procedure]
rgb-hsl rgb [Bigloo Multimedia procedure]

These procedures converts from and to HSV, HSL, and RGB representations. The
argument h is an integer in the range [0..360], the arguments s, v, and [in the range
[0..100]. The arguments r, g, and b are in the range [0..255]. These procedures
returns multiple-values.
(multiple-value-bind (r g b)
(hsv->rgb 340 34 56)
(list r g b)) = (143 94 110)
(multiple-value-bind (h s v)
(rgb->hsv 255 0 0)
(list h s v)) = (0 100 100)

211

19 Mail

Bigloo provides various facilities for handling mails. It provides facilities for parsing many
formats commonly used in composing mails (quoted printable, vcard, mime types). It also
provides facilities for dealing with mail servers. For that it proposes an abstracted view of
mail servers with two implementations: imap and maildir.

19.1 RFC 2045 — MIME, Part one

This section described the functions offered by Bigloo to encode and decode some of the
formats specified in the RFC 2045 http://tools.ietf.org/html/rfc2045.

quoted-printable-encode string [Bigloo Mail procedure]
quoted-printable-decode string [Bigloo Mail procedure]
These functions encode/decode a string into and from the quoted-printable format.

Examples:

(quoted-printable-encode "foo bar") = "foobar=20"
(quoted-printable-decode "foobar=20") = "foo bar"

quoted-printable-encode-port ip op [Bigloo Mail procedure]

quoted-printable-decode-port ip op [rfc2047] [Bigloo Mail procedure]
These functions are similar to quoted-printable-encode and quoted-printable-
decode except that they operate on input-ports and output-ports.

The function quoted-printable-decode-port accepts an optional argument:
rfc2047. If this argument is #t, then the parsing stops on the prefix 7=, which is a
marker in the mail subject as specified by the RFC 2047, (see http://tools.ietf.
org/html/rfc2047) is found.

mime-content-decode string [Bigloo Mail procedure]

mime-content-decode-port input-port [Bigloo Mail procedure]
These two functions parse respectively a string and an input-port and return a list
of three elements:

e 3 content type,
e a content subtype,

e options.

Example:

(mime-content-type-decode "text/plain; boundary=Apple-Mail-11")
= (text plain ((boundary . Apple-Mail-11)))

mime-content-disposition-decode string [Bigloo Mail procedure]

mime-content-disposition-decode-port input-port [Bigloo Mail procedure]
These two functions parse respectively a string and an input-port and return a list
describing the content disposition.

Example:

(mime-content-disposition-decode "attachment; filename=\"smine.p7s\"")
= (attachment ((filename . smine.p7s)))

http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047

212 Bigloo 4.3g

mime-multipart-decode string boundary [recursive] [Bigloo Mail procedure]
mime-multipart-decode-port input-port boundary [Bigloo Mail procedure]
[recursive]

These two functions parse respectively a string and an input-port and return a list
of mime sections.

If the optional argument recursive controls whether subparts of a multipart section
must be decoded are not. If the recursive is #t then all subparts of the multipart
content are decoded. The result is a fully decoded multipart section. If recursive is
#f subparts are not decoded and included in the result as plain strings.

19.2 RFC 2047 — MIME, Part three

This section described the function offered by Bigloo to decode the RFC 2047 encoding
used in mail headers (see http://tools.ietf.org/html/rfc2047).

rfc2047-decode-port ip op [:charset iso-latin-1] [Bigloo Mail procedure]

rfc2047-decode string [:charset iso-latin-1] [Bigloo Mail procedure]
These functions decode mail header fields encoded using the RFC 2047 specification.
The optional argument charset specified in which charset the result should be encoded.
The allowed values are:

e utf-8
e iso-latin-1
e cp-1252

Example:

(map char->integer
(string->list (rfc2047-decode "Poste =7IS0-8859-17Q7t=E91=E9phonique?=")))
= (80 111 115 116 101 32 116 233 108 233 112 104 111 110 105 113 117 101)
(string-for-read (rfc2047-decode "Poste =7IS0-8859-17Q7t=E91=E9phonique?=" :charset ’utf8))
= "Poste t\303\2511\303\251phonique"

19.3 RFC 2426 — MIME, Part three

This section presents the facilities supported by Bigloo for dealing with vcards.

vcard [Bigloo Mail class]
(class vcard
(version: :bstring (default "2.1"))
(fn (default #£f))
(familyname (default #f))
(firstname (default #f))
(face (default #f))
(url (default #f))
(org (default #f))
(emails: :pair-nil (default ’()))
(phones: :pair-nil (default ’()))
(addresses: :pair-nil (default ’())))

The class vard is used to reify in memory a vcard as parsed by the function
port->vcard and string->vcard.

http://tools.ietf.org/html/rfc2047

Chapter 19: Mail 213

Except emails, phones, and addresses, all fields are optional. They should be either
#f or a string.

e face is a flat list of strings.
e phones is an alist whose elements are pairs of two strings.
e addresses is a list composed of:

e the postoffice, a string,

e a list of strings denoting the street address,

e a string denoting the city,

e a string denoting the region,

e a string denoting the zip code,

e a string denoting the zip country.

All street values are required and must be provided. The empty string should be
used to denote empty values.

port->vcard: :vcard ip [:charset-encoder] [Bigloo Mail function]

string->vcard: :vcard str [:charset-encoder] [Bigloo Mail function]
These two functions parse a vcard to produce a vcard instance. The optional argu-
ment charset-encoder, when provided, must be a function of argument: a string to
be decoded. Vcard strings are UTF-8 encoded. The charset-encoder can be used to
encode on-the-fly the strings found in the vcard in a difference encoding.

19.4 RFC 2822 — Internet Message Format

This section described the functions offered by Bigloo to encode and decode some of the
formats specified in the RFC 2822 (http://tools.ietf.org/html/rfc2045). It mainly
supports functions for parsing email headers and for decoding email addresses.

mail-header->list obj [Bigloo Mail procedure]
The function mail-header->list parses a mail header that can either be imple-
mented as a string or an input port. It returns a list of fields.

Example:

(mail-header->1ist "Return-Path: <foo.bar@inria.fr>
Received: from eurus.inria.fr ([unix socket])")

=
((return-path . "<foo.bar@inria.fr>") (received . "from eurus.inria.fr ([unix socket])"))
email-normalize string [Bigloo Mail procedure]
The function email-normalize extracts the actual email address from an email rep-
resentation.
Example:

(email-normalize "foo bar <foo.bar@inria.fr>") = "foo.bar@inria.fr"

rfc2822-address-display-name string [Bigloo Mail procedure]
Extract the name component of an email.

Example:

(rfc2822-address-display-name "Foo Bar <foo.bar@inria.fr>") = "Foo Bar"
(rfc2822-address-display-name "<foo.bar@inria.fr>") = "foo bar"

http://tools.ietf.org/html/rfc2045

214 Bigloo 4.3g

19.5 Mail servers — imap and maildir

Bigloo implements the imap protocol (http://tools.ietf.org/html/rfc3501) and the
maildir format. This section presents the API for manipulating them both.

19.5.1 Mailboxes

mailbox [Bigloo Mail class|
(abstract-class mailbox
(label::bstring (default "")))
The abstract class mailbox is the common ancestors to all the mailbox implemen-
tations. It allows the definitions of various generic functions that deal with mail
messages and mail folders.

&mailbox-error [Bigloo Mail class]
(abstract-class &mailbox-error: :&error)
The &mailbox-error is the super class of all the errors that can be raised when
accessing mail servers, except the parsing errors that inherit from the &parse-error
super class.

mailbox-close mailbox [Bigloo Mail procedure]
Close the mailbox connection.

Example:

(let ((mbox (if (network-up?)
(instantiate::imap (socket ...))
(instantiate::maildir (path my-local-cache)))))
(mailbox-close mbox))

mailbox-separator mailbox [Bigloo Mail procedure]
Returns a string denoting the separator (commonly " or .) used by the mailbox.

mailbox-prefix mailbox [Bigloo Mail procedure]
Returns the prefix of the mailbox, a string or #f£.

mailbox-hostname mailbox [Bigloo Mail procedure]
Returns the hostname of the mailbox, a string or #£.

mailbox-folders mailbox [Bigloo Mail procedure]
Returns a list of strings denoting the folder names of the mailbox.

mailbox-folder-select! mailbox string [Bigloo Mail procedure]
Selects one folder of the mailbox. This function is central to mailboxes because
all messages are referenced relatively to the folder selection. All the functions that
operates on uid implicitly access the current folder selection.

mailbox-folder-unselect! mailbox [Bigloo Mail procedure]
Unselects the mailbox current selected folder.

mailbox-folder-create! mailbox folder [Bigloo Mail procedure]
Creates a new folder denotes by a fully qualified name.

Example

(mailbox-create! mbox "INBOX.scheme.bigloo")

http://tools.ietf.org/html/rfc3501

Chapter 19: Mail 215

mailbox-folder-delete! mailbox folder [Bigloo Mail procedure]
Deletes an empty folder.

mailbox-folder-rename! mailbox old new [Bigloo Mail procedure]
Renames a folder.

mailbox-folder-move! mailbox folder dest [Bigloo Mail procedure]
Moves the folder into the destination folder dest.

mailbox-subscribe! mailbox folder [Bigloo Mail procedure]

mailbox-unsubscribe! mailbox folder [Bigloo Mail procedure]
Subscribe/unsubscribe to a folder. This allows imap servers not to present the entire
list of folders. Only subscribed folders are returned by mailbox-folders. These
functions have no effect on maildir servers.

mailbox-folder-exists? mailbox folder [Bigloo Mail procedure]
Returns #t if and only if folder exists in mailbox. Returns #f otherwise.

mailbox-folder-status mailbox folder [Bigloo Mail procedure]
Returns the status of the folder. A status is an alist made of the number of unseen
mail, the uid validity information, the uid next value, the number of recent messages,
and the overall number of messages.

mailbox-folder-uids mailbox [Bigloo Mail procedure]
Returns the list of UIDs (a list of integers) of the messages contained in the currently
selected folder.

mailbox-folder-dates mailbox [Bigloo Mail procedure]
Returns the list of dates of the messages contained in the currently selected folder.

mailbox-folder-delete-messages! mailbox [Bigloo Mail procedure]
Deletes the messages marked as deleted of the currently selected folder.

mailbox-folder-header-fields mailbox field [Bigloo Mail procedure]
Returns the list of headers fields of the message of the current folder.

mailbox-message mailbox uid [Bigloo Mail procedure]
Returns the message uid in the current folder.

mailbox-message-path mailbox uid [Bigloo Mail procedure]
Returns the full path name of the message uid.

mailbox-message-body mailbox uid [len] [Bigloo Mail procedure]
Returns the body of the message uid. If len is provided, only returns the first len
characters of the body.

mailbox-message-header mailbox uid [Bigloo Mail procedure]
Returns the header as a string of the message uid.

mailbox-message-header-list mailbox uid [Bigloo Mail procedure]
Returns the header as an alist of the message uid.

216 Bigloo 4.3g

mailbox-message-header-field mailbox uid field [Bigloo Mail procedure]
Extracts one field from the message header.

mailbox-message-size mailbox uid [Bigloo Mail procedure]
Returns the size of the message.

mailbox-message-info mailbox uid [Bigloo Mail procedure]
Returns the information relative to the message uid. This a list containing the message
identifier, its uid, the message date, the message size, and the message flags.

mailbox-message-flags mailbox uid [Bigloo Mail procedure]
mailbox-message-flags-set! mailbox uid Ist [Bigloo Mail procedure]
Sets/Gets the flags of the message uid. This is a list of strings. Typical flags are:

e \Flagged

e \Answered

e \Deleted

e \Seen
mailbox-message-delete! mailbox uid [Bigloo Mail procedure]

Deletes the message uid.

mailbox-message-move! mailbox uid folder [Bigloo Mail procedure]
Moves the message uid into the new folder (denoted by a string).

mailbox-message-create! mailbox folder content [Bigloo Mail procedure]
Creates a new message in the folder whose content is given the string content.

19.5.2 IMAP (RFC 3501)

imap [Bigloo Mail class]
(class imap::mailbox
(socket: :socket read-only))

(define mbox
(instantiate::maildir
(label "My Remote Mailbox")
(socket (imap-login (make-client-socket "imap.inria.fr" 993)
"serrano" "XXX"))))

&imap-parse-error [Bigloo Mail class]
(class &imap-parse-error::&io-parse-error)

&imap-error [Bigloo Mail class|
(class &imap-error: :&mailbox-error)

imap-login socket user password [Bigloo Mail procedure]
Log a user into an imap server. The socket must have been created first. The
argument user is a string and denotes the user name. The argument password is a
string too and it contains the user password. This function returns as value the socket
it has received. If the operation fails the function raises a &imap-error exception.

Example:

(define mbox (imap-login (make-client-socket "imap.inria.fr" 993 :timeout 200000)
"serrano" "XXX"))

(print (mailbox-folders mbox))

Chapter 19: Mail 217

imap-logout socket [Bigloo Mail procedure]
Closes an imap connection.

imap-capability socket [Bigloo Mail procedure]
Returns the list of capabilities supported the imap server.

19.5.3 Maildir

maildir [Bigloo Mail class]
(class maildir::mailbox
(prefix::bstring read-only (default "INBOX"))
(path: :bstring read-only))

Example:

(define mbox
(instantiate::maildir
(label "My Mailbox")
(path (make-file-name (getenv "HOME") ".maildir"))))

(tprint (mailbox-folders mbox))

&maildir-error [Bigloo Mail class]
(class &maildir-error::&mailbox-error)

219

20 Text

This chapter describes the Bigloo API for processing texts.

20.1 BibTeX

bibtex obj [Bigloo Text function]
bibtex-port input-port [Bigloo Text function]
bibtex-file file-name [Bigloo Text function]
bibtex-string string [Bigloo Text function]

These function parse BibTeX sources. The variable obj can either be an input-port
or a string which denotes a file name. It returns a list of BibTeX entries.

The functions bibtex-port, bibtex-file, and bibtex-string are mere wrappers
that invoke bibtex.

Example:
(bibtex (open-input-string "@book{ as:sicp,
author = {Abelson, H. and Sussman, G.},
title = {Structure and Interpretation of Computer Programs},
year = 1985,

publisher = {MIT Press},
address = {Cambridge, Mass., USA},
}")) = (("as:sicp" BOOK

(author ("Abelson" "H.") ("Sussman" "G."))
(title . "Structure and Interpretation of Computer Programs")
(year . "1985")
(publisher . "MIT Press")
(address . "Cambridge, Mass., USA")))

bibtex-parse-authors string [Bigloo Text function]
This function parses the author field of a bibtex entry.

Example:

(bibtex-parse-authors "Abelson, H. and Sussman, G.")
= (("Abelson" "H.") ("Sussman" "G."))

20.2 Character strings

hyphenate word hyphens [Bigloo Text function]
The function hyphenate accepts as input a single word and returns as output a list
of subwords. The argument hyphens is an opaque data structure obtained by calling
the function load-hyphens or make-hyphens.

Example:
(hyphenate "software" (load-hyphens ’en)) = ("soft" "ware")

load-hyphens obj [Bigloo Text function]
Loads an hyphens table and returns a data structure suitable for hyphenate. The
variable obj can either be a file name containing an hyphens table or a symbol denoting
a pre-defined hyphens table. Currently, Bigloo supports two tables: en for an English
table and fr for a French table. The procedure load-hyphens invokes make-hyphens
to build the hyphens table.

220

Bigloo 4.3g

Example:

(define (hyphenate-text text lang)
(let ((table (with-handler
(lambda (e)
(unless (&io-file-not-found-error? e)
(raise e)))
(load-hyphens lang)))
(words (string-split text " ")))
(if table
(append-map (lambda (w) (hyphenate w table)) words)
words)))

The procedure hyphenate-text hyphenates the words of the text according to the rules
for the language denoted by its code lang if there is a file lang-hyphens.sch. If there is
no such file, the text remains un-hyphenated.

make-hyphens [:language| [:exceptions| [:patterns] [Bigloo Text function]

Creates an hyphens table out of the arguments exceptions and patterns.

The implementation of the table of hyphens created by make-hyphens follows closely
Frank Liang’s algorithm as published in his doctoral dissertation Word Hy-phen-a-
tion By Com-pu-ter available on the TeX Users Group site here: http://www.tug.
org/docs/liang/. This table is a trie (see http://en.wikipedia.org/wiki/Trie
for a definition and an explanation).

Most of this implementation is borrowed from Phil Bewig’s work available here:
http://sites.google.com/site/schemephil/, along with his paper describing the
program from which the Bigloo implementation is largely borrowed.

exceptions must be a non-empty list of explicitly hyphenated words.

Explicitly hyphenated words are like the following: "as-so-ciate", "as-so-ciates",
"dec-li-na-tion", where the hyphens indicate the places where hyphenation is al-
lowed. The words in exceptions are used to generate hyphenation patterns, which are
added to patterns (see next paragraph).

patterns must be a non-empty list of hyphenation patterns.

Hyphenation patterns are strings of the form ".anti5s", where a period denotes the
beginning or the end of a word, an odd number denotes a place where hyphenation is
allowed, and an even number a place where hyphenation is forbidden. This notation is
part of Frank Liang’s algorithm created for Donald Knuth’s TeX typographic system.

20.3 Character encodings

gb2312->ucs2 string [Bigloo Text function]

Converts a GB2312 (aka ¢p936) encoded 8bits string into an UCS2 string.

http://www.tug.org/docs/liang/
http://www.tug.org/docs/liang/
http://en.wikipedia.org/wiki/Trie
http://sites.google.com/site/schemephil/

221

21 CSV

This chapter describes the Bigloo API for processing CSV spreadsheets. This chapter has
been written by Joseph Donaldson, as the implementation of the CSV library.

21.1 Overview

The Bigloo csv library supports the parsing of csv and csv-like data. By default, it enables
the parsing of comma, tab, and pipe separated data. In addition, facilities are provided
that enable extending the library to support additonal csv-like formats.

The rest of this document describes the Bigloo csv application programming interface.

21.2 API Reference

read-csv-record input-port [custom-lexer] [bigloo procedure]
read-csv-record has one required argument, the input-port of the csv data to parse,
and an optional argument indicating the lexer to use, by default the lexer supporting
standard csv files. It returns a single record, as a list, or #eof-object. Upon error,
it will throw an &invalid-port-error or &io-parse-error exception.

read-csv-records input-port [custom-lexer] [bigloo procedure]
read-csv-records has one required argument, the input-port of the csv data to parse,
and an optional argument indicating the lexer to use, by default the lexer supporting
standard csv files. It returns all of the records, as a list of lists, or #eof-object.
Upon error, it will throw an &invalid-port-error or &io-parse-error exception.

csv-for-each proc input-port [custom-lexer] [bigloo procedure]
csv-for-each has two required arguments, a procedure to apply to each record and
the input-port of the csv data to parse, and an optional argument indicating the lexer
to use, by default the lexer supporting standard csv files. It returns #unspecified.
Upon error, it will throw an &invalid-port-error or &io-parse-error exception.

csv-map proc input-port [custom-lexer] [bigloo procedure]
csv-map has two required arguments, a procedure to apply to each record and the
input-port of the csv data to parse, and an optional argument indicating the lexer to
use, by default the lexer supporting standard csv files. It returnsthe results of applying
proc to each record as a list. Upon error, it will throw an &invalid-port-error or
&io-parse-error exception.

make-csv-lexer sep quot [bigloo form]
make-csv-lexer has two required arguments, a character used to separate records
and a character for quoting. It returns custom lexer.

bigloo variable +csv-lexer+ [Variable]
+csv-lexer+ is a bigloo-csv lexer supporting the standard comma-separated value for-
mat.

bigloo variable +tsv-lexer+ [Variable]

+tsv-lexer+ is a bigloo-csv lexer supporting the tab-separated value format.

222 Bigloo 4.3g

bigloo variable +psv-lexer+ [Variable]
+psv-lexer+ is a bigloo-csv lexer supporting the pipe-separated value format.

The following is a simple example of using the bigloo-csv library. It parses a single record
from the given csv data and prints it.

(module example
(library bigloo-csv)
(main main))

(define +csv-data+ "dog,cat,horse\npig,cow,squirrel")

(define (main args)
(let ((in (open-input-string +csv-data+)))
(unwind-protect
(print (read-csv-record in))
(close-input-port in))))

223

22 Eval and code interpretation

This chapter describes the Bigloo evaluator.

22.1 Eval compliance

Bigloo includes an interpreter. Unfortunately, the language accepted by the interpreter is
a proper subset of that accepted by the compiler. The main differences are:

e No foreign objects can be handled by interpreter.
e Classes of the object system cannot be declared within interpreted code.

e The interpreter ignores modules, and has a unique global environment.

Compiled code and interpreted code can be mixed together. That is, interpreted code
is allowed to call compiled code and vice versa. This connection can be use to circumvent
the missing features of the interpreter (see Section see Section 2.2 [Module Declaration],
page 7, for a description of how to connect compiled and interpreted code).

By default the evaluator assumes that operators from the standard library (e.g., +,
car) are immutable. Hence, it optimizes these operators’s calls. This optimization can
be disabled using the bigloo-eval-strict-module parameter described in the chapter
describing the parameters (see see Chapter 24 [Parameters], page 231).

22.2 Eval standard functions

eval exp [env] [procedure]
This form evaluates exp. The second argument is optional. It can be the evaluation
of one of these three function forms:

(scheme-report-environment 5)
(null-environment 5)
(interaction-environment)

scheme-report-environment version [procedure]
null-environment version [procedure]
interaction-environment version [procedure]

These three procedures have the definitions given in the R5RS so see Section “6.5
Eval” in R5RS, for more details.

byte-code-compile exp [env (default-environment)] [bigloo procedure]

byte-code-run byte-code [bigloo procedure]
The function byte-code-compile compiles a Scheme expression into a sequence of
byte codes that is implemented as a string. The function byte-code-run execute
such a sequence.

repl [bigloo procedure]
This invokes the read-eval-print loop. Several repl can be embedded.

The repl function can be used to implement custom Bigloo interpreters. For instance,

one may write:

(module repl)
(repl)

When compiled, this will deliver an executable containing the sole Bigloo interpreter.

224 Bigloo 4.3g

set-repl-error-notifier! notifier [bigloo procedure]

get-repl-error-notifier [bigloo procedure]
Set or get the procedure used in the REPLs to display errors. The notifier is a
procedure of one argument, the error or exception that has been raised. Example:

(set-repl-error-notifier!
(lambda (e)
(print "=== error ======)
(exception-notify e)))

quit [bigloo procedure]
This exits from the currently running repl. If the current repl is the first one then
this function ends the interpreter.

set-prompter! proc [bigloo procedure]
The argument proc has to be a procedure of one argument and invoking this function
sets the repl prompter. That is, to display its prompt, repl invokes proc giving it
the nesting level of the current loop as its argument.

get-prompter [bigloo procedure]
Returns the current repl prompter.

set-repl-printer! proc [bigloo procedure]
The argument proc has to be a procedure accepting one or two arguments. This
function sets the repl display function. That is, to display the result of its evaluations,
repl invokes proc giving it the evaluated expression as first argument and the current
output port (or a file in case of transcript) as second argument. Set-repl-printer!
returns the former repl display function.

For instance, one may write:

1:=> (define x (cons 1 2)) 4 X

1:=> (define y (cons x x)) 1Y

1:=>y -4 (#0=(1 . 2) . #0#)

1:=> (set-repl-printer! display) -| #<procedure:83b8c70.-2>

1:=>y 4 (1 .2)1.2)
native-repl-printer [bigloo procedure]

Returns the native (default) repl display function.

expand exp [bigloo procedure]
Returns the value of exp after all macro expansions have been performed.

expand-once exp [bigloo procedure]
Returns the value of exp after one macro expansion has been performed.

It is possible to specify files which have to be loaded when the interpreter is invoked.
For this, see section see Chapter 31 [Compiler Description], page 275.
If a Bigloo file starts with the line:
#! bigloo-command-name
and if this file is executable (in the meaning of the system) and if the user tries to
execute it, Bigloo will evaluate it. Note also that SRFI-22 support enables to run any Unix
interpreter (see Chapter 30 [SRFIs|, page 269).

Chapter 22: Eval and code interpretation 225

load filename [bigloo procedure]

loadq filename [bigloo procedure]
Filename should be a string naming an existing file which contains Bigloo source code.
This file is searched in the current directory and in all the directories mentioned in
the variable *1oad-path*. The load procedure reads expressions and definitions from
the file, evaluating them sequentially. If the file loaded is a module (i.e. if it begins
with a regular module clause), load behaves as module initialization. Otherwise, this
function returns the result of the last evaluation. The function loadq differs from the
function load in the sense that loadq does not print any intermediate evaluations.

Both functions return the full path of the loaded file.

loada filename [bigloo procedure]
Loads an “access file”, which allows the interpreter to find the modules imported by
a loaded module. It returns the full path of the loaded file.

load-path [bigloo variable]
A list of search paths for the load functions.

dynamic-load filename #!optional (init init-point) [bigloo procedure]
Loads a shared library named filename. Returns the value of the last top-level
expression.

Important note: The function dynamic-load can only be used from compiled mod-
ules linked against dynamic libraries. In particular, the dynamic-1load function can be
issued from the bigloo command if and only if the option ~—-sharedcompiler=yes has
been used when configuring Bigloo. If the bigloo command is not linked against dy-
namic libraries and if dynamic-load is required inside a read-eval-print loop (REPL)
it exists a simple workaround. It consists in implementing a new REPL and linking
it against dynamic libraries. This can be done as:

$ cat > new-repl.scm <<EOF
(module new-repl)

(repl)

EOF

$ bigloo new-repl.scm -0 new-repl
$ new-repl

1:=> (dynamic-load ...)

If init-point is specified and if it is a string and if the library defines a function named
init-point, this function is called when the library is loaded. Init-point is a C
identifier, not a Scheme identifier. In order to set the C name a Scheme function,
use the extern export clause (see Section see Chapter 26 [C Interface|, page 235).
If the init-point is provided and is not a string, no initialization function is called
after the library is loaded. If the init-point value is not provided, once the library
is loaded, dynamic-load uses the Bigloo default entry point. Normally you should
not provide an init-point to dynamic-load unless you known what you are doing.
When producing C code, to force the Bigloo compiler to emit such a default entry
point, use the ~dload-sym compilation option (see Section see Chapter 31 [Compiler

226 Bigloo 4.3g

Description], page 275). This option is useless when using the JVM code generator.
Let’s assume a Linux system and two Bigloo modules. The first:

(module mod1
(eval (export foo))
(export (foo x)))

(define (foo x)
(print "foo: " x))

(foo 4)

The second:

(module mod2
(import (modl "modl.scm"))
(eval (export bar))
(export (bar x)))

(define (bar x)
(print "bar: " x))

(bar 5)
If these modules are compiled as:

$ bigloo mod1l.scm -¢ -0 modl.o
$ bigloo mod2.scm -c¢ -0 mod2.o -dload-sym

Then, if a shared library is built using these two modules (note that on non Linux
systems, a different command line is required):

$ 1d -G -o lib.so mod1l.0 mod2.o

Then, 1ib.so cant be dynamically loaded and the variables it defines used such as :
$ bigloo -i
(dynamic-load "lib.so")
- foo: 4
bar: 5
1:=> (foo 6)
- foo: 7
As the example illustrates, when Bigloo modules are dynamically loaded, they are
initialized. This initialization is ensure only if dynamic-load is called with exactly one
parameter. If dynamic-load is called with two parameters, it is of the responsibility
of the program to initialize the dynamically loaded module before using any Scheme
reference.

Note: In order to let the loaded module accesses the variables defined by the loader
application, special compilation flags must be used (e.g., ~-rdynamic under the Linux
operating system). Dynamic-load is implemented on the top of the dlopen facility.
For more information read the dlopen and 1d manuals.

dynamic-unload filename [bigloo procedure]
On the operating system that supports this facility, unloads a shared library. Returns
#t on success. Returns #f otherwise.

*dynamic-load-pathx [bigloo variable]
A list of search paths for the dynamic-load functions.

Chapter 22: Eval and code interpretation 227

dynamic-load-symbol filename name #l!optional module [bigloo-procedure]
dynamic-load-symbol-get dlsym [bigloo-procedure]
dynamic-load-symbol-set dlsym val [bigloo-procedure]

The function dynamic-load-symbol looks up for a variable in the dynamic library
filename. If found, it returns a custom Bigloo object denoting that variable. Other-
wise it returns #f. This function assumes that filename has previously been success-
fully loaded with dynamic-load. If not, an error is raised. The argument filename
must be equal (in the sense of string=? to the argument used to load the library.

The C name of the looked up variable is name is module is not provided. Otherwise, it
is the result of calling bigloo-module-mangle with name and module as arguments.

The function dynamic-load-symbol-get returns the value of a dynamically loaded
variable.

The function dynamic-load-symbol-set sets the value of a dynamic loaded variable.
It assumes that the variable is writable, i.e., that it has not been compiled as a C

constant.
transcript-on filename [procedure]
transcript-off [procedure]

22.3 Eval command line options

This section presents the Bigloo compiler options that impact the interaction between com-
piled and interpreted code. The whole list of the Bigloo compiler options can be found in
Chapter 31 [The Bigloo command line|, page 275.

e -i Don’t compile a module, interpret it!

e -export-all Make all the bindings defined by the compiled module available from the
interpreter.

e -export-export Make all the bindings exported by the compiled module available from
the interpreter.

e -export-mutable Make all the bindings exported by the compiled module mutable
from outside the module. This option is dangerous! Either all the modules composing
the application must be compiled with or without -export-mutable. It is impossible
to mix -export-mutable enabled and disabled compilations.

22.4 Eval and the foreign interface

To be able to get access to foreign functions within the Bigloo interpreter, some extra
measurements have to be taken. The foreign functions have to be present in the interpreter
binary, which means you have to compile a custom interpreter. This is described in Section
Section 26.5 [Using C bindings within the interpreter|, page 246.

229

23 Macro expansion

Bigloo makes use of two macro expansion system. The one based on the expansion passing
style [Dybvig et al. 86] and the one advocated by the R5RS, for which see [No value for
“[R5RS]”].

23.1 Expansion passing style macros

define-expander name proc [bigloo syntax]
This form defines an expander, name, where proc is a procedure of two arguments: a
form to macro-expand, and an expander.

define-macro (name [args]...) body [bigloo syntax]
This form is itself macro-expanded into a define-expander form.

Macro expanders cannot be exported or imported since there is no way to specify
expanders in a module declaration.

Macros defined with define-expander and define-macro are used by both the com-
piler and the interpreter.

Here is an example of an expander:

(define-expander when
(lambda (x e)
(match-case x
((?- 7test . 7exps)
(e ‘(if ,test (begin ,Qexps)) e))
(else
(error "when" "illegal form" x)))))

(when (> a 0) (print a) a)
— (if (> a 0) (begin (print a) a))

The same example can written with a define-macro form:

(define-macro (when test . exps)
‘(if ,test (begin ,Q@exps)))
23.2 Revised(5) macro expansion

Bigloo support the Revised(5) Report on the Scheme programming language. For a detailed
documentation see See Section “rbrs.info” in R5RS.

let-syntax (binding...) body [syntax]
letrec-syntax (binding. ..) body [syntax]
define-syntax keyword transformer [syntax]
syntax-rules literals rule. . . [syntax]

These three forms are compatible with the description of the Revised(5) Report on
the Algorithmic Language Scheme.

Implementation Note: Current Bigloo does not ensure hygiene for let-syntax and
letrec-syntax. Hygienic expansion is only guaranteed for define-syntax.

231

24 Parameters

The Bigloo parameters drive the global behavior programs. A parameter is accessed via a
pair of functions: areader and a setter. The type of the value is given, in this documentation,
by the name of the parameter of the setter.

bigloo-strict-rbrs-strings [bigloo function]

bigloo-strict-rbrs-strings-set! boolean [bigloo function]
Traditional syntax conforms to the Revised Report if the parameter bigloo-strict-
rbrs-strings is not #f. Otherwise constant strings specified by the "([~"][\")*"
are considered as foreign strings.

For example, after reading the expression "1\n23\t4\"5", the following string is built,
which is equal to (string #\1 #\n #\2 #\3 #\t #\4 #\" #\5) if (bigloo-strict-
rbrs-strings) is not #f. It is (string #\1 #\n #\2 #\3 #\tab #\4 #\" #\5) oth-
erwise.

Printing this string will produce: 1n23t4"5.

The new foreign syntax allows C escape sequences to be recognized. For example, the
expression #"1\n23\t4\"5" builds a string equal to:

(string #\1 #\newline #\2 #\3 #\t #\4 #\" #\5)

and printing this string will then produce:

1
23 4"5

bigloo-compiler-debug [bigloo function]
bigloo-compiler-debug-set! integer [bigloo function]
bigloo-debug [bigloo function]
bigloo-debug-set! integer [bigloo function]
bigloo-warning [bigloo function]
bigloo-warning-set! integer [bigloo function]
These parameters control the debugging and warning level. The bigloo-compiler-
debug is automatically controlled by the compiler command line -g option (see

Chapter 13 [Command Line Parsing], page 153).

When a program is compiled in debug mode Ivl, the compiler introduces a call to
(bigloo-debug-set! 1vl) before the evaluation of the first expression.

The bigloo-debug parameter is used to control traces (see Section 15.5 [Tracing],

page 179).
bigloo-trace [bigloo function]
bigloo-trace-set! list [bigloo function]

Specifies the active trace (see with-trace form). The argument list is the list of
symbols which are active and which triggers the display of a with-trace form.

bigloo-trace-color [bigloo function]
bigloo-trace-color-set! bool [bigloo function]
Enables/disables traces coloring (see Section 15.5 [Tracing], page 179).

232 Bigloo 4.3g

bigloo-trace-stack-depth [bigloo function]

bigloo-trace-stack-depth-set! integer [bigloo function]
Controls the depth of the stack trace to be displayed on errors. With systems that
supports shell variables (such as Unix) this parameter is dynamically adjusted ac-
cording to the value of the SHELL variable BIGLOOSTACKDEPTH.

bigloo-eval-strict-module [bigloo function]
bigloo-eval-strict-module-set! bool [bigloo function]
When set to #t enables eval optimization that inlines operators calls. This optimiza-
tion reduces the memory footprint of an application and it reduces the execution

time.
bigloo-dns-enable-cache [bigloo function]
bigloo-dns-enable-cache-set! bool [bigloo function]

Enable/disable DNS name caching.

bigloo-dns-cache-validity-timeout [bigloo function]
bigloo-dns-cache-validity-timeout-set! integer [bigloo function]
Get/set the validity period for the DNS cache entries. It is expressed in seconds.

233

25 Explicit typing

Bigloo supports type annotation or type information. As shown in Section ref Module
declaration, these annotations can be written both in the module clauses and in module
bodies although module body type information is optional. It helps the compiler to produce
better quality code and to reject incorrectly typed programs. Type annotations can describe
both the result and formal parameter types for global functions and also types for local
variable. Due to our module language design (in particular module initialization), Scheme
global variables cannot support type information.

Types are either atomic types (see Section 26.1.6.1 [Atomic types|, page 237), foreign
types (see Section 26.1.6 [Defining an extern type], page 237), or a classes (see Section 9.1
[Class declaration], page 117).

Warning: All type annotations are ignored by the interpreter.

Module body type annotations are introduced by the following special forms.

define (f[::type] [a[::type]]. . .) body [bigloo syntax]
define-inline (f[::type] [a[::type]]...) body [bigloo syntax]
let ((var[::type] ...) ...) body [bigloo syntax]
let loop ((var[::type] ...) ...) body [bigloo syntax]
letx ((var[:type] ...) ...) body [bigloo syntax]
letrec ((var[:type] ...) ...) body [bigloo syntax]
labels ((var|::type| (var[::type]...) b) ...) body [bigloo syntax]
Type annotations are optional. That is, for any of these constructions, if a type
annotation is missing, Bigloo uses the default generic type obj instead.

Here is an example of type annotated program:

(module example
(export (vector-fill!::vector ::vector ::obj)))

(define (vector-fill! v filler)
(let loop ((i::long (- (vector-length v) 1)))
(if (<i 0)
v
(begin
(vector-set! v i filler)

(Loop (- i 1))))))
(let ((v::vector (make-vector 3 4)))
(vector-fill! v "dummy"))
The types that can be used in annotations are any of:

e the basic Scheme types pair, null, bstring, bint (presented in Section
Section 26.1.6 [Defining an extern type], page 237).

e the basic extern types long, int, char, string presented in Section
Section 26.1.6 [Defining an extern type], page 237.

e the compound extern types described in Section Section 26.1.6 [Defining an extern
type], page 237.

e the types introduced by class declarations (Section Section 9.1 [Class declaration],
page 117).

234 Bigloo 4.3g

When a function that contains type annotation is exported, the type annotations
must be written in the prototype of the function in the export clause. In that case
the type annotation need to be written in the function definition:

(module foo
(export (succ::int ::int)))

(define (succ x) (+ 1 x))

235

26 The C interface

We call all the pieces of program devoted to the interactions between Scheme and another
language a foreign interface. In Bigloo, the foreign interface allows Scheme’s functions and
variables to be exported to a foreign language and foreign functions and variables to be
imported into the Scheme code. Using the foreign interface requires two kind of operations.

e Declarations — type declarations, import declarations or export declarations.

e Foreign reference in the Scheme code.

Declarations take place in a special module clause, see Section 2.2 [Module Declaration],
page 7, and reference to foreign variables within Scheme code requires no special construc-
tion. The current release of Bigloo includes a C and a Java interface. The Java connection
is specified by the means of a java clause (see Chapter 27 [Java Interface|, page 247). The
C interface is active (that is the extern module clauses are read) only when compiling to
C. So, when compiling to Jvm the binding declared in an extern clause are not bound.

Connecting Bigloo code with C is generally straightforward. To illustrate this simplicity,
let us consider a simple example involving two source files. First a simple C file sum.c
containing a single declaration:

int sum(int x, int y) { return x + y; }

Then, let us assume a Bigloo source code main.scm that makes uses of that C function:

(module foo
(extern (sum::int (::int ::int) "sum"))
(main main))

(define (main x)
(print (sum (length x) 10)))
With a Unix installation of Bigloo, this program can be compiled and executed with the
following commands:
$ gcc sum.c -c
$ bigloo main.scm sum.o -o main
$./main 1 2 3
The connection between Scheme and C is made particularly easy by Bigloo because the
programmer is free from inserting conversion between Scheme values and C values. When
needed, these are automatically inserted by the compiler.

26.1 The syntax of the foreign declarations
The syntax of foreign clauses is defined by:

<extern> +— <variable-clause>
| <function-clause>
| <include-clause>
| <export-clause>
| <type-clause>

Foreign clauses are automatically “transmitted” by the importation process. That is, if
module modulel imports a module module2, module treats the extern clauses of module2
as though they were included in its own module declaration. Redefinition of a variable or
a function already defined in an foreign clause is an error.

236 Bigloo 4.3g

26.1.1 Automatic extern clauses generation

Extern clauses can be automatically generated using the Cigloo program which is distributed
in the same package as Bigloo. Using Cigloo may be a good way to understand how C
prototypes (and types) have to be declared in Bigloo. Cigloo reads C files and generates
the Bigloo extern clauses for that files.

26.1.2 Importing an extern variable

The <variable-clause> denotes importation of variables.

<variable-clause> — (<typed-ident> <c-name>)
| (macro <typed-ident> <string>)
| (macro <typed-ident> (<typed-ident>+) <string>)
| (infix macro <typed-ident> (<typed-ident>+) <string>)

Only extern “non-macro” variables are mutable (that is mutable using the set! con-
struction). Bigloo does not emit “extern C prototype” for variables introduced by a macro
clause. <string> is the C name of variable. The Scheme name of that variable is extracted
from the <typed-ident>.

Here is an example of variable importations:

(module example
(extern (c-var::double "c_var"
(macro bufsiz::long "BUFSIZ")))

(print "c-var: " c-var)
(set! c-var (+ 1.0 c-var))
(print "c-var: " c-var)

(print "bufsize: " BUFSIZ)

26.1.3 Importing an extern function

Function are imported using the <function-clause>.

<function-clause> — (<typed-ident> (<typed-ident>*) <string>)
| (<typed-ident> (<typed-ident>+ . <typed-ident>) <string>)
| (macro <typed-ident> (<typed-ident>*) <string>)
| (macro <typed-ident> (<typed-ident>+ . <typed-ident>) <string>)

The function result type and Scheme name are extracted from the <typed-ident>; the
<typed-ident> denotes the type of the function arguments and <string> is the C name of
the function. Bigloo does not produce “C extern prototype” for macro functions (those
introduced by macro clauses). If the typed identifier of the function does not contain any
type information. Bigloo will emit a warning message when compiling and it will use a
default C type (e.g. the int C type) as the return type of the function.

(module example
(extern (macro prn::int (::string . ::long) "printf")))

(let ((n (read)))
(prn #"fib(%d): %d\n" n (fib n)))

26.1.4 Including an extern file

C files can be included in the C code produced by using <include-clause>.

<include-clause> + (include <string>)

Chapter 26: The C interface 237

26.1.5 Exporting a Scheme variable

A Scheme variable (or function) can be exported to the foreign world if and only if it is also
exported using an export clause. Type information is given in the Scheme exportation,
thus, the only requirement for a variable to be extern exported is to be given a foreign
name. The foreign <export-clause> does this:

<export-clause> +— (export <ident> <string>)

Here is an example of exportation:

(module example
(export (fib::long ::long))
(extern (export fib "scheme_fib")))

(define (fib x) (if (< x 2) 1 ...))

26.1.6 Defining an extern type

New Bigloo types can be defined using extern <type-clause>. These newly introduced types
can be used in any declaration (that is in any extern or Scheme module clause and in any
Scheme variable or function definition). The syntax of <type-clause> is:

<type-clause> — (type <ident> <type-def> <string>)
<type-def> — <atomic-type>
| <ident>

| <struct-type>
| <union-type>
| <function-type>
| <array-type>
| <pointer-type>
| <enum-type>
| <opaque-type>

The symbol <ident> is the Scheme name of the introduced type and <string> is the C
name of the type. When Bigloo produces the definition of a variable v of type s, it produces
the following C code: s v;. This rules applies unless s is a pointer or an array and then, to
produce a C definition, the name of the elements of the array or the elements pointed by
the pointer type are used. Hence, if v is for instance foo and s is (array int) the produced
C code will be: int *foo.

26.1.6.1 Atomic types

The atomic types are the pre-existing ones, defined in the standard Bigloo’s library.

<atomic-type> +— <bigloo-type>
| <c-type>
<bigloo-type> +—> obj procedure
| pair | nil | pair-nil
| bint | blong | belong | bllong
| bignum |real | bbool | cnst
| bstring | ucs2string | bchar | bucs2
| vector | tvector | struct
| tstruct | output-port | input-port
| binary-port | unspecified | symbol | keyword

238 Bigloo 4.3g

| cell | date | process | exit
| mutex | condvar | mmap
| s8vector | u8vector | sl6vector | ul6vector
| s32vector | u32vector | s64vector | ubdvector
| £32vector | f64vector
| dynamic-env | opaque | foreign
<c-type> — cobj char
| uchar | short
| ushort | int | uint | long
| ulong | slong | elong | llong
| bool | string
| file | double | float | void
| function

The type obj denotes the super type of all Bigloo types (i.e., all Bigloo types, such as
procedure, pair, ...) is an obj. The type cobj denotes the super of all C types (i.e., all
preexisting C types such as char, uchar, schar, short, ...). The type pair-nil denotes
values that are either pairs or the () value.

26.1.6.2 Struct and Union types

C struct and Union types can be declared in Bigloo using <struct-type> clauses:
<struct-type> +— (struct (<typed-ident> <string>) +)
<union-type> +— (union (<typed-ident> <string>) ~+)

This clause declared a C struct but C structure values cannot be handled by Bigloo.
Instead Bigloo is able to handle pointers to C structure. Thus, in order to help the definition
of extern types, when a struct named struct is defined, if it does not exists yet, Bigloo
automatically defines a type pointer to the structure. This type is named structx.

When a pointer to a structure type is defined, Bigloo automatically produces functions
to manipulate objects of this type. Let us suppose the type definition of structx:
(type struct

(struct (id1::typel namel)
(idn::typen namen))
The following functions are created:
e A creator:
(struct*::structx ::type_1 ... ::type_n)

This function allocates a fresh struct* (in the same heap as any Scheme value) and fills
the fields of the C structure with the proper values provided in the call.

e A type checker:
(struct*?::bool obj::obj)

This function returns #t if and only if the argument obj is of type struct*.
e A null checker:

(struct*-null?::bool ::struct*)
This function returns #t if and only if its argument is Null.

e A null creator:

(make-null-struct::structx*)

Chapter 26: The C interface 239

This function creates a NULL value of type struct*.

e An equality checker:

(=struct*7::bool ::struct* ::structx)
This function returns #t if and only if its arguments are equal.

e Accessors and mutators:

(struct*-id_1::type_1 ::structx)
(struct*-id_1-set!::obj ::struct* ::type_1)

These functions read and store field values.

Here is an example of structure usage:

(module foo
(extern
(include "named_point_declaration.h")
(type named-point
(struct (x::double "x")
(y::double "y")
(name: :string "name"))
"struct named_point")
(c-print-point::int (named-point*) "ppoint")))

(define (scheme-print-point point)
(print "point*-name: " point
" x: " (named-point*-x point)
" y: " (named-point*-y point)))

(let ((orig (named-point* 0.0 0.0 "orig")))
(if (named-point*-null? orig)
(error "bigloo" '"cannot allocate point" orig)
(begin
(c-print-point orig)
(scheme-print-point orig))))

26.1.6.3 C pointers

C pointers are defined by the <pointer-type>
<pointer-type> — (pointer <ident>)
<ident> is the name of a previously defined type. Let us suppose the pointer type
declaration:
(type ptr (pointer ident) ...)

If ident is the name of a structure type, Bigloo automatically creates structure accessors
(see Section 26.1.6.2 [C structures and unions|, page 238). Otherwise, it creates the following
functions:

e A creator:
(make-ptr::ptr nb::long)
This function allocates memory for nb elements of type ident and returns a ptr to this
zone. The memory is filled with the C Null value.
e A type checker:
(ptr?::bool obj::obj)
This function returns #t the argument obj is of type ptr and #f otherwise.

240 Bigloo 4.3g

e A null checker:
(ptr-null?::bool ::ptr)
This function returns #t if its argument is Null and #f otherwise.

e A null creator:
(make-null-ptr: :ptr*)
This function creates a NULL value of type ptr*.
e An equality checker:

(=ptr*7::bool ::ptr* ::ptrx)
This function returns #t if its arguments are equal and #f otherwise.

e Accessors and mutators:
(ptr-ref::ident ::ptr ::long)
(ptr-set!::obj ::ptr ::long ::ident)

These functions read and store field values.

Here is an example of a program using pointer types:

(module foo
(extern
(type doublex* (pointer double) "double *")))

(define (make-vect::doublex x y z)
(let ((vect (make-doublex 3)))
(double*-set! vect 0 x)
(doublex-set! vect 1 y)
(double*-set! vect 2 z)
vect))

(define (vect-norm vect::doublex)
(sqrt (+ (expt (doublex-ref vect 0) 2)
(expt (doublex-ref vect 1) 2)
(expt (doublex-ref vect 2) 2))))

(print (vect-norm (make-vect 1.2 4.5 -4.5)))

26.1.6.4 C null pointers

It may be convenient to build C null pointers. Several means can be used. In particular,
foreign structures and pointers are provided with Null creators. For other foreign types, the
easiest one is likely to be a pragma form. For instance, in order to create a null pointer to
a doublex* type, one may use:

(pragma: :double* "((double *)OL)")

string-ptr-null? string [bigloo procedure]
void*-null? void* [bigloo procedure]
These two predicates checks if there argument is the C NULL value.

make-string-ptr-null [bigloo procedure]
make-void*-null [bigloo procedure]
These two constructors creates null foreign values.

Chapter 26: The C interface 241

26.1.6.5 C arrays

C arrays are defined by the <array-type>
<array-type> — (array <ident>)

<ident> is the name of a previously defined type. Array types are similar to pointer
types except that they include their size in their type definition string. Let us suppose the
array type declaration:

(type array (array ident) ...)

If ident is the name of a structure type, Bigloo automatically creates structures accessors
(see Section 26.1.6.2 [C structures and unions|, page 238). Otherwise, it creates the following
functions:

e A creator:
(make-array: :array)
This function allocates memory for the array array. The memory is filled with the C
Null value.
e A type checker:
(array?::bool obj::obj)
This function returns #t if the argument obj is of type array and #f otherwise.

e A null checker:

(null-array?::bool ::array)
This function returns #t if the argument obj is Null and #f otherwise.
e An equality checker:
(=array*?::bool ::array* ::array+)
This function returns #t if its arguments are equal and #f otherwise.

e Accessors and mutators:

(array-ref::ident ::array ::long)
(array-set!::obj ::array ::long ::ident)

These functions read and store field values.

Here is an example of a program using array types:

(module foo
(extern
(type doublex (array double) "double [10 1")))

(define (make-vect::double* x y z)
(let ((vect (make-doublex*)))
(double*-set! vect 0 x)
(doublex-set! vect 1 y)
(double*-set! vect 2 z)

vect))

(define (vect-norm vect::doublex*)
(sqrt (+ (expt (double*-ref vect 0) 2)
(expt (doublex-ref vect 1) 2)
(expt (doublex-ref vect 2) 2))))

(print (vect-norm (make-vect 1.2 4.5 -4.5)))

242 Bigloo 4.3g

26.1.6.6 C functions

C function types are introduced by the <function-type> clause:
<function-type> + (function <ident> (<ident>x*))

Let us suppose the array type declaration:
(type fun (function res (argx)) ...)

Bigloo creates the following functions:
e A type checker:
(fun?::bool obj::obj)
This function returns #t if the argument obj is of type fun and #f otherwise.

e An equality checker:
(=fun*?::bool ::fun* ::funk)
This function returns #t if and only if its arguments are equal.
o Caller:

(fun-call::res f::fun a::ta ...)
This function invokes f with the arguments a ... an.
Suppose we have to use in Scheme the following C variable:
double (*convert) (char *);

It can be done as in:

(module foo
(extern
(type *string->double
(function double (string))
"double (*)(char *)")
(macro cv::*string->double "convert")))

(print (*string->double-call cv "3.14"))

26.1.6.7 C enums

This form defines enum types.
<enum-type> > (enum (<ident> <string>)... ...)

Let us suppose the type:
(type enum

(enum (id_1 name_1)
&ia_n name_n)))
Bigloo creates the following functions:
e Creators:
(enum-id_1: : enum)
&éﬁum—id_n::enum)
These functions create enum values.
e A type checker:
(enum?: :bool obj::obj)

This function returns #t if the argument obj is of type enum and #f otherwise.

Chapter 26: The C interface 243

e An equality checker:
(=enum?::bool ::enum ::enum)

This function returns #t if the arguments are equal and #f otherwise.

Here is an example of Scheme code using enum type.

(module foo
(extern
(type gizmo
(enum (titi "titi")
(tutu "tutu")
(tata "tata"))
"enum toto")))

(let ((v1 (gizmo-titi))
(v2 (gizmo-tutu)))
(print (=gizmo? vl v2)))

26.1.6.8 C opaques

This form defines opaque types.
<opaque-type> +— (opaque)
Let us suppose the type:
(type opa (opaque) ...)
Bigloo creates the following functions:
e A type checker:
(opa?::bool obj::obj)
This function returns #t if the argument obj is of type opa and #f otherwise.
e An equality checker:
(=opa?::bool ::opa ::opa)
This function returns #t if the arguments are equal and #£f otherwise.

Opaque types are relevant when a C value must transit via a Scheme function from a
C function to another C function. The value can’t be used in Scheme because no accessors
are defined over that type it can only be send back to a C function.

Here is an example of Scheme code using opaque type.

(module foo

(extern (type filedes (opaque) "FILE *")
(macro _fopen::filedes (::string ::string) "fopen")
(_fgetc::int (::filedes) "fgetc")
(_fclose (::filedes) "fclose"))

(export (fopen::filedes ::bstring ::bstring)
(fclose ::filedes)
(fgetc::char ::filedes)))

(define (fopen fname mode)
(_fopen fname mode))

(define (fclose filedes)
(_fclose filedes))

(define (fgetc filedes)
(integer->char (_fgetc filedes)))

244 Bigloo 4.3g

Note: To illustrate the default type compilation of extern function, we have voluntary
introduced an incomplete declaration for the fclose function. This will make Bigloo to
produce a warning when compiling that module.

26.2 The very dangerous “pragma” Bigloo special forms

Bigloo has a special form which allows the inclusion of C text into the produced code.
It is only applicable to the C back-end. In particular, the JVM back-end (see Chapter
Chapter 27 [Java Interface], page 247) does not support it.

pragma::ident string [args] [bigloo syntax]
free-pragma::ident string [args] [bigloo syntax]
pragma: :ident ident [bigloo syntax|

This force Bigloo to include string in the produced C code as a regular C fragment
of code. This form must not be used without an in depth understanding of Bigloo C
code production; with unskilled use, the produced C file may be unacceptable to the
C compiler.

Values can be passed to a pragma form, being referenced in string by expressions
of the form $number. Such expression are replaced by the corresponding values, the
number of referenced values in string being exactly the number of values provided.
Here is an example of pragma usage:
(define (fibo x::long)
(pragma "printf(\"fib(%d) :%d\\n\", $1, $2);"

X

(£ib x)))
Arguments provided to a pragma form are not converted during compilation. Hence,
pragma arguments can be of any types, including, foreign types.

A pragma result type can be specified using the notation pragma: :name where the
default type is unspecified. Then, for instance, the expression (pragma: :bool "$1
== 0" x) will be considered to be returning a object of type bool (C boolean) while
the expression (pragma "$1 == 0" x) will be considered by Bigloo to be returning the
unspecified typed object.

The compiler assumes that a pragma forms operates a side effects and that it writes
into its parameters. This assumption no long holds with free-pragma. This is the
only difference between the two forms.

The last form pragma ident enables “injecting” a Scheme mangled identifier into the
generated C code. Example:

(let ((x/y 3))
(pragma "$1 = BINT(24)" (pragma x/y))
(print x/y))

26.3 Name mangling

In order to avoid name clashes, Bigloo uses name mangling when compiling to C or to Jvm.
The name mangling for a Scheme identifier may be overridden by the means of an extern
export clause (see Section Section 26.1.5 [Exporting a Scheme variable], page 237).

Four public functions may be used to mangle and to demangle Scheme identifiers:

Chapter 26: The C interface 245

bigloo-mangle string [bigloo procedure]
Mangle the identifier string.

bigloo-module-mangle stringl string?2 [bigloo procedure]
Mangle the identifier stringl that belongs to module string2.

bigloo-mangled? string [bigloo procedure]
Returns #t if string has been computed by the bigloo-mangle or bigloo-module-
mangle function.

bigloo-class-mangled? string [bigloo procedure]
Returns #t if string is a mangled name of a Bigloo class.

bigloo-need-mangling string [bigloo procedure]
Returns #t if string requires name mangling because it is not a C or Jvm valid
identifier.

bigloo-demangle string [bigloo procedure]

Demangle previously mangled identifiers:

(let ((id "foo!")
(module "a-module"))
(let ((mangled (bigloo-module-mangle id module)))
(multiple-value-bind (new-id new-module)
(bigloo-demangle mangled)
(and (string=7 id new-id) (string=7 module new-module)))))
= #t

bigloo-class-demangle string [bigloo procedure]
Demangle previously mangled class identifier.

26.4 Embedded Bigloo applications

It is possible to design and realize embedded Bigloo applications. This facility is useful for
adding a new Scheme part to an already existing C program. The C part of the program
has only to enter the Bigloo initialization, hence, it can call any Bigloo function.

Normally, Bigloo creates an initialization function called main when it reads a main
module clause. To use an embedded Bigloo program, such an initialization function would
have to be created but with a different name. Changing the name can be be done using the
following Bigloo option: -copt "-DBIGLOO_MAIN=<new-name>". To prevent exit from the
program after <new-name> is executed, the following Bigloo option must be used: -copt
"-DBIGLOO_EXIT=’BUNSPEC,’".

A very important part of designing embedded Bigloo programs is being sure that all
used Bigloo modules are correctly initialized and the normal way to initialize them is to use
with clauses in the module which contains the main clause.

An example of an embedded program can be found in the distribution’s examples direc-
tory.

246 Bigloo 4.3g

26.5 Using C bindings within the interpreter

To be able to get access to foreign functions within the Bigloo interpreter, some extra
measurements have to be taken. The foreign functions have to be present in the interpreter
binary, which means you have to compile a custom interpreter. Fortunately, this is easy.
What has to be done is to wrap the foreign functions within Scheme and make an interpreter
module.

Let us consider an example where a C function get_system_time returning and int
is used in an interpreter. (When linking, be sure to add the .o file containing the get_
system_time.)

The ffi-interpreter.scn file:

(module ExtendendInterpreter
(import (wrapper "wrapper.scm"))
(main main))

(define (main argv)
(repl))

The wrapper.scn file:

(module wrapper
(extern (macro %get-system-time::int () "get_system_time"))
(export (get-system-time))
(eval (export-exports))

(define (get-system-time)
(%get-system-time))
Compile and link your application with something like:

cc gettime.c -c gettime.o
bigloo wrapper.scm -c
bigloo ffi-interpreter.scm wrapper.o gettime.o

247

27 The Java interface

When the Bigloo is configured for a JVM back-end support, the compiler is able to produce
Java class file instead of C files. In order to produce JVM class files, use the -jvm compiler
option. Example:

$ cat > foo.scm
(module foo (main main))
(define (main argv)

(print "Hello world: " argv))
$ bigloo -jvm foo.scm
$ a.out

- Hello world: (a.out)

27.1 Compiling with the JVM back-end

27.1.1 Compiler JVM options

All the compiler options that control the compilation (optimization options, debugging
options, etc.), can be used in conjunction with the -jvm option. However, the -jvm option
MUST be the first compiler option on the command line.

In order to prevent the compiler to produce a script shell file to run the program, it is
required to use simultaneously the -jvm and -c options.

27.1.2 Compiling multi-modules applications

In order to compile and link multi-modules applications, it is required to specify the as-
sociation between Scheme source modules and Java qualified type names. This task is
generally complex because of the annoying mapping that exists from Java class names and
the operating file system names. In order to get rid of this problem, the Bigloo standard dis-
tribution contains a tool, jfile, that automatically produces Bigloo Module/Java classes
association files. The default name for such a table is . jfile. When compiling a module,
Bigloo checks if a .jfile exists in the current directory, if it exists, the file is read. The
compilation option -jfile may be used to specify an alternative jfile name. Example:

$ cat > foo.scm
(module foo (export (foo))) (define (foo) ’foo)
$ cat > bar.scm
(module bar (export (bar))) (define (bar) ’bar)
$ cat > hux.scm
(module hux (export (hux))) (define (hux) ’hux)
$ cat > main.scm
(module main (main main) (import foo bar hux)
(define (main argv)
(print (foo))
(print (bar))
(print (fhux)))
$ afile *.scm > .afile
$ jfile *.scm > jfile

248

Bigloo 4.3g

$ bigloo -jvm -c¢ foo.scm
$ bigloo -jvm -c¢ bar.scm
$ bigloo -jvm -c¢ hux.scm
$ bigloo -jvm main.scm foo.class bar.class hux.class

For an explanation about the .afile, see Chapter 2 [Modules|, page 7.

27.2 JVM back-end and SRFI-0

The currently running back-end may be tested by the means of the SRFI-0 cond-expand
form (see Chapter 30 [SRFIs], page 269). That is, when the JVM is ran, the bigloo-jvm
clause is true. Otherwise, the bigloo-c is true. Example:

$ cat > foo.scm
(module foo (main main))
(define (main argv)
(cond-expand
(bigloo-jvm (print "JVM back-end"))
(bigloo-c¢ (print "C back-end"))
(else (error "main" "unsupported back-end" #unspecified))))
$ bigloo -jvm foo.scm
$ a.out
- JVM back-end
$ bigloo foo.scm
$ a.out
4 C back-end

27.3 Limitation of the JVM back-end

The JVM back-end supports the entire Bigloo source language but the call/cc function.
More precisely, using the JVM back-end, the continuation reified in a call/cc form can
only be invoked in the dynamic extent of that form.

The other restrictions of the C back-end apply to the JVM back-end. Mainly,

Bigloo is not able to compile all the tail recursive call without stack consumption
(however, most of the tail recursive calls are optimized by Bigloo and don’t use stack
activation frames).

Bigloo compiled applications do not check for arithmetic overflow.
When compiling to Jvm, the extern module clauses are not used.
Jvm runtime system does support the following function chdir.
Jvm runtime system support for chmod is restricted.

In order to read a shell variable from a Bigloo compiled Jvm program, you have to
use the Bigloo link option -jvm-env when linking that program. However, some shell
variables are automatically defined (HOME, USER, CLASSPATH and TMPDIR.

JVM code generation does not support pragma forms.

Chapter 27: The Java interface 249

27.4 Connecting Scheme and Java code

When compiling and linking with the JVM back-end, Bigloo source code may use the Java
API. That is, Bigloo Scheme source code may use (refer or set) Java static variables, Bigloo
source code may call static or virtual Java methods. In addition, Bigloo variables and
functions may be exported to Java, that is use, set or called in Java source code. Java
module clauses are enabled (read and parsed) only when compiling to JVM byte code.

Java definitions are declared in Bigloo modules by the mean of a Bigloo module clause:
the java module clause. The syntax of a Java clause is defined by:

<java> + <declare-class-clause>
| <declare-abstract-class-clause>
| <extend-class-clause>
| <array-clause>
| <export-clause>

As for the extern clause, java clauses are automatically “transmitted” by the importation
process. That is, if module modulel imports a module module2, module treats the java
clauses of module?2 as though they were included in its own module declaration. Redefinition
of a variable or a function already defined in an java clause is an error. However, the
definition of a Java class or an Java abstract class may be enriched from module to module.

27.4.1 Automatic Java clauses generation

Java clauses can be automatically generated using the Jigloo program which is distributed
in the same package as Bigloo. Using Jigloo may be a good way to understand how Java
classes, methods, and variables have to be declared in Bigloo. Jigloo reads Java class files
and generate the Bigloo java clauses for that classes.

27.4.2 Declaring Java classes
The <declare-class-clause> clause denotes importation of Java classes.

<declare-class-clause> > (class <typed-ident> <slot>* <string>)
<slot> + <field> | <method> | <constructor>
<field> +— (field <modifier> <typed-ident> <string>)
<method> +— (method <modifier> <typed-ident> (<typed-ident>*) <string>)
<constructor> — (constructor <ident> (<typed-ident>*))
<modifier> + public | private | protected
| static | final | synchronized | abstract

When the compiler encounters a Java class declaration, it automatically creates a pred-
icate. If the class identifier is id, the predicate is named id?. In addition, the compiler
generates functions that fetch and set the field values. For a field named £, these functions
are named id-f and id-f-set!. Methods and constructors are also always prefixed the
name of the class. That is, for a method named m of a class k, the Scheme name of the
method is k-m.

Example:

(module java-example
(java (class point
(constructor new-default ())
(field x::int "x")

250 Bigloo 4.3g

(method show::void (::point) "show")
(method static statistics::int () "PointStatistics")
"Point")
(class point-3d::point
"Point3D")))

(let ((p (point-new-default)))
(print (point? p)) - #t
(point-x-set! p 3)

(print (point-x p))) - 3

27.4.3 Declaring abstract Java classes
A Bigloo abstract Java class declaration corresponds to a Java interface. It cannot be
instantiate but regular classes may inherit from it.

<declare-abstract-class-clause> +— (abstract-class <typed-ident> <slot>* <string>)

27.4.4 Extending Java classes

A class definition may be split into several pieces. One class declaration (see <declare-class-
clause>) and several extensions. The syntax for a Java class extension is:

<extend-class-clause> — (class <typed-ident> <slot>x*)

Example:

(module java-example2
(import java-example)
(java (class point
(field y::int "y")
(field static num::int "point_num")
(constructor new (::int ::int)))))

27.4.5 Declaring Java arrays
Java arrays may be allocated and used inside Scheme code. The syntax of a Java array
module clause is:

<array-clause> — (array <ident> <typed-ident>)

The <typed-ident> must refer to the name of an existing type (i.e., a primitive Bigloo
type, a Bigloo class, an already defined Java class or an already defined Java array). For
an array named ar, Bigloo generates:

e a creator named make-ar which is a function of one integer argument.
e a predicate named ar?.

e a getter named ar-ref which is a function of two arguments: an array and one integer
argument.

e a setter named ar-set! which is a function of three arguments: an array, an integer,
and a value of the array item types.

e a length named ar-length.

Example:

(module foo
(java (array int* ::int)
(class bar
(method static hello::int (::int*) "hello")

Chapter 27: The Java interface 251

ubaru))
(main main))

(define (main argv)

(let ((tab (make-int* 2)))
(int*-set! tab 0 3)
(int*-set! tab 1 6)
(print (bar-hello tab))))

27.4.6 Exporting Scheme variables

As for the C connection, a Scheme variable (or function) can be exported to the Java world
if and only if it is also exported using an export Java clause. Type information is given in
the Scheme exportation, thus, the only requirement for a variable to be Java exported is to
be given a Java name. The Java <export-clause> does this:

<export-clause> +— (export <ident> <string>)

Here is an example of exportation:

(module example
(export (fib::long ::long))
(java (export fib "scheme_fib")))

(define (fib x) (Gf (< x 2) 1 ...))
Here is a concrete example that illustrates how to invoke Scheme functions from Java
code. First, here is a Java source file:

// arr.java
import java.io.x*;
import bigloo.*;

public class arr {

public static int hello(int[] tab) {
System.out.println("tab[0 J: " + tab[0]);
System.out.println("tab[1 1: " + tab[1]);
System.out.println("<callback: " + main.callback(10) + ">");
System.out.println("tab = main.squareJavaArray(tab);");
tab = main.squareJavaArray(tab);
System.out.println("tab[0]J: " + tab[0]);
System.out.println("tab[1]: " + tab[1])
return tab.length;

>

}
Then the main Scheme file

;3 main.scm
(module main
(java (array int* ::int)

(class bar
(method static hello::int (::int*) "hello")
llbarll))

(export (callback::int ::int))
(export (squareJavaArray::int* ::intx*))

(main main))

(define (main argv)

252

(let ((tab (make-int* 2)))
(print "tab length: " (int*-length tab))
(int*-set! tab 0 3)
(int*-set! tab 1 6)
(display (int*-ref tab 1))

(newline)

(display "(java-array-int->scheme-vector tab) : ")
(display (java-array-int->scheme-vector tab))
(newline)

(display "(square-vector (java-array-int->scheme-vector tab))
(display (square-vector (java-array-int->scheme-vector tab)))
(newline)

(print (bar-hello tab))))

(define (callback x)
+ 1))

(define (square x)

(* x x))

(define (square-list L)
(map square L))

(define (square-vector V)
(vector-map square V))

(define (sum-vector V)
(apply + (vector->list V)))

(define (squareJavaArray A)
(scheme-vector->java-array-int
(square-vector (java-array-int->scheme-vector A))))

(define (java-array-int->scheme-vector A)
(let* ((len (int*-length A))
(res (make-vector len)))
(display len)
(newline)
(let loop ((i 0))
(vector-set! res i (intx-ref A i))
(if (=1 (- len 1))
res

(loop (+ 1 1))N))

(define (scheme-vector->java-array-int V)
(let*x ((len (vector-length V))
(res (make-int* len)))
(let loop ((i 0))
(int*-set! res i (vector-ref V i))
(if (=1 (- len 1))
res

(Loop (+ i 1))))))
To compile this example:

$ bigloo -jvm main.scm -c
$ javac arr.java -classpath=bigloo.zip:.

u)

Bigloo 4.3g

Chapter 27: The Java interface 253

$ bigloo -jvm main.scm arr.class
To run it:

$./a.out

tab length: 2

6

(java-array-int->scheme-vector tab) : 2
(3 6)

(square-vector (java-array-int->scheme-vector tab)) : 2
#(9 36)

tab[0]: 3

tab[1]: 6

<callback: 11>

tab = main.squareJavaArray(tab);

2

tab[0]: 9
tab[1]: 36
2

27.4.7 Bigloo module initialization

By default Bigloo modules are initialized when the application starts. It might be convenient
to initialize the module when the Java classes implementing the Bigloo modules are loaded.
It is possible to drive the Bigloo compiler to introduce code inside the Java class constructors
for initializing the modules. This is the role of the —~jvm-cinit-module compiler option.

27.5 Performance of the JVM back-end

We are currently improving and investigating about the performance of the JVM back-
end. JVM performance is extremely sensitive to the host platform (for instance, very
unfortunately, Linux seems to be a poor platform to run JVM code). Currently, it seems
that the JVM back-end produces codes that are in between 4 times and 10 times slower than
codes produced by the C back-end. The ratio between JVM and C is subject to changes.
The gap between JVM and C code is bound to bridge because of the huge amount of efforts
applied to efficiently implement Java virtual machines.

255

28 Bigloo Libraries

Bigloo libraries are collections of global bindings (global variables and global functions).
Bigloo libraries are built on the top of the host operating system (e.g. Unix) libraries.
Because Bigloo uses modules, a library is not only a bundle of compiled codes and memory
locations. A Bigloo library is split into several files:

e one heap that describes the variables and functions of the library.

e several host library files (safe and unsafe versions of the compilation and also eval
libraries that contain the code that binds the variables and functions to the evaluator).

e possibly, C header files.

e possibly, an initialization file.

Let’s consider, for example, a library that implements the format Common Lisp facility.
Let’s suppose we name this library bformat and that the library number is 1.0. Using a
Unix machine, the Bigloo library will consist of the following files:

e bformat.heap: the heap file.
e bformat.init: the initialization file.

e libbformat_s-1.0.a, libbformat_s-1.0.so, libbformat_u-1.0.a, libbformat_
u-1.0.s0, libbformat_eu-1.0.s0, and libbformat_es-1.0.so:: the Unix library
files. The file names with a _u are libraries compiled in unsafe and optimized mode.
By convention the library using the _s suffix are safe libraries, _p are profiling
libraries, _d debug libraries, _es and _eu eval libraries.

e bformat.h: an include file.

28.1 Compiling and linking with a library
From the user standpoint, using a library can be made two ways:

e Using the Bigloo -library lib-name option where lib-name is the name of the Bigloo
library (not the name of one of the Unix files implementing the library). The name of
the library must be lower case. For instance:

$ bigloo foo.scm -library bformat

e Using the module clause 1ibrary. This second solution avoids using a special compi-
lation option. For instance, this module will automatically compile and link with the
bformat library:

(module foo
(library bformat))

(format ...)

When a Bigloo library 1ib is used, Bigloo automatically searches for a file called
1ib.init (the "init file"). If such a file exits, it is loaded at compile-time. For instance,
the init file may be used to specify compilation flags or to define macros used by the
compiler. The initialization file may affect any of the global parameters of the Bigloo
compiler. For instance, a Bigloo library supporting SSL connections would likely need

256 Bigloo 4.3g

a native library. Setting the compiler variable *1d-post-options* has this effect. For
instance, one may define an initialization file such as:
(cond-expand
(bigloo-compile
(set! *ld-post-options* (string-append "-1lssl " *ld-post-options*)))
(bigloo-eval
#unspecified))

When a Bigloo library 1ib is used, the Bigloo linker automatically looks at a library
to be linked against the application. The name of the file containing the library depends
on the operating system and the back-end used. For instance, under Unix, for a library
called NAME, the Bigloo linker searches for a file called 1ibNAME_[s|u]-VERSION.a or
1ibNAME_[s|u]-VERSION.DYNLIB-SUFFIX in the compilation linker path when using the
native back-end. It searches for a file NAME_[s|u]-VERSION.zip when the JVM back-end
is used.

This default NAME can be overridden in the initialization file. The function
declare-library! associates a Bigloo library name and a system name.

declare-library! ident [attributes] [library procedure]
All the attributes are optional.

e version: the version number of the library. This defaults to the Bigloo version
number.

e basename: the base of the filename containing the library. This defaults to the
library name.

e srfi: alist of symbols denoting the SRFI 0 features implemented by this library.
Registered SRFIs may be tested by the cond-expand form (see Chapter 30 [SR-~
FIs|, page 269). This defaults to an empty list.

e dlopen-init: a function to be invoked when the library is dynamically loaded
using the function dynamic-load. This defaults to #£.

e module-init: a module to be initialized when the library is loaded. This defaults
to #£.

e cval-init: a module to be initialized for binding the library exports in the
interpreter. This defaults to #f.

e class-init: the JVM or .NET class name containing the module to be initial-
ized. This defaults to #f£.

e eval-init: the JVM or .NET class name containing the module to be initialized
for eval. This defaults to #£.

e init: a function to be invoked when a library is loaded. This defaults to #f.

e cval: a function to be invoked when a library is loaded by the interpreter. This
defaults to #£.

e cval: a function to be invoked when a library is loaded by the interpreter. This
defaults to #£.

Examples:
e The following declares a library named foo. When loaded, the Bigloo runtime
system will seek file named libfoo_s-3.4a.so, 1libfoo_u-3.4a.so, libfoo_
es-3.4a.so, and libfoo_eu-3.4a.so.

(declare-library! ’foo)

Chapter 28: Bigloo Libraries 257

e The following declares a library named pthread. When loaded, the Bigloo run-
time system will seek a file named libbigloopth_s-1.1la.so, libbigloopth_
u-1.1a.s0, libbigloopth_es-1.1a.so, libbigloopth_eu-1.1a.so. Once the
library loaded, the SRFI-0 features pthread and srfi-18 will be bound. When
loading the library, the two modules __pth_thread and __pth_makelib will
be initialized. In the JVM version these modules are compiled in the classes
"bigloo.pthread.pthread" and "bigloo.pthread.make_1ib".

(declare-library! ’pthread
:basename "bigloopth"
:version "1.1a"
:srfi ’(pthread srfi-18)
:module-init ’__pth_thread
:module-eval ’__pth_makelib

:class-init "bigloo.pthread.pthread"
:class-eval "bigloo.pthread.make_lib")

library-translation-table-add! ident name [library procedure]
library-translation-table-add! ident name version [library procedure]
library-translation-table-add! ident name version [library procedure]

:dlopen-init initsym
The function library-translation-table-add! is obsolete. It should no longer
be used in new code. It is totally subsumed by declare-library!. The function
library-translation-table-add! is still documented for enabling readers to un-
derstand old Bigloo source code.
This function registers a name for the library id. An optional version can be specified.
The optional named argument dlopen-init gives the base name of the initialization
entry point of a library.
Imagine that we would like to name our bformat library bigloobformat. This can
be achieved by adding the following expression in the initialization file.
(library-translation-table-add! ’bformat "bigloobformat")
Using this translation, on a Unix platform, the library used during the linking will
be named: libbigloobformat_s-<BIGLOO-VERSION>.a. In order to change the
<BIGLOO-VERSION> to another suffix, such as 1.0, one may use:
(library-translation-table-add! ’bformat "bigloobformat" "1.0")

In such a case, the library searched will be named 1ibbigloobformat_s-1.0.a.
Specifying a #f prevents the insertion of any suffix. Hence,
(library-translation-table-add! ’bformat "bigloobformat" #f)

instructs the compiler to look at a library named libbigloobformat_s.a.

28.2 Library and inline functions

It is illegal for libraries to include inline functions that make use of new foreign types. By
"new foreign type", we mean foreign types that are defined inside the library. A library
may contain inline functions but these inline functions must not call functions using foreign
types in their prototypes. Including inline functions making use of foreign C types will
make the compiler fail when compiling user code, prompting type errors. A library may
contains non-inline functions that make use of new foreign types.

258 Bigloo 4.3g

28.3 library and eval

The function library-load loads a library in the interpreter.

library-exists? ident . path [library procedure]
Checks if the library ident exists for the current back-end.

The regular Bigloo library paths are scanned unless optional paths are sent to the

function.
bigloo-library-path [library procedure]
bigloo-library-path-set! [library procedure]

These functions get and set the default path (a list of strings) for loading libraries.

library-load ident . path [library procedure]
Loads a library in the interpreter. In addition to dynamically loading the library,
this function tries to load the _es version of the library if it is linked against the safe
Bigloo library version or the _eu version if it is linked against the unsafe version of
the Bigloo library.

Searches for libraries occur in the regular Bigloo library paths unless optional paths
are sent to the function.

This version may be used for automatically exporting bindings to the interpreter. In
general, the _es and _eu libraries are simple libraries that contain only one module,
the module that is used to build the heap-file. For instance, let’s consider an imple-
mentation of a library for SSL programming. This library is composed of a single
implementation module __ssl_ssl. The library is build using a heap file:

(module __ssl_makelib

(import __ssl_ssl))

Changing this file for:

(module __ssl_makelib
(import __ssl_ssl)
(eval (export-all)))

enables the construction of the _es and _eu libraries.

When the system loads a dynamic library, it initializes it. For that it expects to find
initialization entry points in the dynamic libraries that are named after the library’s
name. More precisely, for the LIB_s library, the loader seeks the entry point named
"LIB_s" and for the LIB_es, it seeks "LIB_es". The name of the initialization entry
of a library can be changed using the declare-library! function. If that named is
changed, one module of the library must contain an option module clause that sets
the variable *dlopen-init* with the name of the initialization entry point.

Since Bigloo 3.1a, the runtime system supports a better way for initializing libraries.
Initialization modules can be associated with a library. When loaded, these modules
are automatically initialized. This new method fits harmoniously with the Bigloo
initialization process and it relieves users from any requirement to annotate the source
code of the library.

For instance, if a library initialization file contains the following declaration:

(declare-library! ’foo :module-init ’foo0)

Chapter 28: Bigloo Libraries 259

Then, the library must implement the foo module.

(module foo
(import ...)
)
In addition if the library binds variables, functions, or classes in the interpreter then,
an eval-init clause must be added to the class declaration:

(declare-library! ’foo :module-init ’foo :eval-init ’foo-eval)

Then, the module foo-eval must be implemented in the 1ibfoo_es and 1libfoo_eu
libraries.

(module foo-eval
(import ...)
(eval (export-all)))

The standard distribution contains examples of such constructions. In particular, the
multi-threading libraries pthread and fthread use this facility.

28.4 library and repl

It is possible to implement a "read-eval-print-loop" that is extended with the facilities
implemented inside a library. In order to make the variables, functions, and classes of a
library visible from the interpreter, the eval library module clause has to be used. (see
Section 2.2 [Module Declaration], page 7) For instance, here is a module that implements a
"repl" with the format facility available:

(module format-repl
(eval (library bformat))
(library bformat))

;; a dummy reference to a facility of the format library
(let ((dummy format))
(repl))
Alternatively, libraries can be explicitly loaded using the library-load function such
as:

(module format-repl)

;; a dummy reference to a facility of the format library
(let ((dummy format))

(eval ’(library-load ’bformat))

(repl))

28.5 Building a library

Build Bigloo libraries require several steps that are explained in this section. This section
shows how to create static and dynamic (or shared) libraries. However not that creating
a dynamic library highly dependent on the host operating system. Users willing to create
dynamic libraries on other operating systems should use the api directory of the Bigloo
source code tree as an example.

e The first step is to build a library heap. This is achieved using a special compilation
mode: -mkaddheap -mkaddlib -addheap -heap-library <ident>. That is, for your
library you have to create a heap associated source file that imports all the binding

260 Bigloo 4.3g

you want in your library. The heap source file must be excluded from the source files
that will be used to build the host library.

Suppose we have a unique source file, bformat.scm for our library. The module clause
of this source file is:

(module __bformat

(export (bformat fmt::bstring . args)
bformat:version))

(define (bformat fmt . args)
(apply format (string-replace fmt #\J #\~) args))

(define bformat:version 1.0)

Prior to compiling the library, we have to create the heap associated file (let’s name it
make_1ib.scm). This file could be:

(module __make_lib
(import (__bformat "bformat.scm"))
(eval (export-all)))
Building it is simple:
bigloo -unsafe -safee -q -mkaddheap -mkaddlib -heap-library bformat \
make_lib.scm -addheap bformat.heap

The options -mkaddheap and -mkaddlib tell Bigloo that it is compiling an heap asso-
ciated file. The option -addheap tells Bigloo the name of the heap file to be produced.
The option ~heap-library instructs the compiler for the library name to be included
inside the heap file. This name is used for checking versions at run-time.

e The second step is to compile all the library source file. These compilation must be
done using the -mkaddlib compilation mode. For example:

bigloo -O3 -unsafe -safee -mkaddlib \
-cc gee -fsharing -q -rm \
-unsafev bformat.scm -o bformat_u.o -c
bigloo -O3 -mkaddlib -g -cg -cc gee \
-fsharing -q -rm \
-unsafev bformat.scm -o bformat.o -c
The first compilation produces the unsafe version the second the produced the debug-
ging version.
e The third step is to build the host operating system libraries. There is no portable way
to do this. This operation may looks like:

ar qcv libbigloobformat_s-1.0.a bformat.o

ranlib libbigloobformat_s-1.0.a

1d -G -o libbigloobformat_s-1.0.so bformat.o -lm -lc
ar qcv libbigloobformat_u-1.0.a bformat_u.o

ranlib libbigloobformat_u-1.0.a

Id -G -o libbigloobformat_u-1.0.so bformat_u.o -lm -lc¢

e The fourth step consist in creating the bformat_es and bformat_eu libraries for eval.
For the unsafe version we use:

bigloo -O3 -unsafe -safee -mkaddlib \
-cc gee -fsharing -q -rm \

Chapter 28: Bigloo Libraries 261

-unsafev make_lib.scm -o make_lib.o -c
Id -G -o libbigloobformat_eu-1.0.so make_lib.o -lm -l¢
ar qcv libbigloobformat_eu-1.0.a make_lib.o
ranlib libbigloobformat_eu-1.0.a

For the safe version we do:

bigloo -O3 -mkaddlib \
-cc gece -fsharing -q -rm \
-unsafev make_lib.scm -0 make_lib.o -c
ld -G -o libbigloobformat_es-1.0.so0 make_lib.o -lm -lc¢
ar qcv libbigloobformat_es-1.0.a make_lib.o
ranlib libbigloobformat_es-1.0.a

e The last step is to create an initialization file bformat.init:

(declare-library! ’bformat
:version "1.0"
:srfi ’ (bformat)
:basename "bigloobformat"
:module-init ’__bformat
:module-eval ’__make_lib

:class-init "bigloo.bformat.__bformat"
:class-eval "bigloo.bformat. _make_1ib")

At this time, you are ready to use your library. For that, let’s assume the file foo.scm:

(module foo
(library bformat))

(bigloo-library-path-set! (cons (pwd) (bigloo-library-path)))
(print (bformat "Library path: %a" (bigloo-library-path)))

(eval ’(library-load ’bformat))
(repl)

It can be compiled and executed with:

bigloo foo.scm -L . -copt -L.
LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH ./a.out

The Bigloo distribution contains library exemplars that should probably considered as
a departure point for new libraries.

28.6 Library and modules

A Bigloo library may be composed of several Bigloo modules (even if in our example only
one module was used). The modules composing the library are free to import each other.
Nevertheless, someone designing a Bigloo library should be aware that Bigloo importation
creates dependences between modules. A module mod1 that imports a module mod2 depends
on mod2 because modl requires mod2 to be initialized (i.e. modl calls to the initialization
function of mod2). The result is that using import clauses inside modules composing a
library may create a lot of dependencies between the object files that are used to build
the associated Unix library. Dependencies should be avoided because they make the Unix
linkers unable to produce small stand-alone programs. Instead of import clauses, use
clauses should be preferred. Use clauses do not create dependencies because a module mod1
that uses a second module mod2 does not require mod2 to be initialized. Of course, it may

262 Bigloo 4.3g

happen situations where the initialization is mandatory and thus, the import must not be
replaced with a use clause. The source code of the Bigloo library makes use of import and
use clauses. The Bigloo standard library should be studied as an example.

28.7 Library and macros

Bigloo libraries can export macros, expanders, and syntaxes but these must be handled
carefully. Macros (these also applies to expanders and syntaxes) exported by modules are
not visible by client code. Exported macros have to be placed inside the initialization file.
For instance, if we change the definition of bformat.init file for:

(declare-library! ’bformat
:version "1.0"
:srfi ’ (bformat)
:basename "bigloobformat"
:module-init ’__bformat
:module-eval ’__make_lib

:class-init "bigloo.bformat.__bformat"
:class-eval "bigloo.bformat.__make_lib")

(define-expander BFORMAT
(lambda (x e)
(match-case x
((?- (? (lambda (s) (and (string? s) (not (string-index s #\%))))) . 7a

‘(string-append ,@(cdr x)))
(else
‘(bformat ,@(map (lambda (x) (e x e)) (cdr x)))))
At compile time the macro BFORMAT will be declared. Hence, we can change the
definition of foo.scm for:

(module foo
(library bformat))

(bigloo-library-path-set! (cons (pwd) (bigloo-library-path)))
(print (BFORMAT "library path: %a" (bigloo-library-path)))

(eval ’(library-load ’bformat))
(repl)

28.8 A complete library example

For the means of an example let’s suppose we want to design a Bigloo library for 2d points.
That library is made of three implementation files: two C files, cpoint.h and cpoint.c
and one Scheme file spoint.scm. Here are defined the three files:
cpoint.h:

struct point_2d4 {

double x, y;

};
cpoint.c:

#include <stdio.h>

#include "cpoint.h"

int print_point_2d(struct point_2d *pt) {
printf("<point-2d: %g, %g>", pt->x, pt->y);

Chapter 28: Bigloo Libraries 263

}

spoint.scm:

(module __point
(include "spoint.sch")
(extern (include "cpoint.h"))
(export (make-point::s-point_2d#* ::double ::double)
(print-point ::s-point_2dx)
(point? ::0bj)))

(define (make-point::s-point_2d* x::double y::double)
(s-point_2d* x y))

(define (print-point p::s-point_2d*)
(print_point_2d p))

(define (point? obj::obj)
(s-point_2d*? obj)
obj)

makelib.scm:

We want our library to be composed of the whole exported Scheme functions. Thus the
file to build the heap library could look like:

(module __point_makelib
(import __point)
(eval (export-all)))
point.init: Let’s suppose that the point library requires the libposix library. This
means that any file linked with the point library needs to be also linked with the posix
library. Furthermore, programs making use of the point library needs to include the
point.sch file. That Scheme file needs in turn the C file point.h otherwise the pro-
duced C files won’t compile. The need for the 1ibposix library and for the point.h file
may be specified inside the point.init file. For our current library, the point.init file
could look like:
(declare-library! ’point
:basename "point"
:srfi ’ (point)
reval-init ’__point_makelib)

(set! *1d-options*
(string-append "-L/usr/lib " *1ld-options*))

(set! *bigloo-user-1lib*
(cons "-1m" *bigloo-user-libx))

(set! *additional-include-foreign*
(cons "cpoint.h" *additional-include-foreignx*))

(define-macro (point x y)
¢ (make-point ,x ,y))
This file updates some compilation variables (*1d-options*, *bigloo-user-1lib*,
additional-include-foreign) and defines a macro: point. Because the point.init
file will be loaded each time a compilation require the point library is spawned, user code

are allowed to use the point macro. Here is an example file making use of the point
library:

264 Bigloo 4.3g

example.scm

(module example)

(let ((p (point 2.9 3.5)))
(print "point?: " (point? p))
(print "point?: " (point? 4))
(print-point p)

(print "domne..."))

To conclude that example here is the Makefile used to compile the point library, heap
file and one example.

bigloo flags

BIGLOO = bigloo
RELEASE = ‘§(BIGLOO) -eval ’(begin (print *bigloo-version*) (exit 0))’
BHEAPFLAGS = -unsafe -q -mkaddheap -mkaddlib -v2 -heap-library point

BCOMMONFLAGGS = -mkaddlib -fsharing -q $(VERBOSE) \
-copt '$(CCOMMONFLAGS)’ -cc $(CC)

BSAFEFLAGS = $(BCOMMONFLAGGS) -cg -O3 -g -cg -unsafev \
-eval ’(set! *indent* 4)’ -rm

BUNSAFEFLAGS = $(BCOMMONFLAGS) -O4 -unsafe

cigloo flags

CIGLOO = cigloo

cflags

CcC = gce

CCOMMONFLAGS =-I

CSAFEFLAGS = $(CCOMMONFLAGS)
CUNSAFEFLAGS = $(CCOMMONFLAGS) -02

library objects

SAFE_OBJECT = olib/spoint.o olib/cpoint.o
UNSAFE_OBJECT = olib_u/spoint.o olib_u/cpoint.o
all: .afile heap lib example

.afile: spoint.scm makelib.scm
bglafile $~ > $@

heap: point.heap

point.heap: spoint.sch spoint.scm
$(BIGLOO) $(BHEAPFLAGS) makelib.scm -addheap point.heap

lib: lib_u lib.a

lib.a: olib $(SAFE_OBJECT)
ar qcv libpoint_s-§(RELEASE).a $(SAFE_OBJECT)

265

lib_u: olib_u $(UNSAFE_OBJECT)
ar qcv libpoint_u-$(RELEASE).a $(UNSAFE_OBJECT)

olib:
mkdir olib

olib_u:
mkdir olib_u

olib_u/spoint.o olib/spoint.o: spoint.scm
$(BIGLOO) $(BSAFEFLAGS) $(<F) -o $*.0 -c

olib_u/cpoint.o olib/cpoint.o: cpoint.c

$(CC) $(CSAFEFLAGS) $(<F) -0 $*.0 -c

spoint.sch: cpoint.h cpoint.c
cigloo $~ > $@

example: heap lib
$(BIGLOO) -v2 -L . -library point \
-static-bigloo example.scm -o example

clean:

-/bin/rm -f point.heap

-/bin/rm -f spoint.sch spoint.c

-/bin/rm -fr olib olib_u

-/bin/rm -f example example.c example.o

-/bin/rm -f libpoint_s-$(RELEASE).a libpoint_u-$(RELEASE).a

267

29 Extending the Runtime System

Custom Types types are not documented yet. This facility enables extension to the standard
Bigloo runtime system. The current implementation of custom types is subject to change.
It will be documented in coming releases.

269

30 SRFIs

Bigloo supports various SRFIs (Scheme Request For Implementation). Some of them are
integrated in the Bigloo core libraries. Some others are implemented by the means of Bigloo
libraries (see Chapter 28 [Bigloo Libraries], page 255). Only the first ones are described in
the manual.

The current Bigloo core library support the following SRFIs:

srfi-0 (Conditional execution).
srfi-2 (AND-LET*: an AND with local bindings, a guarded LET* special form).

(
(
(
(

e srfi-9 (Records specification).

e srfi-6 (Basic String Ports).

e srfi-8 (Binding to multiple values).

e srfi-18 (Multithreading support).

e srfi-22 (Script interpreter invocation).

(

(

e srfi-28 (Basic Format Strings).

e srfi-30 (Multi-line comments).
(

e srfi-34 (Exception Handling for Programs).

30.1 SRFIO

cond-expand [clause] [bigloo syntax]
The cond-expand form tests for the existence of features at macro-expansion time. It
either expands into the body of one of its clauses or signals and error during syntactic
processing. cond-expand expands into the body of the first clause whose feature
requirement is currently satisfied (the else clause, if present, is selected if none of
the previous clauses is selected).

A feature requirement has an obvious interpretation as a logical formula, where the
variables have meaning true is the feature corresponding to the feature identifier, as
specified in the SRFI registry, is in effect at the location of the cond-expand form,
and false otherwise. A feature requirement is satisfied it its formula is true under this
interpretation. The formula may make use of identifier, and, or and not operators.

Since Bigloo version 3.1b, cond-expand formula may use the new library operator
that checks if a library exists and is available. Its syntax is: (library <libname>).

Examples:

(write (cond-expand
(sTfi-0 (* 1 2))
((or (library fthread) (library pthread)) (- 4 1))
(else (+ 3 4))))
4 2

(cond-expand
(bigloo (define (command-line-arguments) (command-line)))
(else (define (command-line-arguments) ’())))
The second example assumes that bigloo is an alias for the SRFI associated with
the specification of Bigloo (i.e. the documentation for that Scheme system).

270

Bigloo 4.3g

Since Bigloo 3.4b, cond-expand formula may use the new config operator that
checks the value of a configuration entry. Its syntax is: (config endianeness
little-endian). This feature relies on the bigloo-config function. See Section 5.7
[System Programming], page 76, for additional details.

When writing portable code, the case used for the feature identifier should match the
one in the SRFI registry. This is to ensure that the feature identifier will be correctly
recognized whether or not the Scheme system is case-sensitive. To support case-
insensitive Scheme systems, the feature identifiers in the SRFT registry are guaranteed
to be unique even when ignoring the case.

In order to distinguish Bigloo versions, the following symbols are recognized in
cond-expand forms.

e bigloo

e bigloo<branch-release>

e bigloo<major-release>

e bigloo<major-release><minor-release>
When finalizers have been configured, the two following symbols are recognized by
cond-expand:

e bigloo-finalizer

e bigloo-weakptr
Bigloo implements differents SRFI for the compiler and the interpreter. Thus, their

are two Bigloo SRFI registers. One for the compiler and one for the interpreter.
Bigloo compiler SRFI register contains at least the following symbols:

e srfi-0
e srfi-1
o srfi-2
e srfi-6
e srfi-8
e srfi-9
o srfi-22
o srfi-28
e srfi-30

With respect to the currently used Bigloo back-end, one of these symbols is registered:
e bigloo-c
e bigloo-jvm
Bigloo compiler implements the following SRFI:
e bigloo
e bigloo-compile

e bigloo<major-release>

bigloo<major-release><minor-release>

Chapter 30: SRFIs 271

Then the -g flag is used, the Bigloo compiler additionally implements the SRFI:
e bigloo-debug

Bigloo interpreter implements the following SRFT:
e bigloo
e bigloo-eval
e bigloo<major-release>
e bigloo<major-release><minor-release>

When a library is used, the name of the library is added to the compiler SRFI register.
That is:

(module foo
(library srfil))

(print (cond-expand (srfil ’with-srfil) (else ’nothing)))
- ’with-srfiil
(print (eval ’(cond-expand (srfil ’with-srfil) (else ’nothing))))
- ’with-srfil
A property representing actual integers bit size is defined:
e bint<integers-bit-size>
e clong<exact-long-bit-size>

The frequently defined values are:
e bint30: 32 bits architectures (e.g., x86)
e elong32: 32 bits architectures (e.g., x86)
e bint32: JVM
e eclong64: JVM
e bint61: 64 bits architectures (e.g., x86_64)
e elong64: 64 bits architectures (e.g., x86_64)

Other values could be observed in the future. Note that the actual values of a par-
ticular setting can be obtained with:

(bigloo-config ’int-size)

(bigloo-config ’elong-size)

A configuration can be tested with:

e config key value

For instance:

(cond-expand
((and bigloo-c (config have-c99-stack-alloc #t)) ...)
L)

register-srfi! srfi-name [bigloo procedure]
unregister-srfi! srfi-name [bigloo procedure]
unregister-eval-srfi! srfi-name [bigloo procedure]
register-compile-srfi! srfi-name [bigloo procedure]
unregister-compile-srfi! srfi-name [bigloo procedure]

This argument srfi-name is a symbol. It registers srfi-name in the Bigloo interpreter

SRFT register. This function must only be used when implementing a library. The

272 Bigloo 4.3g

code of that library must contain one unique call to register-eval-srfi!. Let’s
suppose, for instance, a format library. The implementation for that library must
contain an expression like:
The functions unregister-XXX-srfi! unregisters a srfi.

(register-eval-srfi! ’format)

Calling (register-eval-srfi! name) makes name supported by interpreted
cond-expand forms.

Note: There is no register-compiler-srfi! because the compiler automatically
registers SRFI when the -library flags are used. However, it exists several ways to
tell the compiler that it actually supports some srfis when compiling some modules.

e The first way is to insert calls to register-eval-srfi! in the .bigloorc file
(see Chapter 31 [Compiler Description], page 275).

e The second, is to use option (see Section 2.2 [Module Declaration|, page 7)
module clause, such as:

(module example

(option (register-srfi! ’srfi-foobar)))

e The last way is to use the command line option -srfi (see Chapter 31 [Compiler
Description], page 275).

30.2 SRFI 1

The SRFI 1 is implemented as a Bigloo library. Hence, in order to use the functions it
provides, a module must import it.

(module ex
(library srfil))

(print (find-tail even? (3 1 37 -8 -5 0 0)))
= ’(-8 -5 0 0))

30.3 SRFIT 22

The SRFT 22 describes basic prerequisites for running Scheme programs as Unix scripts in
a uniform way. A file (henceforth a scipt) conforming SRFT 22 has the following syntax:

<script> — <script prelude>?7 <program>
<script prelude> — #! <space> <all but linebreak>* <linebreak>

A Scheme script interpreter loads the <script>. It ignores the script prelude and in-
terprets the rest of the file according to the language dialect specified by the name of the
interpreter.

The Scheme script interpreter may also load a different file after making a reasonable
check that loading it is semantically equivalent to loading <script>. For example, the script
interpreter may assume that a file with a related name (say, with an additional extension)
is a compiled version of <script>.

Chapter 30: SRFIs 273

30.3.1 An example of SRFI-22 script

Let us consider the following Bigloo script located in a file foo.scm:

#! /usr/bin/env ./execute
(module foo
(main main))

(define (main argv)
(print "foo: " argv))

Let us consider the following execute shell script:

$ cat > execute
#!/bin/sh
bigloo -i $*
Provided that foo.scm as the execute flag switched on, it is possible to execute it:

$ chmod u+x foo.scm
$./foo.scm
- foo: (./foo.scm)

The same Bigloo module can be compiled and executed such as:

$ bigloo foo.scm
$./a.out
- foo: (a.out)

30.3.2 Lazy compilation with SRFI-22

SRFI-22 can be used to implement lazy compilation. For instance, let us consider the
following shell script:
$ cat > bgl
#!/bin/sh
SOURCEFILE=$1
case $SOURCEFILE in
*.scm)
OUTFILE=${SOURCEFILE%.scm}
if (bigloo -s -o $OUTFILE $SOURCEFILE); then
/bin/rm $OUTFILE.o
shift
./SOUTFILE $@

*)
echo Error: need a *.scm file!
esac
And the following Bigloo script:

#! /usr/bin/env ./bgl
(module foo
(main main))

(define (main argv)

274 Bigloo 4.3g

(print "foo: " argv))
When executed in the following way:

$ chmod u+x foo.scm
$./foo.scm
= foo: (./foo.scm)

The Bigloo module foo.scm will first be compiled and then executed. Of course, one
may consider more complex compiler drivers where it is first checked that the module is not
already compiled.

275

31 Compiler description

31.1 C requirement

Instead of producing assembly code, Bigloo produces C code. This C code is ISO-C com-
pliant [IsoC]. So, it is necessary to have an ISO-C compiler. The current version has been
developed with gcc [Stallman95].

31.2 JVM requirement

In order to compile the Bigloo JVM back-end, you have to be provided with a JDK 1.2
or more recent (available at http://www.javasoft.com). The JVM must support for
-noverify option because, by default, Bigloo produces JVM code that is not conform
to the rules enforced by the Java byte code verifiers.

31.3 Linking

It is easier to use Bigloo for linking object files which have been compiled by Bigloo. An
easy way to perform this operation is, after having compiled all the files using the -c option,
to invoke Bigloo with the name of the compiled files.

When Bigloo is only given object file name as argument, it searches in the current
directory and the directory named in the *load-path* list the Scheme source file in order
to perform a correct link. Scheme source files are supposed to be ended by the suffix .scm.
Additional suffixes can be added using the -suffix option. Hence, if source files are named
fool.sc and foo2.sc, a link command line could look like:

bigloo -suffix sc fool.o foo2.0 -o foo

Note: In order to understand how the Bigloo linkers operates and which libraries it uses,
it might be useful to use the -v2 option which unveil all the details of the compilation and
the link.

31.4 The compiler environment and options

There are four ways to change the behaviour of Bigloo. Flags on the command line, the
option module clause runtime-command file and environment variables See Chapter 2
[Modules], page 7. When the compiler is invoked, it first gets the environment variables,
then it scans the runtime-command file and, at end, it parses the command line. If the
same option is set many times, Bigloo uses the last one.

31.4.1 Efficiency

In order to get maximum speed, compile with the -Obench option. This will enable all
compiler optimization options and disable dynamic type checks. To improve arithmetic
performance see next section.

31.4.2 Stack allocation

When the -fstack flag is enabled, the compiler may automatically replace some heap allo-
cations with stack allocations. This may improve performance because stack allocations are

276 Bigloo 4.3g

handled more efficiently than heap allocations. On some cases, ~-fstack may also cause slow
down or memory extra retentions. In this last case, when compile using -fstack the pro-
gram will consume more memory. Unfortunately, this is nasty phenomenon is unpredictable
(it depends on the nature of the source file).

31.4.3 Genericity of arithmetic procedures

By default, arithmetic procedures are generic. This means that it is allowed to use them
with flonum and fixnum. This feature, of course, implies performances penalty. To improve
performance, you may use specialized procedures (such as +fx, =fx, ... or +f1, =f1, ...)
but, it is possible to suppress the genericity and to make all generic arithmetic procedures
(= for example) fixnum ones. For this you must use the compiler option -farithmetic,
or add the following module clause (option (set! *genericity* #f)) in your module
declaration.

31.4.4 Safety

It is possible to generate safe or unsafe code. The safety’s scope is type, arity, version
and range. Let’s see an example:

(define (foo f v indice)
(car (f (vector-ref v indice))))

In safe mode, the result of the compilation will be:

(define (foo f v indice)
(let ((pair
(if (and (procedure? f)
;; type check
(= (procedure-arity f) 1))
;; arity check
(if (vector? wv)
;; type check
(if (and (integer? k)
;; type check
(>=k 0)
;; range check
(< k (vector-length v)))
;; range check
(f (vector-ref v indice))
(error ...))
(error ...))
(error ...))))
(if (pair? pair)
;; type check
(car pair)

(error ...))))

It is possible to remove some or all safe checks. For example, here is the result of the
compilation where safe check on types have been removed:

(define (foo f v indice)
(let ((pair (if (= (procedure-arity f) 1)
;; arity check
(if (and (>= k 0)
;; range check
(< k (vector-length v)))
;; range check
(f (vector-ref v indice))

Chapter 31: Compiler description 277

(error ...))
(error ...))))
(car pair)))

31.4.5 The runtime-command file

Each Bigloo’s user can use a special configuration file. This file must be named “.bigloorc”
or “7/.bigloorc”. Bigloo tries to load one of these in this order. This file is a Scheme file.
Bigloo exports variables which allow the user to change the behavior of the compiler. All
these variables can be checked using the -help2 option.

The Bigloo’s runtime command file is read before the arguments are parsed.

31.4.6 The Bigloo command line

If no input file is specified, Bigloo enters its interpreter. Here is the exhaustive list of Bigloo
options and configuration variables:

usage: bigloo [options] [name.suf]

Misc:
- Read source code on current input channel
-help,~help This help message
-help2 The exhaustive help message
-help-manual The help message formatted for the manual
-o FILE Name the output FILE
—to-stdout Write C code on current output channel
-C Suppress linking and produce a .o file
-y Generate a shared library
-suffix SUFFIX Recognize suffix as Scheme source
-afile FILE Name of the access file
-access MODULE FILE Set access between module and file
-jfile FILE Name of the Jvm package file
-jadd MODULE QTYPE Set JVM qualifed type name for module
-main FUN Set the main function
-with MODULE Import addition module
-multiple-inclusion Enables multiple inclusions of the Bigloo includes
-library LIBRARY Compile/link with additional Bigloo library
-srfi SRFI Declares srfi support
-dload-sym Emit a Bigloo dynamic loading entry point
-dload-init-sym NAME Emit a Bigloo dynamic loading entry point, named NAME
-dload-init-gc For GC initialization for dynamic code
-heapsize SIZE Set the initial heap size value (in megabyte)

Configuration and path:
-version The current release
-revision The current release (short format)
-query Dump the current configuration

278 Bigloo 4.3g

-q Do not load any rc file
-eval STRING Evaluate STRING before compiling
-load FILE Load FILE before compiling
-I DIR Add DIR to the load path
-lib-dir DIR Set lib-path to DIR
-L NAME Set additional library path
-lib-version VERSION Set the Bigloo library version
-libge-version VERSION Set the Bigloo GC library version
-libge GC Use the given GC library
Back-end:
-native Compile module to native object file (via C)
-jvm Compile module to JVM .class files
-saw Cut the AST in the saw-mill
-no-saw Disable saw back-ends
- Interprete module
Dialect:
-Snow Compiles a snow source code
-scmpkg,-spi Compiles a ScmPkg source code
-nil Evaluate ’() as #f in ‘if” expression
-call/cc Enable call/cc function
-hygien Obsolete (R5rs macros are always supported)
-fidentifier-syntax SYNTAX Identifiers syntax "rbrs" (default) or "bigloo"
-fno-reflection Deprecated
+fno-reflection Deprecated
-fclass-nil Deprecated
-fno-class-nil Deprecated
-farithmetic Suppress genericity of arithmetic operators
-farithmetic-overflow Suppress arithmetic overflow checks
-fno-arithmetic-overflow Enable arithmetic overflow checks
-fcase-sensitive Case sensitive reader (default)
-fcase-insensitive Case insensitive reader (downcase symbols)
-fallow-type-redefinition allow type redifinition
-runtime-code-patching Enable runtime code patching
-no-runtime-code-patching Disable runtime code patching
Optimization:
-Obench Benchmarking mode
-0[0..6] Optimization modes
-ftagged-fxop Enable tagged fix-ops optimization
-fno-tagged-fxop Disable tagged fix-ops optimization
-fefa Enable CFA
-fno-cfa Disable CFA
-fefa-arithmetic Enable arithmetic spec. (see -farithmetic-overflow)
-fno-cfa-arithmetic Disable arithmetic spec.

-fcfa-arithmetic-fixnum Enable fixnum arithmetic spec.

Chapter 31: Compiler description 279

-fno-cfa-arithmetic-fixnum Disable fixnum arithmetic spec.

-fefa-arithmetic-flonum Enable flonum arithmetic spec. (enabled from -02)

-fno-cfa-arithmetic-flonum Disable flonum arithmetic spec.

-fefa-tracking Enable CFA tracking (enabled from -02)

-fno-cfa-tracking Disable CFA tracking

-fcfa-pair Enable CFA pairs approximations

-fno-cfa-pair Disable CFA pairs approximations

-fcfa-unbox-closure-args Enable CFA unboxed closure args (enabled from -02)

-fno-cfa-unbox-closure-args Disable CFA unboxed closure args

-fno-cfa-local-function Disable CFA local function tracking

-funroll-loop Enable loop unrolling (enabled from -03)

-fno-unroll-loop Disable loop unrolling

-fno-loop-inlining Disable loop inlining

-floop-inlining Enable loop inlining (default)

-fno-inlining Disable inline optimization

-fno-user-inlining Disable user inline optimization

-fisa Inline isa? type predicate

-fno-isa Inline isa? type predicate

-fbeta-reduce Enable simple beta reduction (enabled from -02)

-fno-beta-reduce Disable simple beta reduction

-fdataflow Enable dataflow optimizations (enabled from -O)

-fno-dataflow Disable dataflow optimizations

-fdataflow-for-errors Enable dataflow optimizations for improviing type er-
TOr messages

-fno-dataflow-for-errors Disable dataflow optimizations for improviing type er-
rOr messages

-fdataflow-types Enable type dataflow optimizations (enabled from -02)

-fno-dataflow-types Disable type dataflow optimizations

-finitflow Enable init flow

-fno-initflow Disable init flow

-fsync-failsafe Enable failsafe synchronize optimization

-fno-sync-failsafe Disable failsafe synchronize optimization

-fO-macro Enable Optimization macro (default)

-fno-O-macro Disable Optimization macro

-fglobal-tailc Enable global tail-call optimization

-fno-global-tailc Disable global tail-call optimization

-freturn Enable set-exit replacement with return

-fno-return Disable set-exit replacement

-freturn-goto Enable local set-exit replacement with return

-fno-return-goto Disable local set-exit replacement

-fsaw-realloc Enable saw register re-allocation

-fsaw-regalloc Enable saw register allocation

-fno-saw-regalloc Disable saw register allocation

-fsaw-bbv Enable saw basic-blocks versionning

-fno-saw-bbv Disable saw basic-blocks versionning

-fsaw-regalloc-msize SIZE Set the register allocation body size limit

-fsaw-regalloc-fun NAME Allocate registers on this very function

280 Bigloo 4.3g

-fno-saw-regalloc-fun NAME Don’t allocate registers on this very function

-fsaw-regalloc-onexpr Allocate registers on expressions

-fno-saw-regalloc-onexpr Don’t allocate registers on expressions

-fsaw-spill Enable saw spill optimization
Safety:

-unsafe[atrsvleh] Don’t check [type/arity /range/struct/version/library/eval /heap]

-safe[atrsvle] Enforce check [type/arity /range/struct /version/library/evall
Debug:

-glines Emit # line directives

-gbdb-no-line Don’t emit # line directives

-gbdb|[23] Compile with bdb debug informations

-gself Enables self compiler debug options

-gmodule Debug module initialization

-gerror-localization Localize error calls in the source code

-gno-error-localization Don’t localize error calls in the source code

-gjvm Annote JVM classes for debug

-gtrace[12] Producing stack traces

-g[234] Produce Bigloo debug informations

-Ccg Compile C files with debug option

-export-all Eval export-all all routines

-export-exports Eval export-exports all routines

-export-mutable Enables Eval redefinition of all "::0bj" routines
Profiling:

-p[2g] Compile for cpu profiling

-pmem|level] Compile for memory profiling

-psync Profile synchronize expr (see $exitd-mutex-profile)
Verbosity:

-S Be silent and inhibit all warning messages

-v[23] Be verbose

-hello Say hello

-no-hello Dont’ say hello even in verbose mode

-W Inhibit all warning messages

-wslots Inhibit overriden slots warning messages

-Wvariables Enable overriden variable warning messages

-Wtypes Enable type check warning messages

-Wslot Enable default slot value warning messages

-Wno-slot Disable default slot value warning messages

-Wall Warn about all possible type errors

-Werror=type Treat type warnings as error

Compilation modes:
<-/+>rm Don’t or force removing .c or .il files
-extend NAME Extend the compiler

Chapter 31: Compiler description 281

-fsharing Attempt to share constant data
-fno-sharing Do not attempt to share constant data
-fmco Produce an .mco file
-fmco-include-path DIR Add dir to mco C include path

Native specific options:

-cc COMPILER Specify the C compiler

-stdc Generate strict ISO C code

-copt STRING Invoke cc with STRING

-cheader STRING C header

-cfoot STRING C foot

-rpath PATH Add C runtime-path (rpath)

-ldopt STRING Invoke Id with STRING

-ldpostopt STRING Invoke 1d with STRING (end of arguments)
—force-cc-o Force the C compiler to use -o instead of mv
-1d-relative Link using -1 notation for libraries (default)
-ld-absolute Link using absolute path names for libraries
-static-bigloo Link with the static bigloo library
-static-all-bigloo Link with static version of all bigloo libraries
-1d-libs1 Add once user libraries when linking

-1d-libs2 Add twice user libraries when linking (default)
-ILIBRARY Link with host library

-auto-link-main Enable main generation when needed for linking
-no-auto-link-main Disable main generation

—force-gc-roots Register global variables as GC roots

Jvm specific options:

-jvm-shell SHELL Shell for JVM scripts ("sh", "msdos")
-jvm-purify Produce byte code verifier compliant JVM code (default)
-no-jvm-purify Don’t care about JVM code verifier
-jvm-mainclass CLASS JVM main class
-jvm-classpath PATH JVM application classpath
-jvm-bigloo-classpath P JVM Bigloo rts classpath
-jvm-path-separator SEP Set the JVM classpath separator
-jvm-directory NAME Directory where to store class files.
-jvm-catch-errors Catch internal JVM errors
-no-jvm-catch-errors Don’t catch internal JVM errors
-jvm-jarpath NAME Set the JVM classpath for the produced jar file
-jvm-cinit-module Enable JVM class constructors to initili-
aze bigloo modules
-no-jvm-cinit-module Disable JVM class constructors to initili-
aze bigloo modules
-jvm-char-info Generate char info for the debugger (in addi-
tion to line info)
-no-jvm-char-info Do not generate char info for the debugger
-fjvm-inlining Enable JVM back-end inlining

-fjvm-constr-inlining Enable JVM back-end inlining for constructors

282 Bigloo 4.3g

-fno-jvm-inlining Disable JVM back-end inlining
-fno-jvm-constr-inlining Disable JVM back-end inlining for constructors
-fjvm-peephole Enable JVM back-end peephole
-fno-jvm-peephole Disable JVM back-end peephole
-fjvm-branch Enable JVM back-end branch
-fno-jvm-branch Disable JVM back-end branch
-fjvm-fasteq EQ? no longer works on integers (use =FX)
-fno-jvm-fasteq Disable JVM back-end fasteq transformation
-jvm-env VAR Make the shell variable visible to GETENV
-jvm-jar Enable JVM jar files generation
-no-jvm-jar Disable JVM jar files generation (default)
-jvm-java FILE Use FILE as JVM
-jvm-opt STRING JVM invocation option

Traces:
-t[21314] Generate a trace file (*)
+tPASS Force pass to be traced
-shape[mktTalun] Some debugging tools (private)

Compilation stages:

-mco Stop after .mco production

-syntax Stop after the syntax stage (see -hygiene)
-expand Stop after the preprocessing stage
-expand-module Produce the expanded module clause
-ast Stop after the ast construction stage
-syntax-check Stop after checking syntax
-bdb-spread-obj Stop after the bdb obj spread stage
-trace Stop after the trace pass

-callcc Stop after the callcc pass

-bivalue Stop after the bivaluation stage

-inline Stop after the inlining stage

-inline+ Stop after the 2nd inlining stage

-beta Stop after the constant beta reduction stage
-fail Stop after the failure replacement stage
-abound Stop after the array bound checking stage
-initflow Stop after the type initflow stage

-narrow Stop after the scope narrowing stage
-tlift Stop after the type lifting stage

-dataflow Stop after the type dataflow stage
-dataflow+ Stop after the second type dataflow stage
-dataflow++ Stop after the third type dataflow stage
-fuse Stop after the fuse stage

-user Stop after the user pass

-fxop Stop after the fx-ops optimization

-coerce Stop after the type coercing stage

-effect Stop after the effect stage

-effect+ Stop after the 2nd effect stage

Chapter 31: Compiler description 283

-reduce Stop after the reduction opt. stage
-reduce+ Stop after the 2nd reduction opt. stage
-reduce- Stop after the very first reduction stage
-assert Stop after the assertions stage
-cfa Stop after the cfa stage
-closure Stop after the globalization stage
-recovery Stop after the type recovery stage
-bdb Stop after the Bdb code production
-cnst Stop after the constant allocation
-integrate Stop after the integration stage
-tailc Stop after the tailc stage
-return Stop after the return stage
-isa, Stop after the isa stage
-init Stop after the initialization construction stage
-classgen Produce an include file for class accessors
-egen Produce an include file for effects (requires -saw)
-hgen Produce a C header file with class definitions
-cgen Do not C compile and produce a .c file
-indent Produce an indented .c file
-jvmas Produce a JVM .jas file

Constant initialization:
-init-[lib | read | intern] Constants initialization mode
-init-object-[legacy | staged| Object system initialization

Bootstrap and setup:

-mklib Compile a library module

-mkaddlib Compile an additional library module
-mkheap Build an heap file

-mkaddheap Build an additional heap file

-mkdistrib Compile a main file for a distribution
—license Display the Bigloo license and exit
-LICENSE Add the license to the generated C files
-heap NAME Specify an heap file (or #f to not load heap)
-heap-library LIB The library the heap belongs to
-dump-heap NAME Dump the content of a heap
-addheap NAME Specify an additional heap file
-fread-internal Read source from binary interned file
-fread-internal-src Read source only from binary interned file
-fread-internal-src-file-name NAME Set fake source file name
-fread-plain Read source from plain text file

-target LANG DON’'T USE, (see -native, -jvm)

Shell Variables:
- TMPDIR
temporary directory (default "/tmp")
- BIGLOOLIB

284 Bigloo 4.3g

libraries’ directory
- BIGLOOHEAP
the initial heap size in megabytes (4 MB by default)
- BIGLOOSTACKDEPTH
the error stack depth printing
- BIGLOOLIVEPROCESS
the maximum number of Bigloo live processes
- BIGLOOTRACE
list of active traces

Runtime Command file:
- ~/.bigloorc

* . only available in developing mode

. : option enabled from -O3 mode

Bigloo Control Variables:
All the Bigloo control variables can be changed from the
interpreter, by the means of the ‘-eval’ option, or using
the module clause ‘option’. For instance the option
"-eval '(set! *strip™ #t)’" will set the variable
“*strip® to the value ‘#t’.
These variables are:

- *access-file-default* :
The default access file name
default: ".afile"
- *access-files* :
The access file names
default: ()
- *additional-bigloo-libraries* :
The user extra Bigloo libraries
default: ()
- *additional-bigloo-zips* :
The user extra Bigloo Zip files
default: ()
- *additional-heap-name™ :
A name of an additional heap file name to be build
default: #f
- *additional-heap-names* :
A list of Bigloo additional heap file name
default: ()
- *additional-include-foreign* :
The additional C included files

Chapter 31: Compiler description 285

default: ()
- *allow-type-redefinition* :
If true, allow type redefinitions
default: #f
- *ast-case-sensitive™® :
Case sensitivity
default: #t
- *auto-link-main* :
Enable automatically a main generation when linking
default: #t
- *auto-mode* :
auto-mode (extend mode) list
default: (("ml" . "caml") ("mli" . "caml") ("oon" . "meroon") ("snow" . "snow") ("spi" . "pkgcomp"))
- *bdb-debug* :
Bdb debugging mode
default: 0
- *bigloo-abort?* :
Do we have the bigloo-abort function in executables?
default: #f
- *bigloo-lib* :
The Bigloo library
default: bigloo
- *bigloo-libraries-c-setup™ :
A list of C functions to be called when starting the application
default: ()
- *bigloo-licensing?* :
Add the Bigloo license ?
default: #f
- *bigloo-name* :
The Bigloo name
default: "Bigloo (4.3g)"
- *bigloo-specific-version™ :
The Bigloo specific version
default: ""
- *bigloo-tmp* :
The tmp directory name
default: " /tmp"
- *bigloo-user-lib* :
The user extra C libraries
default: ("-1d1" "-lresolv" "-lgmp" "-lunistring" "-lpcre" "-lm")
- *bigloo-version* :
The Bigloo major release number
default: "4.3g"
- *bmem-profiling* :
Instrument code for bmem profiling
default: #f
- *c-debug* :

286

C debugging mode?
default: #f
- *c-debug-lines-info™* :
Emit # line directives
default: #f
- *c-debug-option™ :
cc debugging option
default: "-g"
- *c-files* :
The C source files
default: ()
*c-object-file-extension™ :
The C object file extension
default: "o"
- *c-split-string™® :
C split long strings
default: #f
- *c-suffix* :
C legal suffixes
default: ("c")
- *c-user-foot™ :
C foot
default: ()
- *c-user-header™ :
C header
default: ()
- *call/cc?* :
Shall we enable call/cc?
default: #f
- *ec*
The C compiler
default: "gcc"
- *cc-move* :
Use mv instead of -o when C compiling
default: #t
- *cc-o-option™ :
The C compiler -o option
default: "-o0 "
- *cc-options* :
cc options
default: ("")
- *ce-style™* :
The C compiler style
default: "gcc"
- *cflags™ :
The C compiler option

Bigloo 4.3g

default: " -Wpointer-arith -Wswitch -Wtrigraphs -DBGL_BOOTCONFIG "

Chapter 31: Compiler description 287

- *cflags-optim™* :
The C compiler optimization option
default: "-O3"
- *cflags-prof* :
The C compiler profiling option
default: "-pg -fno-inline -Wpointer-arith -Wswitch -Wtrigraphs -DBGL_BOOTCONFIG "
- *cflags-rpath* :
The C compiler rpath option
default: ("/home/serrano/prgm/project/bigloo/bigloo/lib/bigloo/4.3g")
- *compiler-debug* :
Debugging level
default: 0
- *compiler-debug-trace™ :
Debugging trace level
default: 0
- *compiler-sharing-debug?* :
Compiler self sharing debug
default: #f
- *compiler-stack-debug?* :
Compiler self stack trace debug
default: #f
- *compiler-type-debug?* :
Compiler self type debug
default: #f
- *csharp-suffix™* :
C# legal suffixes
default: ("cs")
- *debug-module* :
Module initilazation debugging
default: 0
- *default-lib-dir* :
Depreacted, don’t use
default: "/home/serrano/prgm/project/bigloo/bigloo/lib/bigloo/4.3g"
- *dest* :
The target name
default: #f
- *dlopen-init* :
Emit a standard Bigloo dynamic loading init entry point
default: #f
- *dlopen-init-gc* :
Emit a standard GC init call when initialization the module
default: #f
- *double-1d-libs?* :
Do we include the additional user libraries twice?
default: #t
- *error-localization™ :
Localize error calls in the source code

288 Bigloo 4.3g

default: #f
- *eval-options™ :
A user variable to store dynamic command line options
default: ()
- *extend-entry* :
Extend entry
default: #f
- *garbage-collector* :
The garbage collector
default: boehm
- *ge-custom?* :
Are we using a custom GC library?
default: #t
- *gc-force-register-roots?* :
Force GC roots registration for global variables (for experts only)
default: #t
- *gc-lib* :
The Gec library
default: bigloogc
- *global-tail-call?* :
Do we apply the self-global-tail-call stage?
default: #f
- *heap-base-name* :
The Bigloo heap base name
default: "bigloo"
- *heap-dump-names* :
The name of the heap to be dumped
default: ()
- *heap-jvm-name* :
The Bigloo heap file name for the JVM backend
default: "bigloo.jheap"
- *heap-library* :
The library the heap belongs to
default: bigloo
- *heap-name* :
The Bigloo heap file name
default: "bigloo.heap"
- *hello* :
Say hello (when verbose)
default: #f
- *include-foreign* :
The C included files
default: ("bigloo.h")
- *include-multiple* :
Enable/disable multiple inclusion of same file
default: #f

- *indent* :

Chapter 31: Compiler description

The name of the C beautifier

289

default: "indent -npro -bap -bad -nbc -bl -ncdb -nce -nfcl -ip0 -nlp -npcs -nsc -

nsob -cli0.5 -di0 -180 -d1 -c0 -ts2 -st"
- *init-mode* :
Module initialization mode
default: read
- *inlining-kfactor* :
Inlining growth factor
default: #<procedure:55b60df83¢60.1>
- *inlining-reduce-kfactor* :
Inlinine growth factor reductor
default: #<procedure:55b60df83ba0.1>
- *inlining?* :
Inlining optimization
default: #t
- *interpreter* :
Shall we interprete the source file?
default: #f
- *jvm-bigloo-classpath* :
JVM Bigloo classpath
default: #f
- *jvm-catch* :
Catch internal errors
default: #t
- *jvm-cinit-module* :
Enable JVM class constructors to initiliaze bigloo modules
default: #f
- *jvm-classpath* :
JVM classpath
default: "."
- *jvm-debug* :
JVM debugging mode?
default: #f
- *jvm-directory* :
JVM object directory
default: #f
- jvm-env* :
List of environment variables to be available in the compiled code
default: ()
- *jvm-foreign-class-id* :
The identifier of the Jlib foreign class
default: foreign
- *jvi-foreign-class-name™* :
The name of the Jlib foreign class
default: "bigloo.foreign"
- *jvm-jar?* :

Enable/disable a JAR file production for the JVM back-end

290 Bigloo 4.3g

default: #f
- *jvm-jarpath* :
JVM jarpath
default: #f
- *jvm-java* :
JVM to be used to run Java programs
default: "java"
- *jvm-mainclass™* :
JVM main class
default: #f
- *jvm-options* :
JVM options
default: ""
- *jvm-path-separator® :
JVM classpath
default: #f
- *jvm-shell* :
Shell to be used when producing JVM run scripts
default: "sh"
- *1d-debug-option™ :
The C linker debugging option
default: "-g "
- *1d-library-dir* :
Depreacted, don’t use
default: " /home/serrano/prgm/project/bigloo/bigloo/lib/bigloo/4.3g"
- *1d-o-option* :
The C linker -o option
default: "-o "
- *1d-optim-flags* :
The C linker optimization flags
default: ""
- *1d-options™* :
1d options
default: " "
- *1d-post-options* :
1d post options
default: ("")
- *¥ld-relative™ :
Relative or absolute path names for libraries
default: #t
- *1d-style* :
1d style
default: "gcc"
- *Mib-dir* :
The lib dir path
default: ("." "/home/serrano/prgm/project/bigloo/bigloo/lib/bigloo/4.3g")
- *lib-mode* :

Chapter 31: Compiler description

Lib-mode compilation?
default: #f
- *lib-src-dir* :
The lib dir path
default: "runtime"
*load-path™ :
The load path

default: ("." "/home/serrano/prgm/project/bigloo/bigloo/lib/bigloo/4.3g")

- *max-c-foreign-arity* :
Max C function arity
default: 16

- *max-c-token-length* :
Max C token length
default: 1024

- *mco-include-path™* :

Module checksum C include path
default: (".")

- *mco-suffix* :

Module checksum object legal suffixes
default: ("mco")

- *module-checksum-object?* :
Produce a module checksum object (.mco)
default: #f

- *multi-threaded-gc?* :

Are we using a multi-threaded GC?
default: #f

- *o-files* :

The additional obect files
default: ()

- *obj-suffix* :

Object legal suffixes
default: ("o" "a" "so")

- *object-init-mode* :
Object initialization mode
default: stagged

- *optim* :

Optimization level
default: 0

- *optim-O-macro?* :

Enable optimization by macro-expansion
default: #f
- *optim-atom-inlining?* :
Skip atom in inlining parameter counting
default: #t
- *optim-cfa-apply-tracking?* :
Track values across apply
default: #f

291

292

- *optim-cfa-fixnum-arithmetic?* :
Enable refined fixnum arithmetic specialization
default: #f

- *optim-cfa-flonum-arithmetic?* :
Enable refined flonum arithmetic specialization
default: #f

- *optim-cfa-force-loose-local-function?* :
Force loosing local function approximations (for debugging)
default: #f

- *optim-cfa-free-var-tracking?* :
Enable closure free-variables specialization
default: #f

- *optim-cfa-pair-quote-max-length™* :
Maximum length for pair literal tracking
default: 4

- *optim-cfa-pair?* :
Track values across pairs
default: #f

- *optim-cfa-unbox-closure-args™ :
Unbox closure arguments
default: #f

- *optim-cfa?* :
Enable CFA
default: #t

- *optim-dataflow-for-errors?* :

Bigloo 4.3g

Enable simple dataflow optimization for eliminating bad error messages

default: #t

- *optim-dataflow-types?* :
Enable dataflow optimization for types
default: #f

- *optim-dataflow?* :
Enable simple dataflow optimization
default: #f

- *optim-initflow?* :
Enable initflow optimization for global variables
default: #f

- *optim-integrate?* :
Enable function integration (closure analysis)
default: #t

- *optim-isa?* :
Enable isa type tests optimization (inlining)
default: #f

- *optim-jvm™* :
Enable optimization by inlining jvm code
default: 0

- *optim-jvm-branch* :
Enable JVM branch tensioning

Chapter 31: Compiler description 293

default: 0

- *optim-jvm-constructor-inlining™* :
Enable JVM inlining for constructors
default: 0

- *optim-jvm-fasteq™ :
EQ? no longer works on integers (use =FX instead)
default: #f

- *optim-jvm-inlining* :
Enable JVM inlining
default: 0

- *optim-jvm-peephole* :
Enable JVM peephole optimization
default: 0

- *optim-loop-inlining?* :
Loop inlining optimization
default: #t

- *optim-patch?* :
Optimize self modifying code
default: #f

- *optim-reduce-beta?* :
Enable simple beta reduction
default: #f

- *optim-return-goto?* :
Optimize set-exit by enabling local return
default: #f

- *optim-return?* :
Optimize set-exit used as return
default: #f

- *optim-symbol-case™* :
Optimize case forms descrimining on symbols only
default: #f

- *optim-sync-failsafe?* :
Enable failsafe synchronize optimization
default: #f

- *optim-tagged-fxop?* :
Optimize tagged fixnum operations
default: #f

- *optim-unroll-loop?* :
Loop unrolling optimization
default: #unspecified

- *pass* :
Stop after the pass
default: 1d

- *patch-support* :
Enables/disables patch (runtime code modification) support
default: #f

- *pre-processor™ :

294

An optional function that pre-processes the source file
default: #<procedure:55b60df82410.1>

- *prof-table-name* :
Bprof translation table file name
default: "bmon.out"

- *profile-library™ :
Use the profiled library version
default: #f

- *profile-mode* :
Bigloo profile mode
default: 0

- *purify* :
Produce byte code verifier compliant JVM code
default: #t

- *qualified-type-file* :
The qualifed-type association file name
default: #f

- *qualified-type-file-default™ :
The qualifed-type association file name
default: ".jfile"

- *reader* :
The way the reader reads input file (’plain or ’intern)
default: plain

- *rm-tmp-files* :
Shall the .c and .il produced files be removed?
default: #t

- *saw* :
Do we go to the saw-mill?
default: #f

- *saw-bbv7* :
Enable/disable saw basic-blocks versionning
default: #f

- *saw-no-register-allocation-functions* :
The list of functions disabling register allocation
default: ()

- *saw-register-allocation-functions™ :
The list of functions allowing register allocation
default: ()

- *saw-register-allocation-max-size* :
Max function size for optimizing the register allocation
default: 4000

- *saw-register-allocation-onexpression?* :
Enable/disable saw register allocation on expression
default: #f

- *saw-register-allocation?* :
Enable/disable saw register allocation
default: #f

Bigloo 4.3g

Chapter 31: Compiler description

- *saw-register-reallocation?* :
Enable/disable saw register re-allocation
default: #f

- *saw-spill* :

Enable saw spill optimization
default: #f

- *shared-cnst?* :

Shared constant compilation?
default: #t

- *shell* :

The shell to exec C compilations
default: " /bin/sh"

- *sre-files™ :

The sources files
default: ()

- *sre-suffix* :

Scheme legal suffixes
default: ("scm" "bgl")

- *startup-file* :

A startup file for the interpreter
default: #f

- *static-all-bigloo?* :

Do we use the static version of all Bigloo libraries?
default: #f

- *static-bigloo?* :

Do we use the static Bigloo library

default: #f

- *stde* :
Shall we produce ISO C?
default: #f

- Fstrip* :
Shall we strip the executable?
default: #t

- *sync-profiling™ :
Instrument code for synchronize profiling
default: #f
- *target-language™ :
The target language (either ¢, c-saw, jvm, or .net)
default: native
- *trace-name* :
Trace file name
default: "trace"
- *trace-write-length* :
Trace dumping max level
default: 80
- *unsafe-arity™* :
Runtime type arity safety

295

296

default: #f
- *unsafe-eval® :
Disable type checking for eval functions
default: #f
- *unsafe-heap™ :
Disable heap version checking
default: #f
- *unsafe-library™ :
Use the unsafe library version
default: #f
- *unsafe-range* :
Runtime range safety
default: #f
- *unsafe-struct™ :
Runtime struct range safety
default: #f
- *unsafe-type* :
Runtime type safety
default: #f
- *unsafe-version™ :
Module version safety
default: #f
- *user-heap-size* :
Heap size (in MegaByte) or #f for default value
default: 0
- *user-inlining?* :
User inlining optimization
default: #t
- *user-pass™ :
The user specific compilation pass
default: #unspecified
- *verbose* :
The verbosity level
default: 0
- *warning-default-slot-value* :
Set to #t to warn about non-inlinable default slot values
default: #f
- *warning-overriden-slots™* :
Set to #t to warn about virtual slot overriding
default: #t
- *warning-overriden-variables* :
Set to #t to warn about variable overriding
default: #f
- *warning-type-error*® :
Set to #t to treat type warnigns as error
default: #f

- *warning-types* :

Bigloo 4.3g

297

Set to #t to warn about type checks
default: #f
- *with-files* :
The additional modules
default: ()

299

32 Cross Compilation

Bigloo is very portable and can be cross-compiled for most Posix-platforms. As long as
there exists a C (cross-)compiler for the platform and the garbage collector is supported on
the targeted platform there is a good chance that Bigloo or Bigloo-compiled programs will
run on the platform.

This chapter describes how to cross-compile Bigloo with a C cross-compiler. Follow-
ing established conventions we will call the platform where the compiled programs should
run the Host platform and we will call the build platform where we actually compile the
programs the Build platform.

32.1 Introduction

We assume that the host- and build-system are not the same, and that there exists a C
cross-compiler CC running on the build system producing executables for the host system.
In order to execute programs on the host, it is however not sufficient to simply com-
pile Bigloo-produced programs with this compiler. Indeed, these programs depend on the
Bigloo-library which thus has to exist on the host-platform.
Building a cross-compilation environment is done in two phases:
e Build a Bigloo for the build-platform. Usually this is a given.

e Build the Bigloo library for the host-platform. At the same time one might want to
build the Bigloo-executable (for the host-platform) too, but this is not a requirement.

Programs can then be cross-compiled simply by telling Bigloo to use the host-library.

Note: if the cross-compiled executable uses shared libraries, then Bigloo’s cross-compiled
libraries have to be copied to the host platform. Static executables are self-contained and
can be run without modification on the host.

32.2 Building the Bigloo library for the host-platform

We assume that we have a C cross-compiler CC and an empty Bigloo source tree. As a first
step the configuration script must be executed. However, Bigloo’s configure script requires
some runtime-information from the host and thus needs access to the host-machine. This
is accomplished by passing a hostsh-script to configure.

32.2.1 Hostsh

A hostsh script is passed to Bigloo’s configuration script and is invoked whenever a command
should be executed on the host-side.

There are already three example scripts inside Bigloo’s source tree that are located in
the examples/hostsh directory.

e by-hand/kdiallog-host.sh asks (using KDE’s kdialog) to execute the command by
hand on the host-side and to report the result.

e ssh/ssh-copy.sh copies the file by ssh and executes it then on the other side. If you
intend to use that file, you must edit it for setting the variables describing the remote
ssh connection. For the variables HOST, SSH_PORT, and USER must be modified. Note:
there exists an Ipod/Iphone version that automatically signs on jail-broken devices.

300 Bigloo 4.3g

e and finally, as last resort, there exists a netcat version if no ssh is available. This one
can be used on devices that only have telnet access, and where ssh is not available. Its
only requirement is a running netcat on the host-side (which should be easily achievable
since there exists a working cross compiler).

32.2.2 Building
Armed with a working cross-compiler CC and a script HOSTSH that invokes commands and
executables on the host side the configure invocation is simple:

./configure \
—prefix=[PREFIX_PATH_ON_TARGET] \
—cc=[CC] \
—hostsh=[HOSTSH] \
—thirdparty-configure-opt=[options]
Other configuration options are of course possible too.
For instance, for configuring Bigloo for a Raspberry model 2.
./configure \
—cc=/usr/bin/arm-linux-gnueabi-gcc-6 \
~hostsh=$PWD /ssh-copy.sh \
—thirdparty-configure-opt=—host=arm-linux-gnueabi
Once the configuration has finished one can build Bigloo (and its library) simply by
calling make. This will build the libraries as well as the binaries.

If shared libraries are needed on the host platform one still needs to install them. The
easiest way is probably to install them temporary on a build system inside a special directory
and then copy them from there to the host system.

make DESTDIR=[temporary-directory] install
Only the 1ib directory is needed on the host side.

32.3 Cross Compiling Bigloo Programs
Once the host-library exists cross compilation is straightforward. Using the -1ib-dir com-
pilation flag one simply has to pass the library-directory to Bigloo.

bigloo -lib-dir [path-to-cross-compiled-library]

Bigloo will automatically use the same C cross-compiler and compilation flags that have
been used to build the library.

32.4 Caveats

In general Bigloo’s cross-compilation works fine, but developers should be aware of some
limitations:

e Macros will be executed on the build platform. The macro-environment (and in particu-
lar its integer types) might not be the same. For instance an elong on the build-system
might be of different size than an elong on the host-system.

e Bigloo will read numbers on the build system and adapt the container size accordingly.

Suppose for instance that the build system features 64bit longs, but the host system
only allows for 32bit longs. The number 2735 fits easily into a long on the build-system

Chapter 32: Cross Compilation 301

but will overflow on the host-system. The container will however be determined on
the build system and thus a long will be used. This is only a problem for big integer
literals.

e A cross-compiled Bigloo uses (by default) the same C compiler that has been used to
compile the Bigloo. Once the executable has been transferred to the host-system the
C cross-compiler does very likely not exist anymore. Therefore Bigloo will need to be
invoked with the -cc flag on the host-system (under the assumption that there exists
a C compiler).

This drawback can be eliminated by directly compiling Bigloo on the host (since there
exists a C compiler).

32.5 Examples

In this example we will show how to compile for a host-machine that has ssh-access.
We assume

e a working Bigloo (should be the same version as the one that is going to be compiled
for the host) in the PATH.

e ssh access to the host. This access should be without password (using keys). The
system should be accessible by ssh [host] (where [host] should be replaced with the
correct address).

e a C cross-compiler CC running on the build-system and compiling for the host.

With these preconditions satisfied we can first build Bigloo for the host-system:
$./configure ~hostsh="$PWD /examples/hostsh/ssh/ssh-copy.sh [host]" —cc=[CC]
$ make
$ make DESTDIR=[TMP] install

Now let’s compile a simple hello-world for the host.

$ cat > /tmp/hello.scm <<EOF
(module hello (main main))

(define (main args) (print "hello world"))
EOF

$ bigloo -static-all-bigloo -lib-dir [TMP]/lib/3.2¢/ -o /tmp/hello /tmp/hello.scm

The generated executable should be able to run on the host.

303

33 User Extensions

The extension package system allows the language compiled by Bigloo to be extended
and this is achieved by associating an extension file with a suffix. The extension file is
loaded at the beginning of a compilation and it can do three things: call extern programs
(unix programs); define macros; modify the values of some of the compiler’s variables (for
example, the list of the libraries to be linked with). The Bigloo’s initializing procedure is
the following:

e If it exists, Bigloo loads the runtime-command file, see Section Chapter 31 [Compiler
Description], page 275.

e It then parses the command line to find the source file to compile.

e [t extracts the source file suffix and looks it up in its *auto-mode* variable.

e If the suffix is found, the associated file is loaded. This file could contain a function
named *extend-entry* which must accept a list as argument. It is invoked with the
Bigloo’s unparsed arguments.

e The result of the *extend-entry* application has to be a regular list of arguments and
these are parsed by Bigloo.

For now, two extension packages exist: the Meroon package which is a native version of
the Christian Queinnec object language; the Camloo [SerranoWeis94] package which is a
front end compiler for the Caml language [Caml-light]

Furthermore, Bigloo supports the —extend option which forces the usage of an extension
file. When Bigloo encounters this option, it immediately loads the extension file, invoking
the function *extend-entry* with the list of arguments which have not been parsed yet.

The extension files are always sought in the directory containing the Bigloo’s libraries.

33.1 User pass

Bigloo allows the user to add a special pass to the regular compilation, this pass taking
place before macro expansion. There are two ways to add a user pass.
e Add a compiled pass: The module user_user (in the “comptime/User/user.scm” file)
is the user entry pass point. To add a compiled pass, put the code of the pass in this
directory, import your new modules in user_user and modify the user-walk function.

e Add an interpreted pass: Set the value of *user-pass*, which has to be a unary
function, in your .bigloorc file and Bigloo will invoke it with the code as argument.

305

34 Bigloo Development Environment

Bigloo release 2.0 or more recent contains an Integrated Development Environment. This
environment proposes some services:

e Automatic Makefile creation and update.
e Code browsing.

e Revision control.

e Symbol debugging.

e Profiling.

e On-line documentation.

e Source code interpretation.

e Source code expansion.

e Literate programming.

The environment relies on Bigloo tools:
e bglafile: a Module access file generator (see Section 2.6 [Module Access File],
page 16).
e bglmake: a Makefile creator.
e bgldepend: a that creates Bigloo dependencies in makefiles.
e bglpp: a pretty printer.
e bglprof: a profiler
e bgltags: a generator of tag file for Emacs.
Each of these tools comes with a dedicated manual page and are not described in this
documentation.
Extra tools are required for the environment to go its full speed:

e Emacs version 21 (or more recent) (http://www.emacs.org/) or Xemacs version 20.4
(or more recent) (http://www.xemacs.org/).

e prcs version 1.2.1 or more recent (http://prcs.sourceforge.net/).
e gdb version 4.17 or more recent (http://www.cygnus.com/gdb/).

e gprof (ftp:/prep.ai.mit.edu:pub/gnu/).

e texinfo (ftp:/prep.ai.mit.edu:pub/gnu/).

e gmake (ftp:/prep.ai.mit.edu:pub/gnu/).

The following document describes the BEE, the Bigloo Emacs Environment.

34.1 Installing the BEE

The standard procedure for installing Bigloo handles the compilation of all tools required
by the BEE. Additional Emacs-lisp code have to be appended to your .emacs file:

(autoload ’bdb "bdb" "bdb mode" t)
(autoload ’bee-mode "bee-mode" "bee mode" t)

(setq auto-mode-alist
(append ’ (("\\.scm$" . bee-mode)

http://www.emacs.org/
http://www.xemacs.org/
http://prcs.sourceforge.net/
http://www.cygnus.com/gdb/
ftp:/prep.ai.mit.edu:pub/gnu/
ftp:/prep.ai.mit.edu:pub/gnu/
ftp:/prep.ai.mit.edu:pub/gnu/

306 Bigloo 4.3g

("\\.sch$" . bee-mode)
("\\.scme$" . bee-mode)
("\\.bgl$" . bee-mode)
("\\.bee$" . bee-mode))
auto-mode-alist))

This code will force emacs to switch to BEE mode when editing Scheme source files.

34.2 Entering the Bee

Once, your .emacs is updated, to start the BEE you just need to edit a file suffixed with
one of the suffix listed in auto-mode-alist with Emacs. You may either enter the Bee within
Emacs with ESC-X: bee-mode.

34.3 The Bee Root Directory

The Bee Root Directory is the directory that contains information files that describe a
project. When editing a file, the BEE tries to automatically setup the Bee Root Directory.
For that, it seeks one of the following file: Makefile, .afile or .etags. This search unwind
directories until the root directory is reached or until the number of scanned directories is
more than the value of the list variable bee-root-search-depth.

An alternative Bee Root Directory may be set. This is done clicking on the Root of the
tool bar icon.

34.4 Building a Makefile

Once, the Bee Root Directory has been setup (it is printed on the left part to the Emacs
modeline), a Makefile can be automatically produced. It can be achieved clicking on the
Mkmf icon of the tool bar, using the popup menu (button-3) entries, or using one of the
two keyboard bindings C-c C-c C-a or C-c C-c C-1. When creating a Makefile, you will
be asked to give a file name. This file must be the one that is the main entry point of your
program or the one that implements an library heap file.

When the Makefile already exists, using the same bindings update Makefile, re-generate
.afile and .etags files.

34.5 Compiling

Once a Makefile exists, it is possible to compile a program (or a library). Use either the
tool bar icon Compile, the popup menu entry or C-c C-c C-c. If no Makefile exists, the
BEE will emit a single file compilation.

34.6 Interpreting

Scheme source code may be interpreted within the BEE instead of been compiled prior to
be executed. This facility could be convenient for fast prototyping. A Read eval print loop
(henceforth Repl) could be spawned using the Repl icon of the tool bar, using the popup
menu entry or using the C-c¢ C-r C-r binding.

Parts or the whole buffer may be sent to repl.

e (C-c C-r b sends the whole buffer.

Chapter 34: Bigloo Development Environment 307

e C-c C-r d sends the define form the cursor is in.
e (C-c C-r 1 sends the s-expression that preceeds the cursor.
e C-c C-r t sends the top level s-expression the cursor is in.

e C-c C-r r sends the marked region.

34.7 Pretty Printing

The whole buffer may be pretty printed (long source lines are split) using the Lisp icon of
the tool bar, using the popup menu entry of using C-c C-i tab.

Parts or the buffer may be indented (no line is split).
e C-c C-i d indents the define form the cursor is in.
e C-c C-i 1 indents the s-expression that preceeds the cursor.

e C-c C-i t indents the top level s-expression the cursor is in.

34.8 Expansing

For debug purposes, result of the source code macro expansion may be checked within the
BEE.

Parts or the whole buffer may be sent to repl.
e (C-c C-e C-e expands the whole buffer.
e (C-c C-e C-d expands the define form the cursor is in.
e (C-c C-e C-1 expands the s-expression that preceeds the cursor.
e C-c C-e C-t expands the top level s-expression the cursor is in.
e (C-c C-e C-r expands the marked region.

When a part of the buffer is expanded (by opposition to the whole buffer), the buffer is
scan for macro definitions. These macros will be used for expanding the requested form.

34.9 On-line Documentation

On-line documentation may be popped up. This is always done, clicking on the Info icon
of the tool bar or C-c C-d i. If an emacs region is active, the documentation about that
region will be popped up. If the cursor is at a Scheme identifier, the documentation of
that identifier will be printed. Otherwise, the user will be prompted for the Section of the
documentation to be printed.

Clicking on the 7 icon tool bar, pops up a short description of the Bigloo compiler
options.

The BEE uses info files for printing On-line documentation. It always search the stan-
dard documentation and the standard definition of Scheme. It is possible to add extra info
files to be searched. The BEE always checks for a directory info in the Bee Root Directory.
If such a directory exists, contained file will be considered for the search of a document.

308 Bigloo 4.3g

34.10 Searching for Source Code

Searching for source (variable declaration, module definition, variable usage) is supported
by the BEE. Clicking on the Find icon of the tool bar will pops up the definition of the
variable the cursor is in or the definition of the module the cursor is in. These two operations
may be requested using C-x 5 . for searching a variable definition, C-¢ C-d m for a module
definition.

Information and usages of a variable may be printed using either the Doc icon of the tool
bar or the C-c C-d u key binding.

34.11 Importing and Exporting

Bigloo bindings (functions and variables) may be automatically inserted in an export module
clause (see Chapter 2 [Modules], page 7). Bring the cursor to an identifier of a binding that
has to be exported then, either click on the Export tool bar icon or use the C-c C-m b key
binding.

Bigloo bindings may be automatically inserted in an import module clause. Bring the
cursor to an identifier of a binding that has to be imported. Either click on the Import
tool bar icon or use the C-c C-m i key binding. The BEE, will search the modules for the
wanted binding.

Foreign bindings (e.g. C variables and C functions) may be automatically inserted in
the file module clause. Click on the Extern tool bar icon or use the key binding C-c C-m ¢
to import whole the definition of an extern file. You will, be prompted an extern file name
to be imported. This operation automatically updates the Makefile for reflecting that the
extern file is required in the compilation.

34.12 Debugging

The Bigloo symbolic Debugger may be spawned either clicking on the Bdb tool bar icon
or using the key binding C-c C-b C-b. Once the debugger is not is possible to connect the
current buffer to the debugger. This is done using the tool bar icon Connect or the key
binding C-c C-b c. This enables breakpoints to be inserted using mouse clicks.

34.13 Profiling

Automatically produced Makefile provides entry for profiling. In order to get a profile you
must first compile your application for profiling. This is done using a popup menu entry
or the C-c C-p c key binding. Once your program compiled you can run for profile using
a popup menu entry of the C-c C-p r key binding. This last will run your program, run
bglprof to get the profile and this will pops up a window displaying the profile informations.

34.14 Revision Control

Submitting a new revision is done using C-c C-v i or using an menu bar entry. This builds
an new revision for the entire project. The file that compose the project are listed in the
pop entry of the Bee Root Directory Makefile.

Chapter 34: Bigloo Development Environment 309

Checking out an older version of the file currently edited is done using the key binding C-
¢ C-v C-o. This is not a retrieval of the entire project. Global check out may be performed
manually.

Comparing the version of the file currently edited with older one is done using C-c C-v
d. A diff of the two buffers will be popped up.

With both checking out and comparison of versions. A window presenting all the avail-
able version will be popped up to let you choose which version you would like to inspect.

34.15 Literate Programming

The BEE does not provide real Literate Programming. The reason is that we think that
when editing documentation we want to benefit the full power of context-sensitive editors
and we don’t want to edit the documentation is the same editor mode as the one we use
when editing source code. Nevertheless it is possible to place anchors within the source
file to the corresponding documentation file. Then, by the means of simple mouse clicks,
it becomes possible to edit the documentation of peace of codes. The current BEE literate
programming system only supports the Tezinfo file format.

For that purpose three anchors are available: path, node and deffn. All anchor have to
be delimited with @ characters.

e path: this anchor set the path to the file containing the documentation. Thus,
(module foo
;3 Opath manuals/foo.texi@
L)
Tells the BEE that the documentation for the module foo is located in the file named
manuals/foo.texi.

e node: sets the name of the node that documents this particular source file code.

(module foo
;3 Opath manuals/foo.texi®@
;3 Onode Foo@
L)

e deffn: each variable binding may point to its documentation. For that, it suffices to
use the deffn anchor just before the variable definition or within the s-expression that
defines the variable.

;3 @deffn foo@
(define (foo . chars)
L)
or
(define (foo . chars)
;; @deffn foo@
L)
When clicking on that anchor, the BEE will search the documentation file named by
the path anchor and within that file, will search for a texinfo deffn command that
defines the variable named in the anchor.

35 Global Index

#

##! Unix shell interpreter...................... 272
T 17
FE 17
FHa<ddd> ... 38
D 32
FEd 32
FE O e 32
FEl 32
FEIX . 32
FEO 32
K e 32
FE e 32
FE K e 32
&
&OITOT . . oo 175
&eval-warning oo 176
&exception 175
&http-error...... ... 176
&http-redirectiono oL 176
&http-redirection-error.......... 176
&http-status-error oo 176
&imap-error.................. i 216
&imap-parse—error..........coiuuuuiiinininans 216
&io-closed-error. ... 176
&IO-EITOT ..o oot 175
&io-file-not-found-error 176
&io-malformed-url-error................... 80, 176
&10-PATSE-€ITOT ..\t v ettt 176
&I0-POrt-€ITor .« oot 175
&io-read-error 176
&io-unknown-host-error............... 176
&io-Write-error. ... 176
&mailboX=€XTOrovteee 214
&maildir-error ... 217
&process-exception 176
&tyPE-€ITOr . ..ot 175
&warning. ... i 176
9
Pdatum . ..o 18

311

x
K 34
*auto—modek. 303
KD 34
dynamic-load-path 226
*ELONE. . oo 34
extend-entryl 303
*EL 34
s 34
HLLOME . e ettt et e 34
load-path..........l 16, 225
APP=CaSE¥ ... 65
pp-width oo 65
HUSET—PASSHK . .ottt 303
|
o 34
DK L 34
FELONE. ettt 34
HEL 34
R 34
FlIong. . 34
P 34
S 120
TR 34
—€LOME. 34
e 1 P 34
5. 34
-jvm-cinit-module............ ... 253
Sllong. . 34
afile... ... 16
LDIglOOTC . 277
Jhle oo 247
PP 35
DK 35
/1OnG. ..o 35
JEL 35
JEX 35

312

<

e 33
o 34
DG o 34
K=@LOME « v e e ettt et e 34
2 8 P 34
K= 34
DG <3 < 34
QDK ettt e 34
<comstant>............ o oo 18
KELOMG . . vttt 34
KEL 34
R 34
£ <5 < 34
<variable>o ool 18
P 33
DX 33
SELONE. o i 33
S L 33
S 33
S110NE. oo 33
>

> 34
> 34
> 34
STELONE . v v 34
b 1 PP 34
D - 34
SZLTONE . vvvveeee e 34
DR et e 34
DELOIE . . vt 34
b 8 34
D R e 34
SLILO0NE « v vvvee e 34
3

e 22

Bigloo 4.3g

A

a simple example of Lalr(1) parsing 140
A complete library example................... 262
A new way of reading.............. 129
abandoned-mutex-exception? 193
B 35
absfl. 35
abstract-class.................. ...l 117
Acknowledgements........ ... 1
ACOS . ittt 36
ACOSEL. 36
aes—ctr-decrypt ... 158
aes-ctr-decrypt-file................. 158
aes-ctr-decrypt-mmap 158
aes-ctr-decrypt-port 158
aes-ctr-decrypt-string..................... 158
aes—Ctr—encryptcooiiiiiiiiiiiiinan. 158
aes-ctr-encrypt-file................. 158
aes-ctr-encrypt-mmap 158
aes-ctr-encrypt-port 158
aes-ctr-encrypt-string..................... 158
AN . 19
and-let* 19
ALY 28
APPENA. . . 27
append! ... 27
APPENA—MAD « i 50
append-map!......... ..ol 50
append-output-binary-file................... 70
append-output-file..................... 59
APPLY . 50
ATES PATSE . .\ttt 153
AYgS—PaArSe—USALE .. .o vvveeeeieieiiii.. 153
arguments parsing ... 153
ascii-string? il 45
ASII. .ot 36
asinfl... ... 36
ASSETT .o 177
assertions. ...l i i 173
ASSO0C . ittt 28
Fo T 28
AS SV ettt 28
asynchronous signal...................... ... 193
AtAN. . 36
atanfl.. ... 36
automatic extern clauses generation........... 236
Automatic Java clauses generation............ 249

Chapter 35: Global Index

B

base64......... ... 98
base64-decodel 98
base64-decode-port.............l 98
base64-encode ...l 98
base64-encode-port............ 98
basenameooiiiiiiiiiii i 79
begin....... ... 21
bglafile 16
bibtex ol 219
bibtex-file...........l 219
bibtex-parse-authors 219
bibtex-port...........l 219
bibtex-string.......................l 219
bigloo development environment 305
bigloo variable...........ccoivviiiion.. 221, 222
bigloo-class-demangle 245
bigloo-class-mangled?...................... 245
bigloo-compiler-debug...................... 231
bigloo-compiler-debug-set! 231
bigloo-configl 76
bigloo-debugol 231
bigloo-debug-set!.............. 231
bigloo-demanglecvvvuiiiieiennnn. 245
bigloo-dns-cache-validity-timeout 232
bigloo-dns-cache-validity-timeout-set!... 232
bigloo-dns-enable-cache.................... 232
bigloo-dns-enable-cache-set!.............. 232
bigloo-eval-strict-module............. 223, 232
bigloo-eval-strict-module-set!............ 232
bigloo-library-path 258
bigloo-library-path-set!................... 258
bigloo-mangle 245
bigloo-mangled?............................. 245
bigloo-module-mangle 245
bigloo-need-mangling 245
bigloo-strict-rbrs-strings 231
bigloo-strict-rbrs-strings-set!........... 231
bigloo-trace 231
bigloo-trace-color..................iiit. 231
bigloo-trace-color-set!.................... 231
bigloo-trace-set!........................... 231
bigloo-trace-stack-depth................... 232
bigloo-trace-stack-depth-set!............. 232
bigloo-warningooiiiiiiian. 231
bigloo-warning-set! 231
bignumo i 32
bignum->octet-string 36
bignum->stringl 36
bignum? 32
binary-port?......... ...l 70
bind-exit 51
bit manipulation............ ool 72
bit-and 72
bit-andelong................ ...l 72
bit-andllong..............l 72
bit-1sho 73

bit-lshelong................. ...l 73

313
bit-1shllong.............ciiiiiiiiiiin .. 73
bit-not ... 72
bit-notelong............... ...l 72
bit-notllong............... ...l 73
bit-or.... ..o 72
bit-orelong............. ...l 72
bit-orllong.............l 72
bit-rsho 73
bit-rshelong...........coiiiiiiiiiiiiiian. 73
bit-rshllong.........coiiiiiiiiiiiiiinn.. 73
bit-ursh....... i 73
bit-urshelongol 73
bit-urshllongccoviiiiiiiinnnnennn. 73
PIt=XOT ..ttt 72
bit-XOrelong.ccvvuuiiiiiiiiiiiaiiia.. 72
bit-xorllong................iiiiiiiiii.. 72
blit-string!.......l 43
bm-mmap 110
bm-string.......l 110
bm-table........ ... 110
bImh—mmap oo 111
bmh-string........... o i 111
bmh-table.........coiiiiiiiiiiiiiiiiiii.. 111
boolean? 25
Booleans........ ..o i 25
Boyer, Moore............. o i 110
Boyer, Moore, Horspool....................... 110
broadcast!........ ool 192
Building a library ... 259
building a makefile................ 306
byte-code-compile.......... ..., 223
byte-code-run...........l 223
C
C aITAYS . ottt et e 241
C atomic typescoovviiiiiiiiii 237
CoeNUM . ..ttt e 242
Cfunctions. ...t 242
Cinterface. ...t 235
C null pointers. ... 240
CoPaAQUE .« e ee et 243
Cpointers. ..ot 239
Crequirementccooiiiiiiiiiii... 275
C structure and union types 238
[- T o 27
caadr. 27
CRAT ¢ ettt et 27
CAQAT . oot 27
caddr. ..o 27
AT L it 27
Calendar...... ..o 95
call .o 18
call-next-method....................oouuun. 121
call-with-append-file....................... 54
call-with-input-file........................ 54
call-with-input-string...................... 54
call-with-output-file.................... ... 54

314

call-with-output-string..................... 54
call-with-values............coviiiiniiinan.. 53
CAlL/CC . ettt 51, 52
o= o 27
(2= Y1 =Y 19
CAddar. ..ot 27
CAdddr. ...t 27
oc & < 27
ceiling 35
ceilingfll 35
certificate-issuer.............. 95
certificate-subject................. 95
Certificates 95
char->integero 38
Char=>UCS2 . .ttt e e 39
char-alphabetic?............................. 38
char-ci<=7 38
char—ci<? .. i 38
Char—Ci=T ... 38
Char—Cai>= 0 . i e 38
Char—ci>? . o 38
Char—dOWNCaSeottt ittt ieaans 38
char-lower—-case?cuuiireinennnnennnnn. 38
char-numeric? ...t 38
char-ready?........coiiiiiiiiiii 61
char-ready? and run-process.................... 61
char-upcase................ ...l 38
char-upper-case?............. ..., 38
char-whitespace?............... 38
Char<="7 ... 38
Char< . 38
CRar= 7 . 38
ChaT >= 7 38
Char> . 38
CRaT T . 38
characters 38
Chdir. .. 80
Chmod. ..ot 83
CIGLOO « vt 236
circular representation 65
ClasS S . ittt e 117
Class declarationcoiiiiinnnn.. 117
class-all-fields.............oiviiiiiian.. 126
class-cCreatorcoviiiiiiiiii i 127
class-field-accesSsSOrcvvuvunnnn.. 126
class-field-info............................ 127
class-field-mutable? 127
class-field-mutator 127
class-field-name.................civuninn.. 126
class-field?t 126
class-fields ..., 126
ClasSS—MaMettt 125
class—nil........oiiiiiii i 119
class-predicate................. 128
class-sSubclasSes........oiiiiiiiiniia. 125
ClasSS=SUPETttt 125
ClasS S T ittt e 125
client-server........... ... i 90

Bigloo 4.3g

client-socket-use-ssl!...................... 94
close-binary-port................. 70
close-input-port............................. 59
ClOSE—MMADttt 67
close-output-port..........cooiiiiiiiiiiiin, 59
close-process—ports.......................... 85
close-semaphore................. 196
closed-input-port?................. ... 59
closed-output-port?................. ... 59
closelog ...t 79
co-instantiate.............. ol 120
CODJ v 238
ColoT ..o 210
command line parsing......................... 153
command-line............... ... i T
comments. ...l 17
Compiler description.......................... 275
compiler JVM options 247
compiler options........ 277
Compilingcovviiiii . 306
compiling and linking with a library........... 255
Compiling with the JVM back-end 247
Complete-DSA-Key...................ooiiil. 163
Complete-ElGamal-Keycovnnn. 164
Complete-RSA-Key............................ 160
COMPLEX? .\t 32
COMA . ottt 19
cond-expand.......... ...l 269
condition-variable-broadcast!............. 184
condition-variable-name.................... 184
condition-variable-signal! 184
condition-variable-specific............... 184
condition-variable-specific-set! 184
condition-variable-wait!................... 184
condition-variable? 184
Connecting Scheme and Java code 249
COTIS .« vttt ettt e e et e 27
COMSH . oottt et 28
control features........ i 50
copy-file.......... ... i 82
COPY-VeCtor. 48
O ottt et 35
cosfl.. ... 36
Cp1252->UtEB . .. ottt 46
cpl2b2->utf8! ... 46
cram-mdbsum-string...............l 98
CLC ittt 100
crc-elong-le::elong ..., 101
crc-elong::elong.............oiiiiiiiia., 101
cre-fileo 100
crc-length.......... ...l 100
crc-llong-le::1llong ..., 101
crc-llong::1long.....coviiiiiiiiiiiiiia 101
crc-long-le::long...............oiiiiiiaa.. 101
crc-long::long ...t 101
Toh ol el 1= o 100
CTC TAMES « .« vttt 100

Chapter 35: Global Index

crc-polynomial-be->le...................... 102
crc-polynomial-le................... 100
CIC—POTL ...t 100
cre-string........ ...l 100
CROC . 99
create-hashtable...................... 74
Creating and accessing objects................ 119
cross compilationo oL 299
cryptography o i 155
OBV e et 221
csv-for-each L. 221
[oF= A 1T oS 221
current-date........... o oo 96
current-error-port..............oiiiiiiiina.. 55
current-exception-handler.................. 174
current-input-port....................ia 55
current-microseconds 96
current-nanoseconds.......................... 96
current-output-port................. 55
current-scheduler........................... 191
current-secondsiiiiiiiiiiiiiaa 96
current-thread 181
current-time ool 193
Custom types.c.vviiiii i 267

D

database............ol 199
datagram-socket-receive..................... 91
datagram-socket-send 91
Date. ... 95
date. ..o s
date->iso8601-date........................... 98
date->nanosecondseeeiiiiiiiaaaanin 96
date->rfc2822-date............., 97
date->Secondsiitiiii i 96
date->string............ ...l 96
date->utc-string............. 96
date=—CopY .. vvvi 96
date-dayl 96
date-houro 96
date-is-dst...............l 97
date-minute.........................oLL 96
date-month.............ol 97
date-month-length............................ 97
date-nanosecondl 96
date-second................ i 96
date-timezone i 97
date-wday i 97
date-week-day il 97
date-yday 97
date-year............. ...l 97
date-year-dayl 97
date?. .. 95
day-anamel 97
day-mamel 97
day-seconds.............. ... 97

debug 179

315
debugging il 308
Debugging Lalr Grammars.................... 139
declare-library!............................ 256
Declaring abstract Java classes................ 250
Declaring Java arrays............c.ooeouen... 250
Declaring Java classes......................... 249
decrypt-file::bstring................... ... 158
decrypt-mmap::bstring..............., 158
decrypt-port::bstring...................... 158
decrypt-sendchars..............coovviuiinn. 158
decrypt-string::bstring.................... 158
decrypt::bstring............................ 158
default-scheduler........................... 191
define........ .ot 22, 233
define-expander................ooiiiiiiian. 229
define-generic.............. oL 121
define-inline...................... 15, 233
define—macroooviiiiuiiniiiinnnnn.. 229
define-method i, 121
define-reader-ctor.................... 60
define-record-type............ooiiiiiina.. 114
define-structl 113
define-syntax 229
defining an extern type 237
Definitions. ... 22
delay. . .oiit 22
delete....ooiiuiii 28
delete! ... 28
delete-directory..........oooiiiiiiiiiiiiin, 82
delete-duplicates........................al 30
delete-duplicates!................, 30
delete-file...........oiiiiiiiiiiiiinnn.. 81
delete-semaphore............................ 196
Digest oo 98
directives......................ooooiilL 8
directory->listol 82
directory->path-list 82
Airectory? 82
Airnamevuue e 80
displaycooiiiiiiiii 63
display*cooiiiiiiiiii 63
display-circle............. ... 65
display-stringcoiiiiiiiiiiiiia.. 65
display-substring.....................oaa 65
QO ittt 22
double->ieee-string.......................... 37
double->1long-bits............coviiiiiiinan. 37
Arop.. .o 28
dsa-sign................iiiiiiii 163
dsa-verify.............. ...l 164
DSA-KeY v 163
DSSSL formal argument lists................... 23
DSSSL support .. c.oovvvviii 23
dump-trace-stack................. 173
duplicate............. ... il 120
duplicate::class....................i.. 120
dynamic-loadciiiiiiiiiii 225
dynamic-load-symbolo.uan. 227

316

dynamic-load-symbol-get.................... 227
dynamic-load-symbol-set.................... 227
dynamic-unload 226
dynamic-wind.............. ... ool 52

E

Efficiency........ ..o 275
elgamal-decrypt................. ...l 164
elgamal-encrypt................. 164
ElGamal-Key................iiiiiiiiii., 164
elgamal-key-length.......................... 164
elong->fixnum, 37
€1ong—>flONUM « ..ottt it 37
elong—>Stringcvviiiiiiiiiiiii 36
€LOMg 7. 32
email-normalize.............couuiiiiiiinnnan. 213
Embedded Bigloo applications 245
encrypt-file::bstring............... 155
encrypt-mmap: :bstring............ 155
encrypt-port::bstring...................... 155
encrypt-sendchars..................... 156
encrypt-string::bstring............. 155
encrypt::bstring.............. ... oL 155
Entering the Bee............ 306
eof-object?....... 61
QT 25
eqUAL?. 27
Equalityo o 126
Equivalence predicates......................... 25
=T 25
=3 o o ol 173
error handling ool 173
error-notify i 174
error/location.............. i 173
eval ... 12, 223
Eval and the foreign interface................. 227
Eval command line options.................... 227
Eval operator inlining............... 223
Eval standard functions....................... 223
[=Y « 33
evenbx? ... 33
evenelong?.............. i 33
evenfl? ... 33
eventx? ... 33
evenllong? 33
OV LY oottt 28
exact fixnum......... ... ool 32
exact->inexact 36
eXaCtT. . . 33
examples of regular grammar 135
exception-notify............. L 174
exCePtions 174
executable-mameo s
exif. ... 203
exif-date->date.......... .o 204
eXIt .. s

Bigloo 4.3g

eXPANd 224
eXpand-—ONCe.ouirriiiiiii .. 224
Expansing............. . o 307
expansion passing style 229
expfl. 35
explicit typingl 233
@XPOTL ...ttt 9
exporting a Scheme variable................... 237
Exporting Scheme variables to Java........... 251
Expressions.........coooiiiiiiiiiiii i 17
eXPL ... 36
exptfl. . 36
OXEOTIM. ..ttt 12
extract-private-rsa-key.................... 160
extract-public-dsa-key..................... 163
extract-public-elgamal-key 164
extract-public-rsa-key..................... 160

F

Fair Threads.............. ... i 185, 196
fast string searchol 109
file handling o i 79
file=>String..........ooiiiiiiiii .. 63
file-access-time.............. 82
file-change-time............................. 82
file-exXxistsST. . i e 81
FA1@GAd .\ttt 83
file-gzip?. . 81
filermodet 83
file-modification-time...................... 82
file-musictagooiiiiiiiiii i 204
file-name->list, 80
file-name-canonicalizeou... 80
file-name-canonicalize! 80
file-name-unix-canonicalize 80
file-name-unix-canonicalize! 80
file-separatorl 78
file-size..... ..o 83
file-times-set! 82
file-type ... 83
file-uido 83
filter. . oo 50
filter! ... 50
filter-map.......cooiiiiiiiiiii 51
final-class.......coiiiiiin i 117
find. ... o 29
find-class.......ooiiiiii i 125
find-class-field................coiiiin.... 126
find-file/path il 81
find-tail..........oi 29
finitefl? 36
AXOUM . .o 32
fixnum (long) ... 32
fixnum->elongc.iiiiiiiiin.. 37
fixnum->flonum...............ccoiiiiiiininn... 37
fixnum->1longttt 37
fixnum? ... 32

Chapter 35: Global Index

flac-musictagol 204
float->ieee-sString...........ccovvuuieennnnn. 37
float->int-bits......... il 37
flonum...... ..o 32
flonum->elongoviiiiiiiiiiiii 37
flonum->fixnum..........ooviiiiiiiniinin... 37
flonum=>1100g ... outtiit e 37
flonum? ... 32
floor.... ... 35
floorfl .. 35
flush-binary-port............................ 70
flush-output-port............................ 64
for-each...........ol 50
force..... .. 51
format.......... ... 64
Fprint. 64
fprintf 65
free-pragma::ident................... 244
from.... 10

gb2312->ucs2 220
BCA . . 35
generate-rsa-key............................ 160
Generic functions.......... ool 121
Genericity of arithmetic procedures 276
BONMSYIM. oo ettt ettt e et 31
genuuid 31
get-class-serialization..................... 72
get-custom-serialization.................... 72
get-interfaces ...l 91
get-opaque-serialization.................... 72
get-output-string............................ 59
get-procedure-serialization................ 72
get-process-serialization................... 72
get-prompter il 224
get—protocol. 91
get-protocolsl 91
get-repl-error-notifier................. ... 224
get-signal-handler........................... 7
get-trace-stack............ccoiiiiiiiiiiin. 173
getenv...... ... "
getgid...... ... 78
getgroups i 79
getpid...... ... 78
getppid ..o 79
BetPIrop ..t 31
getpwnam ... 79
getpwuid 79
getuid............ 78
GUNZIP . oot 68
gunzip-parse-header.......................... 69
gunzip-sendchars.................. 68
BZID . oo 57, 68

317
H
hardware fixnum............ oL 32
hashtable->1istouian. 75
hashtable->vector............................ 75
hashtable-add! 75
hashtable-clear!oiiiinann. 76
hashtable-contains?.......................... 75
hashtable-filter!............................ 76
hashtable-for-each........................... 75
hashtable-get, 75
hashtable-key-list.............c.oooieiiinan. 75
hashtable-map 75
hashtable-put!l 75
hashtable-remove! 75
hashtable-size 74
hashtable-update! 75
hashtable-weak-data? 74
hashtable-weak-keys? 74
hashtable?.............o 74
hmac-mdSsum-string..................... 98
hmac-shalsum-string.......................... 99
hmac-sha256sum-string 99
homogeneous vectors................coooii... 49
host ..o 91
hostinfo....... il 91
hostname il 78
hsl->rgh.. ... 210
hsv=>rgb....... ... o i 210
http ... 102, 103
http-chunks->port...........c.oovveivnnnn... 105
http-chunks->procedure..................... 105
http-parse-header........................... 105
http-parse-response 105
http-parse-status-line..................... 104
http-read-crlf, 104
http-read-line.............................. 104
http-response-body->port................... 105
http-send-chunks.................... 105
http-url-parse.............................. 102
hyphenate..............l 219
I
d3, m3u. ... 204
id3::musictagl 205
ieee-string->double.......................... 37
ieee-string->float..........ccoviiiiiiinnn... 37
T 19
ignore ... 134
Imap. ... 214, 216
imap-capability.............. L 217
imap-login......... i 216
imap-logout............ ... 217
IMPOTt . 8
importing an extern function.................. 236
importing an extern variable.................. 236
Importing and Exporting 308

include ... e 8

318

including an extern file....... 236
inexact=>exXact ...ttt 36
inexXact? ... 33
infinitefl?.. L 36
inflate-sendchars............................ 68
inline procedure............ o i 15
input and output L 54
input-char..............l 71
input-fill-string!.................. 71
input-obj 70
input-port-close-hook 55
input-port-close-hook-set!.................. 55
input-port-length............., 54
input-port-name........................... 54, 59
input-port-name-set! 54
input-port-position................ 60
input-port-reopen! 59, 60
input-port-timeout-set!.............. 54
input-port?. 54
input-string. ... 71
input-string-port?.............. 54
installing the bee 305
instantiate.............ol 119
instantiate::class...........cooiiiiiiiiin, 119
instantiate::fthread....................... 186
instantiate::pthread....................... 194
int-bits->floatl 38
integer->char i 38
integer->secondcciiiiiiiiiniiiie.. 97
integer->string.......... ... i 36
integer->string/padding..................... 36
integer->ucs2 39
Integer? ... 32
interaction-environment.................... 223
internet.......... ... il 102
Interpreting............. o il 306
Introspectiono 126
inverse-utf8-table.............. 47
io-unknown-host-error.......... 91
1ota. 30
IP number........ ... o 87
8= 125
Isal. 119
iso-latin->utf8........... L 46
iso-latin->utf8!........... ... 46
iso8601-date->date........................... 98
iso8601-parse-date.............ooiiiiiiiinn. 98

JAVA . 12
Java interface......... il 247
Jle. oo 247
Jigloo .. 249
join-timeout-exception?............. 193
jpeg-exif ... 203
jpeg-exif-comment-set!................. ..., 203
JVM requirement oo 275

Bigloo 4.3g

K

keyword->string ...t 32
keyword->symbol il 32
keyword? ...l 32
keywords ... 31
Kmp—mmapcooiiiiiiiii 109
Kmp—sString......cooiiiiiiiiiiii 109
kmp-table.............l 109
Knuth, Morris, and Pratt..................... 109

L

labels. ..ot 21, 233
Lalr grammar and Regular grammar.......... 139
Lalr parsing 137
Lalr precedence and associativity.............. 138
lalr(1) grammar definition..................... 137
lalr-grammarc.o.everiiriiiiiiiiia 137
lambda. ...t 18
last-pair.................ia, 28
dCm . 35
leap-year? 97
length. ..o 27
= P 20, 233
etk o 20, 233
let-syntax.........ooooiiiiiiiiiiiiiiii 229
1etrec. . 20, 233
Jletreck ..o 21
letrec—syntaxiiiiii, 229
libraries i 255
LibTary .o 13
library and eval....... o il 258
Library and inline functions................... 257
Library and macros........................... 262
Library and modules.......................... 261
library and repl....... o i 259
library-exists?.................... ... 258
library-loadcciiiiiiiiiiiiiiiiia 258
library-translation-table-add!............ 257
Limitation of the JVM back-end 248
linking. ... 275
1ist ..o 27
1ist->String.ottt 42
1ist->TAGVECtOroviiiii i 50
list->ucs2-string............ ..., 45
list->Vector.......oovviiiiiiiiii 47
1iSt=COPY vttt 30
list-ref 28
list-split....... ... 29
list-tabulate 29
list-tail ... 28
=3 v 27
literate programming 309
1long—>fixnumooiiuuiiiniiinnannn..... 37
110ng=>FLONUM « .« e ovvevee et e e 37
llong->string i il 36
llong-bits->double............ccoiiiiiin... 38

Chapter 35: Global Index

load ..ot 11, 225
load-hyphens 219
loada.....ooviiiii 225
loadq. ..o 225
Tockf ... 67
10g . 35
logfl. .. oo 35
long fixnum.......... i 32

M

MAaCro eXpPansion...........ooouuiiiiinneo. .. 229
mail ... 211
mail-header->list........................... 213
MALLDOK .. 214
MAilboX=ClOSE . ..ottt 214
mailbox-folder-create! 214
mailbox-folder-dates 215
mailbox-folder-delete! 215
mailbox-folder-delete-messages!........... 215
mailbox-folder-exists?..................... 215
mailbox-folder-header-fields.............. 215
mailbox-folder-move! 215
mailbox-folder-rename! 215
mailbox-folder-select!..................... 214
mailbox-folder-status...................... 215
mailbox-folder-uids 215
mailbox-folder-unselect!................... 214
mailbox-folders................. ... 214
mailbox-hostname............. ..o, 214
mailbox-message............................. 215
mailbox-message-body 215
mailbox-message-create! 216
mailbox-message-delete!.................... 216
mailbox-message-flags...................... 216
mailbox-message-flags-set! 216
mailbox-message-header..................... 215
mailbox-message-header-field.............. 216
mailbox-message-header-list............... 215
mailbox-message-info....................... 216
mailbox-message-move! 216
mailbox-message-path....................... 215
mailbox-message-size 216
mailbox-prefixl 214
mailbox-separator........................... 214
mailbox-subscribe!............ 215
mailbox-unsubscribe! 215
maildir.......... ... 214, 217
MAII . . 8
make-asynchronous-signal................... 193
make-client-socket............ooiiiiiiiiii., 86
make-condition-variable.................... 184
MaKke—CSV=1@XeTt 221
make-datagram-server-socket 90
make-datagram-unbound-socket 90
make-date i 96
make-directories............ 82

make-directoryLL 82

319
make-elong........................LL 32
make-file-name 80
make-file-path................ 80
make-hashtable 74
make-hyphensl 220
make-list......... i 29
make-llong............. 32
make-mutex.............. il 182
make-schedulercooiiiiii... 191
make-server—-socket........... ..o, 88
make-shared-library-name.................... 81
make-spinlock il 182
make-ssl-client-socket 92
make-ssl-server-socket 94
make-static-library-name.................... 81
make-sString........ ... 39
make-string-ptr-null....................... 240
make-symlink..............l 82
make-TAGvectort 50
make-thread.................. 194
make-ucs2-string.............. 44
make-vector..... ...t 47
make-void*-null............. 240
make-weakptr. ...l 73
1= R 50
MaAP ! 50
match-case........ ...l 107
match-lambdaot 107
11 E= 33
MAXDX ..ottt 33
maxfl.. ... 33
maxfx. ... 33
maxvalelong...........ooiiiiiiiiiiiii 32
maxvalfx ... 32
maxvalllong. ... 32
mdD .. 98
MABSUM. . .ottt 98
mdbsum-file.............l 98
MASSUM-TMAP .+« vt 98
mAdSSUM=POTt ... 98
mdSsum-stringol 98
MEMDET . ..ottt et 28
1115 o PP 28
MEMV . oottt ettt e et e ettt 28
MIMe. ... 211
mime-content-decode 211
mime-content-decode-port................... 211
mime-content-disposition...................... 211
mime-content-disposition-decode........... 211
mime-content-disposition-decode-port..... 211
mime-content-type............ol 211
mime-multipart.............. L 211
mime-multipart-decode 212
mime-multipart-decode-port 212
MAN ..o 33
minbx.o 33
minfl.......... . 33
minfx.... 33

320

minvalelong............ooiiiiiiiiiiii 32
minvalfx i 32
minvalllong.......c.ovuuiiiiiiiiiiiiia., 32
INIXET . .ottt 205
MiXer—cloSe.ttt 205
mixer-volume-get..............iiiiiiiiin. 205
mixer-volume-set!........................... 205
80000 E2 o T 67
mmap-get-charl 68
mmap-get-string........... il 68
mmap-length.......o, 67
MMAP—NAME « e e eeeee e et e e e e eeeeeee e e e ieennnns 67
mmap-put-char! ool 68
mmap-put-string!.........ol 68
mmap-read-position..............l 67
mmap-read-position-set!..................... 67
mmap-ref ... 68
mmap-set! 68
mmap-substringl 68
mmap-substring-set!........................L 68
mmap-write-position...................... ... 67
mmap-write-position-set!............... 67
MMAPT . o 67
module..........o.iiiiiiii 7
module access file............. ...l 16
Module body language......................... 25
module ClassSoviiiiiiiii 12
module declaration............... oL 7
module export-all 12
module exXport—exXports............c.ouiiiinnn. 12
module export-module......................... 12
modules 7
Modules and DSSSL formal argument lists 24
modulo..................... 35
month-aname............... ..., 97
month-name............ i 97
mp3-musictag i 204
MPC::iMUSIC.. ...ttt 207
MPA .. 210
mpd-databaseol 210
mpgl23::musicproc...........l 207
mplayer: :musSicCProcC.............c.ovviiiinnn.. 207
Multi-line comments.......................... 17
multimedia.......... ol 203
multiple-value-bind.......................... 53
MUSIC .« v 204
MUSic..... ... 206
music-close............. ... i, 208
music-closed? il 208
music-crossfade.............l 208
music-event-loop...........coiiiiiiiiiiiiia., 209
music-meta............. . 209
musSic-mext...........ooiiiiiiiiiii 208
MUSIC—PAUSE. ...ttt 208
music-play...............oiiiiii. 208
music-playlist-add! 208
music-playlist-clear! 208

music-playlist-delete! 208

Bigloo 4.3g

music-playlist-get.............. 208
MUSIC—PIeV......ooiiiiiiiiiiiiiiiiiiiaan... 208
music-random-set!........... 208
music-repeat-set!...........l 208
music-reset!l 208
music-reset-error!.......... 209
music-seek....................ooooi 208
MUSIC=SONZ.....oviiiiiiiiiiiiiiiian, 209
MUSIC—SONEPOS .« vttt 209
music-status ...l 208
music—stop................ i 208
music-update-status! 208
music-volume-get.................., 208
music-volume-set!............. 208
MUSICPTOC: iMUSIC. ..., 207
musicstatus.......... ...l 207
musictag.............. il 204
mutex-lock! L 182
MUEEX MAME . . oottt tttiee ettt e eeenn 182
mutex-specific.......l 182
mutex-specific-set! ool 182
mutex-state..........l 182, 195, 196
mutex-unlock!ol 182
MUEEXT ..o 182

N

Name mangling................. 244
nanfl?.............. 36
nanoeconds->date............. 96
native-repl-printer 224
negative? 33
negativebx?....... ool 33
negativeelong? ... 33
negativefl?.........l 33
negativefx?.........l 33
negativellong?l 33
negbX. ... 35
Negelong ..ot 34
negfl.. 34
negfx.... 34
Negllongooiiuiiii i 34
newline 64
TLOT « ettt et e 25
null-environment............................ 223
NULL? . 27
number->stringl 36
nUMbEr? ... 32
Numbers............ooo o i 32

Chapter 35: Global Index

@)

OB 238
obj=>string......... . i 70
ObjJect. ..o vt 117
object dumping............ .. oL 70
Object library ..., 124
Object serializationcoovviun... 126
Object System........ 117
object->struct il 125
object-class ...l 125
object-constructor...................... ... 125
object-display....................i. 125
object-equal?l 125
object-hashnumber....................... 76, 125
object-write i i 125
octet-string->bignum........................ 37
0dd? . . 33
0ddbx7. ... 33
oddelong?..............l 33
oddfl?. ... 33
oddfxX?. .. 33
oddllong? ... 33
oggmuUSictagoovii e 204
on-line documentation 307
open-input-binary-file...................... 70
open-input-c-string................. 58
open-input-file.................... ... 56
open-input-ftp-file............. 58
open-input-gzip-file.................. 57
open-input-gzip-port 57
open-input-inflate-file..................... 68
open-input-procedure 58
open-input-string.....................oa 58
open-input-string!.............l 58
open-input-zlib-file........................ 57
open-input-zlib-port 57
OPEN-MMAD .« « « v vvvtveeeieeeeeeeeeeeeeeanannenn.. 67
open-output-binary-file..................... 70
open-output-file................, 59
open-output-procedure 59
open-output-string........................... 59
OPEN-PIPES . .\t 66
open-semaphore 196
OPENLOL - o ettt e 79
OpenPGP ... 165
operating system interface 76
OPerator ..ot 18
OPtiom. .. 13
OF o ittt 20
os—archooiiiiiiiiiiii i 78
0S=Charset ...t 78
0S=ClasSS ..ot 77
OSTNAME . . vt vvvttettettetet s 78
OS=EMP. ..ottt 78
OS=VEIrSIONvuttiiiiiiiiiiiii i 78
output-byte........... ... 71
output-char..................... ...l 71

output-obj............... 70

321
output-port-close-hook 55
output-port-close-hook-set! 55
output-port-flush-buffer.................... 55
output-port-flush-buffer-set!.............. 55
output-port-flush-hook...................... 54
output-port-flush-hook-set! 54
output-port-name................ ...l 54
output-port-name-set! 54
output-port-position................ 60
output-port-timeout-set!.................... 54
output-port?.........l 54
output-stringl 71
output-string-port?............. 54
Overview of Bigloo......... ..., 3
P
pair-nil........... .. 238
pair-or-null? ...t 27
PaAIT 27
Pairsand lists oo i 27
Parallelism oL 193
parametersl 231
password L 66
path-separator ol 78
pattern matching oL 107
peek-byte 61
peek-char ... 61
pem-decode-port il 98
pem-read-file ool 98
Performance of the JVM back-end 253
pgp-add-key-to-db............ ... 168
pgp-add-keys-to-db............. 168
pgp-db-print-keys............... 168
pgp-decrypt........ ... 167
PEP—€NCrypt.o 166
pgp-key->string............ 168
pgp-key-fingerprint 168
pgp-key-id........ ... 168
PEP-Key? ... 168
pgp-make-key-db.......................LL 168
pgp-password-encrypt 166
pgp-read-file 165
pgp-read-port 165
pgp-read-string...........................L 165
pgp-resolve-key........... ..., 168
PEP=SigN ...t 167
pgp-signature-messagean. 168
pgp-subkey->string............. 168
PEP-SUbKeyY?. 168
PEP-SUbKEYS. 168
pgp-verify.....l 167
pgp-write-file..........l 165
pgp-write-port..........l 165
pgp-write-string............l 165
Photography.......... ... oL 203
PKCS1-vl.5-pad...........coiiiiiiiiint. 162
PKCS1-vi.5-unpad..............oooiiiiiit, 162

322

port->gzip-port............ il 68
port->inflate-port.............ccoevvunneen... 68
POrt—->Llist..... ... 63
port->sexp-listciiiiiiiiiiiiii.. 63
port->string-list............... 63
port->vcard::vcard...........coiiiiiiiiin. 213
POort=>zlib=port ..ottt 68
POTE T 54
positive? 33
positivebx?....... 33
positiveelong? 33
positivefl?....l 33
positivefx?... 33
positivellong?l 33
Posix Threads....................... 181, 193, 196
PP e 65
pragma::ident ..., 244
prefix.......o 79
o =T == TP 141
pregexp-match i i 142
pregexp-match-positions.................... 142
PTegexp—quote ...ttt 143
pregexp-replacet 142
pregexp-replace*®............iiiiiiiiiiiiia.. 143
pregexp-splitol 143
pretty printing............. o oL 307
pPrint... .. 63
printf.. ... 65
Private Keys. ... 95
procedure call.......... oo 18
procedure?................... L. 50
PLOCESS & oottt ettt e 83
Process support............. L 83
process-alive?l 85
process-continue................. 86
ProCesSS—erTOr—POTt.......ovuvriuunnnnnnnnnnn. 85
process-—exit-status......................... 86
process—input-port..............l 85
process-kill.............l 86
process-list..................a 86
process-output-port......................... 85
process—pid....... ..ol 85
process-send-signal.......................... 86
PToCeSS=StOP. . c.vviiiiiii 86
process-wait.................iiiia, 85
PTOCESST o i 85
profiling 308
Program Structure............ol 7
Public Key Cryptography..................... 160
PUtenv.............. 77
PULPTOP! .. 31
PWA ..o 80

Bigloo 4.3g

Q

qualified notation oL 15
quasiquote....... ..o 22
QuUit.... .. 224
QUOLALION .« . v vt 22
QUOtE. ...t 18
quoted-printable 211
quoted-printable-decode.................... 211
quoted-printable-decode-port 211
quoted-printable-encode.................... 211
quoted-printable-encode-port.............. 211
quotientl 35
quotientelongl 35
quotientllong 35

FAISE . ittt 175
=T o 1) 11 35
TandombX ..o ov i e 35
randomfl 35
rational? 32
A . o oottt 60
read eval print loop........... ool 223
Read Eval Print Loop customized............. 223
read-byte.......... ...l 61
read-case-insensitive....................... 60
read-case-sensitive.......... 60
read-certificate........... il 95
read—charoiiiiiiiii i 61
read—Chars........coiiiiiii i 62
read-chars! 62
read-csSv-record.........couuiiiiiiiin. 221
read-csv-recordsS.........ouuiiiiiinaiiaann.. 221
read-fill-string!............... 63
read—lineottt e 62
read-line-newline............................ 62
read-lines........coiiiiii 62
Tead—Mm3Uvvtt it 204
read-of-strings............ o il 62
read-pem-filel 95
read-pem-Keyl 164
read-pem-key-file....................oiaa 164
read-pem-Key-port.............iiiiiiinin... 164
read-pem-key-string 164
read-private-key................. ...l 95
read-string............l 62
Tead/CaSe .ottt 60
read/lalrp.......ooiiiiiiiiiiii 60, 139
read/IpP. ...t 60, 129
reading path....... i 16
real->string...........coiiiiiiiiii 36
== Y P 32
TECEIVE vttt e 53
TECOTAS .o\ttt 113
TOAUCE . . .ottt 29
register-class-serialization!.............. 72

register-compile-srfi! 271

Chapter 35: Global Index

register-crc! ...l 101
register-custom-serialization!............. 71
register-exit-function!.................. ... 77
register-opaque-serialization!............. 71
register-procedure-serialization! 71
register-process-serialization!............ 71
register-srfil!l 271
Regular analyser............... 129
Regular expressions................ 141
Regular parsing............ ol 129
regular-grammar................oiiiiiinnann. 129
relative-file-name........................... 81
remainder........... .. 35
remainderelongl 35
remainderfl........ o il 35
remainderllongooiiiiiiiiiiiiiia 35
remprop! ... 31
TOMQ . .o o ittt e e 28
remg! 28
rename-file........... ool 82
Tepl.. . e 223
reset-output-port............................ 64
TOVELSE it 27
reverse! ... 27
revised(5) macro expansion 229
revision control ool 308
rfc2047-decode ... 212
rfc2047-decode-portl 212
rfc2822-address-display-name.............. 213
rfc2822-date->date.............. 97
rfc2822-parse-date................ ... 97
RFC 2045 .. . 211
RFC 2426 ..o 212
RFC 2822 213
RFC 3501 ... 214
rgb-hsl...... 210
rgb-hsv....... 210
rge-context.. ... 135
TOUNA. .\ttt 35
roundfl 35
rsa-decrypt................ i, 161
rsa-encrypt....................i. 161
rsa-key-length............, 160
rsa-key=7.......... ...l 160
rsa-Sign.......... ...l 161
rsa-verify........l 161
RSA-KeY ..o 160
RSADP. ... 162
RSAEP. ... 162
RSAES-0AEP-decrypt................ooiiiit. 163
RSAES-OAEP-encrypt.......................... 163
RSAES-PKCS1-v1.5-decrypt.............ounn. 163
RSAES-PKCS1-v1.5-encrypt............counnn. 163
RSASPL ... 162
RSASSA-PKCS1-v1.5-sign..................... 163
RSASSA-PKCS1-v1.5-sign-bignum............. 163
RSASSA-PKCS1-v1.5-verify................... 163

RSASSA-PKCS1-v1.5-verify-bignum........... 163

323
RSASSA-PSS-Sign......covviiiiiiiiiiiinnn.. 163
RSASSA-PSS-verify.................. ... 163
RSAVPL ... 162
TUN-PLOCESS vttt ettt et i eaiiee e 83
run-process and char-ready?.................... 61
run-process and input/output.................. 61
S
Safety . ..ot 276
scheduler-broadcast! 193
scheduler-instant........................... 192
scheduler-react!.............. 191
scheduler-start!..................... 192
scheduler-strict-order?.................... 191
scheduler-strict-order?-set!.............. 191
scheduler-terminate! 192
scheduler?....... it 191
scheme-report-environment.................. 223
searching for source code...................... 308
seconds->date 96
seconds—>Stringccovviiiieiennnnnn... 96
seconds->utc-string........... ... 96
seed-random!.........ol 35
seleCt. ... 66
select (unix-like) ... 189
semaphore-postl 196
semaphore-trywait..................... 196
semaphore-value............................. 196
semaphore-wait 196
semaphore?................ .. i, 196
send-chars..........l 63
send-file....... il 63
Serializationol 70
set! . 19
set-car! ... 27
set-cdr! ... 27
set-input-port-position!.................... 60
set-output-port-position!................... 60
set-prompter!l 224
set-read-syntax!...........l 61
set-repl-error-notifier!................... 224
set-repl-printer!............ol 224
setgid....... ... 78
setuid........ oL 78
shal ... 98
shalsum............l 99
shalsum-file............. 99
shalsum-mmap.................................. 99
shalsum-port............ il 99
shalsum-string 99
sha2b6........ 98
Sha2b6sum.cooiiiiiiii i 99
sha2b6sum-file ..., 99
sha266sum-mmapl 99
sha266sum-portl 99
sha266sum-string.............. 99
shrink! 122

324

signal...... ... 77
signbitfl................. 36
sinm..... 35
sinfl. ... 35
Sleep. ..o 7
Socket SUpport. ... 86
socket-accept, 88
socket-client?o 87
socket-cloSe. ..ottt 89
socket-down?........... oo 89
socket-host-address.......................... 87
socket-hostnameooiiin, 87
socket-input.................. ...l 87
socket-local-addressoouunnnn 87
socket-option 91
socket-option-set!....... ...l 91
socket-output ... 87
socket-port-number........................... 87
socket-server? oo 87
socket-shutdown 89
socket? ... 87
<o 51
soundcard: mixXer.........., 205
SQlite o 199
sqlite-closel 199
sqlite-eval.............ooiiiiiiiiiiiiL 200
sqlite-exec............. ...l 200
sqlite-format 199
sqlite-last-insert-rowid................... 201
sqlite-map.............ciiiiii 200
sqlite-name-of-tables...................... 201
sqlite-table-name-of-columns.............. 201
SQLITE ... 199
ST 36
sqrefl. ... 36
STH-0 .o 269
srfi-0:bigloo. 269
sTH-18 L 174
SREI ... 269
SRFI-0:bigloo-c.............ooooiiiiii.. 248
SRFI-0:bigloo-jvm 248
SREL-1...ooii 28, 29, 30, 51, 272
SRFI-10 ..o 60
SREI-13. .. 40, 41
SREI-18. .. 173, 174, 193
SRFEI-2 .o 19
SRFI-22. ... 272
SRFI-28 ..o 64
SREI-30 ... 17
SRFEI-34 ..o 173
SRET- .o 49
SRFI-43 ..o 48
SREI-6.....co 58, 59
SREIL-8 .o 53
SREL-9 .o 113
ssl-socket?........ ... 92
SS1-Version.....coiiiiiiiiiiiiiii 92
SSL 92

Bigloo 4.3g

SSL Sockets «..vvvni i 92
SSL SUPPOTt « . vvve et 92
Stack allocation.................. 275
static........ooooiiiiiiiillll ool 10
string........ .. 39
string escape characters....................... 231
string->bignum......... il 37
string->elongoiiiiiiiiiii.. 37
string->key-hash............... 159
string->key-iterated-salted............... 159
string->key-salted............. ... 159
string->key-simple.............coiiiiii... 159
string->key-zero.............. ..., 159
string->keyword 32
string->list........ ... il 42
String=>110ngttt 37
String=>mmap..............coiiiiiiiiiainiann... 67
string->number, 37
string->obj...... .. 70
string->real...........ciiiiiiiiiiii 37
string->symbol it 31
string->symbol-ci...............l 31
string->vcard::vcard 213
string-append il 42
string-capitalize.................., 43
string-capitalize!............... 43
string-case.............. ...l 133
string-char-index........................ ... 40
string-ci<=7...... i 40
string—ci<? 40
string-ci=7........l 40
string-ci>=7.... oo 40
string-ci>?..... i 40
string-compare3 ..., 41
string-compare3-ci..............oiiiiiiin... 41
string-contains..............ol 41
string-contains-ci................l 41
SErING=COPY . vttt 42
string-cut......... ...l 43
string-deletel 43
string-downcaseoiiiiiiiiiia... 42
string-downcase!o ool 43
string—fill!.. i 42
string-for-read............. ... 43
string-hash...................l 76
string-hex-extern............................ 44
string-hex-intern............................ 44
string-hex-intern!.................. 44
string-index...........l 40
string-index-right................... 40
string-length o 39
string-natural-compare3..................... 41
string-natural-compare3-ci.................. 41
string-null?...........l 39
string-prefix-ci?............... ...l 44
string-prefix-length 44
string-prefix-length-ci..................... 44

string-prefix? ool 44

Chapter 35: Global Index

string-ptr-null?........ i, 240
string-ref L 39
string-replacel 43
string-replace!l 43
string-set!.. 39
string-shrink!o 42
string-skip................iL 40
string-skip-right..............., 40
string-split..........l 43
string-suffix-ci?.......... oL 44
string-suffix-length 44
string-suffix-length-ci..................... 44
string-suffix? il 44
string-upcase ... 42
string-upcase!l 43
String<=7 40
SEring<? .. 40
string=7..... 39
String>=7 40
SEXing>? .. 40
string? ... 39
string2key ... 159
SEEINES. . vt 39
struct->object il 125
struct? 113
structures 113
substring........... .. i i 42
substring-at? 40
substring-ci-at?...........................L 40
substring-ci=7l 40
substring=7........l 40
suffix......... il 80
symbol->keywordiiiiii. 32
symbol->stringl 30
symbol-append il 31
symbol-plist............... ...l 31
Symbol? 30
Symbols. ... 30
Symmetric Block Ciphers..................... 155
synchronize.................... 183
SYIEAK .« e ettt 17
syntax-rulesl 229
SYS1Og. i 79
syslog-facility...........cooiiiiiii., 79
syslog-level......... ... i, 79
syslog-optionl 79
SyStem...... ..o 7
System programming 76
system->stringl 77

325
T
TAGVECtOTo 50
TAGvector->list il 50
TAGvector-length.......................... ... 50
TAGvector-ref i 50
TAGvector-set! i, 50
TAGVECTOT T .ottt 50
take . . 28
72« PPN 36
tanfl. 36
tar. ... 69
tar-header-checksum.......................... 69
tar-header-devmajor.......................... 69
tar-header-devminir.......................... 69
tar-header-gid....................... ... 69
tar-header-gname....................ooiiaa 69
tar-header-linkname.......................... 69
tar-header-mode 69
tar-header-mtim.............. L 69
tar-header-name 69
tar-header-size............... 69
tar-header-type............ il 69
tar-header-uid.................l 69
tar-header-uname............................. 69
tar-read-blockiiiiiaa 69
tar-read-header.............. 69
tar-round-up-to-record-size 69
terminated-thread-exception? 193, 195
text . 219
the bee root directory......................... 306
The compiler environment and options........ 275
the interpreter.......... il 223
the lalr(1) parsing function.................... 139
the pattern language.......................... 108
The runtime-command file.................... 277
the semantics actions 133
The syntax of the foreign declarations......... 235
The syntax of the regular grammar 129
The very dangerous “pragma”

Bigloo special forms 244
the-byte..........o i i 134
the-byte-ref 134
the-character 134
the-context................. 135
the-downcase-keyword 134
the-downcase-symboloeennnnn. 134
the-failure...........cooiiiiiiiiineannnn. 134
the-fixnum......... il 134
the-flonum........., 134
the-keyword................... 134
the-length................................... 133
the-port...... 133
the-string................ ...l 133
the-substring 134
the-subsymbol 134
the-symbol.........l 134
the-upcase-keyword.......................... 134

the-upcase-symbol........................n 134

326

thread-await! o oo 187
thread-await*! oo 189
thread-await-values! 189
thread-await-values*! 191
thread-cleanup.................. ..., 182
thread-cleanup-set! 182
thread-get-values!.......................... 188
thread-get-values*! 190
thread-join!....................... 182, 187, 195
thread-name................................. 181
thread-parameter............................ 182
thread-parameter-set! 182
thread-resume! 187
thread-sleep!...................u. 182, 186, 194
thread-specific.......................l 181
thread-specific-set! 181
thread-start!................... ... 182, 186, 194
thread-start-joinable! 182, 194
thread-suspend! 187
thread-terminate! 182, 187, 195
thread-yield!...................... 182, 186, 194
thread? i 181
Threads............cooooiiitt. 181, 185, 193, 196
Time ... 95
time......... 78
time->secondsol 193
time?. 193
TTace ... 179
trace-bold............. ..l 180
trace—Ccolor. ...ttt 180
trace-item........... ... ool 180
trace-marginl 180
trace-margin-set!..............l 180
trace-port............... i 180
trace-port-set!........... ...l 180
trace-stringl 180
transcript-off il 227
transcript-on.....................oooLL 227
L= COPY vt 30
truncate ... 35
truncate-file il 82
truncatefl.................. i, 35
172 o2 53, 176
YD . oot 13
Typed identifier.................. 17
typeof ... 173

U

UCS2->Char ..ottt 39
ucs2->integerl 39
ucs2-alphabetic?............. ...l 39
UCS2-CA<= P 39
UCS2-CA< T it 39
UCS2=Ca=T ittt e e 39
UCS2-Ca>= T i 39
UCS2=Ca> P it 39

UCS2—AOWNCASE + vt vttt ie ettt e eieeaanns 39

Bigloo 4.3g

ucs2-lower-case? it 39
UCS2-NUMETIC? ..\ttt 39
ucs2-string....... ... il 44
ucs2-string->list.............oiiiia 45
ucs2-string->utf8-string.................... 45
ucs2-string-append............coiiiiiiiiinnn. 45
ucs2-string-ci<=7........ ool 45
ucs2-string-ci<?....... ... oo 45
ucs2-string-ci=7........... ool 44
ucs2-string-ci>=7.......... ... oo 45
ucs2-string-ci>? i 45
UCS2-String—copy......coviiiiiiiiiiiiiia 45
ucs2-string-downcase 45
ucs2-string-downcase! 45
ucs2-string-filll............ol 45
ucs2-string-length............... 44
ucs2-string-ref 44
ucs2-string-set!........l 44
ucs2-string-upcase............. ...l 45
ucs2-string-upcase!............. 45
ucs2-string<=7? 45
ucs2-string<? ... i 44
ucs2-string=7l 44
UCS2-String>=7 45
UCS2-SEring>7? ..ottt 44
ucs2-string?.. 44
ucs2-substringl 45
UCS2=UPCASE . vttt ittt e i 39
UCS2-UPPEer—Case? ... 39
ucs2-whitespace?............. .. 39
UCS2K=T o 38
WCS2< T L ot 38
UCS2= 2 38
UCS2>=7 L 38
UCS2> T L 38
UCS 27 L e 38
UCS-2 characterscooviiiiininn... 38
UCS-2 Strings. . .ovvvite it 44
unbufferized socket port 86, 92, 94
uncaught-exception-reason............. 193, 195
uncaught-exception?.................... 193, 195
unix-path->list............o oo 78
unread-char!......... 58
unread-string! ... 58
unread-substring!.......... ol 58
unregister-compile-srfil................... 271
unregister-eval-srfil! 271
unregister-exit-function!................... 7
unregister-srfi!l 271
unsigned->string......... 36
unspecified...........o ool 53
UNEAT . .. 70
unwind-protect ...l 52
uri-decode......... ..ol 103
uri-decode!........ ool 103
uri-decode-component 103
uri-decode-component! 103
Uri-encode........c.ooiuiiiiiiiiiiiiiia, 103

uri-encode-component 103
url. oo 102
url-decode.............iiiiiiiii 103
url-decode!........ol 103
url-encode...........ooiiiiiiii 103
ULL=PaATSE . vttt 102
url-path-encode....................... 103
url-sans-protocol-parse.................... 102
WS o e ettt ettt 9
user extensionsol 303
Using C bindings within the interpreter....... 246
utf8->8bits....... .. 46
utf8->8bits!....... ... 46
utf8->cpl262. ... 46
utf8->cpl1262! ... 46
utf8->iso-latin.........c.ouiiiiiiiiiii 46
utf8->iso-latin!o 46
utf8->iso-latin-156......... it 46
utf8->iso-latin-15!........ 46
utf8-codepoint-length 46
utf8-string->ucs2-string.................... 45
utf8-string-encode.............l 45
utf8-string-length........................... 45
utf8-string-refl 46
utf8-string?......l 45
utf8-substringl 46

ValUeS . .ottt 53
Lo o A 212
VCARD ..o 212
R Z=Y o v ol 47
vector=>1ist.o 47
VeCtor—appendiiiiiiiiie i 48
VECTOT=COPY « v vt vt ittt 48
vector—copy! 48
vector—-fill! 47
vector-for-each................ ..., 48
vector-lengthl 47
VECTOT—MAP . ..ottt 48
vector-map!........ ... 48
vector—ref 47
vector-set! 47
vector-shrink! i, 48
VECTOL T ittt e 47
VECHOTS . o ottt 47
Voidk—null?. 240

327

A%

Warning ..ot 177
warning-notify..........l 174
warning/location................ 174
weakptr-data............... ...l 73
weakptr? ... 73
Wide—ClasS........ouiiiiiiiii 117
wide-object?l 125
widen! 122
widen!::wide-class....................... ... 122
Widening and shrinking....................... 122
With. . oo 9
with-access............o ool 119
with-access::class.......................... 119
with-append-to-file.......................... 55
with-error-to-file..................... 55
with-error-to-port........................... 56
with-error-to-procedure..................... 56
with-error-to-string........................ 56
with-exception-handler..................... 174
with-handler 174
with-input-from-file 55
with-input-from-port 56
with-input-from-procedure................... 55
with-input-from-string...................... 55
with-lock....... i 183
with-output-to-file.......................... 55
with-output-to-port.......................... 56
with-output-to-procedure.................... 55
with-output-to-string....................... 55
with-trace...........ol 180
WEAte . 63
write-byte...................ooL 64
write-char............. ool 64
write—circle....... ..o 65
write-m3u........... ..o oo 204
write-pem-keyl 165
write-pem-key-file.................... 165
write-pem-key-port............. 165
write-pem-key-string....................... 165

ZETO T L 33
ZETODXT L 33
zeroelong?...... ... 33
zerofl? ... 33
ZerOf X T L 33
zerollong?...... ... 33
ZID 57, 68
ZID 68

329

36 Library Index

(Index is nonexistent)

331

Bibliography

e [Bobrow et al. 88] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales and D.
Moon. ‘Common lisp object system specification.’ In special issue, number 23 in
SIGPLAN Notices, September 1988.

e [BoehmWeiser88] H.J. Boehm and M. Weiser. ‘Garbage collection in an
unco-operative environment.’ Software—Practice and Experience, 18(9):807-820,
Sept-ember 1988.

e [Boehm91] H.J. Boehm. ‘Space efficient conservative garbage collection.’ In
Conference on Programming Language Design and Implementation, number 28, 6 in
SIGPLAN Notices, pages 197-206, 1991.

e [Caml-light] P. Weis and X. Leroy. ‘Le langage CAML'. InterEditions, Paris, 1993.

e [Dsssl96] ISO/IEC. ‘Information technology, Processing Languages, Document
Style Semantics and Specification Languages (dsssl).’ Technical Report 10179
:1996(E), IS0, 1996.

e [Dybvig et al. 86] K. Dybvig, D. Friedman, and C. Haynes. ‘Expansion-passing
style: Beyond conventional macros.’ In Conference on Lisp and Functional Pro-
grammang, pages 143-150, 1986.

o [Gallesio95] E. Gallesio. ‘STk Reference Manual.’ Technical Report RT 95-31a, I3S-
CNRS/University of Nice-Sophia Antipolis, July 1995.

e [IsoC] ISO/IEC. ‘9899 programming language -—- C.’ Technical Report DIS 9899,
150, July 1990.

o [Les75] M.E. Lesk. ‘Lex --- a lexical analyzer generator.’ Computing Science
Technical Report 39739, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

e [Queinnec93| C. Queinnec. ‘Designing MEROON v3.’ In Workshop on Object-Oriented
Programming in Lisp, 1993.

e [QueinnecGeffroy92] C. Queinnec and J-M. Geffroy. ‘Partial evaluation applied to
symbolic pattern matching with intelligent backtrack.’ In M. Billaud, P. Cast-
eran, MM. Corsini, K. Musumbu, and A. Rauzy: Editors, Workshop on Static Analysis,
number 81-82 in bigre, pages 109-117, Bordeaux (France), September 1992.

e [R5RS] R Kelsey, W. Clinger and J. Rees: Editors. ‘The Revised(5) Report on the
Algorithmic Language Scheme’.

e [Stallman95] R. Stallman. ‘Using and Porting GNU CC.’ for version 2.7.2 ISBN 1-
882114-66-3, Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA, November 1995.

e [SerranoWeis94] M. Serrano and P. Weis. ‘1+1=1: an optimizing Caml compiler.’
In ACM SIGPLAN Workshop on ML and its Applications, pages 101-111, Orlando
(Florida, USA), June 1994. ACM SIGPLAN, INRIA RR 2265.

e [Steele90] G. Steele. ‘COMMON LISP (The language)’. Digital Press (DEC), Burlington
MA (USA), 2nd edition, 1990.

333

37 Table of contents

Table of Contents

Acknowledgements.................... 1
1 Overview of Bigloo.............................. 3
1L SREL. 3
1.2 Separate compilation 3
1.3 Cinterface ...t e 4
1.4 Javainterface.......... ..o 4
1.5 Object languageot 4
1.6 Threadsoooiii 4
17 QL 4
1.8 Type annotations........... .. 4
1.9 Unicode SUPPOTt. ..o vvii it e 5
110 DSOS et 5

2 Modules......... .. 7
2.1 Program StruCture.ouuueoiieiiiii i, 7
2.2 Module declarationo 7
2.3 Module initialization 13
2.4 Qualified notation 15
2.5 Inline proceduresoiiiiiii 15
2.6 Module access file ... 16
2.7 Reading path...... ..o 16

3 Core Languageiiiiiiia. 17
3.l Sy IBAX ¢ o 17

3. 1.1 Comments. ...ttt e 17

3.1.2 EXPressions.ooouuiin e 17

3.1.3 Definitions. . ..ot 22

4 DSSSL support............ ..., 23
4.1 DSSSL formal argument lists ...t 23
4.2 Modules and DSSSL formal argument lists..................... 24

5 Standard Library............................... 25
5.1 Scheme Library........ .o 25
5.1.1 Booleans 25

5.1.2 Equivalence predicates...............oiiiiiiiiiiiii., 25

5.1.3 Pairsand lists.........oooiiiii i 27

5.1.4 Symbols. . ..o 30

5.1.0 Keywords ... 31

5.1.6 Numbers 32

ii

B5.1.7 CharaCterst e 38
5.1.8 UCS-2 Charactersoueuueteeiiii i 38
B.1.9 SETINES « v et 39
5.1.10 Unicode (UCS-2) Stringscovveiiiiiiiiieaien .. 44
0.1 11 VeCtorS. .o 47
5.1.12 Homogeneous Vectors (SRFI-4).......................... 49
5.1.13 Control features ... 50
5.2 Input and output....... ... i 54
5.2.1 Library functions.......... ... i i 54
D.2.2 INMAD .+t e 67
5.2 8 D e 68
D.2.4 LA . 69
5.3 Serialization........... ... 70
5.4 Bit manipulation.......... ... 72
5.5 Weak Pointers. ... 73
5.6 Hash Tables. ... e 73
5.7 System programmingc...eeieiiiiiiiiiiiiiii., 76
5.7.1 Operating System interface, 76
D.7.2 Files. oo 79
5.7.3 Process sUpportuuiiiiii 83
5.7.4 Socket SUPPOItov e 86
T S 1) I 92
5.7.5.1 SSL Sockets ... 92
5.7.5.2 Certificates 95
5.7.5.3 Private Keys. ... 95

B.8 Date . 95
5.9 Digest. ..o 98
5.10 Cyclic Redundancy Check (CRC).............ooiiiiiiiiiiat 99
D.11 Internet.......ccooiiiii e 102
B.A2 URLS . i 102
B5.A3 HTTP oot 103
Pattern Matching............................. 107
6.1 Bigloo pattern matching facilities............ 107
6.2 The pattern language.o.uiiiiiiiiiiii i 108
Fast search 109
7.1 Knuth, Morris, and Pratt............ o i 109
7.2 Boyer - Moore. 110
7.3 Boyer - Moore - Horspool. ..., 110
Structures and Records 113
8.1 StIUCHUIES. . oottt e 113

8.2 Records (SRFI-9) ... 113

Bigloo 4.3g

9 Object System 117

9.1 Class declarationoueiiiiiiiiiiii ., 117
9.2 Creating and accessing objects. ..., 119
9.3 Generic functions.o i 121
9.4 Widening and shrinking o i 122
9.5 Object library ... 124
9.5.1 Classes handling........... ..., 125
9.5.2 Object handlingcoo i 125
9.6 Object serialization.ot 126
9.7 Equalitycoooiii 126
9.8 Introspectiono e 126
10 Regular parsing.............................. 129
10.1 Anew way of readingooi i 129
10.2 The syntax of the regular grammar.......................... 129
10.3 The semantics actions.............oeiiiiiiiiiiiiniee.n. 133
10.4 Options and user definitions....................t. 135
10.5 Examples of regular grammar 135
10.5.1 Word count ..o 136
10.5.2 Roman numbers........... .o 136
11 Lalr(l) parsing.............ccooiiiiiiai.... 137
11.1 Grammar definition 137
11.2 Precedence and associativity................oooiiiiiiiL 138
11.3 The parsing function........... ... 139
11.4 The regular grammar.ouiieiitenniiieiieen 139
11.5 Debugging Lalr Grammars, .. 139
11.6 A simple example ... i 140
12 Posix Regular Expressions.................. 141
12.1 Regular Expressions Procedures............................. 141
12.2 Regular Expressions Pattern Language 143
12.2.1 Basic assertions ... 144
12.2.2 Characters and character classes........................ 144
12.2.3 Some frequently used character classes.................. 145
12.2.4 POSIX character classes..........c.c.oviiiiiinennnn... 145
12.2.5 Quantifiers. ... 146
12.2.6 Numeric quantifiers........... ... i i, 146
12.2.7 Non-greedy quantifiers.............., 146
12.2.8 ClUuSters . ..o 146
12.2.9 Backreferencesooiiiiiiiii i 147
12.2.10 Non-capturing clusters, 148
12.2.11 ClOISEErS « v v vv et 148
12.2.12 Alternationoouiiiiiii i 149
12.2.13 Backtracking.......... oo 150
12.2.14 Disabling backtracking L. 150

12.2.15 Looking ahead and behind.................., 150

iv

12.2.16 Lookahead i 151
12.2.17 Lookbehindo 151
12.3 An Extended Example i 151
13 Command Line Parsing..................... 153
14 Cryptography................. 155
14.1 Symmetric Block Ciphers.............. o i 155
14.1.1 Stringto Key ..o 159
14.2 Public Key Cryptographyt 160
14.2.1 Rivest, Shamir, and Adleman (RSA).................... 160
14.2.1.1 RSA Keys. ..o 160
14.2.1.2 RSA basic operations...............c.ciiiiii. ... 161
14.2.1.3 Examples. 161
14.2.1.4 RSA RFC 3447 ... o 162
14.2.2 Digital Signature Algorithm (DSA)................. ... 163
14.2.3 ElGamal ... 164
14.2.4 PEM ... 164
14.3 OpenPGP. ... 165
14.3.1 Examples ... e 168
14.3.1.1 Signatures.ooueenniinini i 168
14.3.1.2 Email Usage. ..., 170
14.3.1.3 Encryption..........oooiiiiiiiiiiiiiii 170

14.4 Development 171
15 Errors, Assertions, and Traces.............. 173
15.1 Errors and Warningsccoiiiiiiiiiiiiin.. 173
15.2 EXCEPUIONS . ..t 174
15.3 Deprecated try form......... ... o i 176
154 ASSErtionsS.ot 177
15.5 TracCing ..o oottt 179
16 Threads 181
16.1 Thread Common Functions............... ... 181
16.1.1 Thread APT e 181
16.1.2 MUbeXeS. . oottt 182
16.1.3 Condition Variables i 184
16.2 Threads.oovi i 185
16.2.1 Introduction to Fair Threads 185
16.2.2 Fair Threads Api.....c.coviiiiiiiii e 186
16.2.2.1 Thread.......ooeiii i 186
16.2.2.2 Scheduler....... ... 191
16.2.2.3 Signal. ... 192
16.2.3 SREI-18. .o 193
16.3 Posix Threads....... ..o 193

16.3.1 Using Posix Threads, 194

Bigloo 4.3g

16.3.2 Threads. 194

16.3.3 MUteXES. .ottt 195
16.3.4 Condition Variables i i 195
16.3.5 Semaphores ..o 196
16.3.6 SREFI-18. ... 196

16.4 Mixing Thread APIs ... i 196
17 Database.......................... .. 199
17.1 SQLite. .o 199
18 Multimedia................... 203
18.1 Photographyo 203
18.2 MUSIC .« ittt ittt e 204
18.2.1 Metadata and Playlist............. ... i 204
18.2.2 MIXET « ettt e 205
18.2.3 Playback. ... 205
18.2.4 Music Player Daemon ..., 209

18.3 COlOT . ettt 210
19 Mail 211
19.1 RFC 2045 - MIME, Part one...............cooiiiiiiiia... 211
19.2 RFC 2047 - MIME, Part three 212
19.3 RFC 2426 — MIME, Part three........... 212
19.4 RFC 2822 — Internet Message Format........................ 213
19.5 Mail servers — imap and maildir, 214
19.5.1 MailboXes . . oot 214
19.5.2 IMAP (RFC 3501) .o 216
19.5.3 Maildir. .. .o 217

20 Text ... 219
20.1 BibTeX ... 219
20.2 Character Strings.ttt 219
20.3 Character encodings.couuuuuiiini i 220
21 CSV e 221
211 OVEIVIEW . . ettt et e e 221
21.2 API Referenceooiiiiiii e 221
22 Eval and code interpretation 223
22.1 Eval compliance.oiiii 223
22.2 Eval standard functions L. 223
22.3 Eval command line options.......... i 227

22.4 Eval and the foreign interface............ L. 227

vi

23 Macroexpansion............................. 229
23.1 Expansion passing style macros..................oiiiiii... 229
23.2 Revised(5) macro expansionoeveiiniiinin.. 229

24 Parameters.............. 231

25 Explicit typing........... 233

26 The C interface.............................. 235
26.1 The syntax of the foreign declarations....................... 235

26.1.1 Automatic extern clauses generation.................... 236
26.1.2 Importing an extern variable 236
26.1.3 Importing an extern function............., 236
26.1.4 Including an extern file.......... L. 236
26.1.5 Exporting a Scheme variable............................ 237
26.1.6 Defining an extern type.........coovviiiiiiiiiiin.. 237
26.1.6.1 AtOmicC typPeS. .. ovve i 237
26.1.6.2 Struct and Union types.............coiiiiia.. 238
26.1.6.3 C POINLErS. ..ottt 239
26.1.6.4 Cnull pointers ..., 240
26.1.6.5 G AITaYS. .ottt ettt et e 241
26.1.6.6 C functions.ouiuiiieiiiiieiiii i 242
26.1.6.7 C enuUMS .. .vtt ettt e 242
26.1.6.8 € OPAQUES .+t ettt et e e e 243

26.2 The very dangerous “pragma” Bigloo special forms 244
26.3 Name manglingo, 244
26.4 Embedded Bigloo applications............... 245
26.5 Using C bindings within the interpreter...................... 246

27 The Java interface........................... 247

27.1 Compiling with the JVM back-end 247
27.1.1 Compiler JVM options 247
27.1.2 Compiling multi-modules applications 247

27.2 JVM back-end and SRFI-0............ 248

27.3 Limitation of the JVM back-end............................. 248

27.4 Connecting Scheme and Java code........................... 249
27.4.1 Automatic Java clauses generation...................... 249
27.4.2 Declaring Java classes ...l 249
27.4.3 Declaring abstract Java classes 250
27.4.4 Extending Java classeso 250
27.4.5 Declaring Java arrays. ... 250
27.4.6 Exporting Scheme variables............................. 251
27.4.7 Bigloo module initialization............... oL 253

27.5 Performance of the JVM back-end.......... 253

Bigloo 4.3g

28 Bigloo Libraries.............................. 255
28.1 Compiling and linking with a library 255
28.2 Library and inline functions............. o 257
28.3 libraryand evalo i 258
28.4 library and repl..... ... 259
28.5 Building a library 259
28.6 Library and modules ... 261
28.7 Library and macroseuiiiiii i 262
28.8 A complete library example oL 262

29 Extending the Runtime System 267

30 SRFIs...... ... 269
30.1 SRETL 0.t e 269
30.2 SREI L. 272
30.3 SREI 22. . 272

30.3.1 An example of SRFI-22 script ..., 273
30.3.2 Lazy compilation with SRFI-22......................... 273

31 Compiler description........................ 275
31.1 Crequirement.o..ueiinine i, 275
31.2 JVM requirementttt 275
31.3 LAnKING . oot 275
31.4 The compiler environment and options 275

31.4.1 Efficiencyouoiiii 275
31.4.2 Stack allocation 275
31.4.3 Genericity of arithmetic procedures..................... 276
31.4.4 Safety 276
31.4.5 The runtime-command file............... 277
31.4.6 The Bigloo command line 277

32 Cross Compilation........................... 299
32.1 Introductiont 299
32.2 Building the Bigloo library for the host-platform............. 299

32.2.1 Hostsh ... 299
3222 Bullding........ooiiii i 300

32.3 Cross Compiling Bigloo Programs 300
324 CaAVEALS . o vttt 300
325 Examples 301
33 User Extensions 303

331 USeT PSS « v vttt ettt et e 303

vii

viii

34 Bigloo Development Environment 305
34.1 Installing the BEE. i, 305
34.2 Entering the Bee...... ... i 306
34.3 The Bee Root Directoryc.coeiiiiiiiiiiiiiiinine.. 306
34.4 Building a Makefile......... ..o i 306
345 Compiling.o 306
34.6 Interpreting............c.euiiiiiiiii e 306
34.7 Pretty Printing. ... i 307
34.8 EXpansingiii i 307
34.9 On-line Documentation...............ccoiiiiiiiiiieenana... 307
34.10 Searching for Source Code....... ...l 308
34.11 Importing and Exporting...........o i, 308
34.12 Debuggingoouuuiiii e 308
34.13 Profilingo 308
34.14 Revision Control..... ...t 308
34.15 Literate Programming. ..., 309

35 GlobalIndex................................. 311

36 Library Index................................ 329

Bibliography 331

37 Table of contents 333

Bigloo 4.3g

Short Contents

Acknowledgements 1
1 Overviewof Bigloo 3
2 Modules. ... e 7
3 Core Language. 17
4 DSSSL supporto e 23
5 Standard Library.......... ... i 25
6 Pattern Matching i 107
7 Fastsearch........ 109
8 Structures and Records......... L. 113
9 Object Systemt e 117
10 Regular parsingc.o i 129
11 Lalr(l) parsing.ouuuvuni i 137
12 Posix Regular Expressions 141
13 Command Line Parsing. 153
14 Cryptography. 155
15 Errors, Assertions, and Traces, 173
16 Threads . ..o 181
17 Database 199
18 Multimedia. 203
19 Mail .o e 211
200 TEXt o e 219
2] OOV 221
22 Eval and code interpretation.............. 223
23 MacCro eXpPansion . .. v vttt e 229
24 Parameters. 231
25 Explicit typingo 233
26 The Cinterface i 235
27 The Javainterface i 247
28 Bigloo Libraries i 255
29 Extending the Runtime System 267
30 SRFIs ..o 269
31 Compiler description i i 275
32 Cross Compilation........ 299

X
33 User EXtensions., 303
34 Bigloo Development Environment 305
35 Global Indexo 311
36 Library Index...... 329
Bibliographyo 331
37 Tableofcontents....... i i 333

Bigloo 4.3g

	Acknowledgements
	Overview of Bigloo
	SRFI
	Separate compilation
	C interface
	Java interface
	Object language
	Threads
	SQL
	Type annotations
	Unicode support
	DSSSL

	Modules
	Program Structure
	Module declaration
	Module initialization
	Qualified notation
	Inline procedures
	Module access file
	Reading path

	Core Language
	Syntax
	Comments
	Expressions
	Definitions

	DSSSL support
	DSSSL formal argument lists
	Modules and DSSSL formal argument lists

	Standard Library
	Scheme Library
	Booleans
	Equivalence predicates
	Pairs and lists
	Symbols
	Keywords
	Numbers
	Characters
	UCS-2 Characters
	Strings
	Unicode (UCS-2) Strings
	Vectors
	Homogeneous Vectors (SRFI-4)
	Control features

	Input and output
	Library functions
	mmap
	Zip
	Tar

	Serialization
	Bit manipulation
	Weak Pointers
	Hash Tables
	System programming
	Operating System interface
	Files
	Process support
	Socket support
	SSL
	SSL Sockets
	Certificates
	Private Keys

	Date
	Digest
	Cyclic Redundancy Check (CRC)
	Internet
	URLs
	HTTP

	Pattern Matching
	Bigloo pattern matching facilities
	The pattern language

	Fast search
	Knuth, Morris, and Pratt
	Boyer - Moore
	Boyer - Moore - Horspool

	Structures and Records
	Structures
	Records (SRFI-9)

	Object System
	Class declaration
	Creating and accessing objects
	Generic functions
	Widening and shrinking
	Object library
	Classes handling
	Object handling

	Object serialization
	Equality
	Introspection

	Regular parsing
	A new way of reading
	The syntax of the regular grammar
	The semantics actions
	Options and user definitions
	Examples of regular grammar
	Word count
	Roman numbers

	Lalr(1) parsing
	Grammar definition
	Precedence and associativity
	The parsing function
	The regular grammar
	Debugging Lalr Grammars
	A simple example

	Posix Regular Expressions
	Regular Expressions Procedures
	Regular Expressions Pattern Language
	Basic assertions
	Characters and character classes
	Some frequently used character classes
	POSIX character classes
	Quantifiers
	Numeric quantifiers
	Non-greedy quantifiers
	Clusters
	Backreferences
	Non-capturing clusters
	Cloisters
	Alternation
	Backtracking
	Disabling backtracking
	Looking ahead and behind
	Lookahead
	Lookbehind

	An Extended Example

	Command Line Parsing
	Cryptography
	Symmetric Block Ciphers
	String to Key

	Public Key Cryptography
	Rivest, Shamir, and Adleman (RSA)
	RSA Keys
	RSA basic operations
	Examples
	RSA RFC 3447

	Digital Signature Algorithm (DSA)
	ElGamal
	PEM

	OpenPGP
	Examples
	Signatures
	Email Usage
	Encryption

	Development

	Errors, Assertions, and Traces
	Errors and Warnings
	Exceptions
	Deprecated try form
	Assertions
	Tracing

	Threads
	Thread Common Functions
	Thread API
	Mutexes
	Condition Variables

	Threads
	Introduction to Fair Threads
	Fair Threads Api
	Thread
	Scheduler
	Signal

	SRFI-18

	Posix Threads
	Using Posix Threads
	Threads
	Mutexes
	Condition Variables
	Semaphores
	SRFI-18

	Mixing Thread APIs

	Database
	SQLite

	Multimedia
	Photography
	Music
	Metadata and Playlist
	Mixer
	Playback
	Music Player Daemon

	Color

	Mail
	RFC 2045 -- MIME, Part one
	RFC 2047 -- MIME, Part three
	RFC 2426 -- MIME, Part three
	RFC 2822 -- Internet Message Format
	Mail servers -- imap and maildir
	Mailboxes
	IMAP (RFC 3501)
	Maildir

	Text
	BibTeX
	Character strings
	Character encodings

	CSV
	Overview
	API Reference

	Eval and code interpretation
	Eval compliance
	Eval standard functions
	Eval command line options
	Eval and the foreign interface

	Macro expansion
	Expansion passing style macros
	Revised(5) macro expansion

	Parameters
	Explicit typing
	The C interface
	The syntax of the foreign declarations
	Automatic extern clauses generation
	Importing an extern variable
	Importing an extern function
	Including an extern file
	Exporting a Scheme variable
	Defining an extern type
	Atomic types
	Struct and Union types
	C pointers
	C null pointers
	C arrays
	C functions
	C enums
	C opaques

	The very dangerous ``pragma'' Bigloo special forms
	Name mangling
	Embedded Bigloo applications
	Using C bindings within the interpreter

	The Java interface
	Compiling with the JVM back-end
	Compiler JVM options
	Compiling multi-modules applications

	JVM back-end and SRFI-0
	Limitation of the JVM back-end
	Connecting Scheme and Java code
	Automatic Java clauses generation
	Declaring Java classes
	Declaring abstract Java classes
	Extending Java classes
	Declaring Java arrays
	Exporting Scheme variables
	Bigloo module initialization

	Performance of the JVM back-end

	Bigloo Libraries
	Compiling and linking with a library
	Library and inline functions
	library and eval
	library and repl
	Building a library
	Library and modules
	Library and macros
	A complete library example

	Extending the Runtime System
	SRFIs
	SRFI 0
	SRFI 1
	SRFI 22
	An example of SRFI-22 script
	Lazy compilation with SRFI-22

	Compiler description
	C requirement
	JVM requirement
	Linking
	The compiler environment and options
	Efficiency
	Stack allocation
	Genericity of arithmetic procedures
	Safety
	The runtime-command file
	The Bigloo command line

	Cross Compilation
	Introduction
	Building the Bigloo library for the host-platform
	Hostsh
	Building

	Cross Compiling Bigloo Programs
	Caveats
	Examples

	User Extensions
	User pass

	Bigloo Development Environment
	Installing the Bee
	Entering the Bee
	The Bee Root Directory
	Building a Makefile
	Compiling
	Interpreting
	Pretty Printing
	Expansing
	On-line Documentation
	Searching for Source Code
	Importing and Exporting
	Debugging
	Profiling
	Revision Control
	Literate Programming

	Global Index
	Library Index
	Bibliography
	Table of contents

