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Abstract

We introduce a new unification procedure for the type inference problem in the intersection type
discipline. We show that unification exactly corresponds to reduction in an extended λ-calculus,
where one never erases arguments that would be discarded by ordinary β-reduction. We show
that our notion of unification allows us to compute a principal typing for any strongly normalizing
λ-expression.
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1 Introduction

Type inference – say, for any λ-calculus based model –, as it is now presented
in textbooks (see for instance [18], p. 136), generally proceeds as follows:

1. Assign a type to the expression and each subexpression. For any compound
expression or variable, use a type variable.

2. Generate a set of constraints on types, reflecting the fact that, if a function
is applied to an argument, then the type of the argument must agree with
the type of the domain of the function.

3. Solve these constraints.
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This design of a type inference algorithm was first (as far as we can see)
proposed by J. Morris in his thesis [20]. At the first step of this procedure, a
decision has to be taken, in order to build the type of a function, that is an
abstraction λxM : in which way do we consider the collection of type variables
t1, . . . , tm assigned to the various occurrences of x in M as a type? There are
various possibilities, which are not unrelated:

• Simple (monomorphic, possibly recursive) types: a variable x has only one
type. That is, one has the constraint that the ti’s are equal (with or without
“occur check”).

• Generalized (polymorphic) types: the constraint here is that x is only used
in M with types which are instances of the type of the domain of λxM .

• Intersection types: the collection t1, . . . , tm is considered as a type, inter-
preted as the conjunction of the ti’s.

• Subtyping: x is only used in M with types which are subtypes of the type
of the domain of λxM .

(The question, and thus the possible answers, would be different regarding the
“let” construct, that is (λxMN), where the abstraction λxM does not have
to be explicitly typed, see for instance [11,17].)

In this paper we are interested in type inference for the intersection type
discipline, introduced by Coppo and Dezani [8], and independently by Pot-
tinger [21] (see [2,4] for a complete review of various systems with intersection
types). There is no algorithm for deciding typability in this system, called
“system D” in [16], since this is equivalent to strong normalizability. How-
ever, one can compute a principal typing for any typable expression [9,16,24],
that is a typing from which any other typing for the given expression can be
derived, by means of suitable operations, among which the most important
one is expansion (for an explanation of this notion, see for instance [3]). Type
inference can be achieved by normalizing the expression, and then typing the
normal form, but obviously this cannot be extended to a language where one
may wish to type non-terminating programs. Ronchi proposed in [23] a di-
rect procedure, based on a generalized unification mechanism. This was later
revisited by Kfoury [13], and then Kfoury and Wells [14], who used explicit
expansion variables, in order to provide a better understanding of the opera-
tion of expansion, and showed that type inference is decidable for subsystems
with a bounded rank restriction.

In this paper we introduce a new way of solving the typing constraints
that arise from type inference for intersection types. To give an idea of our
generalized unification procedure, let us recall that the constraints to solve
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which are attached to an application node (MN) have the form

(τ → t) = σ

where t is the type variable assigned (at step 1) to the node, τ is the type of
the argument N , and σ is the type of M . When M is a function λxM ′ – that
is, when the application is a redex –, the latter has the form (t1, . . . , tm → θ)
where t1, . . . , tm is the conjunction of the type variables assigned to x in M ′,
and θ is the type of M ′. Then, mimicking the β-reduction of (λxM ′N) into
{x �→N}M ′, our generalized unification procedure identifies t with θ, makes m

distinct copies of the constraints associated with the argument N , and iden-
tifies the ti’s with the appropriate copy of the type τ of N . This, however, is
not correct in the case of a βK-redex, where m = 0, since we could then miss
to check that some subterms are typable. For instance, it would be wrong to
declare that the expression (λu.F(uu))∆, where F = λxλy y and ∆ = λz(zz)
is typable (in system D). We should rather keep in any case a copy of the con-
straints associated with the argument in a redex, instead of removing them,
as it happens with β-reduction. Then we will show that our unification pro-
cedure exactly corresponds to reduction in an extended λ-calculus, where one
never erases subexpressions that would be discarded by ordinary β-reduction.
This calculus, which builds upon Klop’s one [15], was introduced in [5]. It uses
in particular Klop’s construction [M, N ] where N is a “discarded” expression.
For instance, the expression above reduces to (λu[λy y, (uu)]∆) in this calcu-
lus. In order to perform the appropiate expansions in solving type equations,
we shall keep, associated with each equation (τ → t) = σ corresponding to an
application (MN), its territory, which is the set of type variables assigned to
subexpressions of the argument N . This is generally not directly accessible
form the set of equations, because in an expression [M, N ], the constraints
associated with N are disconnected from those of M .

Our semi-algorithm for type inference has been implemented by the sec-
ond author of this paper, see [25]. For any λ-expression, it computes, when
it exists, its principal typing, in the sense of [9,16,24]; more precisely, it com-
putes a proof of the principal typing. Like the one of Kfoury and Wells [14],
our semi-algorithm terminates when restricted to types of a bounded rank.
Although it is, to our view, simpler, and thus easier to prove correct, it is not
less (nor more) complex than Kfoury and Wells’ one: indeed, it is shown in
[19] that the type inference for system I of [14] is intrinsically as complex as
strong normalization. A similar result holds for our type inference procedure,
although we do not have to resort to sharing graphs and proof nets, as in [19],
to establish a direct correspondence between β-reduction – or more accurately
κ-reduction, see below – and the reduction of typing constraints.
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When this paper was about to be finished, we became aware of [7], which
presents a seemingly similar result. Indeed, a main result of [7] is that the type
inference process proposed in that paper corresponds to β-reduction. However,
there are two major differences with the results presented here: first, unlike [7],
we do not use the notion of an “expansion variable” that was introduced in [13]
(see also [14]). Second, [7] deals with an extended intersection type discipline
where the type ω, introduced by Sallé in [22], is assigned to any term (this
is called “system DΩ” in [16]), thus making the typability problem trivial,
whereas we deal with “system D” where only strongly normalizing λ-terms
are typable. Clearly, there cannot exist a correspondence between β-reduction
and type inference in system D, because of βK-redexes, and this is why we use
a variant of Klop’s calculus instead. We also notice that, although a notion
of principal typing does exist for “approximate normal forms” in system DΩ
(see [9,24]), such a notion does not seem to exist for all (typable) expressions,
and especially for λ-terms with an infinite Böhm tree, like for instance the
fixpoint combinator ∆(λyλf.f(yyf)). This contrasts with system D, where a
principal typing exists for any typable expression.

2 The Extended λ-Calculus

Our extended λ-calculus is basically Klop’s one [15], with some differences
that are explained in [5]. The syntax is as follows:

M, N . . . .... x | λxM | (MN) | [M, N ]

In the new construction [M, N ] which is added to the λ-calculus primitives,
M is the main expression, and N is an expression that is discarded when
interpreting [M, N ] as an ordinary λ-expression. The operation of (capture
avoiding) substitution, denoted {x �→N}M , is defined as usual. To define our
notion of reduction κ, we allow n to be 0 in an expression [· · · [M, N1] · · · , Nn],
in which case this denotes M . We abbreviate this as [M, N1, . . . , Nn], and
sometimes even [M, . . .]. The reduction −→

κ
is then given by the two following

axiom schemas:

x ∈ fv(M)

([λxM, . . .]N) −→
κ

[{x �→N}M, . . .]

x �∈ fv(M)

([λxM, . . .]N) −→
κ

[M, . . . , N ]

It has beeen shown in [5] that in this calculus, strong and weak normalization
coincide.

Example 2.1 To illustrate the various notions introduced in our paper, we
shall use the λ-term F(λu.∆(uu)), that is (λxλyyλu(λz(zz)(uu)). For this
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expression, we have the following reductions:

F(λu.∆(uu)) −→
κ

[λyy, λu.∆(uu)]

F(λu.∆(uu)) −→
κ

F(λu.(uu)(uu))

Now let us introduce the intersection type system for this calculus. It is
convenient to consider types where conjunction does not occur on the right of
an arrow (this is not a serious restriction, see [4,5] for instance). That is, the
syntax of types is as follows – where t is any type variable:

τ, σ . . . .... t | (π → σ) prime types

π, κ . . . .... ω | τ | (π ∧ κ) types

In the type system, we consider types modulo the congruence ≡UACI generated
by the following equations:

(ω ∧ π) = π (U)

((π0 ∧ π1) ∧ π2) = (π0 ∧ (π1 ∧ π2)) (A)

(π0 ∧ π1) = (π1 ∧ π0) (C)

(π ∧ π) = π (I)

Indeed, we shall most often write prime types as (τ1, . . . , τn → σ) where the
order in the sequences τ1, . . . , τn is irrelevant (that is, the sequence τ1, . . . , τn

stands for an arbitrary conjunctive combination of these types, and it denotes
ω when n = 0). We have included the idempotency property (I) mainly
for completeness, that is, more precisely, to ensure that the intersection type
system we use is a conservative extension of the standard system of simple
types (where sequences are restricted to contain only one element). However,
it should be pointed out that this idempotency property will not be used in
any technical development.

The judgements of the type system have the form Γ � M : τ , where Γ is, as
usual, a typing context, assigning types to a finite number of λ-variables. We
denote by Γ ∧ ∆ the conjunction of Γ and ∆, which is defined in the obvious
way (that is, pointwise, assuming that Γ(x) is ω for any x not in the domain
of Γ). The congruence ≡UACI is extended pointwise to typing contexts, that
is, Γ ≡UACI ∆ means Γ(x) ≡UACI ∆(x) for any x. The rules of the type system
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are as follows:

x : τ � x : τ

Γ � M : σ Γ(x) = π

Γ\x � λxM : (π → σ)

Γ � M : σ ∆ � N : τ

Γ ∧ ∆ � [M, N ] : σ

where Γ\x denotes the typing context obtained from Γ by removing the typing
assumption about x, if any.

Γ � M : (τ1, . . . , τm → σ) ∀i.∆i � N : τi

Γ ∧ ∆1 ∧ · · · ∧ ∆m � (MN) : σ
m > 0

Γ � M : (ω → σ) ∆ � N : τ

Γ ∧ ∆ � (MN) : σ

Γ � M : τ ∆ ≡UACI Γ

∆ � M : τ
For instance, we have:

z : τ0 → τ1 � z : τ0 → τ1 z : τ0 � z : τ0

z : (τ0 → τ1) ∧ τ0 � (zz) : τ1

� ∆ : ((τ0 → τ1) ∧ τ0) → τ1

Example 2.1 (continued) The expression F(λu.∆(uu)) is typable, with
type τ → τ , since F is typable, with type σ → τ → τ , and λu.∆(uu) is
typable, with type

σ = (θ → τ0 → τ1), (θ → τ0), θ → τ1

We can easily extend the classical result that β-normal forms are typable
in such a system (see [8,16]). To see this, let us first observe that the set N
of normal forms (that is, κ-irreducible expressions) P , Q . . . of our extended
λ-calculus is given by the following grammar:

P, Q . . . .... H | λxP | [P, Q]

H .... x | (HP ) | [H, P ]

We denote by hv(H) the head variable of H , that is

hv(x) = x and hv(HP ) = hv([H, P ]) = hv(H)

Then we define, up to the renaming of type variables, the canonical typing of
P . This is a pair of a typing context and a type, written Γ � τ , inductively
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given as follows, observing that, if P is an H with head variable x, this has
the shape

{x : τ1 → · · · τn → t} ∧ Γ′ � t

where t does not occur in Γ′.

i. x : t � t is the canonical typing of x, where t is any type variable;

ii. if ({x : τ1 → · · · τn → t} ∧ Γ) � t is the canonical typing of H and ∆ � τ

is the canonical typing of P , involving disjoint sets of type variables, then

{x : τ1 → · · · τn → τ → t} ∧ Γ ∧ ∆ � t

is the canonical typing of (HP );

iii. if Γ � τ is the canonical typing of P and Γ(x) = π (with π = ω if
x �∈ dom(Γ)), then Γ\x � π → τ is the canonical typing of λxP ;

iv. if Γ � τ and ∆ � σ are respectively the canonical typings of P and Q,
involving disjoint sets of type variables, then Γ ∧ ∆ � τ is the canonical
typing of [P, Q].

It is easy to check that the canonical typing Γ � τ of a normal form P is
indeed a valid typing, that is, Γ � P : τ is provable. We also recall that it
has been shown (see [9,?]) that, for any λ-expression M having a β-normal
form N , the canonical typing of N is a principal typing for M , in the sense
that it is a valid typing for M , from which any other typing can be derived,
by means of suitable operations. To conclude this section, we notice that one
can extend the classical result relating typability and strong normalization:

Theorem 2.2 In the extended λ-calculus, an expression is typable if and only
if it is strongly normalizable.

The fact that typability implies strong normalization was established in [5]
(the “subject reduction” property only uses AC). Conversely, it is not difficult
to check (proving a “subject expansion” property, along the lines given in [1]
for instance) that a strongly normalizing expression of the extended λ-calculus
is typable.

3 Typing Constraints

In this section we define the constraints that are associated with an expres-
sion, in order to perform type inference. The constraints are, as usual, type
equations, but they involve types of a restricted shape, that we call skeletal.
A skeletal type is either a type variable, or a type of the form (t1, . . . , tm → ξ)
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where ξ is skeletal (and the ti’s are type variables). The syntax is as follows :

ξ, ζ . . . .... t | (φ → ξ) skeletal types

φ, ψ . . . .... ω | t | (φ ∧ ψ)

As we said in the introduction, a first phase of the type inference process
consists in assigning types to the expression to type, and its subexpression,
assigning (distinct) type variables to compound expressions (MN) and (oc-
currences of) λ-variables. That is, we start with annotated expressions A,
B . . . defined as follows. We simultaneously define the set A of annotated
expressions, together with the set tyvar(A) of type variables occurring in A.
The set A is inductively defined by:

i. for each λ-variable x and each type variable t, the expression xt is in A,
and tyvar(xt) = {t};

ii. if A ∈ A then λxA ∈A and tyvar(λxA) = tyvar(A);

iii. if A∈A and B ∈A with tyvar(A)∩ tyvar(B) = ∅, and t is a type variable
not in tyvar(A)∪tyvar(B) then (AB)t∈A and [A, B]∈A with tyvar((AB)t) =
{t} ∪ tyvar(A) ∪ tyvar(B) and tyvar([A, B]) = tyvar(A) ∪ tyvar(B).

Example 2.1 (continued) An annotated version of F(λu.∆(uu)) is, under-
lining the type variables corresponding to an application node:

(λxλyyt0λu(λz(zt1zt2)t3(ut4ut5)t6)t7)t8

We define various functions over annotated terms: first, erase is the func-
tion that erases the type annotations, producing an expression of the extended
λ-calculus from an annotated expression (the definition is obvious). Then typ

associates a (skeletal) type with an annotated expression. This is defined as
follows, using auxiliary functions ΓA which, given an annotated expression A,
associate a (φ) type (that is, a sequence of type variables) with each λ-variable:

typ(xt) = t Γxt(y) =

⎧⎨
⎩

t if y = x

ω otherwise

typ(λxA) = (ΓA(x) → typ(A)) ΓλxA(y) =

⎧⎨
⎩

ω if y = x

ΓA(y) otherwise

typ((AB)t) = t Γ(AB)t = (ΓA ∧ ΓB)

typ([A, B]) = typ(A) Γ[A,B] = (ΓA ∧ ΓB)
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As the notation suggests, in what follows we also consider ΓA as a typing
context associated with A. For instance, we have

typ(λz(zt1zt2)t3) = t1, t2 → t3

With an annotated expression A we finally associate a set of constraints to
solve in order to type erase(A). These are, as usual, type equations typ(A1) →
t = typ(A0) attached to application nodes (A0A1)

t in the expression, except
that we have to record also the territory of the equation, which is the set
of type variables that have to be duplicated when the equation is reduced,
namely tyvar(A1)(

3 ). Then the constraints have the form (τ ⊥ σ; T ) where T

is a set of type variables. We write τ ⊥ σ, instead of τ = σ, to remind that
the left (resp. right) member of an equation should be considered as negative
(resp. positive), see [6,12]. The set EA of constraints associated with A is
defined inductively as follows:

Ext = ∅

EλxA = EA

E(AB)t = {(typ(B) → t ⊥ typ(A); tyvar(B))} ∪ EA ∪ EB

E[A,B] = EA ∪ EB

Example 2.1 (continued) Associated with the annotated version

(λxλyyt0λu(λz(zt1zt2)t3(ut4ut5)t6)t7)t8

of F(λu.∆(uu)), we get the following set of constraints:

E0 = { (t4, t5 → t7) → t8 ⊥ ω → (t0 → t0) ; {t1, . . . , t7},

t6 → t7 ⊥ t1, t2 → t3 ; {t4, t5, t6},

t5 → t6 ⊥ t4 ; {t5},

t2 → t3 ⊥ t1 ; {t2} }

There are two kinds of equations in EA: those of the form (ξ → t) ⊥ t′

correspond to application nodes in A where the function is a λ-variable or

3 Without the construction [M, N ], this could be derived from the equations, starting from
the set of type variables in typ(A1), and including in the territory all the type variables
occurring in an equation ξ → t′ = ζ whose root t′ is already in the territory.
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an application, while equations of the shape (ξ → t) ⊥ (t1, . . . , tn → ζ)
correspond to application nodes where the function to apply is a λ-abstraction,
that is to redexes, of the form ([λxA′, . . .]B)t. It is worth observing that, given
the polarities assigned to the members of an equation, and the fact that in a
typing Γ � τ the types in the image of Γ are negative, whereas τ is positive,
we have:

Remark 3.1 (i) Each type variable t assigned to an application node has
exactly one negative occurrence in an equation of EA, namely in the equation
(ξ → t) ⊥ ζ associated with the node. Moreover, it has at most one positive
occurrence, either in EA, if the application node is a subexpression of another
application, or in typ(A).

(ii) Each type variable assigned to a λ-variable x has exactly one negative
occurrence, either in EA, if x is bound by a λ-abstraction which is a subex-
pression of an application, or in ΓA, and at most one positive occurrence, in
EA, if x is a subexpression of an application, or in typ(A).

This is in fact an invariant that will be preserved in solving the constraints.

4 ∧-Unification

To solve a set of constraints, we will reduce them, by means of a generalized
unification mechanism, which involves the notion of type substitution, that
we introduce now. Since the constraints to reduce only involve skeletal types,
we shall only consider applying substitutions to this restricted kind of types.
A prime type substitution is a map S from a finite set dom(S) of type variables
to prime types. If dom(S) = {t1, . . . , tn} and S(ti) = τi, we also denote S by
{t1 �→τ1, . . . , tn �→τn}. We let S(t) = t for t �∈ dom(S). The result of applying
the substitution S to a (skeletal) type ξ is denoted Sξ (the definition, by induc-
tion on the structure of τ , is the usual one). As a matter of fact, we shall only
use Sξ in the case where S is a renaming, assigning (distinct) type variables to
type variables. However, we shall also use the application of a substitution S to
positive occurrences of type variables in a skeletal type. The resulting type is
denoted S+ξ. Since there is exactly one positive occurrence of a type variable
in ξ, the definition of S+ξ should be obvious: if ξ = (φ1 → · · · (φn → t) · · · )
then S+ξ is(φ1 → · · · (φn → S(t)) · · · ). Notice that this is a skeletal type if
S(t) is skeletal. These positive applications of type substitutions are extended,
according to the polarities we suggested above (negative on the left, positive
on the right) to type equations, as follows:

S+(ξ → t ⊥ ζ) = S+ξ → t ⊥ S+ζ
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Finally, we shall also consider substitutions that assign types (not necessarily
prime) to type variables. Obviously, these should only be applied on the left
of the arrow, that is, since we are only considering applications to skeletal
types, to negative occurrences of type variables. Then, given such a mapping
D from a finite set dom(D) of type variables to types, extended with D(t) = t

for t �∈ dom(D), we define D−ξ, the result of applying D to the (skeletal) type
ξ, and D+φ, the type obtained by applying D to φ, as follows:

D−t = t D+ω = ω

D−(φ → ξ) = (D+φ → D−ξ) D+t = D(t)

D+(φ ∧ ψ) = (D+φ ∧ D+ψ)

As a matter of fact, we shall only use this in the case where D is a duplication,
assigning a conjunction of distinct type variables to type variables. Notice that
in this case D−ξ is a skeletal type. Again, we extend this to equations, but
only when the root of the equation is not affected by D. That is, if t �∈ dom(D),
we let:

D−(ξ → t ⊥ ζ) = D−ξ → t ⊥ D−ζ

Besides type substitutions, we shall also need, in order to solve the constraints,
to apply some transformations on the territory of the equations. These are
determined by mappings U from a finite set of type variables to finite sets of
type variables, which we denote U = {t1 �→U1, . . . , tn �→Un}. Assuming that,
by convention, U(t) = {t} if t �∈ dom(U), these are applied to sets of type
variables as follows:

U(T ) =
⋃
t∈T

U(t)

Finally, identifying a pair of functions with a function returning pairs, we shall
use transformations of the form

{t1 �→(τ1; U1), . . . , tn �→(τn; Un)}

which acts as the prime type substitution {t1 �→τ1, . . . , tn �→τn} on types and
equations, and as {t1 �→U1, . . . , tn �→Un} on territories( 4 ), and similarly for
transformations {t1 �→(π1; U1), . . . , tn �→(πn; Un)}. Type substitutions and term
substitutions are related as follows. If tyvar(A) ∩ tyvar(B) = ∅, we denote by
{xt �→B}A the capture avoiding substitution of xt by B in A. Then we have:

4 As far as territories are concerned, the positive or negative application of such transfor-
mations is simply U(T ), as defined above.
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Lemma 4.1 (i) typ({xt �→B}A) = {t �→(typ(B); tyvar(B))}+typ(A)

(ii) if xt occurs in A then E{xt �→B}A = EB ∪ {t �→(typ(B); tyvar(B))}+EA.

Proof. By induction on A. �

Now we define the notion of reduction E � E ′ on sets of constraints. This
closely mimicks, as we shall see, the κ-reduction on expressions. A constraint
corresponds to a redex ([λxA, . . .]B)t if it has the form

(ξ → t) ⊥ (φ → ζ); tyvar(B)

where ξ is the type assigned to the argument B, t is the type of the application
node, φ = t1, . . . , tm is the sequence of types of the abstracted variable x in
the function A, and ζ is the type of the function body A. As usual, to reduce
such an equation, we have to unify t with ζ (reflecting the fact that A, where
the substitution of B for x is performed, takes the place of the application
node) and ξ with φ, but the latter cannot be solved in the usual way (that
is, identifying the ti’s). By analogy with β-reduction, solving ξ ⊥ t1, . . . , tm
should correspond to substituting the argument B to the m occurrences of
the variable x in A. In order to obtain a well-formed annotated term, we have
to make m distinct copies of B, annotated with fresh type variables (which
are copies of the type variables in the territory tyvar(B) of the equation).
However, we cannot simply replace ξ ⊥ t1, . . . , tm by ξ1 ⊥ t1, . . . , ξ

m ⊥ tm
where ξ1, . . . , ξm are copies of ξ, because the type variables occurring in ξ

may also occur elsewhere in the set of constraints.

Example 2.1 (continued) The reduction

F(λu.∆(uu)) −→
κ

F(λu.(uu)(uu))

should correspond to an “annotated reduction”

(λxλyyt0λu(λz(zt1zt2)t3(ut4ut5)t6)t7)t8 −→
κ

(λxλyyt0λu((ut1
4ut1

5)t1
6(ut2

4ut2
5)t2

6)t3)t8

and to a decomposition of the equation t6 → t7 ⊥ t1, t2 → t3, with territory
{t4, t5, t6}, since it is the redex of type t7 which is reduced. Therefore we
should duplicate not only t6, but also t4 and t5, which appear in the dupli-
cated argument (ut4ut5)t6 . These type variables also occur in other equations,
namely (t4, t5 → t7) → t8 ⊥ ω → (t0 → t0) and t5 → t6 ⊥ t4. We see
from the (annotated) κ-reduction that the latter should be simply duplicated,
while in the former, we should replace the sequence t4, t5, corresponding to
the abstraction λu, by t14, t

2
4, t

1
5, t

2
5 (modulo the associativity and commuta-

tivity axioms AC), in order to obtain the set of constraints associated with
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(λxλyyt0λu((ut1
4ut1

5)t1
6(ut2

4ut2
5)t2

6)t3)t8 , that is

E1 = { (t14, t
1
5, t

2
4, t

2
5 → t3) → t8 ⊥ ω → (t0 → t0) ; {t3, t14, t

2
4, t

1
5, t

2
5, t

1
6, t

2
6},

t26 → t3 ⊥ t16 ; {t24, t
2
5, t

2
6)},

t15 → t16
⊥ t14 ; {t15},

t25 → t26
⊥ t24 ; {t25} }

This is formalized in the following rule, defining the ∧-unification process,
which consists in a relation E � E ′ of reduction between sets of constraints.
In the following definition, we explicitly record the transformation Θ used in
the reduction, which is then denoted E � E ′ [Θ]. To state the definition, it is
also convenient to introduce the following notations:

E ↓ T = { (ξ → t ⊥ ζ ; U) | (ξ → t ⊥ ζ ; U) ∈ E & t ∈ T }

E ↑ T = E − (E ↓ T )

One can see that, when T is the territory of some equation ξ → t ⊥ ζ in
E , corresponding to an application node (AB)t, then E ↓ T is the set of
constraints associated with the argument B, that is E ↓ tyvar(B) = EB.

Definition 4.2 (∧-Unification) Let E0 = {(ξ → t ⊥ φ → ζ ; T )}∪E be a set
of constraints. Then E0 � E1 [Θ] where

(i) if φ = ω then Θ = {t �→(ζ ; ∅)}+ and E1 = Θ(E);

(ii) if φ = t1, . . . , tm with m > 0 then Θ = S+ ◦ {t �→(ζ ; ∅)}+ ◦ D− and

E1 = S+{t �→(ζ ; ∅)}+
(
D−(E ↑ T ) ∪

⋃
1�j�m

Rj(E ↓ T )
)

with, if T = {s1, . . . , sn},

D = { si �→s1
i , . . . , s

m
i ; {s1

i , . . . , s
m
i }) | 1 � i � n }

Rj = {s1 �→(sj
1; {s

j
1}), . . . , sn �→(sj

n; {sj
n})} (1 � j � m)

S = {t1 �→(R1ξ; R1T ), . . . , tm �→(Rmξ; RmT )}

where s1
1, . . . , s

1
n, . . . , s

m
1 , . . . , sm

n are fresh (not occurring in E0), distinct type
variables.
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Example 2.1 (concluded) Regarding our running example expression F(λu.

∆(uu)), or more precisely its annotated version

(λxλyyt0λu(λz(zt1zt2)t3(ut4ut5)t6)t7)t8 ,

we see that if we select from the set E0 of associated constraints the equation
t6 → t7 ⊥ t1, t2 → t3 to reduce, with territory {t4, t5, t6}, we obtain, using the
notations of the definition (with T = {t4, t5, t6} and E0 = {t6 → t7 ⊥ t1, t2 →
t3; T} ∪ E), the following substitutions to apply:

D = { ti �→t1i , t
2
i ; {t

1
i , t

2
i }) | 4 � i � 6 }

R1 = {t4 �→(t14; {t
1
4}), t5 �→(t15; {t

1
5}), t6 �→(t16, {t

1
6})}

R2 = {t4 �→(t24; {t
2
4}), t5 �→(t25; {t

2
5}), t6 �→(t26; {t

2
6})}

S = {t1 �→(t16, {t
1
4, t

1
5, t

1
6}), t2 �→(t26, {t

2
4, t

2
5, t

2
6})}

Since

E ↓ T = { t5 → t6 ⊥ t4 ; {t5} }

E ↑ T = { (t4, t5 → t7) → t8 ⊥ ω → (t0 → t0) ; {t1, . . . , t7},

t2 → t3 ⊥ t1 ; {t2} }

where E ↓ T is the set of constraints associated with the argument (ut4ut5)t6

of the redex, typed t7, that we are considering for reduction, we get E0 � E1

where

E1 = { (t14, t
1
5, t

2
4, t

2
5 → t3) → t8 ⊥ ω → (t0 → t0) ; {t3, t14, t

2
4, t

1
5, t

2
5, t

1
6, t

2
6},

t26 → t3 ⊥ t16 ; {t24, t
2
5, t

2
6)},

t15 → t16
⊥ t14 ; {t15},

t25 → t26
⊥ t24 ; {t25} }

which is the set of constraints associated with (λxλyyt0λu((ut1
4ut1

5)t1
6(ut2

4ut2
5)t2

6)t3)t8 ,
as described above. In E1 there is only one reducible equation, with root t8.
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Decomposing this equation, we apply the case (i) of the definition, and we get

E2 = { t26 → t3 ⊥ t16 ; {t24, t
2
5, t

2
6)},

t15 → t16
⊥ t14 ; {t15},

t25 → t26
⊥ t24 ; {t25} }

which is the set of constraints associated with [λyyt0, λu((ut1
4ut1

5)t1
6(ut2

4ut2
5)t2

6)t3 ].
Notice that in the second step of solving the typing constraints, from E1 to
E2, we had to apply the substitution t8 �→(t0 → t0). Since t8 does not occur in
E1, apart obviously in the reduced equation, this substitution had no effect.
However, one should notice that it transforms the type t8 of the annotated
version of F(λu.∆(uu)) into (t0 → t0), which is the expected type of this
expression, and of its normal form [λyy, λu.(uu)(uu)].

5 Typability and Typing

Now we show that ∧-unification can be used to characterize typability, by
showing that it exactly corresponds to reduction in the extended λ-calculus.
First, we show the correspondence between the normal forms.

Lemma 5.1 (Normal Forms) An expression M of the extended λ-calculus
is a κ-normal form if and only if EA is irreducible, for any A such that
erase(A) = M .

(The proof is obvious.) The next lemma states the crucial property of ∧-
unification. For its proof, we need the the UAC axioms, as one can see
for instance when applying our type inference process to the λ-expression
(λy(x(yx)) x).

Lemma 5.2 (Operational Correspondence) (i) If M −→
κ

N and erase(A) =

M then there exists B such that erase(B) = N and EA � EB.

(ii) If EA � E then there exists B such that E = EB and erase(A) −→
κ

erase(B).

Proof. (Sketch)

(i) We prove a more precise statement, namely that if M −→
κ

N and erase(A) =

M then there exist B and Θ such that erase(B) = N , EA � EB [Θ], typ(B) ≡UAC

Θ(typ(A)), ΓB ≡UAC Θ(ΓA) and tyvar(B) = Θ(tyvar(A)). We proceed by in-
duction on M −→

κ
N .
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• If M −→
κ

N is an axiom, then M = ([λxM0, N1, . . . , Nk]M1) and A =

([λxA0, B1, . . . , Bk]A1)
t, and EA contains the equation (ξ → t) ⊥ (φ → ζ)

where ξ = typ(A1), φ = ΓA0
(x) and ζ = typ(A0). Let T = {s1, . . . , sn} =

tyvar(A1). There are two cases.

(1) If x �∈ fv(M0), then N = [M0, N1, . . . , Nk, M1]. Since x �∈ fv(A0), we have
φ = ω. Then, by the definition of ∧-unification, we have

EA = {(ξ → t ⊥ ω → ζ ; T )} ∪ E � {t �→(ζ ; ∅)}+E [{t �→(ζ ; ∅)}+]

Since E = EA0
∪EB1

∪· · ·∪EBk
∪EA1

and t does not occur in A0, B1, . . . , Bk, A1,
it is clear that we may let B = [A0, B1, . . . , Bk, A1].

(2) If x ∈ fv(M0), then N = [{x �→M1}M0, N1, . . . , Nk]. Let φ = t1, . . . , tm.
Then we have EA � E [Θ], where, using the notations of the Definition 4.2,
Θ = S+ ◦ {t �→(ζ ; ∅)}+ ◦ D− and

E = S+ ◦ {t �→(ζ ; ∅)}+
(
D−(E[A0,B1,...,Bk]) ∪

⋃
1�j�m

Rj(EA1
)
)

We let B = [{ xtj �→RjA1 | 1 � j � m }A0, B1, . . . , Bk], and we conclude using
the Lemma 4.1.

• If M = (M0M1) and N = (N0M1) with M0 −→
κ

N0 then A = (A0A1)
t with

erase(Ai) = Mi and

EA = {(ξ → t ⊥ ζ ; tyvar(A1))} ∪ EA0
∪ EA1

where ξ = typ(A1) and ζ = typ(A0). By induction hypothesis, there is B0

and Θ such that, in particular, erase(B0) = N0 and EA0
� EB0

[Θ]. We let
B = (B0A1)

t, and we use the induction hypotheses to conclude.

• The other cases are similar.

(ii) By induction on A, omitted (see [26]). �

Theorem 5.3 An expression M of the extended λ-calculus is typable if and
only if there is no infinite sequence of reductions from EA, for any A such that
erase(A) = M .

Proof. By the Theorem 2.2, if M is typable, then M is strongly normalizing,
and therefore, by the previous Lemma, there is no infinite sequence of reduc-
tions from EA if erase(A) = M . Conversely, if, for A such that erase(A) = M ,
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there is no infinite sequence of reductions from EA, then M is strongly nor-
malizing, and we conclude using Theorem 2.2 again. �

This result provides an alternative solution to a problem raised in [13], of
finding a unification-like characterization of strong normalization of λ-terms,
without using expansion variables. In the PhD Thesis of the second author
[26], it is shown that if we do not distinguish the two cases (i) and (ii) in the
Definition 4.2, allowing m to be 0 in the second case, then the reduction of the
set of constraints associated with [an annotated version of] an expression M

converges if and only if this expression M has a normal form. This corresponds
to a characterization of (weakly) normalizing terms in system DΩ, see [10,16].

A consequence of the Lemma 5.2 is that, if EA �∗ E where E is irreducible,
then there exists B such that E = EB and erase(A)

∗
−→
κ

erase(B). By the Lemma

5.1, we know that erase(B) is a normal form. Now we show how to built the
canonical typing of erase(B) using EB. To this end, we define a transformation
� on pairs (E , Γ � τ), called simplification (of typing constraints) and given
as follows:

({σ ⊥ t; T} ∪ E , Γ � τ) � {t �→σ}−(E , Γ � τ)

where {t �→σ}− is only applied to types and equations, not to territories (by
the Remark 3.1, this is well defined). Our final result, combined with Theorem
reftheorema, establishes that ∧-unification and simplification allow us to com-
pute a canonical typing for any strongly normalizing expression:

Theorem 5.4 For any normal form P and annotated expression A such that

erase(A) = P there exists Γ and τ such that (EA, ΓA � typ(A))
∗
� (∅, Γ � τ)

and Γ � τ is the canonical typing of P .

Proof (Sketch) By induction on A. Let us just examine the case where
A = (A0A1)

t. Notice that erase(A0) must be an H , with a head variable x.
We have

EA = {(ξ → t ⊥ ζ ; T )} ∪ EA0
∪ EA1

where ξ = typ(A1) and ζ = typ(A0). Moreover ΓA = ΓA0
∧ ΓA1

. By induction
hypothesis, we have

(EAi
, ΓAi

� typ(Ai))
∗
� (∅, Γi � τi)

where Γi � τi is the canonical typing of erase(Ai), for i = 0, 1, and therefore

Γ0 = {x : σ1 → · · ·σn → t′} ∧ Γ′
0

with τ0 = t′. Since τi is obtained from typ(Ai) by a sequence of non trivial
type substitutions, we have ζ = t′, and the simplification of EA1

transforms ξ
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into τ1. Then we have

EA

∗
� ({(τ1 → t ⊥ t′); T}, ΓA � t) � {t′ �→(τ1 → t)}−(∅, ΓA � t)

and it is easy to see that {t′ �→(τ1 → t)}−(ΓA � t) is the canonical typing of
P = erase(A).

The Lemma 5.2 and Theorem 5.4 are only existential assertions, and therefore
they do not completely specify a semi-algorithm for type inference. Indeed,
the algorithm implemented by the second author, which is available from the
url mentionned in [25], is more clever than that: it deals with pairs (E , Π),
where Π is a “tentative proof of typing”, that is a proof in the type system
where the typing rule for application is

Γ � M : τ ∀i.∆i � N : τi

Γ ∧ ∆1 ∧ · · · ∧ ∆m � (MN) : σ
m > 0

Then the transformations performed by the algorihm do not only operate on
the set of constraints (by ∧-unification), but also on the proof of typing part,
in such a way that, if we start with (EA, ΠA) (for a suitably defined ΠA) where
erase(A) is strongly normalizing, then the algorithm ends up with (∅, Π) where
Π is a valid proof of typing for the initial expression erase(A). Moreover, the
algorithm checks at every step the rank of the generated types, so that if a
bound is provided for the rank, the type inference algorithm terminate (we
refer to [26] for the details). The algorithm could also more simply deal with
pairs (E , Γ � τ), starting from (EA, ΓA � typ(A)).

It is not easy to compare our algorithm with the one of Kfoury and Wells for
their system I [14], because the formalisms which are used are quite different.
The main differences are that we replace the notion of an expansion variable
with the notion of a territory of an equation, and that we perform in an atomic
way several operations in one ∧-unification step, while these “micro-steps” are
allowed to commute in Kfoury and Wells’ algorithm, thus making a precise
comparison very difficult. Nevertheless, we strongly believe (see [26] for a
thorough discussion) that one ∧-unification step in our algorithm, where the
duplication factor is m, corresponds to m + 2 (if m > 0, otherwise 3) steps in
Kfoury and Wells’ algorithm.

6 Conclusion

We have presented a new semi-algorithm for inferring principal typings for
strongly normalizing λ-expressions in the intersection type discipline. The
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correctness of our unification mechanism is not too difficult to establish. Al-
though we showed that in the pure λ-calculus our algorithm coincides with
(strong) normalization, it still deals with typing constraints rather than with
λ-expressions, and is therefore open to generalizations to enriched calculi. In
[26] some preliminary results in this direction are obtained, regarding the typ-
ing of mutable variables (that is, references à la ML) and of recursion.
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de Nice-Sophia Antipolis. Available from the web page of the author (2004).

G. Boudol, P. Zimmer / Electronic Notes in Theoretical Computer Science 136 (2005) 23–4242

http://www-sop.inria.fr/mimosa/Pascal.Zimmer/typi.html

	Introduction
	The Extended -Calculus
	Typing Constraints
	-Unification
	Typability and Typing
	Conclusion
	References



