
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS, VOL. ?, NO. ?, ? 2006 1
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Abstract— Typical embedded hardware/software systems are
implemented using a combination of C and an HDL such
as Verilog. While each is well-behaved in isolation, combining
the two gives a nondeterministic model of computation whose
ultimate behavior must be validated through expensive (cycle-
accurate) simulation.

We propose an alternative for describing such systems. Our
SHIM (software/hardware integration medium) model, effectively
Kahn networks with rendezvous communication, provides deter-
ministic concurrency. We present the Tiny-SHIM language for
such systems and its semantics, demonstrate how to implement
it in hardware and software, and discuss how it can be used to
model a real-world system.

By providing a powerful, deterministic formalism for express-
ing systems, designing systems and verifying their correctness
will become easier.

Index Terms— Hardware/software codesign, Deterministic
model of computation, Software synthesis, Hardware synthesis

I. INTRODUCTION

UNLIKE single-threaded software programs or syn-
chronous digital logic circuits, real-world embedded sys-

tems contain many computational styles. Most are amalgams
of hardware and software; the hardware is often implemented
as one or more islands of synchronous logic, while the soft-
ware may be single-threaded, concurrent, parallel, distributed,
or event-driven.

We propose the SHIM (Software/Hardware Integration
Medium) model, a concurrent, asynchronous, deterministic
model for specifying, validating, and synthesizing such het-
erogeneous embedded systems, and discuss its simulation and
synthesis. The need for concurrency is clear: at the minimum,
hardware peripherals operate in parallel with software.

The need for an asynchronous model is more subtle: al-
though embedded hardware-software systems are typically
implemented using synchronous digital logic, software timing
is difficult to predict. At the lowest level, the number of cycles
required to execute each machine instruction on a modern
processor is unpredictable because of complex interactions
among instructions in the pipeline, the cache, superscalar
instruction scheduling, and branch predictors. While such
behavior can be modeled, it is costly to simulate. Similarly,
at a higher level, the behavior of complex algorithms can be
very difficult to predict. An asynchronous model of software
allows such details to be safely ignored.

The third characteristic of SHIM—determinism—is more
controversial. While nondeterminism has its place in models
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of unpredictable systems (e.g., lossy communication systems
such as the Internet), we believe that it is wrong for speci-
fication languages because it makes the already-very-difficult
question of functional verification that much harder.

Systems are invariably validated using simulation. Although
simulation provides advantages such as scaling, its Achilles’
heel is its need of appropriate stimulus. While the simulation
of deterministic models suffer from this problem, nondeter-
ministic models are worse because not only do they require the
right stimulus, but since the simulator makes nondeterministic
choices, even the right stimulus may not flush out bugs.

Nondeterministic models reduce the assurance a simulator
provides from “the system will do that given this stimulus” to
“the system could do that given this stimulus.” Providing such
weak assurance seems unacceptable. We believe it is no acci-
dent that the two most widely-used computational models—
single-threaded software and synchronous digital logic—are
deterministic.

Determinism also has advantages for formal verification.
By reducing the number of possible behaviors the system
can exhibit, determinism reduces the computational burden.
For example, performing model checking on nondeterministic
concurrent models is possible, but such algorithms devote
substantial energy to dealing with nondeterminism.

Determinism also greatly simplifies debugging because it
renders bugs reproducible. Provided an identical stimulus can
be applied (which our model makes easy—the timing of
stimulus does not need to be considered), the system behavior
is guaranteed to be the same.

The environment of an embedded system is often nonde-
terministic, raising the question of whether determinism in
the model is so important. We believe it is: the number of
behaviors that need to be considered grows as the product of
the number of behaviors of the environment and the number of
behaviors of the system since the two run concurrently. When
the system is deterministic, this number reduces to the number
of behaviors of the environment.

In this paper we argue for the utility of SHIM. We describe
the model, give a proof of its determinism (Section II), present
a small language (“Tiny-SHIM”), and give its formal semantics
(Section III). This enables us to discuss modeling a real-world
hardware/software system in Section IV and some specific
constructs in Section V.

We show how to compile Tiny-SHIM to software in Sec-
tion VI and present a hardware translation in Section VII.
Finally, we compare our model with others in Section VIII.
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II. THE SHIM MODEL

A system in the SHIM model consists of concurrently-
running sequential processes that communicate exclusively
with rendezvous through fixed, point-to-point communication
channels. Thus, SHIM is a restriction of Kahn’s networks [1]
that uses a style of communication inspired by Hoare’s
CSP [2].

The processes in SHIM can be described in a classical
imperative way (i.e., think of them as C functions or Java
methods) that do not communicate through shared variables.
All processes execute concurrently and their relative execution
speeds are undefined, i.e., they execute asynchronously.

Inter-process communication is synchronous in the sense
that both sending and receiving processes must agree when
data is to be transferred. In general, either the sender or
receiver may try to communicate first and will wait for the
other. The topology of the system—the number and type of
processes and communication channels—is fixed, and each
communication channel connects a single sending process with
a single receiving process. The communication structure of a
system is therefore a directed graph whose nodes are processes
and whose arcs are channels The graph may contain cycles.

Theorem 1: The sequence of symbols transmitted over each
channel is deterministic.

Proof Follows from SHIM systems being a restriction of
Kahn networks. First, interpret the system as a Kahn network
(i.e., treat the communication channels as unbounded buffers
and make the write operations non-blocking). Next, for each
channel in the system, introduce a second “acknowledge”
channel going in the opposite direction. After each receive
operation, send on the acknowledge channel. Similarly, af-
ter each send operation, add a receive on the acknowledge
channel. This receive forces the send to be blocking, just
as in our model. Under this transformation, the processes
compute continuous functions of their inputs and hence are
deterministic since this augmented system fits Kahn’s model.
2

Corollary 1: The sequence of states visited by each process
is deterministic.

Proof The states are determined by the structure of the
machine and the data values transmitted on each channel, both
of which are deterministic. 2

A. Rationale
In the introduction, we discussed our rationale for wanting

determinism: it greatly simplifies system validation whether
with simulation or formal techniques. Thus, we felt that
nondeterministic models such as CSP [2] or Petri nets [3]
were unsatisfactory.

We rejected Kahn’s unbounded buffers because they
make the model Turing-complete even for simple processes.
Buck [4] showed that simple multiplexer-like processes to-
gether with unbounded communication was enough to build a
Turing machine.

The communication in our model is finite and does not in-
troduce Turing-completeness. Specifically, our model is finite-
state provided each process is finite-state. The advantages

e ::= L | V | op e | e op e | ( e )
s ::= V = e | if ( e ) s else s | while ( e ) s | s ; s
| read( C, V ) | write( C, e ) | { s }

Fig. 1. The syntax of the Tiny-SHIM language. Expressions and statements
are classical except for the blocking read and write operations, which
communicate values through channels. L is a literal, V represents a variable
name, C a channel name, op represents the usual collection of operators (+,
-, etc.), and braces indicate grouping.

of this are legion: scheduling is much easier in our model
because the synchronous communication restricts the number
of choices. By definition, our systems can always be executed
with finite memory; this question is undecidable for Kahn
networks. Compare our simple scheduler, presented in Sec-
tion VI, to the clever but costly one for Kahn networks by
Parks [5], which dynamically detects buffer-overflow deadlock
and increases buffer size in response.

Buffered communication can be implemented in SHIM by
chaining multiple single-place-buffer processes. Such buffers
are bounded, but adding more processes to increase a buffer’s
size is straightforward.

We could have chosen bounded buffers instead of ren-
dezvous, but it would have complicated the model and prob-
ably necessitated an optimization step to simplify buffer
management. There are already myriad ways to implement
rendezvous communication and many opportunities for opti-
mization.

We rejected the synchronous broadcast communication
typical of register-transfer-level hardware languages such as
VHDL, because we feel it is more error-prone. From observing
students using this model, the most common mistake is a mis-
match between when a signal is sent and when it is expected.
The simulator cannot warn about such a situation because it
is semantically valid, producing a difficult-to-diagnose failure.

SHIM does not preclude synchronous broadcast-style com-
munication, but it must be requested explicitly, i.e., with pro-
cesses triggered by a periodic clock that always receives every
input. Section V presents a way to implement synchronous
processes in SHIM.

III. TINY-SHIM AND ITS SEMANTICS

Figure 1 shows the syntax for Tiny-SHIM, a language
embodying our model. Each process is a statement (or group
thereof) with its own set of variables, and each channel is
read and written by exactly one process, although each such
process may contain, for example, multiple read operations for
a specific channel.

Tiny-SHIM is a simple language with no syntactic sugar.
Meant as an easy-to-understand and analyze intermediate
language, we plan to create the larger SHIM language that
will include many more constructs. This will be dismantled
into Tiny-SHIM.

We express the semantics of Tiny-SHIM in Plotkin’s [6]
structural operational style. The state of a process is repre-
sented as pair of the form 〈σ , p〉, where σ represents the state
of the local store for each process, i.e., a mapping from a
process’s variables to values, and p is the statement the process
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has become; or of the form 〈σ〉, which represents the process
terminated in state σ .

The state of a system is a multiset of such process states:
an unordered list of potentially repeated process states, since
several processes may be in identical states.

Most rules (the “→” rules) refer to the operation of a
single process, which operates independently except when it
communicates. The last two rules describe the operation of the
system as a whole (the “⇒” rules) and either allow a single
process or a pair of communicating processes to advance.

The rule for assignment statements is simplest. We use a
helper function E that maps a store and expression to the value
of the expression. The rule transforms a process consisting of
an assignment to a variable v to a terminated process with the
value of variable v replaced with the value of the expression.
Expression evaluation is therefore side-effect free.

E (σ ,e) = n
〈σ ,v = e〉 → 〈σ [v← n]〉

(assign)

The two rules for if statements are nearly as simple.
Depending on whether the predicates evaluates to a non-zero
value, either the then or else clause is scheduled to run.

E (σ ,e) 6= 0
〈σ ,if (e) p else q〉 → 〈σ , p〉 (if-true)

E (σ ,e) = 0
〈σ ,if (e) p else q〉 → 〈σ ,q〉 (if-false)

The two rules for while use the residual style. The first
unrolls the body of the while statement once if the predicate
expression is true; the second terminates if the predicate is
false.

E (σ ,e) 6= 0
〈σ ,while (e) p〉 → 〈σ , p ; while (e) p〉 (while-true)

E (σ ,e) = 0
〈σ ,while (e) p〉 → 〈σ〉 (while-false)

The rules for read and write appear to be able to always
execute, but the (sync) rule below only allows processes that
contain them to execute in conjunction with each other.

〈σ ,read(c,v)〉 c get n
−−−−→ 〈σ [v← n]〉 (read)

E (σ ,e) = n
〈σ ,write(c,e)〉 c put n

−−−−→ 〈σ〉
(write)

Sequencing requires two rules: one for when the first
statement remains active, the other for when the first statement
terminates. Here, the statement being executed may or may
not require communication with another process depending
on whether it is a read instruction (a = c get n), a write
instruction (a = c put n), or another instruction (no transition
label).

〈σ , p〉 a
→ 〈σ ′, p′〉

〈σ , p ; q〉 a
→ 〈σ ′, p′ ; q〉

(seq)

〈σ , p〉 a
→ 〈σ ′〉

〈σ , p ; q〉 a
→ 〈σ ′,q〉

(seq-term)

The following rule expresses the fact that if a process can
advance using one of the non-communicating rules, it can do
so voluntarily without affecting any other processes. The ]
notation denotes the union of multisets.

〈σ , p〉 → s
{〈σ , p〉}]S⇒{s}]S (step)

The final rule expresses synchronous communication: the
only one to involve two processes and hence the only way
two processes may influence each other. One process must be
waiting to write on channel c; another must be waiting to read
on c. Only when both are satisfied can both processes advance.

〈σ , p〉 c put n
−−−−→ s 〈σ ′, p′〉 c get n

−−−−→ s′
{〈σ , p〉 ,〈σ ′, p′〉}]S⇒{s,s′}]S (sync)

To guarantee determinism, we require each channel to have
a unique reading process and a unique writing process, an
easily-checked syntactic constraint. While such a restriction is
stronger than necessary for determinism—that (sync) has no
choice of which processes may communicate is enough—more
liberal rules would require a more costly analysis.

IV. MOTIVATING EXAMPLE

Our choice of model comes from the observation of many
embedded hardware/software systems. Here we describe one
commercial embedded system that is representative of many
microprocessor-based real-time systems and how to model it
in SHIM.

In 1981, Bally/Midway produced the Robby Roto video
arcade game.1 Although primitive by today’s standards, it is
representative of many early arcade games and illustrates a
realistic, commercial embedded system.

Robby is a bus-based microprocessor system with support
for video, sound, and some simple input devices. Built around
a Z80 running at about 1.8 MHz, it contains the usual RAMs
(both static and dynamic), ROMs, and memory-mapped I/O
devices, including a video controller with bit-mapped graphics,
a hardware blitter, and a pair of sound synthesizers.

Robby employs the usual mechanisms for communicating
between hardware and software: memory mapped I/O for
software-initiated communication and interrupts for hardware-
initiated. The video display is the only source of interrupts in
the system. It can generate two types: a light pen interrupt
that goes unused in the Robby game (an artifact of its home
arcade system origins), and a scan-line interrupt that can be
triggered at any scan line under program control.

During gameplay, Robby uses the scanline interrupt feature
to invoke three separate routines at lines 50, 100, and 200.
Each of these immediately schedules the next one in sequence.
Together, they synchronize the software to the frame rate.

Overall, Robby is a synchronous system that operates in
lockstep with the video display. Clocks include the 14 MHz
pixel clock, the 1.8 MHz Z80 clock, the 31 kHz line clock,
the 180 Hz software clock, and the 60 Hz frame clock. Not

1Robby is unique among commercial arcade games because Jamie Fenton,
the author of its software, released it to the public domain in 1999. See
http://www.fentonia.com/bio/
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Fig. 2. A message sequence chart illustrating part of the hardware/software
interaction of Robby. Time runs from top to bottom, downward arrows indicate
concurrently-running processes, and horizontal arrows indicate communica-
tion. Tick marks suggest the hardware and software clocks.

unusual for such systems, the slowest clock is separated from
the fastest by nearly six orders of magnitude, which would
make it inefficient to simulate everything at the fastest clock
frequency.

While technically the behavior of every part of Robby in
each clock cycle is determined, the designers certainly did
not conceive of it that way. Instead, each system (e.g., video,
sound) marches to its own clock, or in the case of the software,
is actually a collection of unscheduled (in the sense that the
exact running time was not considered) assembly-language
instructions. At some point, we presume the designers verified
the software met its timing constraints, i.e., that each interrupt
routine was able to complete its task before the next interrupt
occurred.

We designed the SHIM model to capture this mix of multi-
rate synchronous hardware and software that is scheduled both
coarsely (e.g., the software) and finely (e.g., the video display).

A. Software and Video Interaction
Figure 2 illustrates the original interaction of the software

with the video system, which raises a number of interesting
issues. At a coarse level, the software runs synchronously with
the video system (a periodic interrupt from the video system
is the software clock), but at a finer level, the software is
asynchronous, running a complex mix of instructions whose
exact running time is difficult to compute. The software
occasionally invokes a hardware blitter to draw objects on
the screen, which writes directly into the video memory.
Meanwhile, the video system is synchronous, reading data
from memory and continuously sending a stream of pixels
to the display.

In the existing game, there is a danger of nondeterministic
behavior because the blitter and video display is apparently
unsynchronized. Depending on when in the frame a particular
blit operation is requested, the effects may become visible
in the current frame, in the next frame, or a combination
of the two. The designer may have manually scheduled the
code to avoid this problem (e.g., by making sure important
blit operations happen during vertical refresh), but this is not
clear.

Double-buffering is one well-known solution to the prob-
lem. This uses two memory spaces for the frame buffer. At

Software Blit

buffer

Video out

buffer
pixels
sync

Pixel Clock

frame
end-of-frame

command
pixels

start-of-frame

Fig. 3. The software, blit, and video processes implementing a double-
buffered display. At the end of each frame, the software signals the blitter
memory to transfer its contents to the video display. The video system signals
the software at the start of each frame.

while 1 do
while Read end-of-frame is not true do

Read the blit command
Write the pixels to memory

Write the frame to the video process

Fig. 4. Pseudocode for the blitter process.

any time, one space is being displayed while the other is being
modified, and their roles are swapped after each frame.

Figure 3 is our model of the game. We added an “end-
of-frame” channel from the software to the blitter and an
additional video buffer. The blitter process (Figure 4) repeat-
edly takes an end-of-frame message that indicates whether the
software is done updating the current frame. When another
object needs to be displayed (i.e., when end-of-frame is false),
the blitter then received a command followed by stream of
pixels to be displayed. When the frame is done, the blitter
sends the frame to the video-out process. Since the size of
each frame is fixed, the video-out process knows when to read
the next frame from the blitter.

Although it appears the contents of the entire video frame
is copied from the blitter to the video-out buffer, this is merely
one way to interpret the model, not necessarily how it must be
implemented. In general, communication may be implemented
in a variety of ways, including through shared memory, which
is the typical way to implement a video display. In fact,
the transmission of the frame called for in the model would
probably be implemented by simply exchanging the roles of
two halves of a shared memory.

The software process is straightforward (Figure 5). It is a
loop that periodically waits for (reads from) the start-of-frame
signal. Within each cycle, in addition to executing the game
logic (where the enemies move, what score the player has
achieved, etc.), the software occasionally invokes the blitter to
draw objects on the screen such as the player and the enemies.

Modeling the video process is also easy (Figure 6). It

while the player is alive do
Wait for (read from) start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
Write “true” to end-of-frame

Fig. 5. Pseudocode for the software process.
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while 1 do
Write start-of-frame
for each line do

Emit line timing signals
for each pixel do

Read (wait for) the pixel clock
Read the pixel from memory
Send the pixel to the display

Read the next frame from the blitter

Fig. 6. Pseudocode for the video process.

write(o, v); /* Optional: the initial value */
while (1) {

read(i, v);
write(o, v);

}

Fig. 7. A single-place buffer process in Tiny-SHIM with an initial value.
The i channel is the input; o is the output. Stringing these in series gives
arbitrary-sized buffers.

consists of nested loops that read from memory to generate a
sequence of pixels to send to the display. An external pixel
clock is used to synchronize this system, and writing to the
start-of-frame channel synchronizes the software to the video
system.

V. SHIM DESIGN PATTERNS

A design pattern is an idiom that can be used to solve
recurring problems in system design. While we do not have
enough examples of SHIM systems to make a thorough study
of such patterns, here we present a number of them we expect
will be useful in practice.

A. Buffers
Although communication in SHIM is unbuffered, it is easy

to create finite-size buffered communication channels. For a
buffered channel of size n, introduce a chain of n single-place
buffer processes (Figure 7) that repeatedly read a value from
an input channel and immediately write to an output channel.
To initialize the contents of a channel, begin one or more of
the processes with a series of write statements.

We expect such buffers will be a very common design id-
iom. In the larger SHIM language, we plan to provide syntactic
sugar for specifying buffers. Three parameters characterize a
buffer: its size, the type of data it conveys, and any initial
contents.

B. Interrupts
There are two issues with interrupts and SHIM. The first

is the use of interrupts in the implementation of a SHIM
model. This seems like a natural way to implement channels on
which there is infrequent communication, or when integrating
existing hardware with a SHIM system.

Interrupts are also sometimes used to wake up a sleeping
(halted) processor, perhaps in response to a keystroke. This
could be modeled in SHIM, say, by adding a “wake up”
channel to a process representing a processor that would

/* Interrupting hardware process */
write(int, v);
/* ... */

/* Interrupt handler process */
while (1) {
read(int, d); /* Acknowledge interrupt */
/* process d */
write(buf, d);

}

/* Software process */
while (1) {
read(buf, q); /* Get data from the interrupt */
/* do something with q */

}

Fig. 8. A synchronous interrupt handler: the hardware generates a commu-
nication that is buffered by the interrupt handler process before being sent to
the software process.

be implemented in this way. A second periodic process that
waited for a keystroke could periodically poll and emit the
“wake up” event when one was detected. How to inform the
synthesis system that such an idiom should be implemented
with such a mechanism is outside the scope of this paper.

The other issue is explicitly modeling interrupt-like behavior
in a SHIM model, i.e., stopping a process at some point,
making it handle incoming data, then resuming from the
point at which it was interrupted. We cannot model traditional
software interrupts in their full generality because they are
nondeterministic.

Instead, we suggest the effects of well-behaved interrupts
be represented with three processes: the hardware generating
the interrupt, the interrupt handler, and the software program
being interrupted. For continuous streams of data, such as
from a network controller, Figure 8 illustrates a group of such
processes. Very little is going on here: the interrupt handler is
just a buffer.

Because our systems are deterministic, we do not support
truly asynchronous interrupts (i.e., that can at any time affect
the execution of a program). But such behavior is sometimes
needed, e.g., in a network connection where an out-of-band
signal can signal the end of a connection. To obtain this be-
havior, a designer must write in a polling style, i.e., explicitly
indicate where an “interrupt” may occur and check for it.
Figure 9 is an example illustrating this style.

In general, such a polling style works for any aperiodic
event that may be interleaved with periodic events. A key
challenge becomes balancing the relative execution rates of
the two processes so that one is not constantly forced to wait
for the other. The determinism of our model guarantees that the
behavior of such systems is always correct and well-defined,
but tuning to improve performance may still be necessary. As
usual, adding buffering to a system makes it resilient to jitter,
but not to mismatched rates.

C. Synchronous Processes
The synchronous model, such as that in the Esterel [7] and

Lustre [8], has proven itself useful in modeling a large class
of systems. In it, synchronous processes march to a common
clock and communicate in a broadcast style. Representing such
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/* Interrupting hardware process */
if (should_interrupt) {

write(int, 1);
write(intdata, v);

} else {
write(int, 0);

}
/* ... */

/* Interrupt handler process */
while (1) {

read(int, flag);
if (flag) {
read(intdata, q); /* acknowledge interrupt */
/* ... perform simple computations on q ... */
write(interrupted, 1);
write(buf, q);

} else {
write(interrupted, 0);

}
}

/* Software process */
while (1) {

read(interrupted, f); /* check for interrupt */
if (f) {
read(buf, q); /* get interrupt data */
/* handle the interrupt */

} else {
/* normal operation */

}
}

Fig. 9. An asynchronous interrupt handler. Here, the hardware periodically
emits a signal (int) that indicates whether an interrupting condition has
occurred. Similarly, the software periodically checks this signal.

systems in SHIM can be useful, either as a mechanism for
importing code from existing system, or as a design pattern
(e.g., certain systems might be best modeled as synchronous
islands communicating asynchronously).

In SHIM, synchronous systems can be expressed by intro-
ducing “redundant” communication. A synchronous process in
our model must periodically communicate with all of its peers
(i.e., every process with which it ever communicates). The
one-to-many channels typical in synchronous models can be
emulated with “fanout” processes that repeatedly read from an
input channel and replicate the data on every output channel.

Berry and Sentovich [9] propose a low-level way to imple-
ment a synchronous formalism in an asynchronous model of
computation. They translate a synchronous model into a net-
work of logic gates and then assemble a network of processes
with the same topology that simulate the gate network. Each
process alternates between a calculation and reset phase, and
together, all the processes march in lockstep to a single clock.

Figure 10 shows a gate-level model of a multiplexer illus-
trating a simplified construction style inspired by Berry and
Sentovich. Each gate is a simple process that reads all its
inputs and produces an output whose value is the function of
the gate. In each cycle, a value must be presented on every
input to produce all the outputs. This style cannot model cyclic
combinational circuits; it would deadlock.

It is not necessary to model synchronous systems in a
gate-level style, but its periodic communication is typical.
Figure 11 shows a small Esterel [7] program and two Tiny-
SHIM processes that implement its behavior. The behavior
of this Esterel program illustrates one of the subtleties of

a

b
sel

f
f1

f2

/* fork */
while (1) {
read(sel, v);
write(sel1, v);
write(sel2, v);

}

/* AND-I gate */
while (1) {
read(a, x);
read(sel1, y);
write(f1, x & !y);

}

/* AND gate */
while (1) {

read(b, x);
read(sel2, y);
write(f2, x & y);

}

/* OR gate */
while (1) {

read(f1, x);
read(f2, y);
write(f, x || y);

}

Fig. 10. A gate-level model of a multiplexer consisting of four processes.
The sel input selects whether the a or b input is passed to the output f. Note
that although the value one of the inputs is always ignored, communication
must take place on both inputs to produce an output.

module reqack:
input S, I;
output O;

signal R, A in
every S do

await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then
emit A

end
end loop

end every
end signal

end module

(a)

s = 0;
while ( s == 0 ) {
read(S, s);
read(R, r);
write(A, 0);

}
while (1) {
read(S, s);
read(R, r);
write(A, 0);
if (s == 0) {

read(S, s);
read(R, r);
if (s)

write(A, 0);
else

write(A, r);
}

}

(b)

state = 1;
while (1) {
read(S, s);
read(I, i);
nop = 1;
if (state == 1)

state = 2;
else if (state == 2) {

if (s) state = 3;
} else if (state == 3) {

if (!s && i) {
nop = 0;
write(R, 1);
read(A, a);
if (a) {
write(O, 1);
state = 2;

} else {
write(O, 0);
state = 4;

}
}

} else { /* state == 4 */
if (s) {

state = 3;
} else {

nop = 0;
write(R, 1);
read(A, a);
if (a) {
write(O, 1);
state = 2;

} else {
write(O, 0);

}
}

}
if (nop) {

write(R, 0);
read(A, a);
write(O, 0);

}
}

(c)

Fig. 11. (a) An Esterel program modeling a request/acknowledge handshake
and a translation of it into two SHIM processes. Process (b) is written in an
imperative style and models the second half of the Esterel program. Process
(c) is written in a state-machine style and models the first half.
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the Esterel language: the two concurrently-running threads
(separated by the || operator) communicate bidirectionally
within a cycle, i.e., the first process can send R to the second
process, which can respond with an A and cause the first
process to emit an O in response. Thus, the execution of the
two threads must be interleaved within a cycle.

The process in Figure 11b, which corresponds to the second
half of the Esterel program, is simpler because its control
behavior is much cleaner and because its execution does
not need to be interleaved. Each “cycle” starts by reading
S and R. In alternate cycles, the value of R is sent on A.
Note that the communication order is always S-R-A; making
synchronously communicating processes follow such a simple
discipline makes it easy to avoid deadlock.

The process in Figure 11c is much more complicated,
partially because of the richer Esterel constructs (sustain,
weak abort), but also because the reception of A must always
follow the transmission of R. Not doing this would lead to
a deadlock when this process was combined with the other
since the other process generates A only in response to R. As
a result, this process is constructed in such a way that it always
communicates in the order S-I-R-A-O to avoid introducing a
deadlock with the other process.

We translated these processes manually. Figure 11b was
simple enough to do by inspection, but the control behavior
of Figure 11c was complex enough that we first generated
an automata for the process (Berry and Gonthier [7] describe
how to generate automata from Esterel), then coded it in
Tiny-SHIM. The procedure described by Zeng et al. [10] for
translating Esterel to software might give a more efficient
implementation.

D. Synchronous Dataflow
Lee and Messerschmitt’s Synchronous Dataflow [11]—

SDF—can be implemented in SHIM once buffer sizes are
known. Each SDF actor becomes a process connected through
finite-size buffers. Inconsistent-rate SDF systems will even-
tually deadlock since our model does not allow unbounded
accumulation of data on buffers.

Interestingly, because SHIM communication is bounded,
the rate-computation step in SDF scheduling is unnecessary
for SHIM. Systems that can run forever in a specific set of
buffer sizes will run forever with any fair scheduler; the finite
capacity of the buffers effectively enforces relative process
execution rates.

Much of the SDF scheduling machinery remains useful for
SHIM. Choosing buffer sizes is an important step and SDF
scheduling algorithms can choose them appropriately. One
way to do this would be to compute the relative execution
rates, find some schedule, and simply use the maximum buffer
sizes required by that schedule. This is sufficient, but may
require larger buffers than necessary or produce less efficient
behavior.

Going the other way, an obvious improvement would be
to perform more static scheduling of SHIM systems. Fully
static scheduling may not be practical. Adding data-dependent
choice is tricky, as Buck [4] showed, but the techniques of Lin

and Zhu [12], [13] as well as Cortadella et al. [14] suggest
there are many possibilities.

Along these lines, it might be useful to identify SDF-like
subsystems in SHIM systems and apply some of the very
sophisticated SDF scheduling techniques [15] to them. The
result would be a system with a mix of static and dynamic
scheduling, which seems appropriate for certain classes of
applications.

E. Timing
In SHIM, communication serves the double purpose of

synchronization and data transfer. Ensuring precise timing,
therefore, can be done through synchronization to a periodic
clock, and while it might appear that SHIM would demand
that a clock wait for a slow process, our vision is to employ
a form of static timing analysis to determine that the process
will always be faster than its clock. While well-known for
hardware, static timing analysis is more difficult for software
because of its unpredictable nature.

An optimization procedure would start by trying to derive a
quasi-static schedule for the communication actions in a SHIM
system. For example, analyzing the process in Figure 11c
would give the simple periodic communication order S-I-R-
A-O. Comparing this with the process in Figure 11c, which
has the order S-R-A, the algorithm would note that the second
process runs “in the middle” of the first. If these two were
implemented in parallel, the algorithm might observe that the
second process always tries to read R before the first process
can write it, meaning that this communication action in the
first process would never block and any machinery (either
in hardware or software) to check to see whether the second
process is ready could be discarded.

F. Sensors
We can model sensors—unsynchronized time-varying envi-

ronmental signals—as processes with a single output through
which the sensor value is constantly available to be read. While
the timing of such values would be difficult to control without
an additional clock signal, the system will respond only to the
sequence of values it receives from the sensors.

G. Arbitration
Although SHIM prohibits nondeterministic access to shared

resources, it can describe deterministic arbiters. Choosing
an appropriate arbitration algorithm is the responsibility of
the designer. Round-robin, hold until release, or some more
complicated mechanisms are possible; the choice will vary
with the application.

VI. SOFTWARE IMPLEMENTATIONS

We describe two techniques for implementing SHIM systems
in single-threaded software. By design, these are not the
only possible implementations, and are certainly not the most
efficient, but they illustrates how simple SHIM systems are
to execute and points the way to more efficient techniques.
For example, Lin and Zhu [12], [13] describe a more efficient
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Mark all processes as ready
while there is some ready process do

Fairly select a ready process p
if no instruction is left in p then

Mark p as terminated
else if p reached read(c, ...) or write(c, ...) then

if another process p′ is blocked on c then
Synchronize p and p′ and mark p′ as ready

else
Mark p as blocked on c

else
Execute one step of p

Fig. 12. The basic software scheduling algorithm.

quasi-static technique for a similar model that unfortunately
may produce exponentially-large code.

The most basic algorithm, Figure 12, consists of a preemp-
tive scheduler that orchestrates the execution of the processes.
Repeatedly, the scheduler chooses a runnable process and
passes control to it. This process executes a single step (e.g.,
an assignment, a test) independently from other processes, or
synchronizes with another process, or fails to do so and blocks,
in any case passing the control back to the scheduler.

A. Fairness and Preemption
The algorithm in Figure 12 performs preemptive, fair

scheduling to ensure that every system executes as much as
possible, but such a pedantic approach is often unnecessary.
Many systems can be executed with an unfair, non-preemptive
scheduler (i.e., one that only regains control from a process
when the process reaches a read or write statement or termi-
nates), which is often more efficient; such scheduling policies
are permitted by the structure of communication in most well-
behaved systems.

First of all, systems that terminate or deadlock (i.e., reach a
point where every process has either terminated or is waiting
for communication on a channel and no two processes are
waiting on the same channel) do not need preemptive or fair
schedulers. It follows from the determinism of our systems that
any correct scheduling procedure (i.e., is always running some
ready process) will ultimately reach this point. However, many
interesting embedded systems are non-terminating, so we will
consider them in more detail.

Two subclasses of systems are interesting: cooperative
systems, which can be executed indefinitely with a non-
preemptive scheduler; and dynamically connected systems, a
type of cooperative system whose communication behavior
makes it impossible for an unfair scheduling policy to cause
process starvation. A cooperative system is one in which no
process diverges, i.e., fails to either terminate or initiate com-
munication beyond a point. Informally, a system is cooperative
if its processes never enter infinite loops that do not contain
a communication action. This is a dynamic property of the
whole system since a process may make a data-dependent
choice to enter such a loop.

By design, a cooperative system can be scheduled with a
non-preemptive scheduler because any process will eventually

relinquish control to the scheduler. However, a cooperative
system may still require a fair scheduling policy. Consider
a system consisting of two pairs of mutually-communicating
processes that do not otherwise communicate. An unfair
scheduler may choose to execute only one of the two pairs
of processes, which is undesirable because the system will
not approach its correct behavior in the limit.

Dynamically connected systems are an interesting subclass
of cooperative systems whose communication behavior en-
sures fair execution even without a fair scheduling policy.
The processes in a dynamically connected system may not
terminate, and the graph of communication channels over
which an infinite number of communication take place must
be connected, i.e., there cannot be two or more islands of
processes with non-infinite communication between them.

To see why a dynamically connected system can be exe-
cuted with an unfair, non-preemptive scheduler, consider an
unfair scheduler that tries to starve a particular process p.
By definition, p must try to communicate infinitely often
through at least one of its channels. If the scheduler starves
p, it will eventually block the other endpoint of this channel,
which will eventually block that process, and by induction all
other processes in the system since the graph of infinitely-
communicating processes is connected. The system will reach
the point where every other process is blocked and the
scheduler will be compelled to execute p, thus breaking the
logjam.

We expect most interesting embedded systems will be
dynamically connected since most systems do not deliberately
shut parts of themselves down forever. This is good since
unfair, non-preemptive schedulers are usually more efficient
than their fair, preemptive counterparts. The one possible
exception would be systems whose execution starts with an
initialization phase, which could include some terminating
processes. However, if these had to communicate with the
infinitely-running remainder of the system, an unfair scheduler
would still work.

B. An Efficient C Implementation
Here, we present an implementation of SHIM systems in C.

The scheduler is neither fair nor preemptive, but it is simple
to implement and correctly simulates dynamically connected
systems as discussed above.

Our Tiny-SHIM compiler, which is about 4000 lines of
OCAML, translates each process into a C function. The execu-
tion of these functions is coordinated by a simple scheduler.
Figure 13 is a complete example of a generated program for a
pair of simple processes. Shown in boxes, process p1 writes 42
on channel C, which the second process, p2, receives. This is
the simplest example that illustrates communication.

The scheduler, the main() function at the bottom of Fig-
ure 13, repeatedly removes and invokes the first process on
a linked list of runnable processes. By design, this scheduler
is extremely simple; all the action happens at the communi-
cation events in the processes, where context switching and
scheduling of other processes occurs.

For each process, the compiler generates three things: an
integer state variable (in Figure 13, p1 state and p2 state); a
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process p1 {
output C;
write(C, 42);

}

process p2 {
input C;
int v;
read(C, v);

}

typedef struct process_struct { /* Linked list cell*/
void (*process)(void); /* process function */
struct process_struct *next; /* next in list */

} process_t;

typedef struct { /* Channel */
int value; /* value being transferred */
process_t *waiting; /* blocked process, if any */

} channel_t;

channel_t C = { 0, 0 }; /* definition of channel C */

int p1_state = 0; /* process state */
int p2_state = 0;
void p1_function(void); /* forward declarations */
void p2_function(void);

/* Linked list of runnable processes */
process_t p1 = { p1_function, 0 };
process_t p2 = { p2_function, &p1 };
process_t *head_process = &p2;

void p1_function() {
switch (p1_state) { /* resume at current state */
case 1: goto L1;
case 0: goto L0;
}

L0:
/* write(C, 42) */
C.value = 42;
if (C.waiting) {
(C.waiting)->next = head_process; /* schedule */
head_process = C.waiting; /* reading process */

}
C.waiting = &p1; p1_state = 1;
return; /* suspend */

L1:
;

}

void p2_function() {
static int v;
switch (p2_state) { /* resume at current state */
case 0: goto L0;
case 1: goto L1;
}

L0:
/* read(C, v) */
if (!C.waiting) {
C.waiting = &p2; p2_state = 1;
return; /* suspend */

}
L1:
v = C.value;
(C.waiting)->next = head_process; /* schedule */
head_process = C.waiting; /* writing process */
C.waiting = 0;

}

int main() /* Scheduler */
{

process_t *running_process;
while (head_process) {
running_process = head_process; /* remove head */
head_process = running_process->next;
(*(running_process->process))(); /* run it */

}
return 0; /* everything terminated or deadlocked */

}

Fig. 13. A complete example of synthesized Tiny-SHIM code that includes
two processes (in the boxes) that communicate and the main() function that
schedules them.

function that, when called, runs the process until it reaches a
read or write statement; and a cell for a linked list that points
to the process function. Each cell is an object of type process t
that also holds a pointer to the next cell in the linked list. Each
cell is given the name of its process.

At any time, a process may be in one of four states: running,
runnable, blocked on a channel, or terminated. These states
are distinguished largely by the location of the cell for each
process. When a process is runnable, its cell is linked into
the list of all runnable processes. When a process is blocked
on a channel, the data structure for the channel holds the
process’s cell. When a process is running, its cell is effectively
held by the code for the process, which will place it in a
channel structure when the process blocks on a channel. When
a process terminates, the cell for the process is effectively
forgotten.

When the system starts, every process is runnable by
definition, so the cells for all processes are linked together.
Note that the determinism property tells us that the order in
which processes appear in the list does not matter; we chose
the order in Figure 13 because it was easy to generate.

Processes communicate through the channel t data type.
Each holds two things: the value being communicated (even
though the communication behaves synchronously, a sequen-
tial software implementation requires this single-place buffer),
and a pointer to the cell for process, if any, that is blocked
waiting to communicate on this channel. Note that the next
field of a cell being held by a channel is unused and im-
mediately overwritten when the cell is added to the runnable
list. Since the channels in our systems are fixed, all channel t
objects are allocated statically. In Figure 13, there is a single
channel, C, that is initialized near the top of the program.

The code for each process is translated into a function—
p1 function and p2 function in Figure 13—that begins with a
switch statement that uses the process’s state variable to send
control to just after where the process last suspended itself.

That a process must be able to suspend and resume itself
means that the SHIM model cannot be implemented as a pure
C library without insisting the programmer do something like
insert a switch statement like the one we use. The semantics
require some sort of concurrent semantics, such as coroutine-
like suspend/resume behavior. The SystemC simulation library
provides such behavior (Liao et al. [16] describe the SystemC
kernel under its old name, Scenic), but relies on a threads pack-
age implemented in part in assembly language. While Tiny-
SHIM could take a similar approach, the compilation approach
we propose makes the generated code more efficient, portable,
and opens the door to optimizations. The other disadvantage of
a library-based approach is that it cannot provide any guarantee
of correctness, e.g., a library user could use C constructs to
circumvent the channel-based communication model.

Each process starts with an initial label, L0, that corresponds
to the beginning of the process. After that, each read and
write statement generates another label with a distinct state.
The state variables for each process, p1 state and p2 state, are
encoded with sequential integers. A separate terminated state
for each process is not needed because once control falls off
the end of a process, the system effectively forgets about it
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/* write(C, 42) */
C.value = 42;
if (C.waiting) {

}
C.waiting = &p1;
p1_state = 1;
return;
L1:

(a)

/* read(C, v) */
if (!C.waiting) {

}
L1:
v = C.value;
(C.waiting)->next =

head_process;
head_process =

C.waiting;
C.waiting = 0;

(b)

Fig. 14. When (a) write runs before (b) read, the writing process stores the
value, indicates that it is waiting on the channel, and suspends itself. Later
(indicated by a dashed line), the reading process captures the value, schedules
the writing process, and clears the channel.

/* read(C, v) */
if (!C.waiting) {

C.waiting = &p2;
p2_state = 1;
return;

}
L1:
v = C.value;
(C.waiting)->next =

head_process;
head_process =

C.waiting;
C.waiting = 0;

(a)

/* write(C, 42) */
C.value = 42;
if (C.waiting) {

(C.waiting)->next =
head_process;

head_process =
C.waiting;

}
C.waiting = &p1;
p1_state = 1;
return;
L1:

(b)

Fig. 15. When (a) read runs before (b) write, the reading process indicates
that it is waiting on the channel and suspends. Later (indicated by a dashed
line), the writing process stores its value, schedules the reading process, and
suspends, which immediately passes control to the reading process. Finally,
the reading process reads the value, schedules the writing process, and clears
the channel.

and will never again place its cell on the runnable list.
The generated code for the statements in each process

is straightforward (i.e., one-to-one) except for the code for
read and write statements. The code for these statements is
clever and relies heavily on both the point-to-point nature of
communication and the behavior of the scheduler. There are
two cases. Figure 14 depicts the behavior of the simpler case:
when a write operation runs before the corresponding read.
Here, the writer saves its value and blocks. Later, when the
reading process reaches a read on the channel (this may not
happen; the writer may be blocked forever), it reads the value
and schedules the waiting writer process.

Figure 15 shows the more complicated case, when a read is
reached before a corresponding write. Here, the reader imme-
diately suspends itself. If a corresponding write is reached, it
writes the data and makes the reader execute immediately by
scheduling it. Because the scheduler always runs the process
at the front of the list, the return statement in the write process
(Figure 15b) effectively passes control directly to the read
process, which captures the value, schedules the writer to
resume later, and clears the channel.

The writer immediately transfers control to the reader in this
manner to avoid the possibility of overwriting the data in the
channel. If two writes to the same channel occurred without

an intervening read, the data would be overwritten.
The SHIM communication semantics suggest a visualization

of system behavior: Figure 16 is a message-sequence-chart-
like diagram that was generated from the execution of the
processes in Figure 11. Arrows indicate communication and
dark line segments indicate which process is running at any
given time. The length of these segments does not denote
actual execution time, although the diagram could be modified
so they do.

The behavior near the top of Figure 16 illustrates an inter-
esting effect that can arise when implementing synchronous
specifications in SHIM: although everything is synchronous,
the scheduler discovered an opportunity for pipelining. Specif-
ically, the printer process, which repeatedly reads from the O
channel, does not run until after the testbench process has
generated the stimulus (specifically, the S signal) for the next
cycle. It is only the attempt by the sfork process to transmit
to the requester process that forces the printer process to run.

After this point, the schedule settles down into predictable,
periodic behavior. For efficiency, it would have been nice for
the scheduler to have behaved this way from the beginning,
but the determinism of the SHIM model ensures this is only
an optimization and that it does not change the sequence of
events communicated on each channel.

VII. A HARDWARE IMPLEMENTATION

To complement the software implementation presented in
the previous section, in this section we present a syntax-
directed translation of Tiny-SHIM into synchronous digital
hardware. As in the software case, the SHIM semantics admit
many other translations as well as optimizations of this one.
Thus, this particular translation is meant to illustrate the issues
in a hardware implementation rather than be an ultimate
solution.

Like Berry’s translation of Esterel [17], our technique uses
a template for each type of statement and produces a circuit
whose structure follows the control-flow graph of the program.
A true value on a wire in a cycle indicates control passes
through the corresponding part of the program in that cycle.

Our templates are simpler than Berry’s because our lan-
guage does not include the preemption constructs of Esterel,
but our translation deals with dataflow using static single-
assignment analysis. We employ the algorithm of Cytron et
al. [18] and construct a circuit using a technique like that of
Edwards et al. [19].

Our synthesis procedure translates each process into a
control-flow graph with four node types: assignments, deci-
sions, merges, and cycle boundaries. Static single-assignment
analysis then identifies the data pathways, and finally the
control-flow graph and datapath information is mechanically
translated into gates.

Figure 17 shows the four types of blocks in the control-
flow graph and how they are translated into circuitry. Each
block is translated into a control circuit fragment, which
implements the control-flow of the imperative code, and a
datapath fragment, which implements operations on variables.

An action block, which assigns the value of a (side-effect-
free) expression to a variable, has a trivial control fragment:
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testbench sfork
S=0

requestor arbiter

S1=0

S2=0
I=0

R=0
A=0

S=1
S1=1

printer

O=0
S2=1I=0

R=0
A=0

O=0

S=0
S1=0

S2=0
I=0

R=0
A=0

O=0

S=0
S1=0

S2=0
I=1

R=1
A=1

O=1

S=1
S1=1

S2=1
I=0

R=0
A=0

O=0

S=0
S1=0

S2=0
I=1

R=1
A=0

O=0

S=0
S1=0

S2=0
I=0

R=1
A=1

O=1

Request serviced
immediately

Request
serviced
next cycle

Fig. 16. A message sequence chart generated from the synchronous processes
in Figure 11. Time runs from top to bottom. Dark line segments indicate when
each process is running; their length does not denote actual running time.
Three additional processes were added: a testbench process that generates a
pattern of S and I input signals, a fork process that fans out the S signal onto
two channels, and a printer process that acts as a sink.

CFG
Node

Control
Fragment

Datapath
Fragment

Assignment v = e e

Decision

e

e

Merge

Cycle
Boundary . . .

Fig. 17. The four types of control-flow blocks and their hardware equivalents.
The signal flow in the hardware schematic fragments follows the structure of
the control-flow graph.

if ( e ) s1
else s2

e

s2 s1

while ( e ) s

e

s

write( c, e ) read( c, v )

c = e v = c

Fig. 18. The translation of Tiny-SHIM statements into control-flow graph
fragments.

just a wire that passes control to the next statement in
order. The complexity naturally comes in the datapath, which
calculates the value of the expression.

A decision block evaluates its expression and passes a
Boolean value back to a control circuit, which passes control
to either its then or else branch.

A merge block forms the logical OR of its two (mutually ex-
clusive) control inputs; the datapath implements a multiplexer
that selects between variables coming from its two incoming
branches. These are the concrete realization of the φ functions
in static single-assignment form.

Finally, a cycle boundary turns into a collection of registers:
one for the control path, and one for each bit of each live
variable crossing the cycle boundary.

Figure 18 shows how we translate each statement in Tiny-
SHIM into a control-flow graph fragment. The if-else statement
is straightforward; notice that it executes in a single cycle
if its bodies do. The while statement is mostly a decision
in a loop, but a cycle boundary after the body ensures that
no combinational cycles are produced. In many cases, this
extra cycle is not necessary; eliminating these is an obvious
optimization that we will consider in the future.

The template for communication is the richest: a pair of
post-test loops each containing a cycle boundary. Figure 18
shows the simple case: a single read matching a single write.
Figure 19 is a multiple read/write case, which uses a pair of
OR gates to collect the various read and write requests before
passing them to the other process.
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c = v1

write( c, v1 )

c = v2

write( c, v2 )

c = v3

write( c, v3 )

v4 = c

read( c, v4 )

v5 = c

read( c, v5 )

request

acknowledge

Fig. 19. An example of translating multiple communication actions on the
same channel. This assumes that control is at most one read and one write in
any cycle, i.e., that at most one communication takes place per channel per
cycle. The placement of cycle boundaries in our construction ensures this.

The cycle boundaries in the read and write transactions
force each communication action to take place at least one
cycle after it is requested, thus ensuring that at most one
communication takes place per channel per cycle. This seem-
ingly wasteful choice greatly simplifies the logic: while it
would be possible to construct circuitry that perform mul-
tiple communications through a single channel in the same
cycle, such circuitry is very complicated in general because
communication can be data-dependent. For example, imagine
a pair of processes that contain four read statements and three
write statements. If these statements could all execute in a
single cycle and each were conditional, the circuitry would
have to handle the case where the first read matched up with
the first write or the second write, the second read matched up
with the first write or the second write and so forth. The OR
gates in Figure 19 would certainly not be enough. We plan to
eventually consider such a rich translation, but it will require
substantial static analysis.

The OR gates for read and write collect the “request” signals
from their communication counterparts. Our language requires
that all read states for a particular channel reside in a unique
process, and that the corresponding write statements for the
channel reside in another, different process. By construction,
the inputs to each OR gate are exclusive because control can
only be at a single point within each process.

To illustrate our translation procedure, consider the pair of
processes in Figure 20. Although fairly simple, they illustrate
an idiom for (deterministic) arbitration for a shared resource.
Each consists of two nested loops; the innermost loops are
data-dependent. Furthermore, the communication behavior is
also data-dependent, although this example is simple because
it uses only a single channel. Figure 21 illustrates the behavior
of these two processes plus a sink process that receives D (not
shown);

Figure 22 shows how the code of Figure 20 is translated
into a control-flow graph using the templates from Figure 18,
which can be translated into hardware using the templates

d = 0;
while (1) {
e = d;
while (e > 0) {

write(C, 1);
write(C, e);
e = e - 1;

}
write(C, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(C, r);
if (r != 0) {
read(C, v);
a = a + v;

}
}
b = b + 1;
write(D, b);

}

Fig. 20. A pair of processes to illustrate the hardware synthesis process.
The receiving process on the right reads a value from the channel and uses it
to decide whether to immediately read a normal value on the channel or to
treat it as an end-of-block marker. The process on the left produces a series
of such blocks consisting of descending sequences of numbers.

sender receiver
C=0

sink

D=1C=1
C=1
C=0

D=2
C=1
C=2
C=1
C=1
C=0

D=3
C=1
C=3
C=1
C=2
C=1
C=1
C=0

D=4

Fig. 21. A message sequence chart illustrating the behavior of the processes
in Figure 20. An additional sink process was added to receive the values on
the D channel.

of Figure 17. The two OR gates in the center of Figure 22
determine when the processes attempt to communicate. The
circuitry for write(D, b) has been omitted for simplicity.

The circuit implied by Figure 22 has a lot of redundancy
and presents many opportunities for optimization. In addition
to the usual Boolean simplifications, the most interesting
aspect of such circuits is their communication pattern. The
current translation of read-write pairs is relatively complicated
because it must cope with all cases, e.g., read executed before
write, write runs before read, etc. However, as is often the case,
the communication pattern in this example is regular and such
regularity could be used to greatly simplify the circuitry used
for communication. Lin [12] performs exhaustive analysis to
determine communication patterns in a model much like ours,
although he uses the result for software synthesis.
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Fig. 22. The translation of the processes in Figure 20. The circuitry for the
communication on D has been omitted for simplicity.

VIII. RELATIONSHIP TO OTHER MODELS

The SHIM model is similar to many existing concurrent
models of computation: a restriction of some, a generalization
of others. We strove to find the most liberal model that
somehow remains tractable.

A. CSP
SHIM differs from Hoare’s CSP [2] primarily in its focus

on determinism. Like Hoare, we use a rendezvous model of
communication in which two communicating processes can
only advance when they synchronize, which has the advantage
of simple semantics yet can easily model more flexible (and
complicated) buffered communication. Hoare’s processes also
block when waiting for communication, but our insistence
that a process may only block on a single channel guarantees
determinism.

B. Kahn Networks
SHIM systems are deterministic for much the same reason

as Kahn’s [1], but are more restrictive. Kahn’s processes
communicate through unbounded buffers, which can be both
an advantage (our systems are subject to deadlock from buffers
filling up; Kahn’s are not) and a liability. Adding unbounded
buffers makes Kahn networks Turing-complete and difficult to
schedule since it is desirable to use bounded buffer memory
wherever possible. Parks [5] scheduling algorithm does this,
but it can be difficult to implement and (understandably)
provides no a priori bounds on buffer sizes, a real liability
for resource-constrained embedded systems.

Once buffer sizes are fixed, a Kahn network is easily
translated into SHIM. Determining these sizes can be difficult

in practice, but at least the deterministic property of our model
can help to answer the question of whether a particular system
will deadlock because of insufficient buffer space.

Like ours, other formalisms are restrictions of Kahn’s
networks. Karp and Miller’s [20] and Lee and Messer-
schmitt’s [11], [21] systems both restrict the behavior of
processes in a Kahn-like model to make their relative execution
rates predictable. Again, because SHIM can be used for Kahn
systems with fixed-sized buffers, these other models can be
translated into SHIM with no loss of behavior.

C. Asynchronous Hardware Models
SHIM was inspired in part by van Berkel’s asynchronous

handshake circuits [22], which show among other things the
practicality of implementing a traditional imperative language
consisting of assignments, conditionals, and loops using noth-
ing but rendezvous communication. Handshake circuits and
the Balsa/Tangram/Haste language, however, are aimed at the
challenges of implementing asynchronous digital circuits and
as such contain many low-level directives that would not make
sense, say, for software.

Another troubling aspect of handshake circuits is their
inclusion of arbiters, which break the determinism of the
model. While certainly adding to the expressiveness of the
model, arbiters suddenly makes simulation more difficult.
Janin, Bardsley, and Edwards [23] describe a simulator that
takes snapshots of the system at every nondeterministic choice
to allow the simulation to be restarted from these points.

Related to CSP, Josephs’s Receptive Processes [24] are
lower-level than SHIM. Aimed at modeling the gate-level
behavior of asynchronous circuits, they do not explicitly rep-
resent data, assuming instead that it is encoded in interaction
order. Josephs also proposed a deterministic variant [25] that
somehow the same as Kahn’s processes[26], but they remain
at a very low-level of abstraction that is inappropriate for
software. For example, they do not speak of numbers, only
single bits.

The Polis project [27] had aims similar to ours. They pro-
posed a unifying model of computation that could support both
hardware and software implementations (CFSMs [28]) and
constructed simulators and hardware and software synthesizers
around it. Their model, however, is nondeterministic and its
specification of processes rather abstract, making it difficult to
synthesize large pieces of software.

D. Synchronous Models
Synchronous models [29] are also concurrent and determin-

istic. While attractive, these models place a bigger scheduling
burden on a designer and thus tend to be better-suited for
lower-level models. Our motivation for using an asynchronous
model came in part from trying to model something like the
video game described in Section IV in a purely synchronous
model. That system is most naturally described as multi-rate,
with clocks ranging from pixel-speed to frame-speed.

The synchronous languages Lustre [8], and Signal [30]
both handle multi-rate dataflow, but only the Esterel [7]
language supports an imperative style of coding—natural for
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software—and unfortunately its support for multi-rate behavior
is currently lacking, despite a number of attempts. Berry and
Sentovich’s construction [9] show that the Esterel semantics
can be implemented in an asynchronous model.

E. Heterogeneous Models
Projects such as Lee’s Ptolemy [31] take a different ap-

proach to modeling hardware/software systems. Ptolemy is
primarily a flexible simulation environment in which differ-
ent models of computation can be supplied in the form of
“domains.” Communication between domains, however, has
largely been ad hoc, and the main focus of Ptolemy has
been simulation rather than synthesis. SHIM could easily be
implemented as a domain in Ptolemy.

The Metropolis project [32], a follow-on to the Polis
project [27], tries to provide a more structured environment
for multiple models of computation. They provide a meta-
modeling language in which different models of computation,
such as SHIM, can be specified. Like Ptolemy, Metropolis
could be used to implement SHIM.

F. FairThreads
Like SHIM, FairThreads [33] also provide deterministic

concurrency. Our approach in SHIM is that of Kahn networks:
restricted communication patterns ensure determinism for any
fair scheduling policy. By contrast, FairThreads achieves de-
terminism through a fixed scheduling policy: a cooperative
round-robin algorithm. The scheduler cannot interrupt the
running thread. Each process must explicitly pass control to
the scheduler, which is compelled to run the next thread in a
predefined sequence. While this approach makes it possible to
implement more complex communication schemes, it is only
relevant for software running on a single processor, and is
thus not applicable for the wide range of hardware/software
embedded systems we want to model with SHIM.

IX. CONCLUSIONS AND FUTURE WORK

We propose SHIM, a deterministic, concurrent model for
embedded hardware/software systems that amounts to Kahn
networks with rendezvous-style communication. We presented
Tiny-SHIM, a simple language for realizing such systems and
its formal semantics, a motivating example illustrating how
to model a real-world hardware/software system, techniques
for modeling familiar constructs, and software and hardware
implementations.

We are currently creating a hardware/software codesign
environment around this model and plan to demonstrate a
real-world system implemented with it. We envision at least
four major components of this system: an extended SHIM
language with, for example, a richer type system; a simulation
environment that allows complete systems to be debugged
before any hardware or target system is complete; a software
synthesis system that takes hints about how to implement
certain processes (e.g., “make this an interrupt service rou-
tine”) and generates C code for various real-time operating
system environments; and a hardware synthesis system that

can generate register-transfer level VHDL or Verilog. For both
hardware and software synthesis, part of the challenge is en-
suring that the native communication mechanisms (e.g., shared
memory or inter-process communication in software; wires
in hardware) correctly implement the SHIM communication
model.

By design, timing is conspicuously absent from the SHIM
model. Our philosophy is that functional verification should be
separate from timing verification. The determinism of SHIM
makes it possible to do this, just as for synchronous digital
logic or sequential software programs, but in this paper we
have only addressed functional aspects of our model.

A long-term goal is to add Giotto-like [34] timing con-
straints to SHIM and perform similar scheduling analysis. The
much richer control behavior of SHIM systems makes this
much more challenging than the equivalent in Giotto, however.
We expect the analysis will be symbolic and fairly abstract to
be practical; we plan to address this problem in the future.

In addition to mechanisms for optimizing performance
(speeding simulation, generating faster hardware circuits), a
SHIM-based development system will need mechanisms for
static timing analysis. For hardware, the problem is fairly well-
understood and it should be possible to adapt many existing
techniques for use in our environment. Timing analysis of
software is much less mature. A long-term goal of SHIM is to
bring some of the discipline of concurrent hardware design to
software; migrating static timing analysis will be an important
part of this effort.

Another idea, suggested by a reviewer, is to develop al-
gorithms for determining buffer sizes. Doing this in general
(e.g., asking whether the system will deadlock and whether
introducing additional buffering could prevent it) is probably
too costly (it is at least as hard as state-space exploration).
Instead, we suspect that the problem is tractable and interesting
for certain classes of SHIM systems, such as feed-forward
networks or those in the synchronous dataflow model, so we
plan to pursue this question.

Like Kahn, we make two assumptions about communication
and processes in our model: that all channels are one-to-one
and that a process may only block on a single channel at a
time. While simple and convenient for implementation, these
restrictions are stronger than necessary to guarantee deter-
minism. Non-compositionality is one unfortunate consequence
of these assumptions: the behavior of a group of parallel
process cannot be expressed as a process because of the single-
blocking-channel rule. In a forthcoming publication, we will
relax these requirements and provide a more expressive model
that remains deterministic.

We envision SHIM becoming the standard for developing
both the software and hardware in wide class of embedded
systems. We believe the discipline and simplicity of the
underlying model will be a key enabler for raising the level
of abstraction available to designers.
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