
456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Optimizing Sequential Cycles Through Shannon
Decomposition and Retiming

Cristian Soviani, Olivier Tardieu, and Stephen A. Edwards, Senior Member, IEEE

Abstract—Optimizing sequential cycles is essential for many
types of high-performance circuits, such as pipelines for packet
processing. Retiming is a powerful technique for speeding
pipelines, but it is stymied by tight sequential cycles. Designers
usually attack such cycles by manually combining Shannon de-
composition with retiming—effectively a form of speculation—but
such manual decomposition is error prone. We propose an efficient
algorithm that simultaneously applies Shannon decomposition
and retiming to optimize circuits with tight sequential cycles.
While the algorithm is only able to improve certain circuits
(roughly half of the benchmarks we tried), the performance in-
crease can be dramatic (7%–61%) with only a modest increase in
area (1%–12%). The algorithm is also fast, making it a practical
addition to a synthesis flow.

Index Terms—Circuit optimization, circuit synthesis, encoding,
sequential logic circuits.

I. INTRODUCTION

LOGIC synthesis procedures typically consist of a collec-
tion of algorithms applied in sequence that make fairly

local modifications to a digital circuit. Usually, these algorithms
take small steps through the solution space, i.e., by making
many little perturbations of a circuit, and do not take into
account what their successors can do to the circuit. Such an
approach, while simple to code, often leads to suboptimal
circuits.

In this paper, we propose a logic synthesis procedure that
considers a postretiming step while resynthesizing an entire
logic circuit using Shannon decomposition to add speculation.
The result is an efficient procedure that produces faster cir-
cuits than performing Shannon decomposition and retiming in
isolation.

Our procedure is most effective on high-performance
pipelines. Retiming [1] is usually applied to such circuits,
which renders the length of purely combinational paths nearly
irrelevant since retiming can divide such paths among multiple
clock cycles to increase the clock rate. However, because re-
timing cannot change the number of registers on a sequential
cycle—a loop that passes through combinational logic and one

Manuscript received April 3, 2006; revised August 9, 2006. This
work was supported in part by a National Science Foundation CAREER
Award, in part by a grant from Intel Corporation, in part by an award
from the Semiconductor Research Corporation (SRC), and in part by the
New York State’s NYSTAR program. This paper was recommended by
Guest Editor D. Sciuto.

The authors are with the Department of Computer Science, Columbia
University, New York, NY 10027 USA (e-mail: soviani@cs.columbia.edu;
tardieu@cs.columbia.edu; sedwards@cs.columbia.edu).

Digital Object Identifier 10.1109/TCAD.2007.890583

Fig. 1. (a) Single-cycle feedback loop prevents retiming from improving this
circuit, but (b) applying Shannon decomposition reduces the delay around the
loop so that (c) retiming can distribute registers and reduce the clock period.

or more registers—the depth of the combinational logic along
sequential cycles becomes the bottleneck.

Shannon decomposition provides a way to restructure logic
to hide the effects of late-arriving signals. This is done by
duplicating a cone of logic, feeding constant 1s and 0s into the
late-arriving signal and placing a (fast) two-input multiplexer
on the output of the two cones.

Following Shannon decomposition with retiming can greatly
improve overall circuit performance. Since Shannon decompo-
sition can move logic out of sequential loops, a subsequent re-
timing step can better balance the logic to reduce the minimum
clock period, giving a more efficient circuit.

Combining Shannon decomposition with retiming is a well-
known manual design technique, but to our knowledge, ours is
the first automated algorithm for it.

A. Example

In the sequential circuit in Fig. 1(a), the combinational block
f has delay 8, so the minimum period of this circuit is 8.

The designer put three registers on each input, hoping that
retiming would distribute them uniformly throughout f to de-
crease the clock period. Unfortunately, the feedback loop from
the output of f to its input prevents retiming from improving
the period below the combinational length of the loop, which
is 8, since retiming cannot change the number of registers
along it.

0278-0070/$25.00 © 2007 IEEE

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 457

Fig. 2. Our algorithm for restructuring a circuit S to achieve a period c.

Applying Shannon decomposition to this circuit can enable
retiming. Fig. 1(b) illustrates how: We have made two dupli-
cates of the combinational logic block and added a multiplexer
to their outputs. While this actually increased the longest com-
binational path to 8 + 1 = 9 (throughout this paper, we assume
that multiplexers have unit delay), it greatly reduced the delay
around the cycle to the delay of only the mux, namely one. This
enables retiming to pipeline the slow combinational block to
produce the circuit in Fig. 1(c), which has a much shorter clock
period of (1/4)(8 + 1) = 2.25.

The main strength of our algorithm is its ability to consider a
later retiming step while judiciously selecting where to perform
Shannon decomposition. For example, a decomposition algo-
rithm that did not consider the effect of retiming would reject
the transformation in Fig. 1(b) because it made the circuit both
larger and slower.

B. Overview of the Algorithm

Our algorithm (Fig. 2) takes a network S and a timing
constraint (a target clock period) c and uses resynthesis and
retiming to produce a circuit with period c if one can be found,
or returns failure.

Our algorithm operates in three phases. In the first phase,
“Bellman–Ford” (shown in Fig. 3 and described in detail in
Section II), we consider all possible Shannon decompositions
by considering different ways of restructuring each node. This
procedure vaguely resembles technology mapping in that it
considers replacing each gate with one taken from a library
but does so in an iterative manner because it considers circuits
with (sequential) loops. More precisely, the algorithm attempts
to compute a set of feasible arrival times (FATs) for each signal
in the circuit that indicate that the target clock period c can be
achieved after resynthesis and retiming. If the smallest such c
is desired, our algorithm is fast enough to be used as a test in a
binary search that can approximate the lowest possible c.

In the second phase (“resynthesize,” as described in
Section III), we use the results of this analysis to resynthesize
the combinational gates in the network, which is nontrivial
because to conserve area, we wish to avoid the use of the most
aggressive (read: area-consuming) circuitry everywhere but on
the critical paths. As we saw in the example in Fig. 1, the circuit
generated after the second phase usually has worse performance
than the original circuit.

We apply classical retiming to the circuit in the third phase,
which is guaranteed to produce a circuit with period c.

In Section IV, we present experimental results that suggest
that our algorithm is efficient and can produce a substantial
speed improvement with a minimal area increase on half of

Fig. 3. Our Bellman–Ford algorithm for computing FATs.

the circuits we tried; our algorithm is unable to improve the
other half.

C. Related Work

The spirit of our approach is a fusion of Pan’s technique
for considering retiming while performing resynthesis [2] with
the technology-mapping technique of Lehman et al. [3], which
implicitly represents many different circuit structures. How-
ever, the details of our approach differ greatly. Unlike Pan,
we consider a much richer notion of arrival time due to our
considering many circuit structures simultaneously, and our
resynthesis technique bears only a passing resemblance to
classical technology mapping as our “cell library” is implicit
and we consider reencoding signals beyond simple inversion.

Performance-driven combinational resynthesis is a mature
field. Singh et al.’s tree-height reduction [4] is typical: It
optimizes critical combinational paths at the expense of non-
critical ones. Along similar lines, Berman et al. [5] propose the
generalized select transform (GST). Like us, the GST employs
Shannon decomposition, but our technique also considers the
effect of retiming. Other techniques include McGeer et al.’s
generalized bypass transform [6], which takes advantage of
certain types of false paths, and Saldanha et al.’s exact sensi-
tization of critical paths [7], which makes corrections for input
patterns that generate a late output.

Our algorithm employs Leiserson and Saxe’s retiming [1],
which can decrease the minimum period of a sequential net-
work by repositioning registers. This commonly used transfor-
mation cannot change the number of registers on a loop; this
paper employs Shannon decomposition to work around this.

458 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Sequential logic resynthesis has also attracted extensive
attention, such as the work of Singh [8]. Malik et al. [9]
combine retiming and resynthesis (R&R). Pan’s approach to
R&R [2] is a superset of ours, but our restriction to Shannon
decomposition allows us to explore the design space more
systematically.

Hassoun and Ebeling’s [10] architectural retiming mixes
retiming with speculation and prediction to optimize pipelines;
Marinescu and Rinard’s technique [11] proposes using stalling
and forwarding. Like us, they identify critical cycles as a
major performance issue, but they synthesize from high-level
specifications and can make architectural decisions. This paper
trades this flexibility for more detailed optimizations.

II. FIRST PHASE: COMPUTING ARRIVAL TIMES

To account for retiming, we use a modified Bellman–Ford
algorithm (Fig. 3) instead of classical static timing analysis to
determine whether the fastest circuit we can find can be retimed
so as to achieve period c. If the first phase is successful, it
produces as a side-effect arrival times that guide our resynthesis
algorithm, which we describe in Section III.

A. Basics

Our algorithm operates on sequential circuits that consist
of combinational nodes and registers. Formally, a sequential
circuit is a directed graph S = (V,E) with vertices V = PI ∪
PO ∪ N ∪ R ∪ {spi, spo}. PI and PO are the primary inputs
and outputs, respectively; N are the single-output combina-
tional nodes; R are the registers; and spi and spo are two su-
pernodes connected to and from all PIs and POs, respectively.
The edges E ⊂ V × V model the interconnect: fan-in(n) =
{n′|(n′, n) ∈ E}. We assume that S has no combinational
cycles and each vertex is on a path from spi to spo. We define
weights d : V → R, which represent the following:

d(n) =

arrival time (from clock), n ∈ PI
delay of logic, n ∈ N
required time (to clock), n ∈ PO
0, n ∈ R ∪ {spi, spo}.

Arrival times are computed in a topological order on the
combinational nodes

at(n) = d(n) + max
n′∈fan-in(n)

at(n′). (1)

B. Shannon Decomposition

Let f : B
p → B be the Boolean function of a combinational

node n and let 1 ≤ k ≤ p. Then,

f(x1, x2, . . . , xp) =xkfxk
+ xkfxk

where

fxk
= f(x1, . . . , xk−1, 1, xk+1, . . . , xp) and

fxk
= f(x1, . . . , xk−1, 0, xk+1, . . . , xp).

Fig. 4. Shannon decomposition of f with respect to xk .

Fig. 5. Basic Shannon “cell library.”

This Boolean property, due to Shannon, has an immediate
consequence: Modifying a node, as shown in Fig. 4, leaves
its function unchanged even though its input-to-output delays
change. This is known as the Shannon or GST [5].

Our algorithm relies on the fact that arrival time at(n) may
decrease if xk arrives later than all other xi (i �= k)s, i.e.,

at(n) = max {at(fxk
), at(fxk

), at(xk)} + dmux.

Since the circuit must compute both fxk
and fxk

, the area
typically increases. Intuitively, this is speculation: we start
computing f before knowing xk.

C. Shannon Decomposition as a Kind of Technology Mapping

A key to our technique is our ability to consider many
different resynthesis options simultaneously. Our approach re-
sembles technology mapping in that we consider replacing each
node in a network with one taken from a cell library. Fig. 5
is the beginnings of our library for characterizing multiple
Shannon decompositions (our full algorithm considers a larger
library that builds on this one—see Section II-E). Unchanged
leaves the node unchanged, and Shannon bypasses one of the
inputs using Shannon decomposition. Both of these are local
changes; the Start variant begins a Shannon decomposition that
can either be extended by Extend or terminated by Stop.

While the Unchanged and Shannon cells can be used in
arbitrary places, the (three-wire) output of a Start cell can only
feed the three-wire input of an Extend or Stop cell. Furthermore,

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 459

Fig. 6. Shannon decomposition through node replacement. (a) Initial circuit.
(b) After Shannon transformation.

to minimize node duplication, we only allow a single Shannon-
encoded input per node, so at most one input to an Extend node
may be Start or Extend.

Fig. 6 illustrates how this works. Fig. 6(a) shows the two
Shannon transforms we wish to perform, with one involving
a single node and the other involving two. We replace node h
with Shannon, node i with Start, and node j with Stop. Fig. 6(b)
shows the resulting circuit, which embodies the transformation
we wanted.

D. Redundant Encodings and Arrival Times

Using Shannon decomposition to improve circuit perfor-
mance is a particular case of the more general idea of using re-
dundant encodings to reduce circuit delay. The main challenge
in producing a fast circuit is producing as early as possible the
inputs of gates that are nearer the outputs of the circuit. There
is not much flexibility when a single bit travels down a single
wire, but using multiple wires to transmit a single bit might
allow the sender to transmit partial information earlier. This
can enhance performance if the downstream computation can
be restructured so it performs most of the computation using
only partial data and then quickly calculating the final result
using the remaining late-arriving data.

Fig. 7 illustrates this idea on the Shannon transformation
of a single node. On the left, inputs x, y, and z are each
conveyed on a single wire, which is a trivial encoding we label
s0. Just after that, however, we choose to reencode x using
the three-wire encoding s1, in which one wire selects which
of the other two wires actually carries the value. This is the
basic Shannon-inspired encoding. On the left side of Fig. 7, this

Fig. 7. Shannon transform as redundant encoding.

“encoding” step amounts to adding two constant-value wires
and interpreting the original wire x as a select. However, once
we feed this encoding into the two copies of f , the result is
more complicated. Again, we are using the s1 encoding with
x as the select wire, but instead of two constant values, the two
other wires carry fx and fx. On the right of Fig. 7, we use a two-
input multiplexer to decode the s1 encoding into the single-wire
s0 encoding.

Using such a redundant encoding will speed up the operation
of the circuit if the x signal arrives much later than the y or
z signals. When we reencode a signal, the arrival times of
its various components can differ, which is the source of the
speedup. For example, at the s1 encoding of x, the x wire
arrives later, while the two constant values arrive instantly.

A central trick in the first phase of our algorithm is the
observation that only arrival times matter when considering
which cell to use for a particular node. In particular, the detailed
topology of the circuit, such as whether a Shannon decompo-
sition had been used, is irrelevant when considering how best
to resynthesize a node. Only arrival times and the encoding of
each arriving signal matter.

E. Our Family of Shannon Encodings

While a general theory of reencoding signals for circuit
resynthesis could be (and probably should be) developed, in
this paper, we restrict our focus to a set of encodings derived
from Shannon decompositions that aim to limit area overhead.
In particular, evaluating a function with a single encoded in-
put only ever requires us to make two copies of the original
function.

The basic cell library of Fig. 5 works well for most circuits,
but some transformations demand the richer library we describe
in this section. For example, the larger family is required to
convert a ripple-carry adder into a carry-select adder.

Technically, we define an encoding as a function e : B
k → B

that maps information encoded on k wires to a single bit.
Our family of Shannon-inspired encodings S = {s0, s1, . . .}
are defined recursively, i.e.,

si=

{x0 →x0, if i=0
x0, . . . , x2i →
si−1(x2x0+x2x1, x3x0+x3x1, x4, . . . , x2i), otherwise.

The first few such encodings are listed here

s0 = x0 →x0

s1 = x0, x1, x2 →x2x0 + x2x1

s2 = x0, x1, x2, x3, x4 →x4(x2x0+x2x1)+x4(x3x0+x3x1).

460 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Fig. 8. Encoding x, evaluating f(x, y, z), and decoding the output for the s0,
s1, s2, and s3 codes.

Fig. 8 shows a circuit that takes three inputs x, y, and
z; encodes x to the s1, s2, and s3 codes before evaluating
f(x, y, z) with the s3-encoded x; and then decodes the result
back to the single-wire s0 encoding. While this circuit as a
whole is worse than the simple Shannon decomposition of
Fig. 7, subsets of this circuit provide a way to move between
encodings.

We think of the layers of Fig. 8 as “Shannon codecs”—small
circuits that transform an encoding sa to sb. We write ca,b for
such a codec circuit. For a < b, ca,b just adds pairs of wires
connected to constant 0s and 1s. For a > b, ca,b consists of
some multiplexers.

We chose our family of Shannon encodings so that evaluating
a functional block with a single input with a higher order
encoding only ever requires two copies of the functional block.
Fig. 8 shows this for the s3 case; other cases follow the same
pattern.

In general, we only allow a single encoded input to a cell
(all others are assumed to be single wires, i.e., s0-encoded).
To evaluate a function f , we make two copies of it, feed the
nonencoded signals to each copy, feed x0 and x1 from the
encoded input signal to the two copies, which compute f0 and
f1 of the encoded output signal, and pass the rest of xi from the
encoded signal directly through to form f2, etc. The Extend cell
in Fig. 5 is a case of this pattern for encoding s1.

We consider one important modification of this basic idea:
the introduction of “codec” stages at the inputs and outputs of
a cell. Following the rules suggested in Fig. 8, we could place
arbitrary sequences of encoders and decoders on the inputs and
output of a functional block, but to limit the search space, we
only consider cells that place one encoder on a single input and
one or more decoders on the output. For instance, the Stop cell
in Fig. 5 is derived from the Extend cell by appending a decoder
to its output. Similarly, the Start cell consists in an encoder plus
the Extend cell. Finally, the Shannon cell adds both an encoder
and a decoder to the Extend cell.

Neither the number of inputs of a cell nor the index of the
encoded input matters to the computation of arrival times since
we assume that each node has the same delay from each input
to the output. Therefore, we identify a cell with a triplet of
encodings: 〈si, sf , so〉, where sf denotes the encoding of the

Fig. 9. Computing FATs for a node f .

encoded input fed to the combinational logic, si denotes the
encoding of the input at the interface of the cell (which may
differ from sf because of an encoder: i = f or i = f − 1), and
so denotes the encoding of the output of the cell (which may
differ from sf because of decoders: 0 ≤ o ≤ f).

The columns of the table in Fig. 9 correspond to the triplets
for each of the five cells in the basic Shannon cell library
(Fig. 5).

Our algorithm considers many additional cell types, which
arise from employing higher degree encodings. In theory, there
are an infinite number of such cells, but in practice, only a few
more are ever interesting. The circuit in Fig. 8 illustrates some
higher degree encodings, corresponding to 〈s0, s3, s0〉. Note
that our algorithm would never generate this particular cell in
its entirety because if sf is s3, then si may be either s3 or s2,
not s0. It could, however, generate the cell with an s2-encoded
input, i.e., 〈s2, s3, s0〉.

F. Sets of FATs

The first phase of our algorithm (Fig. 3) attempts to compute
a set of FATs that will guide us in resynthesizing the initial
circuit into a form that can be retimed to give us the target clock
period c.

In classical static timing analysis, the arrival time at the
output of a gate is a single number: the maximum of the arrival
times at its input plus the intrinsic delay of the gate [see (1)]. In
our setting, however, we represent the arrival time of a signal
with a set of tuples, each representing the arrival of the signal
under a particular encoding. Considering sets of arrival times
allows us to simultaneously consider different circuit variants.

Our arrival-time tuples contain one real number per wire in
the encoding. Since no two encodings use the same number of
wires, the arity of the tuple effectively defines the encoding. For
example, an arrival-time three-tuple such as (2, 2, 3) is always
associated with encoding s1 since it is the only one comprised
of three wires.

The example in Fig. 9 illustrates how we compute the set of
FATs at a node f through brute-force enumeration. The code
for this appears in lines 17–24 of Fig. 3.

The FAT sets shown in Fig. 9 indicate that we know input x
can arrive as early as time 14 as an unencoded (s0) signal or at
times 13, 13, and 11 for the three wires in an s1-encoded signal.
Similarly, y can arrive as early as time 6, and z may arrive as
early as time 8 in s0 form or (7, 7, 7) in s1 form.

Considering only the cell library of Fig. 5, the table in
Fig. 9 shows how we enumerate the possible ways f can be

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 461

implemented. The rows of this table correspond to the iteration
over the fan-ins of the node—line 17 in Fig. 3. The columns
are produced from the iterations over input encoding from the
fan-in (line 19) and output encoding (line 21).

The Unchanged case is considered first for each input. Since
every input has the s0 encoding for this case, we obtain the same
arrival time for each input. Here, this is 14 + 2 = 16, which
is the earliest arrival time of x, which is the latest arriving s0

signal, plus 2, i.e., the delay of f .
The Shannon case is considered next for each input. This

produces an s0-encoded output, so the resulting arrival times
are singletons. For example, if y is the s1-encoded input, the
longest path through the cell starts at x (time 14), passes
through f (time 16), and goes through the output mux (time
17; we assume that muxes have unit delay). This gives the (17)
entry in the Shannon column in the y row.

Next, the algorithm considers a Start cell: one that starts
a Shannon decomposition at each of the three inputs. For
example, if we start a Shannon decomposition with s0 input
x, the two s0 inputs for y and z are passed to copies of f (this
is the structure of a Start cell), and the s0 x input is passed
to the three-wire output (Start cells produce an s1-encoded
output). The outputs of the two copies of f become the x0 and
x1 outputs of the cell and arrive at time 8 + 2 = 10 because z
arrives at time 8 and f has a delay of 2. The s0 x input is passed
directly to the output, which we assume is instantaneous, so
it arrives at the output at time 14. Together, these produce the
arrival-time tuple (10, 10, 14), which is the entry in the x row
in the Start column.

The Stop and Extend cases require one of their inputs to be s1

encoded. Since no such encoding for y is available (i.e., there
is no triplet in its arrival time set), we do not consider using y
as this input; hence, the Stop and Extend columns are empty in
the y row.

In Fig. 3, the AT function (called in lines 22–24) is used to
compute the arrival time for each of these cases. In general,
the arrival time AT (〈si, sf , so〉, t, T, d(n)) of a variant of node
n with shape 〈si, sf , so〉 depends on the arrival time t of the
encoded input, the set of arrival times T of the other inputs,
and the delay d(n) of the combinational logic. It is computed
using regular static timing analysis, i.e., (1) for each of the
components of the cell. We do not present pseudocode for the
AT function since it is straightforward yet fussy.

Even this simple example produced more than 13 arrival-
time tuples from five (Fig. 9 does not list the higher order
encodings our algorithm also considers); such an increase is
typical. Fortunately, most are not interesting as they obviously
lead to slower circuits. Since in this phase we are only interested
in the fastest circuit, we can discard most of the results of this
exhaustive analysis to greatly speed up the analysis of later
nodes—we discuss this next.

G. Pruning FATs

As shown in Fig. 9, a node can usually be resynthesized
in many ways. Fortunately, most variants are not interesting
because they are slower than others. In this section, we describe
our policy for discarding implementations that are never faster

Fig. 10. Pruning the FATs from Fig. 9.

than others since in the first phase we are only interested in
whether there is a circuit that will run with period c or faster. In
the second phase, we will use slower cells off the critical path
to save area (see Section III).

If p and q are two arrival times at the output of a node,
then we write p � q if an implementation of the circuit where
the arrival time of the node is q cannot be faster (i.e., admit
a smaller clock period) than an implementation where the
arrival time of the node is p. Consequently, if we find cell
implementations that produce p and q, we can safely ignore
the implementation that produces q without fear of erroneously
concluding that a particular period is unattainable. Our FAT
set pruning operation removes all such dominated arrival times
from the set of arrival times produced as described previously.
In Fig. 3, this pruning is performed on lines 25 and 26.

In fact, we implement a conservative version of the � relation
described previously because the precise condition is actually a
global property. If a node is off the critical path, for example,
it is probably the case that more arrival times could be pruned
than our implementation admits, but practically we find that our
pruning works quite well in practice.

For s0-encoded signals, the ordering is simple: The faster-
arriving signal is superior.

For two arrival times for signals encoded in the same way,
the ordering is piecewise: If every component is faster, then
the arrival time is superior; otherwise, the two arrival times are
incomparable because a later Shannon decomposition might be
able to take advantage of the differential in ways we cannot
predict locally.

For arrival times corresponding to different encodings, the
argument is a little more subtle. Consider Fig. 8. In general,
only the first two wires in an encoded signal are ever fed directly
to functional blocks (e.g., x0 and x1 in the s3 encoding in
Fig. 8 and the others are fed to a collection of multiplexers.
The wires in higher level encodings must eventually meet more
multiplexers than those in lower level encodings, so a lower
level encoding whose elements are strictly better than the first
elements in a higher level encoding is always going to be better.

Concisely, our choice of � (our pruning rule) is, for two
arrival times p = (p0, p1, . . . , pn) and q = (q0, q1, . . . , qm) for
potentially different encodings,

p � q iff n ≤ m, p0 ≤ q0, p1 ≤ q1, . . . , and pn ≤ qn.

Fig. 10 illustrates how pruning reduces the size of the FAT
set computed in Fig. 9. The singleton (15) dominates most of
the other arrival times (some of which appear more than once
in Fig. 10—remember that we ultimately operate on FAT sets,
not on the table of Fig. 9), but (10, 10, 14) is not comparable

462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

with (15) (for a singleton to dominate a triplet, the first value in
the triplet must be greater or equal).

That the eleven arrival times computed in Fig. 9 (only eight
are distinct) boil down to only two interesting ones (Fig. 10)
is typical. Across all the circuits we have analyzed, we find
that pruned FAT sets seldom contain more than four elements.
This is a key reason our algorithm is efficient: Although it is
considering many circuit structures at once, it only focuses on
the fastest ones.

H. Retiming

At this point, we have described our technique for restruc-
turing circuits based on Shannon decomposition: We consider
reimplementing isolated nodes with variants taken from a vir-
tual library (Fig. 5 shows a subset) and discussed how we can
represent these variants as FAT sets. We want now to choose
variants so as to improve the effects of a later retiming step.

Retiming [1] follows from noting that moving registers
across combinational nodes preserves the circuit functionality.
Retiming tries to move registers to decrease long (critical)
combinational paths at the expense of short (noncritical) ones.
However, it cannot decrease the total delay along a cycle.

Let ret(S) be the minimum period achievable through retim-
ing. If dC and rC are the combinational delay and the number
of registers of cycle C in S, respectively, then ret(S) ≥ dC/rC .
Similarly, if P is a path from spi to spo having rP registers and
of combinational delay dP , then ret(S) ≥ dP/(rP + 1). Thus,
ret(S) ≥ lb(S), where

lb(S) = max
(

max
C∈cycles(S)

dC
rC

, max
P∈paths(S,spi,spo)

dP
rP + 1

)
(2)

is known as the fundamental limit of retiming.
Classical retiming may not achieve lb(S). To achieve it in

general, we must allow registers to be inserted at precise points
inside the nodes. We will assume this is possible (which it is,
for example, in field-programmable gate arrays (FPGAs) [12]),
so ret(S) = lb(S) holds. We shall thus focus on transforming
S to minimize lb(S).

I. Using Bellman–Ford to Compute Arrival Times

Computing lb(S) by enumerating cycles and applying (2) is
not practical because the number of cycles may be exponential;
instead we use the Bellman–Ford single-source shortest path
algorithm,1 where our source node is spi.

To apply Bellman–Ford, which has no notion of registers,
we treat registers as nodes with negative delay: ∀r ∈ R, d(r) =
−c, where c is the desired period. Only registers are assigned
these artificial delays; the other nodes, i.e., the ones containing
normal combinational logic, keep their positive delays d(n) as
defined before in Section II-A. Pan [2] also uses this technique.

1Bellman–Ford reports if a graph has any negative cycles or not. Only if
all cycles are positive can it compute the shortest paths; it runs in O(V E).
Technically, we change signs, so we detect positive cycles instead of negative
ones and compute the longest path instead of the shortest if all cycles are
negative. Note that this is not solving the longest simple-path problem, which
allows positive cycles and is known to be NP-complete.

Now, the total length of path P ∈ paths(S) becomes∑
n∈P d(n) =

∑
n∈P\R d(n) +

∑
n∈P∩R d(n) = dP − c · rP ,

where the first term is the delay of the combinational logic and
the second corresponds to the registers.

For any path P ∈ paths(S, spi, spo), we have

c ≥ dP/(rP + 1) ⇔ dP − c · rP ≤ c ⇔
∑
n∈P

d(n) ≤ c.

Moreover, any cycle C ∈ cycles(S) is a closed path, so

c ≥ dC/rC ⇔ dC − c · rC ≤ 0 ⇔
∑
n∈C

d(n) ≤ 0.

Equation (2) becomes

c ≥ lb(S) ⇔
{∀C ∈ cycles(S),

∑
n∈C d(n) ≤ 0

∀P ∈ paths(S, spi, spo),
∑

n∈P d(n) ≤ c.

That is, the period c ≥ lb(S) iff no cycle is positive, and the
longest path from spi to spo is at most c. The first condition is
verified if the Bellman–Ford algorithm converges to a bounded
number of iterations. If so, it also gives us at(n)—the longest
path between spi and any node n. We verify the second condi-
tion by checking if at(spo) ≤ c.

Therefore, lb(S) can be approximated by binary search on
the period c.

To consider the combined effect of our restructuring and
retiming, we use a variant of the Bellman–Ford algorithm that
uses the FAT computation plus pruning operation as its central
relaxation step (Fig. 3). The main loop (lines 7–13 in Fig. 3)
terminates when the relaxation has converged to a solution or it
has become fairly obvious that no solution will be found. This
latter case is actually a heuristic, which we will discuss in the
next section.

If Bellman–Ford converges, i.e., reaches a fixed-point such
that at(spo) ≤ c, then there exists an equivalent circuit for
which lb(S) ≤ c, so, after retiming, c is feasible. To prove
this claim, we simply build a circuit using the cell variants
we considered during the relaxation procedure. However, such
a brute-force construction produces overly large circuits, so
instead we use a more clever construction that limits Shannon-
induced duplication to critical paths only, which is the subject
of Section III.

We illustrate our brute-force construction on the sample in
Fig. 12. Convergence of our augmented Bellman–Ford algo-
rithm implies a fixed-point solution, i.e., a FAT set for each
node, that is stable under the pruned FAT set computation. For
the sample in Fig. 12, Bellman–Ford converges to the fixed-
point solution at the bottom of that figure, so we claim that the
period c = 3 is feasible.

For each node, we build an implementation corresponding to
each element of its FAT set; we are free to choose any cell from
Fig. 5 and use any FAT elements at each input, as described in
Section II-F.

For example, for node h at the bottom of Fig. 12, we consider
two implementations. These are Start and Shannon (Fig. 5),
both with g’s output as the select. These give arrival times of
(4, 4, 8) and (9).

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 463

The reconstruction procedure will succeed for each node as a
consequence of how we computed the pruned FAT sets during
the Bellman–Ford relaxation. If Bellman–Ford converges, the
resulting network will have lb(S) ≤ c, so we will have a
solution after retiming.

J. Termination of Bellman–Ford and max-iterations

Our modified Bellman–Ford algorithm has three termination
conditions: two that are exact and one that is a heuristic. The
most straightforward is the check for a fixed point on line 12.
This is the only case in which we conclude that the relaxation
has converged and is usually reached quickly in practice.

The second termination condition is due to the topology
of our circuit graphs. If no fixed point exists, the s0-encoded
arrival time in fat(spo) will eventually become greater than c.
This is because any positive cycle (the absence of a fixed point
means such a cycle exists) must pass through spo and along any
positive cycle, the arrival times must keep increasing during the
relaxation procedure. So, checking the s0-encoded signal (there
is always exactly one) suffices. This is the check in line 10.

The third termination condition—the hard iteration bound
of max-iterations on line 7—is a heuristic. We employ such
a bound because convergence usually happens quickly, while
nonconvergence can be very slow. It is always safe to terminate
the loop earlier, i.e., assume that the rest of the iterations, if con-
tinued, would have never converged: There is no inconsistency
risk, but we may get a suboptimal solution.

We expect convergence to be fast because of the behavior of
the usual Bellman–Ford algorithm. When it converges, it does
so in at most n iterations, where n is the number of vertices
in the graph.2 Indeed, the smallest positive cycle in the graph
has a length of at most n. However, provided that the vertices
with positive weights are visited in a topological order (w.r.t.
the dag obtained from the graph by removing vertices with
negative weights), the convergence is in practice much faster. In
our adapted Bellman–Ford algorithm, we use such an ordering
for the inner loop at lines 8 and 9. Therefore, we expect fast
convergence when period c is feasible. In particular, the speed
of convergence, while depending on the circuit topology, should
be essentially independent of the distance between the feasible
clock period c tried and the lowest clock period achievable by
our technique. However, when c is unfeasible and gets closer
to the lowest achievable period, the number of iterations before
overflow may increase arbitrarily.

The graphs in Fig. 11 provide empirical evidence for this.
There, we plot iteration counts for three large circuit samples
(with max-iterations arbitrarily set to 2000; we observe similar
behavior across all circuits). The scale is logarithmic. For the
first two examples, we do observe that divergence is indeed
costly to detect when c gets close to the limit. In the third
case, probably because of a tight cycle close to one circuit
output, we have no such curve. However, what matters is that
we observe that convergence is always very fast. Therefore, it

2Unfortunately, we do not have a similar result for our variant because of the
complex behavior of FAT set generation and pruning. However, even if we knew
a closed-form bound, we would still prefer to use our heuristic early termination
condition because it produces very good results much faster.

Fig. 11. Iterations near the lowest c. (a) s38417 circuit sample. (b) s9234
circuit sample. (c) s13207 circuit sample.

makes sense to choose max-iterations to be a small quantity. We
choose max-iterations = 200 and get good results for all our
benchmarks, that is to say the algorithm never fails to obtain
stable FAT sets because of an early timeout. As a result, if the
minimum feasible c is computed by binary search, the result is
very close to the true value.

III. SECOND PHASE: RESYNTHESIZING THE CIRCUIT

The first phase of the algorithm focuses exclusively on
performance: It considers only the fastest possible circuit it can
find and ignores the others for efficiency. This makes sense
since it is trying to establish the existence of a fast-enough
circuit, but we would really like to find a fast-enough circuit
that is as small as possible. The goal of the second phase of
the algorithm, which is described in this section, is to select a

464 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Fig. 12. Computing FATs for a circuit with desired period c = 3. Each gate
has delay 2. The topmost circuit is the initial condition; the bottom is the fixed
point. A total of seven complete passes over the circuit was required to find the
fixed point; only the relaxation steps taken during the first are shown.

minimal-area circuit that still meets the given timing constraint.
We do this heuristically.

The circuit produced by this part of our algorithm is often
worse than the original. The circuit in Fig. 13(a) happens
to have the same minimum period (9) as the original circuit
in Fig. 12. However, lb(S) as defined by (2) is 3; thus, af-
ter retiming [Fig. 13(b)], the minimum period drops to our
target of 3.

Fig. 13. (a) Circuit from Fig. 12 restructured according to the FAT sets. Its
period (9) happens to be the same as that of the original; in general, it is different
(and not necessarily better). (b) After retiming, the circuit runs with period 3 as
desired.

Fig. 14. Selecting cells for node h in Fig. 12.

To minimize area under a timing constraint—the main goal
of the second phase—we use a well-known scheme from tech-
nology mapping: Nodes that are not along critical paths are
implemented using smaller slower cells, in such a way that the
overall minimum clock period is the same.

Our construction rebuilds the circuit starting at the primary
outputs and register inputs and working backward to the pri-
mary inputs and register outputs. We insist that the circuit is free
of combinational loops, so this amounts to a reverse topological
order.

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 465

For each gate, we consider the FATs of its fan-ins computed
in phase one and the feasible required times (FRTs) of its fan-
outs, which we compute as part of the reconstruction procedure.
Fig. 14 illustrates this for the h node from Fig. 12. The FRTs
for primary outputs and registers are the FATs for these nodes
computed in the first phase. For each gate, we construct a cell
(occasionally more than one) that is just fast enough to
meet the deadline (i.e., compute the outputs to meet the re-
quired times given the arrival times) without being larger than
necessary.

An FRT set for a node is much like a FAT set: It consists of
tuples of numbers that describe when each wire in an encoded
signal is needed. At each node, we consider different cells for
the node that produce the desired encoding (i.e., the arity of the
FRT tuple). Since the FAT sets were produced by considering
all possible cells at each node, we know that some cell will
achieve the desired arrival time. To save area, we select the
smallest such cell.

If we are lucky, an Unchanged cell suffices, meaning the
functional block does not need to be duplicated and there are
no additional multiplexers. In Fig. 13(a), node g appears as
Unchanged.

For node f , the Stop cell was selected. Note that the signal
from h to f uses an s1 encoding.

For h, we actually selected two cells: Start and Shannon.
Fortunately, they share logic—the duplicated h logic block. The
s1-encoded output of Start goes to f ; the s0 output of Shannon
is connected to g.

Note that when a register appears on an encoded signal, it
is simply replicated on each of its wires. In Fig. 13(a), for
example, the register on the output of h became four: one on
the output of the mux, an s0-encoded signal, and three for the
s1-encoded signal, which are the two outputs from the two h
blocks and the selector signal (the output of g). While this may
seem excessive, the subsequent retiming step may remove many
of these registers.

A. Cell Families

That we need multiple cells for a particular node to meet
timing happens often enough that we developed a heuristic
to reduce the area in such a case. It follows from a simple
observation: Many of the cells in Fig. 5 are similar. In fact, some
are subsets of others; so, if we happen to be able to use a cell
and its subset to implement a particular node, it requires less
area than if we use two different cells.

We call cells that only differ by the addition or deletion
of multiplexers on the output members of a family. By this
definition, each cell is a member of exactly one family. In Fig. 5,
there are three such families: Unchanged is a family by itself,
Shannon and Start is another family (they both encode one of
their inputs), and Extend and Stop are the third (each takes a
single s1-encoded input). Families with cells with higher order
encodings are larger.

To save area, we try to use only cells taken from the same
family since each cell in a family can also be used to implement
others in the family without making additional duplicates of the
node’s function.

Fig. 15. Propagating required times from outputs to inputs. Only the critical
paths (dotted lines) impose constraints.

B. Cell Selection

Working backward from the outputs and register inputs, we
repeat the enumeration step from the first phase (e.g., Fig. 9) at
each node to generate the set of all cells that are functionally
correct for the node (i.e., have the appropriate input and output
encodings). From this set, we try to select a set of cells that both
are small and can meet the timing constraint at the node. Fig. 14
illustrates this process for the h node in Fig. 12.

We consider the cells generated by the enumeration step one
family at a time in order of increasing area. Practically, we
build a feasibility table whose rows represent cell families and
whose columns represent required times. Such a table appears
on the right side of Fig. 14. Our goal with this table is to select
the minimum number of rows with small area to cover all the
required times for the node. We consider rows instead of cells
because implementing multiple cells from the same family is
only as costly as implementing the largest cell in the family.

An entry in the table is 1 if some cell in the row’s family
satisfies the required time of the column. To evaluate this, we
construct each possible cell for the node (such as those on
the left side of Fig. 14) and calculate the arrival times of the
outputs from the arrival times of the inputs. An arrival time
satisfies a required time if it corresponds to the same encoding
and the arrival time components are less than or equal to the
required times. Note that these criteria are simpler than the �
relationship used in the pruning.

We select several rows of minimum area that cover all
columns (i.e., a collection of cell families that contain cells that
are fast enough to meet the timing constraint). As mentioned,
there is usually a row that covers all columns, so we usually pick
that. Otherwise, we continue to add rows until all columns are
covered. Fig. 14 is typical: The second row covers all columns,
so we select it.

Selecting a cell in this way is a greedy algorithm that does not
consider any later ramifications of each choice. We have not
investigated more clever heuristics for this problem, although
we imagine that some developed for performance-oriented
technology mapping would be applicable.

C. Propagating Required Times

Once we have selected a set of families that cover all of the
required time constraints (i.e., solved the feasibility problem),
we construct all cells in these families (sharing logic within
each family) and connect them to the appropriate fan-outs. In
Fig. 14, we choose the second row and build both cells in that
family. Fig. 15 shows this: A single pair of h nodes are built,

466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Fig. 16. Performance/area tradeoff obtained by our algorithm on a 128-bit
ripple-carry adder.

but both an s1-encoded signal is produced, that with required
time (4, 4, 8), and an s0 signal with required time (9).

At this point, we now have a circuit that includes cells
implementing the node we are considering. Because we built
them earlier, we know the required times at the inputs to each
the fan-outs, so we work backward from these times to calculate
the required times at the inputs to our newly created cells.
This is simple static timing analysis on a real circuit fragment
(i.e., we now only have wires and gates, not cleverly encoded
signals).

Fig. 15 illustrates how we propagate required times at the
outputs of a cell back to the inputs. In this case, it is easy
because we do not need to consider encoded signals specially.
This is standard static timing analysis. For example, the (4, 4, 8)
constraint on one of the outputs means that the inputs to each
copy of h must be available at time 2 (h has a delay of 2).

Note that in general, required times may differ from arrival
times because of slack in the circuit. We do not see this in this
example since it is small and h is on the critical path, but it
does happen quite frequently in larger examples. Again, we take
advantage of this to reduce area.

We may now have several required times for each input of
a family of cells, but the encoding must be the same for a
particular input because they are all in the same family. In
this case, we simply compute the overall required time of each
input by taking the pairwise minimum, and we place it on the
corresponding fan-in.

If two or more cell families are built, several required times
with different encodings will be placed on the fan-ins. In this
case, the fan-in nodes will see the current node as two or more
distinct fan-outs instead of one. Such complex situations rarely
occur in practice.

IV. EXPERIMENT

We implemented our algorithm in C++ using the SIS libraries
[13] to handle Berkeley Logic Interchange Format files. Our
testing platform is a 2.5-GHz 512-MB Pentium 4 running on
Fedora Core 3 Linux.

TABLE I
EXPERIMENTS ON ISCAS89 SEQUENTIAL BENCHMARKS

A. Combinational Circuits

While our algorithm is most useful on sequential circuits, it
can also be applied to purely combinational circuits. However,
classical combinational performance optimization techniques,
such as the speedup function in SIS, outperform our technique
because they consider more possible transforms than com-
binations of Shannon decompositions. In particular, the best
ones consider the functions of the nodes and perform Boolean
manipulations. Our algorithm treats functional nodes as black
boxes, which both greatly reduces the space of optimizations
we consider and greatly speed ups our algorithm.

Our algorithm does perform well on certain combinational
circuits. Fig. 16 shows how it is able to trade area for reduced
delay with a 128-bit ripple-carry adder. For this example, we
varied the requested c and generated a wide spectrum of adders,
ranging from the original ripple-carry at the lower right to a
full carry-select adder at the upper left. Our algorithm makes
evaluating such a tradeoff practical: it only took 22 s to generate
all 122 variants.

B. Sequential Benchmarks

We ran our algorithm on mid- and large-sized ISCAS89
sequential benchmarks and targeted an FPGA-like, three-input
lookup-table architecture. Hence, we report delay as levels of
logic and area as the number of lookup tables.

Following Saldanha et al. [7], we run script.rugged and per-
form a speed-oriented decomposition decomp -g; eliminate -1;
sweep; speed_up -i on each sample. We then reduce the
network’s depth while keeping its nodes 3-feasible with

SOVIANI et al.: OPTIMIZING SEQUENTIAL CYCLES THROUGH SHANNON DECOMPOSITION AND RETIMING 467

reduce_depth -f 3 [14]. We report the results of this classical
FPGA delay-oriented flow in the Reference column in Table I.

Starting from these optimized circuits, we compare running
retiming alone (retime -n -i, which is modified to use the unit
delay model) with running our algorithm followed by retiming.
The Retimed and Ours columns list the period and area results.
Our running time, which is listed in the Time column, includes
finding the minimum period by binary search, so this actually
includes multiple runs of our algorithm. We verified the sequen-
tial equivalence of the input and output of our algorithm using
Verification Interacting with Synthesis [15]; our reported times
do not include this.

Although our algorithm does nothing to half of the examples,
it provides a significant speedup for the other half at the expense
of an average 5% area increase. The algorithm is very fast,
especially when no improvement can be made. Its runtime
appears linear in the circuit size. Its memory requirements are
low, e.g., 70 MB for the largest example s38417. Our technique
therefore appears to scale well.

That our algorithm is not able to improve certain circuits is
not surprising. Our algorithm is fairly specialized (compared
to, say, retiming, and only attacks time-critical feedback loops
that have small cuts (the loops can be broken by cutting only
a few wires). Circuits on which we show no improvement
may have wide feedback loops (e.g., the programmable-logic-
array-style next-state logic of a minimum-length encoded finite-
state machine or a multibit “arithmetic” feedback) or may
be completely dominated by feedforward logic (e.g., simple
pipelined data paths).

V. CONCLUSION

We presented an algorithm that systematically explores com-
binations of Shannon decompositions while taking into account
a later retiming step. The result is a procedure for resynthesizing
and retiming a circuit under a timing constraint that can produce
faster circuits than Shannon decomposition and retiming run in
isolation. Our decompositions are a form of speculation that
duplicates logic in general, but we deliberately restrict each
node to be duplicated no more than once, bounding the area
increase and also simplifying the optimization procedure.

Our algorithm runs in three phases: It first attempts to find
a collection of FATs that suggests that a circuit exists with the
requested clock period. If successful, it then resynthesizes the
circuit according to these arrival times and heuristically limits
duplication of nodes off the critical path to reduce the area
penalty. Finally, the resynthesized circuit is retimed to produce
a circuit that meets the initial timing constraint (a minimum
clock period).

Experimental results show that our algorithm can signifi-
cantly improve the speed of certain circuits with only a slight
increase in area. Its running times are small, suggesting that it
can scale well to large circuits.

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1, pp. 5–35, 1991.

[2] P. Pan, “Performance-driven integration of retiming and resynthesis,”
in Proc. DAC, 1999, pp. 243–246.

[3] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decompo-
sition during technology mapping,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 16, no. 8, pp. 813–834, Aug. 1997.

[4] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Timing optimization of combinational logic,” in Proc.
ICCAD, 1988, pp. 282–285.

[5] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, and L. Trevillyan,
“Efficient techniques for timing correction,” in Proc. ISCAS, 1990,
pp. 415–419.

[6] P. C. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and
S. K. Sahni, “Performance enhancement through the generalized bypass
transform,” in Proc. ICCAD, 1991, pp. 184–187.

[7] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli, “Performance optimization using exact
sensitization,” in Proc. DAC, 1994, pp. 425–429.

[8] K. J. Singh, “Performance optimization of digital circuits,” Ph.D. disser-
tation, Univ. California, Berkeley, CA, 1992.

[9] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Retiming and resynthesis: Optimizing sequential networks
with combinational techniques,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 10, no. 1, pp. 74–84, Jan. 1991.

[10] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency-
constrained circuits,” in Proc. DAC, 1996, pp. 708–713.

[11] M.-C. V. Marinescu and M. Rinard, “High-level automatic pipelining for
sequential circuits,” in Proc. ISSS, 2001, pp. 215–220.

[12] H. Touati, N. Shenoy, and A. L. Sangiovanni-Vincentelli, “Retiming for
table-lookup field-programmable gate arrays,” in Proc. Int. Workshop
FPGAs, 1992, pp. 89–93.

[13] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis,”
Univ. California, Berkeley, CA, Tech. Rep. UCB/ERL M92/41, 1992.

[14] H. Touati, H. Savoj, and R. K. Brayton, “Delay optimization of combina-
tional logic circuits by clustering and partial collapsing,” in Proc. ICCAD,
1991, pp. 188–191.

[15] R. K. Brayton et al., “VIS: A system for verification and synthesis,”
in Proc. Comput.-Aided Verif., 1996, pp. 428–432.

Cristian Soviani received the degree from Bucharest
Polytechnic Institute, Bucharest, Romania, in 1999.
He is currently working toward the Ph.D. degree
in the Department of Computer Science, Columbia
University, New York, NY.

His research interests include sequential logic
synthesis and optimization, high-level synthesis for
high-performance network devices, embedded sys-
tem design, and FPGAs.

Olivier Tardieu received the degrees from the
École Polytechnique, Paris, France, in 1998, and
the École des Mines, Paris, in 2001, and the Ph.D.
degree in computer science from the Institut National
de Recherche en Informatique et en Automatique,
Sophia-Antipolis, France, and the École des Mines
in 2004.

In 2005, he joined the Department of Computer
Science, Columbia University, New York, NY, where
he is currently a Postdoctoral Research Scientist. His
research interests include programming language de-

sign, compilers, software safety, concurrency theory, and hardware synthesis.

Stephen A. Edwards (S’93–M’97–SM’06) received
the B.S. degree from California Institute of Tech-
nology, Pasadena, in 1992, and the M.S. and Ph.D.
degrees from the University of California, Berkeley,
in 1994 and 1997, respectively, all in electrical
engineering.

After a three-year stint with Synopsys, Inc.,
Mountain View, CA, in 2001, he joined the Depart-
ment of Computer Science, Columbia University,
New York, NY, where he is currently an Associate
Professor. His research interests include embedded

system design, domain-specific languages, and compilers.

