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Abstract

Esterel is a synchronous design language for the specification of reactive systems.
There exist two main semantics for Esterel. On the one hand, the logical behavioral
semantics provides a simple and compact formalization of the behavior of programs
using SOS rules. But it does not ensure deterministic executions for all programs
and all inputs. As non-deterministic programs have to be rejected as incorrect, this
means it defines behaviors for incorrect programs, which is not convenient. On the
other hand, the constructive semantics is deterministic (amongst other properties)
but at the expense of a much more complex formalism. In this work, we construct
and thoroughly analyze a new deterministic semantics for Esterel that retains the
simplicity of the logical behavioral semantics, from which it derives. In our view, it
provides a much better framework for formal reasoning about Esterel programs.

Key words: synchronous languages, concurrency theory,
structural operational semantics.

1 Introduction

Esterel [7,8] is a high-level imperative parallel programming language for the
specification of reactive systems [9,13]. It was born in the eighties [6], and
evolved since then. In this work, we consider the Esterel v5 dialect [4,5]
endorsed by current academic compilers [1,10]. Pure Esterel is the subset of
the full Esterel language where data variables and data-handling primitives
are abstracted away. As the issues we are interested in in this work are not
related to data in any way, we shall concentrate on the pure Esterel language.

Esterel is a synchronous language [2]. Primitives constructs execute in zero
time except for one pause instruction. Hence, time flows as a sequence of log-
ical instants separated by explicit pauses. In each instant, several elementary
instantaneous computations take place simultaneously.

Esterel deals with signals. Signals have a Boolean status, which obeys the
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signal coherence law: in each instant, a signal is absent by default, present if
emitted in this instant. In “present A then emit B end” for instance, B is
emitted, thus present, if A is present.

Both absence and presence are instantly broadcast, and simultaneously
available to all threads of execution. This perfect synchrony hypothesis may
result in causality cycles [4,14], as for example in the parallel composition:

present A then emit B end || present B then emit A end

which admits two possible executions conforming to the signal coherence law:

• both A and B are present and emitted;

• both A and B are absent and not emitted.

This program is said to be non-deterministic. Similarly, there exist non-
reactive programs with no possible execution, for example:

present A then emit B end || present B else emit A end

In Esterel, we want programs to have deadlock-free deterministic executions.
Therefore, non-reactive and non-deterministic programs have to be rejected
as incorrect. Two main semantics have been formalized for Esterel:

• The logical behavioral semantics [3] simply formalizes the signal coherence
law. It defines no execution for a non-reactive program, and several distinct
executions for a non-deterministic program 2 .

• The constructive semantics [4] is inspired from digital circuits and three-
valued logic. It only defines a subset of the executions defined by the logical
behavioral semantics. By rejecting more “unreasonable” programs than just
non-reactive and non-deterministic programs, it ensures that executions can
be “causally” computed. As a result, it defines no execution for non-reactive
as well as non-deterministic programs.

These two semantics handle non-determinism in opposite manners. Neither is
truly convenient.

• On the one hand, an execution defined by the logical behavioral semantics
is not necessarily correct, as it may be the execution of a non-deterministic,
thus incorrect program. Moreover, non-determinism sometimes compen-
sates for non-reactivity making a program reactive and deterministic al-
though it contains non-reactive or non-deterministic pieces of code.

• On the other hand, the constructive semantics only defines correct execu-
tions, but at the expense of a much more complex formalism.

Therefore, we introduce in this work a third alternative semantics that we
derive from the logical behavioral semantics. It retains the simple formalism
of the logical behavioral semantics, while only defining correct executions. In
particular, it makes sure errors do not cancel one another.

2 In general, determinism and reactivity depend on inputs (cf. Section 4).

2



Tardieu

The paper is organized as the following. In Section 2, we describe the
pure Esterel language. We formalize its logical behavioral semantics in Sec-
tion 3, and discuss reactivity and determinism in Section 4. We build our
deterministic semantics in Section 5. In Section 6, we thoroughly compare
the two semantics. We briefly discuss the constructive semantics of Esterel in
Section 7, and conclude in Section 8.

2 Syntax and Intuitive Semantics

p, q ::= nothing does nothing, terminates instantly
pause stops the execution till next instant
p; q runs p, then q if/when p terminates
p || q runs p in parallel with q
loop p end repeats p forever
signal S in p end declares signal S in p
emit S emits signal S
present S then p else q end runs p if S is present, q otherwise
trap T in p end declares, catches exception T in p
exit Td raises exception T of depth d

Fig. 1. Primitive Pure Esterel Constructs

Without loss of generality, we focus in this work on a kernel language
inspired from Berry [4], which retains just enough of the pure Esterel language
to attain its full expressive power. Figure 1 describes the grammar of our
kernel language, as well as the intuitive behavior of its constructs.

The non-terminals p and q denote statements (i.e. programs), S signals
and T exceptions. Signals and exceptions are identifiers lexically scoped and
respectively declared within statements by the constructs “signal S in p end”
and “trap T in p end”.

The infix “;” operator binds tighter than “||”. Brackets “[” and “]” may
be used to group statements in arbitrary ways. In a present statement, then
or else branches may be omitted. For example, “present S then p end” is
a shortcut for “present S then p else nothing end”.

2.1 Instants and Reactions

An Esterel statement runs in steps called reactions in response to the ticks of
a global clock. Each reaction takes one instant. Primitive constructs execute
in zero time except for the pause instruction. When the clock ticks, a reaction
occurs, which computes the output signals and the new state of the program,
from the input signals and the current state of the program. It may either
finish the execution instantly or delay part of it till the next instant, because it
reached at least one pause instruction. In the latter case, the execution is re-
sumed when the clock ticks again from the locations of the pause instructions
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reached in the previous instant. And so on.

“emit A; pause; emit B; emit C; pause; emit D” emits the signal A
in the first instant of its execution, then emits B and C in the second instant,
finally emits D and terminates in the third instant. It takes three instants
to complete, that is to say proceeds by three reactions. The signals B and
C are emitted simultaneously, as their emissions occur in the same instant of
execution. In particular, “emit B; emit C” and “emit C; emit B” cannot
be distinguished in Esterel.

2.2 Synchronous Concurrency

Concurrency in Esterel is synchronous. One reaction of the parallel composi-
tion “p || q” is made of exactly one reaction of each non-terminated branch,
until the termination of all branches. For example,

[

pause; emit A; pause; emit B

||

emit C; pause; emit D

];

emit E

emits C in the first instant of its execution, then emits A and D in the second
instant, then emits B and E and terminates in the third instant.

2.3 Exceptions

Exceptions are lexically scoped, declared and caught by the “trap T in p end”
construct, raised by the “exit Td” instruction. The integer d encodes the depth
of “exit T”:

• if “exit Td” is enclosed in a declaration of T then d must be the number of
exception declarations that have to be traversed before reaching that of T ;

• if “exit Td” is not enclosed in a declaration of T then d must be greater or
equal to the number of exception declarations enclosing this exit statement.

For example,

trap T in

trap U in

exit T1 has depth 1 because of the declaration of U
||

exit U0 has depth 0
||

exit V3 could have any depth greater or equal to 2
end;

exit T0 has depth 0
end

4



Tardieu

Such a “De Bruijn” encoding of exceptions for Esterel was first advocated for
by Gonthier [11]. As usual, we shall only make depths explicit when necessary.

In sequential code, the exit statement behaves as a “goto” to the end of
the matching trap block. For example,

trap T in

emit A; pause; emit B; exit T; emit C

end;

emit D

emits A in the first instant, then B and D and terminates in the second instant.
Signal C is never emitted.

An exception raised in a parallel context causes all parallel branches to
terminate instantly. In the example below, A and E are emitted in the first
instant, then B, F, and D in the second and final one. Neither C nor G is emitted.

trap T in

emit A; pause; emit B; exit T; emit C

||

emit E; pause; emit F; pause; emit G

end;

emit D

Remark exceptions implement weak preemption: “exit T” in the first branch
does not prevent F to be simultaneously emitted in the second one.

Exception declarations may be nested. In the following example, A is not
emitted, as the outermost exception T has priority over inner ones, U here.

trap T in

trap U in

exit T1 || exit U0

end;

emit A

end

In other words, the exception of greater depth has always priority.

2.4 Loops

The statement “loop emit S; pause end” emits S at each instant and never
terminates. Finitely iterated loops may be obtained by combining loop, trap
and exit statements, as for instance in the kernel expansions of “await S”:

trap T in loop pause; present S then exit T end end end

Loop bodies may not be instantaneous [17]. For example, “loop emit S end”
is not a correct program. Such a pattern would prevent the reaction to reach
completion. Therefore, loop bodies are required to raise an exception or retain
the control for at least one instant, that is to say execute a pause or an exit

statement in each iteration.
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2.5 Signals

The instruction “signal S in p end” declares the local signal S in p. The
free signals of a statement are said to be interface signals for this statement.

In an instant, a signal S is emitted iff at least one “emit S” statement is
executed in this instant. In an instant, the status of a signal S is either present
or absent. If S is present then all “present S then p else q end” statements
executed in this instant, execute their “then p” branch in this instant; if S is
absent they all execute their “else q” branch.

• A local signal is present iff it is emitted.

• An interface signal is present iff it is provided by the environment.

Remark an interface signal may be both absent and emitted. For example,

• In “signal S in emit S; pause; present S then emit O end end”, S
is present in the first instant of execution only, thus O is not emitted by this
statement, as S is absent at the time of the “present S” test.

• In “signal S in present S then emit O end || emit S end”, both S

and O are emitted, S is present.

• In “emit X; present X then emit O end”, the status of X depends on
the environment, hence O is emitted iff X is provided by the environment.

3 Logical Behavioral Semantics

The logical behavioral semantics of Esterel [4,11] formalizes the informal se-
mantics of the previous section. It describes the reactions of a statement p
via a labeled transition system:

p
O, k−−→

I
p′

where:

• the set I is the set of present signals,

• the set O is the set of emitted signals,

• the integer k is the completion of the reaction,

• the statement p′ is the residual of the reaction.

Figure 2 expresses the logical behavioral semantics of Esterel as a set of facts
and deduction rules in a structural operational style [16].

3.1 Completion Code and Residual

The completion code k and the residual p′ encode the status of the execution:

• If k = 1 then this reaction does not complete the execution of p.
It has to be continued by the execution of p′ in the next instant.
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• If k 6= 1 then this reaction ends the execution of p (p′ does not matter):
· k = 0 if the execution completes normally (without exception).
· k = d + 2 if an exception of depth d escapes from p.

In particular, the completion code of “exit Td” is “2+d”. In order to compute
the completion code “↓k” of “trap T in p end” from the completion k of p,
we define:

↓k =


0 if k = 0 or k = 2
1 if k = 1
k − 1 if k > 2

Conveniently, if p terminates with completion code k and q with completion
code l then “p || q” terminates with code “max(k, l)”. For example,

trap T in exit T0 || exit V4 end
∅, 3−−→
I

trap T in nothing end

3.2 Present and Emitted Signals

The set I, written below the arrow, lists the signals provided by the environ-
ment. It drives the reactions of present statements:

• if S ∈ I and p
O, k−−→

I
p′ then present S then p else q end

O, k−−→
I

p′.

• if S /∈ I and q
O, k−−→

I
q′ then present S then p else q end

O, k−−→
I

q′.

The set O, written above the arrow, lists the emitted interface signals. In
particular,

emit S
{S}, 0−−−→

I
nothing

The signal coherence law – a local signal is present iff emitted – is enforced
for the statement “signal S in p end” by the rules:

(signal+) if S is supposed present in p then it is emitted by p;
(signal−) if S is supposed absent in p then it is not emitted by p.

For instance, for inputs I = {A},

emit S
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end
∅, 0−−→
{A}

signal S in nothing end
using (signal+)

pause
∅, 1−−→
{A}

nothing S /∈ ∅

signal S in pause end
∅, 1−−→
{A}

signal S in nothing end
using (signal−)

We shall further discuss these rules later.

7



Tardieu

nothing
∅, 0−−→
I

nothing (nothing)

pause
∅, 1−−→
I

nothing (pause)

exit Td
∅, d+2−−−−→

I
nothing (exit)

emit S
{S}, 0−−−→

I
nothing (emit)

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
p′; loop p end

(loop)

p
O, k−−→

I
p′ q

O′, l−−→
I

q′

p || q
O∪O′, max(k, l)−−−−−−−−−→

I
p′ || q′

(parallel)

S ∈ I p
O, k−−→

I
p′

present S then p else q end
O, k−−→

I
p′

(present+)

S /∈ I q
O, k−−→

I
q′

present S then p else q end
O, k−−→

I
q′

(present−)

p
O, 2−−→
I

p′

trap T in p end
O, 0−−→
I

nothing
(trap-catch)

p
O, k−−→

I
p′ k 6= 2

trap T in p end
O, ↓k−−−→

I
trap T in p′ end

(trap-through)

p
O, k−−→

I
p′ k 6= 0

p; q
O, k−−→

I
p′; q

(sequence-p)

p
O, 0−−→
I

p′ q
O′, k−−−→

I
q′

p; q
O∪O′, k−−−−−→

I
q′

(sequence-q)

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
signal S in p′ end

(signal+)

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
signal S in p′ end

(signal−)

Fig. 2. Logical Behavioral Semantics
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3.3 Execution

An execution of the statement p is a potentially infinite chain of reactions,
such that all completion codes are equal to 1, but the last one in the finite
case:

• finite execution: p
O0, 1−−→

I0
p1

O1, 1−−→
I1

...
On, k−−−→

In

pn+1, with k 6= 1, for some n ∈ N.

• infinite execution: p
O0, 1−−→

I0
p1

O1, 1−−→
I1

...
On, 1−−−→

In

...

We say that I = (I0, I1, ..., In) in the finite case and I = (In)n∈N in the infinite
case is the sequence of inputs of the execution. Similarly, O is the sequence
of outputs.

For example, the statement “emit A; pause; emit B” emits A and does
not terminate instantly, with the residual “nothing; emit B” remaining to
be executed. In the second and final instant of execution, B is emitted.

emit A; pause; emit B
{A}, 1−−−→

I0
nothing; emit B

{B}, 0−−−→
I1

nothing

We note p → p′ iff there exists I and O such that p
O, 1−−→
I

p′. We say that q is

reachable from p iff p
∗→ q where

∗→ is the reflexive transitive closure of →.

4 Logical Correctness

Depending on the statement p and inputs I, the logical behavioral semantics
may define zero, one or several reactions. Moreover, a given reaction may ad-
mit more than one proof, that is to say result from more than one composition
of the rules of the semantics. For example, for I = {A},

reaction proof
nothing 1 1

loop nothing end 0 0
signal S in present S else emit S end end 0 0
signal S in present S then emit S end end 1 2

signal S in present S then emit S else pause end end 2 2

In particular, for “signal S in present S then emit S end end”, the se-
mantics defines exactly one reaction, but with two possible proofs, obtained
by using either the (signal−) or the (signal+) rule:

S /∈ {A} nothing
∅, 0−−→
{A}

nothing

present S then emit S end
∅, 0−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end
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S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end

The internal behavior of “signal S in present S then emit S end end”
is not deterministic, since the local signal S can be both present or absent. Its
observed behavior is nevertheless deterministic.

We expect programs to have deterministic deadlock-free executions. So,
we have to discard as “incorrect” programs with no or too many possible
behaviors. In this section, we formalize such a correctness criterion.

We define:

• p is reactive iff for all I, there exists at least one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

• p is deterministic iff for all I there is at most one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

• p is strongly deterministic iff p is deterministic and for all (I, O, k, p′) the

proof of p
O, k−−→

I
p′ is unique if it exists.

• p is logically correct iff for all q reachable from p, q is reactive and deter-
ministic.

• p is strongly correct iff for all q reachable from p, q is reactive and strongly
deterministic.

Determinism ensures that the observed behavior of a statement is determinis-
tic. Strong determinism guarantees that its internal behavior is deterministic,
too. Reactivity combined with (strong) determinism ensures that there ex-
ists a unique reaction (with a unique proof) for this statement, whatever the
inputs.

Logical correctness characterizes statements that have deterministic dead-
lock-free executions for any sequence of inputs. In addition, strong correctness
ensures strong determinism. Strong correctness becomes a concern as soon as
side effects or debugging have to be taken into account, as both may expose the
internal behavior of a program. Of course, strong correctness implies logical
correctness.

5 Deterministic Semantics

The logical behavioral semantics provides a very compact, structural formal-
ization of the behavior of Esterel programs, which makes formal reasoning
about the language tractable. Moreover, it defines reactivity and determin-
ism, which are the agreed minimal correctness criteria for Esterel programs.

However, working with these criteria can be tedious. While, reactivity may
be attested with a simple proof tree, establishing (strong-)determinism is more
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complex and formally requires a proof about proof trees (proof of uniqueness).

Moreover, defining first many (proofs of) reactions for non-(strongly)-
deterministic statements, which we then discard because there are too many,
seems utterly inefficient.

Therefore, we propose to rewrite the rules for local signal declarations:

p
O, k−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
signal S in p′ end

(signal+)

p
O, k−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
signal S in p′ end

(signal−)

as the following (where k+, k−, etc. are nothing but convenient names):

p pO
−, k−−−−−→

I\{S}
p− S ∈ O− p pO

+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end pO
+\{S}, k+

−−−−−−−→
I

signal S in p+ end

(signal++)

p pO
−, k−−−−−→

I\{S}
p− S /∈ O− p pO

+, k+

−−−−→
I∪{S}

p+ S /∈ O+

signal S in p end pO
−, k−−−−−→
I

signal S in p− end

(signal−−)

We call the resulting semantics the deterministic semantics, and denote the
corresponding reactions by the transition symbol “7→”.

Intuitively, it consists in enforcing in each signal rule that the other one
does not apply, without introducing negative premises [12] such as:

S, p, I, O, k, and p′ are not such that p
O, k−−−→

I∪{S}
p′ and S ∈ O

Rather than negating the whole precondition, we only swap the binary decision
S ∈ O for S /∈ O, and vice versa. In the logical behavioral semantics, we had:

• (signal+): if S is supposed present in p then it is emitted by p.

• (signal−): if S is supposed absent in p then it is not emitted by p.

In our deterministic semantics, the rules for the signal construct become:

• (signal++):
· if S is supposed present in p then it is emitted.
· if S is supposed absent in p then it is still emitted.

• (signal−−):
· if S is supposed absent in p then it is not emitted.
· if S is supposed present in p then it is not emitted either.
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5.1 Examples

For example, the deterministic semantics produces the same reactions as the
logical behavioral semantics, in the following two cases (cf. Section 3):

pause p∅, 1−−→
{A}

nothing S /∈ ∅ pause p ∅, 1−−−→
{A,S}

nothing S /∈ ∅

signal S in pause end p∅, 1−−→
{A}

signal S in nothing end

emit S p{S}, 0−−−→
{A}

nothing S ∈ {S} emit S p{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end p∅, 0−−→
{A}

signal S in nothing end

The deterministic semantics defines no reaction for:

• the non-reactive statement:
“signal S in present S else emit S end end”

• the non-deterministic statement:
“signal S in present S then emit S else pause end end”

• the non-strongly-deterministic statement:
“signal S in present S then emit S end end”

5.2 Determinism

The new semantics is globally deterministic:

Theorem 5.1 For all p and I, there exists at most one (O, k, p′) s.t. p pO, k−−→
I

p′.

Theorem 5.2 For all p, I, O, k, p′, the proof of p pO, k−−→
I

p′ is unique if it exists.

Proof. Simple structural induction on p. 2

There is no need to count proofs and reactions in the deterministic semantics.

5.3 Properness

Since, the uniqueness of proofs and reactions is ensured, we shall say that the
statement p is correct with respect to the deterministic semantics, i.e. proper,
iff the deterministic semantics defines at least one reaction at any stage of the
execution of p for any sequence of inputs. Formally, we define:

• p is initially proper iff for all I, there exists (O, k, p′) such that p pO, k−−→
I

p′.

• p 7→ p′ iff there exists I and O such that p pO, 1−−→
I

p′.

• ∗7→ is the reflexive transitive closure of 7→.

• p is proper iff for all q such that p
∗7→ q, q is initially proper.
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6 Comparison

We now precisely relate the logical behavioral and the deterministic semantics.

6.1 Properness implies strong correctness

Theorem 6.1 If p pO, k−−→
I

p′ then p
O, k−−→

I
p′.

Theorem 6.2 If p pO0, k0−−−→
I

p′0 and p
O1, k1−−−→

I
p′1 then O0 = O1, k0 = k1, p′0 = p′1.

Theorem 6.3 If p pO, k−−→
I

p′ then the proof of p
O, k−−→

I
p is unique.

Proof. cf. Appendix A. 2

By writing

p pO, k−−→
I

p′

we not only express that p may react to inputs I, with outputs O, completion
code k, and residual p′ in the deterministic semantics, thus in the logical
behavioral semantics as well (Th. 6.1), but also that it must react this way in
both semantics (Th. 5.1 and 6.2), and that its internal behavior is deterministic
(Th. 5.2 and 6.3). As a consequence,

Corollary 6.4 If p is proper then p is strongly correct.

6.2 Strong correctness does not imply properness

Reciprocally, a strongly correct statement is not necessarily proper, as reac-
tivity combined with strong determinism does not imply initial properness.
Let’s consider two examples:

• signal S in

present S then loop nothing end end

end

For all inputs I, the logical behavioral semantics defines the following unique
proof tree for this program:

S /∈ I\{S} nothing
∅, 0−−−→

I\{S}
nothing

present S then loop nothing end end
∅, 0−−−→

I\{S}
nothing S /∈ ∅

signal S in present S then ... end end
∅, 0−−→
I

signal S in nothing end

The deterministic semantics however defines no reaction for this statement,
whatever I. Neither the rule (signal++), nor the rule (signal−−) applies,
as “loop nothing end”, thus “present S then loop nothing end end”
are not initially proper.
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• loop

signal S in

present S then emit S else pause end

end

end

The body “signal S in present S then emit S else pause end end”
of the loop may react in two possible ways in the logical behavioral seman-
tics, whatever I, with respective completion codes 0 and 1:

signal S in present S then emit S else pause end end
∅, 0−−→
I

...

signal S in present S then emit S else pause end end
∅, 1−−→
I

...

Since exactly one of these two reactions admits a non-zero completion code,
the whole loop statement is both reactive and strongly deterministic. On
the other hand, the deterministic semantics defines no reaction for the body,
hence no reaction for the loop.

6.3 Strongly correct non-proper statements

In the logical behavioral semantics, non-determinism may compensate for non-
reactivity, or the other way around, so that a piece of incorrect code may be
embedded into a strongly correct program. More precisely,

Theorem 6.5 If p is reactive and strongly deterministic but not initially
proper then there exists a subterm q of p such that q is not reactive or not
strongly deterministic.

Proof. cf. Appendix B. 2

Intuitively, q behaves well in p only because of its context of occurrence, which
constrains the execution of q from the outside, making sure the non-reactive or
non-strongly-deterministic behaviors of q are never triggered. In other words,
q could be simplified while preserving the behavior of p. Let’s consider again
our two examples in this new light:

• signal S in

present S then loop nothing end end

end

The subterm “present S then loop nothing end end” is not reactive
because of its then branch, but never used with S present. Therefore, it can
be replaced by its implicit else branch, that is to say nothing, leading to
the equivalent 3 program “signal S in nothing end”, which is proper.

3 Technically, they are strongly bisimilar [15] w.r.t. the logical behavioral semantics.
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• loop

signal S in

present S then emit S else pause end

end

end

The body “signal S in present S then emit S else pause end end”
is not deterministic, but the enclosing loop enforces S to be absent. Again,
the “present S then emit S else pause end” statement can simplified.
The resulting program “loop signal S in pause end end” is proper and
logically equivalent.

Therefore, there is something wrong with these programs, even if neither logi-
cal correctness nor strong correctness are sensitive to it. In any case, they are
intricate constructions with no practical purpose.

7 Constructive Semantics

The constructive semantics of Esterel [4] ensures that behaviors can be effec-
tively computed, that is to say causally computed. For instance, although the
following program is logically correct, even strongly correct as S can only be
present, it is rejected by the constructive semantics:

signal S in present S then emit S else emit S end end

Intuitively, this program is not constructive because the status of S must be
“guessed” prior to its emission. Such an argument however is not relevant to
the deterministic semantics, which considers this program to be proper.

On the other hand, the deterministic semantics sometimes rejects construc-
tive programs, such as:

signal S in

present S then

signal T in present T else emit T end end

end

end

Since S cannot be emitted – there is no “emit S” statement – the then branch
of the present statement is never “visited” by the constructive semantics. As
a result, this program is constructive. On the other hand, the deterministic
semantics does explore this branch, so that the program is not proper.

Executions in the constructive semantics being defined by a (complex)
monotonous information propagation process, there is at most one reaction
defined for each program and each set of inputs. In other words, the construc-
tive semantics is globally deterministic in the sense of Section 5.

In summary, even if both semantics are globally deterministic, the reasons
for this property are very different, and the corresponding correctness criteria
are unrelated. They both make sense and could be combined.
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8 Conclusion

In contrast with the logical behavioral semantics of Esterel, the deterministic
semantics we introduce in this work, defines at most one execution for all
programs and all inputs. In particular, if the deterministic semantics defines
the execution of a program, then this execution is unique, thus correct.

Importantly, the deterministic semantics does not change the semantics
of “reasonable” programs. If the deterministic semantics of a program is
defined then it matches its logical behavioral semantics. Reciprocally, if the
deterministic semantics of a program is not defined then the program or some
subterm of the program is incorrect w.r.t. the logical behavioral semantics.

Moreover, our new semantics achieves determinism at a much lower cost
than the constructive semantics of Berry. As a result, we claim that the deter-
ministic semantics provides a much better starting point for formal reasoning
about Esterel programs than both the logical behavioral semantics and the
constructive semantics.

A Proof of Theorems 6.1 to 6.3

By structural induction on p, we prove that if p pO, k−−→
I

p′ then:

• p
O, k−−→

I
p′ with a unique proof;

• if p
O0, k0−−−→

I
p′0 then O = O0, k = k0, p′ = p′0.

Proof. Let’s consider the case p = “signal S in q end”, and choose a set I.
By hypothesis, there exists (O, k, p′) such that:

signal S in q end pO, k−−→
I

p′

Either rule (signal++) or (signal−−) has to be used to define this reaction.
Let’s for instance consider the case (signal−−). The case (signal++) is similar.
There exists (O−, k−, q−, O+, k+, q+) such that:

• q pO
−, k−−−−−→

I\{S}
q− and q pO

+, k+

−−−−→
I∪{S}

q+

• S /∈ O−, S /∈ O+, O = O−, k = k−, p′ = “signal S in q− end”.

so that the following deduction holds in the deterministic semantics:

q pO
−, k−−−−−→

I\{S}
q− S /∈ O− q pO

+, k+

−−−−→
I∪{S}

q+ S /∈ O+

p = signal S in q end pO, k−−→
I

signal S in q− end = p′

By induction hypothesis:
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• q
O−, k−−−−−→
I\{S}

q− with a unique proof.

• if q
O−

0 , k−0−−−−→
I\{S}

q−0 then O− = O−
0 , k− = k−0 , q− = q−0 .

• q
O+, k+

−−−−→
I∪{S}

q+ with a unique proof.

• if q
O+

0 , k+
0−−−−→

I∪{S}
q+
0 then O+ = O+

0 , k+ = k+
0 , q+ = q+

0 .

On the one hand, as S /∈ O+, no reaction for p can be defined using (signal+).
On the other hand, by rule (signal−),

• p
O−, k−−−−−→

I
signal S in q− end with a unique proof.

• if p
O0, k0−−−→

I
p′0 then O0 = O−, k0 = k−, p′0 = signal S in q− end.

And similarly for all other cases. 2

B Proof of Theorem 6.5

By structural induction on p, we prove that if p and all its subterms are
reactive and strongly deterministic then p is initially proper.

Proof. Let’s consider the case p = “signal S in q end”, and choose a
set I. By hypothesis, q and all its subterms are reactive and strongly de-
terministic. By induction hypothesis, q is initially proper. Thus, there exists
(k−, O−, q−, k+, O+, q+) such that:

q pO
−, k−−−−−→

I\{S}
q− and q pO

+, k+

−−−−→
I∪{S}

q+

There are four cases:

• S ∈ O−, S ∈ O+, then by rule (signal++), p pO
+\{S}, k+

−−−−−−−→
I

signal S in q+ end.

• S /∈ O−, S /∈ O+, then by rule (signal−−), p pO
−, k−−−−−→
I

signal S in q− end.

• S ∈ O+, S /∈ O−:

· by rule (signal+), p
O+\{S}, k+

−−−−−−−→
I

signal S in q+ end

· by rule (signal−), p
O−, k−−−−−→

I
signal S in q− end

Therefore, p is not strongly deterministic. Contradiction.

• S /∈ O+, S ∈ O−, then neither (signal+) nor (signal−) is applicable. There-
fore, p is not reactive. Contradiction.

Similarly, in all other cases, the deterministic semantics defines a reaction for
p, whatever I. As a consequence, p is initially proper. 2
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