
SLA++P’07 Preliminary Version

Instantaneous Transitions in Esterel

Olivier Tardieu1 ,3

INRIA, Sophia Antipolis

Stephen A. Edwards2 ,4

Columbia University in the City of New York

Abstract

Esterel is an imperative synchronous programming language for the specification of deterministic concurrent
reactive systems. While providing the usual control-flow constructs—sequences, loops, conditionals, and
exceptions—its lack of a goto instruction makes the programming of arbitrary finite state machines awkward
and hinders the design of source-to-source program transformations. We previously introduced to Esterel
a non-instantaneous gotopause instruction, which prevents the synchronous execution of code before and
code after the transition. Here, we tackle instantaneous transitions. Concurrency demands we assign scopes
and priorities to gotos, so we extend Esterel’s exception handling mechanism to allow exception handlers in
arbitrary locations. We advocate for and formalize the resulting language. We observe that instantaneous
gotos complement but do not replace non-instantaneous gotopauses.

Keywords: concurrency, exceptions, SyncCharts, compilation.

1 Introduction

Esterel [3,4,5,6] is a concurrent programming language. Its syntax is imperative

and fit for the design of control-oriented reactive systems [10]. Its semantics are

synchronous: active threads run in lockstep and communicate via instantly broad-

cast signals. Like most modern imperative languages, Esterel promotes structured

programming. Common programming practice strongly discourages the use of gotos

when they are available [8], but Esterel provides none at all.

The lack of goto is not without reason. First, gotos and concurrency do not

mix well and Esterel code is hardly ever sequential. Second, loops—simple forms

of jumps—already cause substantial trouble. To make a long story short, a com-

plex loop unfolding algorithm—reincarnation [3,19]—is a mandatory step in the

compilation of Esterel.

1 Email: olivier.tardieu@sophia.inria.fr
2 Email: sedwards@cs.columbia.edu
3 Tardieu was at Columbia when this work was performed.
4 Edwards and his group are supported by the NSF, Intel, Altera, the SRC, and NYSTAR.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:olivier.tardieu@sophia.inria.fr
mailto:sedwards@cs.columbia.edu


Tardieu and Edwards

Nevertheless, the lack of a goto instruction is a drawback. Many standards

explicitly prescribe (unstructured) state machines. For example, the link layer

specification of the Serial ATA standard [16] specifies a 31-state machine by list-

ing transitions in a table. To describe such machines, many formalisms, such as

SyncCharts [1,2], provide graphical modeling of reactive systems using hierarchical

and parallel compositions of finite state machines. While its synchronous seman-

tics match those of Esterel, the translation from SyncCharts to Esterel is awkward

and obfuscates the programmer’s intent. Transitions are encoded with signaling.

Arbitrary state machines can be encoded using one concurrent process per state.

But maintaining structural information about exclusive states in the generated code

is not easy. In contrast, a goto allows the direct encoding of transitions and the

preservation of this information.

Internally, all Esterel compilers use ad hoc intermediate languages (e.g., IC [5]

and GRC [14]) that expand Esterel control-flow constructs into jump instructions.

This suggests adding gotos to Esterel should not only be feasible but also have a

minor impact on code generation. While for code generation, it would be reasonable

to translate formalisms such as SyncCharts directly to such internal formats, this

would not help users reason about specifications.

Previously, we extended Esterel with a gotopause instruction [17]. By design, it

ensures that one instant elapses between the execution of the jump instruction and

the execution of the code following the target of the jump. Thanks to the definition

of well-formed programs, we were able to specify non-instantaneous jumps that are

consistent with the principles of deterministic synchronous concurrency. The delay

implies their semantics do not involve unfolding, making compilation trivial.

Of course, non-instantaneous jumps are no help for the programming of finite

state machines with instantaneous transitions. In this paper, we introduce instan-

taneous jumps, which we obtain by combining features of loops, exceptions, and

non-instantaneous jumps. First, like exceptions, instantaneous jumps have scopes

and are prioritized accordingly. In a series of concurrent jumps, all but the highest-

priority jump are ignored. Second, as with loops, the semantics of instantaneous

jumps rely on unfolding. Finally, the machinery for transferring control to a distant

location in the source code already exists in the formal semantics of Esterel thanks

to gotopause.

We introduce instantaneous jumps by extending the exception handling mecha-

nism of Esterel. Raising an exception normally jumps to the end of the exception

scope. Our extension makes it possible to place the exception handler, i.e., the

target of the jump, at any point within the scope of the exception. This employs

an explicit catch instruction, which behaves like a label.

While this “exception handler within a trap” construct may appear strange,

simply taking a more traditional goto-and-label approach would come with too

many caveats to be any simpler. This paper aims at understanding the interactions

between concurrency and gotos to provide a formal framework that can be used to

add a variety of jump constructs. What if a goto attempts to exit the scope of an

exception? What if concurrent gotos target exclusive program states? Our design

minimizes the change to the language and its semantics. We only suggest a general,

low-level syntax. Additional syntactic sugar is probably necessary.

2



Tardieu and Edwards

statements locations compatible locations

p, q ::= nothing ∅ ∅
ℓ:pause {ℓ} ∅
gotopause ℓ ∅ ∅
p ; q Lp ∪ Lq Cp ∪ Cq

p || q Lp ∪ Lq Cp ∪ Cq ∪ (Lp×Lq) ∪ (Lq×Lp)

[p] Lp Cp

loop p end Lp Cp

signal S in p end Lp Cp

emit S ∅ ∅
present S then p else q end Lp ∪ Lq Cp ∪ Cq

suspend p when S Lp Cp

trap T in p end Lp Cp

exit T ∅ ∅

Fig. 1. The syntax of Esterel. Compatible locations.

In particular, we show instantaneous gotos do not generalize non-instantaneous

gotos but complement them: gotopause instructions are not simply instantaneous

jumps plus delays.

We describe the syntax and semantics of the Esterel language and the gotopause

instruction in Section 2. We introduce and formalize the catch instruction in Sec-

tion 3. Through an example, we illustrate the encoding of state machines with

instantaneous transitions. We also discuss loop elimination as an instance of a

source-to-source program transformation relying on the new construct. We discuss

related work in Section 4 and conclude in Section 5.

2 Esterel and gotopause

Without loss of generality, we focus on the pure Esterel language augmented with

a gotopause instruction. The full language is obtained from its pure fragment by

adding data-centric constructs irrelevant to our discussion.

2.1 Syntax and Intuitive Semantics

We describe the grammar of our kernel language in Fig. 1, Col. 1. The non-terminals

p and q denote statements, S signal identifiers, T exception identifiers, and ℓ integer

labels. The infix “;” operator binds tighter than “||.”

In Cols. 2 and 3, we recursively define the locations Lp and the compatible loca-

tions Cp of the statement p. The locations of p are the labels of the pause instructions

in p. They must be pairwise distinct. Formally, in statements when both p and q

occur, the sets Lp and Lq must be disjoint. For example, 1:pause ; 1:pause is

illegal. We discuss compatible locations later.

The execution of an Esterel program, i.e., a statement, consists of a possibly

infinite sequence of atomic execution steps called reactions. Each reaction is said

to last for one instant. Pause instructions represent reaction boundaries, i.e., the

progress of time.

3



Tardieu and Edwards

• nothing does nothing; terminates instantly, that is to say a statement immedi-

ately after this instruction is run instantly.

• ℓ:pause suspends the execution for one instant. The statement immediately

after this instruction, if any, is run in the next instant of execution.

• gotopause ℓ suspends the execution for one instant. The statement immediately

after the pause instruction with label ℓ is run in the next instant of execution.

• p ; q executes p instantly followed by q if/when p terminates; instantly termi-

nates if/when q terminates. If the execution of p raises an exception then it is

instantly propagated upward and q is not run. If the execution of q raises an

exception then it is instantly propagated upward.

• p || q executes p in parallel with q synchronously: one reaction of p || q consists

of one reaction of p and one reaction of q until p or q terminates. If p terminates

first then q continues running and p || q instantly terminates when q does (and

vice versa). If p and q raise exceptions in the same instant, the exception with

higher priority is instantly propagated upward. If p only raises an exception then

q is allowed to complete its current reaction before this exception is instantly

propagated upward. Even if incomplete, the execution of q is not resumed in the

next instant (and vice versa).

• [p] runs p. This allows sequences of parallel statements, e.g., [p || q];[r || s].

• loop p end repeats p forever unless p raises an exception, which is instantly prop-

agated upward. Two iterations of the loop may not complete in the same instant.

E.g., loop nothing end is illegal. This constraint ensures that atomic execution

steps (reactions) can be computed with statically bounded resources [18].

• signal S in p end declares the local signal S in p and executes p. Signals

are lexically scoped. Signal declarations are not mandatory. Undeclared signals

occurring in emit and present constructs are considered global.

• emit S emits signal S and terminates instantly. Global signals may be emitted

by the environment in addition to the program itself.

• present S then p else q end executes p if S is emitted in this instant (by the

program or the environment if global), and executes q otherwise. If the execution

of the chosen branch requires more than one instant, it is continued in the next

instants independently from the status of S in these instants.

• suspend p when S instantly starts executing p and ignores the status of S.

However, if the execution of p does not complete instantly, it is only allowed to

run in later instants in which S is not emitted (otherwise, it is suspended).

• trap T in p end declares exception T in p and executes p. Exceptions are

lexically scoped. If p terminates or raises exception T then trap T in p end

terminates instantly. If p raises a different exception it is propagated upward. In

case of nested exception declarations, the outermost declaration has the highest

priority.

• exit T raises exception T . We define depth(exit T ) as the number of trap

constructs enclosing the exit and enclosed in the declaration of T .

4



Tardieu and Edwards

For example,

trap T

emit A ; 1:pause ; emit B ; exit T ; emit C

||

emit D ; 2:pause ; emit E ; emit F ; 3:pause ; emit G

end ; emit H

emits signals A and D in its first reaction, then B, E, F, and H in its second and final

reaction. Neither C nor G is emitted. Here, the depth of exit T is 0.

Locations represent possible suspension points for the execution between two

reactions. In previous example, after the first reaction, the execution is suspended

at locations 1 and 2.

In Fig. 1, Col. 3, we define compatible locations. Two locations ℓ and ℓ′ are

compatible in p, i.e., (ℓ, ℓ′) ∈ Cp, iff these locations belong to concurrent branches

of p. By construction, in the usual Esterel language (no gotopause), only compatible

locations may be reached simultaneously. If L0 is a set of pairwise compatible loca-

tions of the program p, we write p/L0 for the program p suspended at locations L0.

We say p/L0 is a state of the program p.

In Esterel with gotopause, several gotopause instructions may be executed con-

currently. Their target locations must exist and be pairwise compatible [19]:

• [ gotopause 1 || gotopause 2 ] ; [ 1:pause || 2:pause ] is fine.

• gotopause 1 ; 2:pause is illegal because the gotopause instruction lacks a

target pause instruction.

• [ gotopause 1 || gotopause 2 ] ; 1:pause ; 2:pause is illegal because

the target pause instructions of the jump are not compatible.

2.2 Formal Semantics

We denote by p\X either the program p itself—the program p in its initial state—

or the program p in some state p/L0. Reactions of a program p are expressed via

labeled transitions of the form:

p\X
O, k
−−→

I
L

• p\X is the state from which the reaction starts;

• I is the set of signals emitted by the environment; 5

• O is the set of signals emitted by the program;

• k is the completion code of the reaction:

· k = 0 if the execution terminates instantly,

· k = 1 if part of the execution is delayed due to pause(s) or gotopause(s),

· k ≥ 2 if an exception is reported; and

• p/L is state reached by the reaction. By construction, L 6= ∅ iff k = 1.

5 This differs from the usual presentations of the language semantics, where present signals are considered
instead (E = I ∪O). We choose such a presentation here because we find it more intuitive. This choice has
no impact on the language extension we propose.

5



Tardieu and Edwards

In Fig. 2, we specify the semantics of Esterel with gotopause as a set of facts

and deduction rules in a structural operational style [13]. All but the two rules

marked (∗) will be preserved unchanged in the specification of Esterel plus gotopause

plus catch in Section 3.4.

Consider the rule

p\X
O, 0
−−−→
I∪O′

∅ q
O′, k
−−−→
I∪O

L

p ; q\X
O∪O′, k
−−−−−→

I
L

.

It specifies that p ; q when started (resp. restarted in state p ; q/L0) may react to

inputs I with outputs O ∪ O′, completion code k, and reaches the state p ; q/L if

• p when started (resp. restarted in state p/L0) reacts to inputs I∪O′ by terminating

instantly with outputs O; and

• q when started reacts to inputs I ∪ O with outputs O′, completion code k, and

reaches the state q/L.

Because of the synchrony hypothesis, not only are the outputs O of p inputs of q,

but reciprocally the outputs O′ of q are inputs of p.

2.3 Instantaneous Loops and Reincarnation

Using the extended exception handling mechanism we propose, one can implement

loops without the loop construct. We focus here on understanding the properties

of loops, which our language extension must preserve.

The formal semantics of the loop construct consists of two rules so that

• loop p end
O, k
−−→

I
L iff p

O, k
−−→

I
L ∧ k 6= 0 and

• loop p/L0 end
O, k
−−→

I
L iff







either p/L0
O, k
−−→

I
L ∧ k 6= 0

or p/L0
A, 0
−−−→
I∪B

∅ ∧ p
B, k
−−→
I∪A

L ∧ k 6=0 ∧ O=A∪B
.

When loop p end starts executing, it starts executing its body p, which may ei-

ther suspend its execution (because of pause or gotopause instructions) or raise an

exception; but p cannot terminate instantly. When the loop is restarted from the

state L0, it restarts its body. Now, if p terminates instantly, a new iteration—a

new execution of p—is instantly started. Again, this iteration cannot terminate

instantly.

First, observe that a program such as loop nothing end admits no possible exe-

cution: it deadlocks. In the sequel, we introduce similar safeguards to the semantics

of exceptions that choose deadlocks over instantly diverging behaviors.

Second, loop and signal constructs do not commute. In Fig. 3, program (a)

emits signal A from the second instant onwards. In contrast, program (b) never

emits A because, in each reaction, the test applies to a fresh signal S distinct from

the emitted signal S. We say signal S is reincarnated because of the loop. In the

sequel, we implement comparable interaction rules for signal and trap scopes so

loops built from trap-exit-catch constructs behave in the same way.

6



Tardieu and Edwards

nothing
∅, 0
−−→

I
∅ ℓ:pause

∅, 1
−−→

I
{ℓ}

emit S
{S}, 0
−−−→

I
∅ gotopause ℓ

∅, 1
−−→

I
{ℓ}

exit T
∅, depth(exit T )+2
−−−−−−−−−−−−→

I
∅

ℓ ∈ L0

ℓ:pause/L0
∅, 0
−−→

I
∅

p\X
O, 0
−−−→
I∪O′

∅ q
O′, k
−−−→
I∪O

L

p ; q\X
O∪O′, k
−−−−−→

I
L

p\X
O, k

−−−−→
I\{S}

L

signal S in p end\X
O\{S}, k
−−−−−→

I
L

p\X
O, k
−−→

I
L k 6= 0

p ; q\X
O, k
−−→

I
L

S ∈ I ∪ O p
O, k
−−→

I
L

present S then p else q end
O, k
−−→

I
L

q/L0
O, k
−−→

I
L

p ; q/L0
O, k
−−→

I
L

S /∈ I ∪ O q
O, k
−−→

I
L

present S then p else q end
O, k
−−→

I
L

p
O, k
−−→

I
L

suspend p when S
O, k
−−→

I
L

p/L0
O, k
−−→

I
L

present S then p else q end/L0
O, k
−−→

I
L

S /∈ I ∪ O p/L0
O, k
−−→

I
L

suspend p when S/L0
O, k
−−→

I
L

q/L0
O, k
−−→

I
L

present S then p else q end/L0
O, k
−−→

I
L

p\X
O, k
−−→

I
L k 6= 0

loop p end\X
O, k
−−→

I
L

p/L0
O, 0
−−−→
I∪O′

∅ p
O′, k
−−−→
I∪O

L k 6= 0

loop p end/L0
O∪O′, k
−−−−−→

I
L

p/L0
O, k
−−→

I
L L0 ∩ Lq = ∅

p || q/L0
O, k
−−→

I
L

p
O, k
−−−→
I∪O′

L q
O′, k′

−−−→
I∪O

L′

p || q
O∪O′, k⊔k′

−−−−−−−→
I

{

L ∪ L′ if k ⊔ k′ = 1

∅ if k ⊔ k′ 6= 1

q/L0
O, k
−−→

I
L L0 ∩ Lp = ∅

p || q/L0
O, k
−−→

I
L

p/L0 ∩ Lp
O, k
−−−→
I∪O′

L q/L0 ∩ Lq
O′, k′

−−−→
I∪O

L′

p || q/L0
O∪O′, k⊔k′

−−−−−−−→
I

{

L ∪ L′ if k ⊔ k′ = 1

∅ if k ⊔ k′ 6= 1

∀k, k′ : k ⊔ k′ = max(k, k′)










↓0 = ↓2 = 0

↓1 = 1

↓n = n − 1 ∀n > 2

S ∈ I L0 6= ∅

suspend p when S/L0
∅, 1
−−→

I
L0

(∗)

p\X
O, k
−−→

I
L

trap T in p end\X
O, ↓k
−−−→

I
L

(∗)

Fig. 2. The semantics of Esterel with gotopause.

7



Tardieu and Edwards

signal S in

loop

present S then emit A end;

1:pause;

emit S;

end

end

loop

signal S in

present S then emit A end;

1:pause;

emit S;

end

end

(a) (b)

Fig. 3. Loops and reincarnation.

3 Introducing catch in Esterel

We now extend Esterel with a new catch instruction. The syntax becomes

p, q ::= nothing | ℓ:pause | ... | exit T | catch T

with the constraint that there can be at most one catch T statement in the scope

of each trap T in ... end construct under the usual scoping rules. For instance,

if there are two nested declarations for the same exception identifier T , then there

can be at most one catch T statement inside the inner declaration plus at most

one catch T statement between the declarations.

If there is no such catch instruction, we always implicitly add one at the end of

the trap body:

trap T in p end → trap T in p ; catch T end

Hence, in the sequel, we assume there is exactly one catch T statement for each

declaration of T .

The catch instruction grabs control instantly when the corresponding exception

occurs. Intuitively, exit is like a goto with catch as its label.

3.1 Example

In Fig. 4, we demonstrate the encoding of a state machine for an elevator door using

catch. It has four states: OPENING, OPENED, CLOSING, and CLOSED the ini-

tial state of the machine. The input signals Open and Close convey user commands.

The input signals DoorOpened and DoorClosed indicate the door’s position. The

output signals MotorOpen and MotorClose control the motor. Control signals must

be sustained over a period of time for the door to fully open or fully close.

In this design, the DoorOpened and DoorClosed sensor signals must be taken

into account instantly—as specified with #—so that the motor is shut down with-

out delay. Moreover, we want instantaneous transitions to take priority over non-

instantaneous transitions.

This design is implemented as follows. One exception is declared for each state.

Exception priorities are irrelevant here because we never raise two exceptions si-

multaneously. State entry points are specified with catch constructs. Instantaneous

transitions are encoded by exit constructs. Non-instantaneous transitions are de-

layed by pause instructions. Alternatively, gotopause instructions could be used for

non-instantaneous transitions here.

8



Tardieu and Edwards

CLOSED

OPENING
MotorOpen

OPENED

CLOSING
MotorClose

#DoorOpened Close

#DoorClosedOpen

Close

Open

trap OPENING in trap OPENED in
trap CLOSING in trap CLOSED in

catch CLOSED;
present Open then pause; exit OPENING end;
pause; exit CLOSED;

catch OPENING;
present DoorOpened then exit OPENED end;
emit MotorOpen;
present Close then pause; exit CLOSING end;
pause; exit OPENING;

catch OPENED;
present Close then pause; exit CLOSING end;
pause; exit OPENED;

catch CLOSING;
present DoorClosed then exit CLOSED end;
emit MotorClose;
present Open then pause; exit OPENING end;
pause; exit CLOSING;

end end end end

(a) (b)

Fig. 4. Encoding an arbitrary state machine with trap-exit-catch. (a) A state machine for an elevator
door. DoorOpened and DoorClosed are sensors that indicate the door’s position; Open and Close initiate
or override commands; and MotorOpen and MotorClose control the motor. (b) Coding this using the catch
instruction.

3.2 Catch in Sequential Code

The exit-catch construct mimics the goto-label construct of C. For example,

trap T in exit T ; emit A ; catch T ; emit B end

only emits B. In general, the semantics of exit is that the body of its enclosing trap

is terminated and restarted at the catch. In particular, the catch instruction may

occur to the left of the corresponding exit(s). For instance,

trap T in emit A ; catch T ; emit B ; 1:pause ; exit T end

behaves just like

emit A ; loop emit B ; 1:pause end

Incidentally, this means that catch T, when run immediately after emit A, does

nothing and terminates instantly.

In general, the expansion of loops

loop p end → trap T in exit T ; catch T ; p ; exit T end

is semantics-preserving provided T is a fresh exception identifier. In particular, p

cannot terminate instantly in this context. We prove the correctness of the expan-

sion and motivate the first exit in Section 3.5.

Since the semantics of exit is that the body of its enclosing trap is terminated

and restarted at the catch, the signals local to the trap body are reincarnated as

the control jumps from exit to catch. In Fig. 5, program (a), signal A is emitted

because the signal statement is not restarted. In contrast, in program (b), signal S is

reincarnated because the exit statement causes the body of the trap, which includes

the signal scope, to be terminated and restarted. Thus, a second, fresh incarnation

of signal S appears and signal A is not emitted here.

9



Tardieu and Edwards

signal S in

trap T in

emit S;

exit T;

catch T;

present S then

emit A % runs

end

end

end

trap T in

signal S in

emit S;

exit T;

catch T;

present S then

emit A % does not run

end

end

end

(a) (b)

Fig. 5. The effect of scopes.

3.3 Catch and Concurrency

Several exits may execute concurrently, as illustrated in Fig. 6. When program (a)

runs, exit T1 and exit T2 both execute. However, because exception T1 takes

precedence over T2, only catch T1 is relevant: control resumes from there, and A is

emitted instantly. Signal B is not emitted because control is only transferred to the

first parallel branch; the second parallel branch is treated as having terminated.

In contrast, in program (b), the two gotopause statements are equally relevant,

jumping to both branches of the second parallel, meaning that both A and B are

emitted in the second instant.

Furthermore, we observe that program (c) is legal whereas program (d) is not.

In program (c), two exit statements execute instantly, but again only the outer-

most exception affects control, so only B is emitted. However, concurrent gotopause

statements that send control into a sequence—incompatible locations—are illegal.

Priorities eliminate this potential problem with exit statements.

Since gotopause(s) and exit(s) implement dual approaches to concurrency, go-

topause instructions do not reduce to trap-exit-catch constructs plus delays. On the

one hand, trap-exit-catch constructs cannot replace gotopause instructions when sev-

eral targets must be reached concurrently and the scopes of the concurrent jumps

intersect. 6 On the other hand, gotopause instructions cannot encode the instan-

taneous transitions of SyncCharts specifications. As a result, we believe it makes

sense to retain both constructs.

3.4 Formal Semantics

Previously, we defined the states of a program p as pairs p/L0 where L0 is a set of

compatible locations of p and also the initial state of p, which we identified with

p. To express the semantics of the catch instruction, we now introduce exception

states: for each statement in the scope of a trap T in ... end construct and contain-

ing a catch T statement, we associate the exception state p/#T . In other words,

6 The scope of a non-instantaneous jump is the least program piece that contains both the source gotopause
and target pause instructions of the jump. The scopes of concurrently executed jumps are typically pairwise
disjoint when using gotopause to encode SyncCharts non-instantaneous transitions thanks to SyncCharts re-
strictions on inter-level transitions. In contrast, these scopes are typically not disjoint when using gotopause
to cure schizophrenia [19].

10



Tardieu and Edwards

trap T1 in

trap T2 in

[

exit T1

||

exit T2

];

[

catch T1;

emit A % runs

||

catch T2;

emit B % doesn’t

]

end

end

[

gotopause 1

||

gotopause 2

];

[

1:pause;

emit A % runs

||

2:pause;

emit B % runs

]

% OK

trap T1 in

trap T2 in

[

exit T1

||

exit T2

];

catch T2;

emit A

catch T1;

emit B

end

end

% Erroneous

[

gotopause 1

||

gotopause 2

];

2:pause;

emit A;

1:pause;

emit B

(a) (b) (c) (d)

Fig. 6. The difference between gotopause and trap-exit-catch.

we extend the locations of p to contain not only the locations of its pause instruc-

tions but also the locations of its catch instructions. Moreover, we consider these

new locations to be first pairwise incompatible and second incompatible with pause

locations. Now, the set L0 in p/L0 is either a potentially empty set of compatible

pause labels of p or the single location #T of some catch T statement in p.

The formal semantics of Fig. 2 consists of twenty-four rules. To extend Esterel

with the catch instruction, we preserve the first twenty-two rules, discard the two

rules marked (∗), and add the six rules in Fig. 7 for catch, trap, and suspend :

• catch T does nothing and terminates instantly when started or restarted from

location #T .

• trap T in p end behaves like p if exception T is never raised. If T is raised then

the trap construct instantly restarts p at location #T . This execution cannot

instantly raise T again (k 6= 2). Both rules for the trap construct carefully avoid

capturing another exception with same identifier T by using the test X 6= #T ,

which is shorthand for “if p\X is of the form p/L0 then L0 6= #T .”

• suspend p when S when requested to restart from some location #T , does so

ignoring the status of signal S. Because the semantics of the trap construct

consists in exiting and restarting its body if the exception occurs, inner suspend

statements are considered to be in their first instant of execution when restarted.

Thus, as usual, we want to ignore the status of S in the first instant.

By construction, the final state of any reaction cannot be an exception state: ex-

ception states are both generated and evaluated within the instant.

The trap T in p end statement, by preventing exception T from occurring twice

instantly in p, effectively forbids instantaneous loops. Because the trap instruction

starts a fresh incarnation of p when the exception occurs, reincarnation of signals

local to p takes place as expected.

11



Tardieu and Edwards

catch T
∅, 0
−−→

I
∅ catch T/#T

∅, 0
−−→

I
∅

X 6= #T p\X
O, k
−−→

I
L k 6= 2

trap T in p end\X
O, ↓k
−−−→

I
L

S ∈ I L0 6= ∅ L0 6= #T

suspend p when S/L0
∅, 1
−−→

I
L0

X 6= #T p\X
O, 2
−−−→
I∪O′

∅ p/#T
O′, k
−−−→
I∪O

L k 6= 2

trap T in p end\X
O∪O′, ↓k
−−−−−→

I
L

S ∈ I p/#T
O, k
−−→

I
L

suspend p when S/#T
O, k
−−→

I
L

Fig. 7. The semantics of catch.

3.5 Correctness Results

We first check the correctness of our language extension by proving that the ex-

tended semantics matches the initial semantics for a program without catch in-

structions. We then prove the loop expansion of Section 3.2.

In this section, we denote by ◦→ the reactions defined by the initial semantics

and by → the reactions defined by the extended semantics.

Since we decided earlier to deal with absent catch instructions by inserting them

at the end of their respective trap blocks, we consider the statements:

• initial language: p and P = trap T in p end, and

• extended language: q and Q = trap T in q ; catch T end.

We prove that P and Q are equivalent if p and q are.

Lemma 3.1 If ∀X, ∀I,∀O,∀k : p\X ◦
O, k
−−→

I
L ⇔ q\X

O, k
−−→

I
L then:

trap T in p end\X ◦
O, k
−−→

I
L ⇔ trap T in q ; catch T end\X

O, k
−−→

I
L.

Proof. ∀T ′,∀X 6= #T ′,∀I,∀O,∀k: let κ̂ be k if k ≤ 1 or k + 1 otherwise.

First, trap T in q ; catch T end\#T ′ deadlocks for all T ′ since q does.

Second, trap T in q ; catch T end\X
O, k
−−→

I
L

iff







either q ; catch T\X
O, κ̂
−−→

I
L

or O = A ∪ B ∧ q ; catch T\X
A, 2
−−−→
I∪B

∅ ∧ q ; catch T/#T
B, κ̂
−−→
I∪A

L

iff q\X
O, κ̂
−−→

I
L or q\X

O, 2
−−→

I
∅ ∧ κ̂ = 0

iff p\X ◦
O, κ̂
−−→

I
L or p\X ◦

O, 2
−−→

I
∅ ∧ κ̂ = 0

iff trap T in p end\X ◦
O, k
−−→

I
L. 2

Theorem 3.2 If p contains no catch instruction then the initial and extended se-

mantics define the same reactions for all states of p.

Proof. By induction on the number of nested exception declarations in p. 2

12



Tardieu and Edwards

We now return to the loop expansion of Section 3.2. Comparing the semantics

of the loop and trap constructs, we observe that the loop body is never permitted to

terminate instantly, neither in its first nor in subsequent iterations. The trap body

however may instantly raise the exception. The rules only forbid the exception to

occur again when restarting the body from the catch location. Therefore, to ensure

a correct expansion of loops into trap-exit-catch constructs in Section 3.2, we insert

a second exit at the beginning of the trap body in addition to the obvious one at

the end of the body.

For simplicity, 7 we establish

Theorem 3.3 If T is a fresh identifier then these statements are equivalent:

• trap T in loop p end end,

• trap T in exit T ; catch T ; p ; exit T end.

Proof. ∀L0 6= #T, ∀I,∀O,∀k: let κ̂ be k if k ≤ 1 or k + 1 otherwise.

First, trap T in exit T ; catch T ; p ; exit T end/L0
O, k
−−→

I
L

iff























either exit T ; catch T ; p ; exit T/L0
O, κ̂
−−→

I
L

or O = A ∪ B ∧







exit T ; catch T ; p ; exit T/L0
A, 2
−−−→
I∪B

∅

exit T ; catch T ; p ; exit T/#T
B, κ̂
−−→
I∪A

L

iff







either p ; exit T/L0
O, κ̂
−−→

I
L

or O = A ∪ B ∧ p ; exit T/L0
A, 2
−−−→
I∪B

∅ ∧ p ; exit T
B, κ̂
−−→
I∪A

L

iff







either p/L0
O, κ̂
−−→

I
L ∧ κ̂ 6= 0

or O = A ∪ B ∧ p/L0
A, 0
−−−→
I∪B

L ∧ p
B, κ̂
−−→
I∪A

L ∧ κ̂ 6= 0

iff loop p end/L0
O, κ̂
−−→

I
L, thus iff trap T in loop p end end/L0

O, k
−−→

I
L.

Second, trap T in exit T ; catch T ; p ; exit T end
O, k
−−→

I
L

iff























either exit T ; catch T ; p ; exit T
O, κ̂
−−→

I
L (impossible)

or O = A ∪ B ∧







exit T ; catch T ; p ; exit T
A, 2
−−−→
I∪B

∅

exit T ; catch T ; p ; exit T/#T
B, κ̂
−−→
I∪A

L

iff p ; exit T
O, κ̂
−−→

I
L, thus iff p

O, κ̂
−−→

I
L ∧ κ̂ 6= 0

iff loop p end
O, κ̂
−−→

I
L, thus iff trap T in loop p end end

O, k
−−→

I
L.

Finally, both statements deadlock if required to start from location #T . 2

7 The enclosing trap construct in the first statement ensures exception depths are identical in the two
statements. Hence, there is no need to micromanage depths in the proof.

13



Tardieu and Edwards

4 Related Work

The origin of this paper was the usual connection between transitions in finite state

machine and gotos in imperative languages. A transition from state A to state B

is nothing but a jump from block A to the beginning of block B, where blocks A

and B implement the behaviors in states A and B.

While graphical design formalisms à la StateCharts [9,20] permit arbitrary, un-

structured state machines, Esterel makes it awkward because of its lack of goto.

The goto-like constructs we formalize here follow directly from SyncCharts [1,2],

a StateCharts-like graphical modeling language with well-defined synchronous se-

mantics à la Esterel. But our constructs are more expressive than the collection

of transitions available in SyncCharts. In particular, the trap-catch-exit construct

makes it possible to exit and reenter several layers of nested macrostates at once.

While SyncCharts drawings abide by rigid nesting rules and drastically restrict

inter-level transitions, we allow them whenever possible.

Coding arbitrary state machines is even harder in pure dataflow synchronous lan-

guages because the programmer is responsible for specifying all sequential behavior.

To address this, researchers have proposed language extensions such as mode au-

tomata [12] in Argos [11] and more recently in Lucid Synchrone [7]. Faithful to the

languages they extend, these proposals restrict transitions to avoid complex causal

dependencies and schizophrenia. We do not. In particular, we allow arbitrarily

(finitely) many transitions to be taken in one instant.

While we want to ease the encoding of graphical synchronous specifications

into textual Esterel programs, others have attempted the converse: automatically

synthesizing graphical specifications from textual Esterel programs [15]. We hope

to eventually combine the two to provide a user-friendly way of switching between

graphical and textual representations of a specification.

5 Conclusions

We extend the trap-exit construct of Esterel with a new catch instruction that allows

exception handlers to appear anywhere in the body of the trap. One can think of

the exit instruction as a goto to the location of the corresponding catch instruction.

Simultaneous exits result in a single jump to the highest-priority handler. Thus,

our trap-exit-catch construct supplements but does not supplant the existing go-

topause instruction for concurrent non-instantaneous jumps. We believe both must

coexist in the language. Only gotopause can decouple the structure of program

states from that of the source code while the catch instruction makes it possible to

specify finite state machines with instantaneous transitions. In particular, it greatly

simplifies the translation of SyncCharts into Esterel.

Although we did not address causality, especially constructive causality [3], we

think there is no issue. The semantics of the new construct is obtained by com-

bining existing pieces: loops for reincarnation, exceptions for priorities, and non-

instantaneous jumps for locations. Synchronous digital circuit synthesis for the

extended language, thus constructive semantics, should be similarly derived. For

the same reason, implementing the new construct should be straightforward.

14



Tardieu and Edwards

References

[1] C. André. SyncCharts: A visual representation of reactive behaviors. RR 95–52, I3S, 1995.

[2] Charles André. Representation and analysis of reactive behaviors: A synchronous approach. In
Proceedings of Computational Engineering in Systems Applications (CESA), pages 19–29, Lille, France,
July 1996.

[3] Gérard Berry. The constructive semantics of pure Esterel. Draft book, 1999.

[4] Gérard Berry and L. Cosserat. The ESTEREL synchronous programming language and its
mathematical semantics. In S. D. Brooks, A. W. Roscoe, and G. Winskel, editors, Seminar on
Concurrency, volume 197 of Lecture Notes in Computer Science, pages 389–448. Springer-Verlag,
Heidelberg, Germany, 1984.

[5] Gérard Berry and Georges Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, November 1992.

[6] Frédéric Boussinot and Robert de Simone. The ESTEREL language. Proceedings of the IEEE,
79(9):1293–1304, September 1991.

[7] Jean-Loius Coaļco, Bruno Pagano, and Marc Pouzet. A conservative extension of synchronous data-flow
with state machines. In Proceedings of the International Conference on Embedded Software (Emsoft),
pages 173–182, Jersey City, New Jersey, September 2005.

[8] Edsger W. Dijkstra. Letters to the editor: go to statement considered harmful. Commun. ACM,
11(3):147–148, 1968.

[9] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[10] David Harel and Amir Pnueli. On the Development of Reactive Systems, volume 13 of NATO ASI
Series. Series F, Computer and Systems Sciences, pages 477–498. Springer-Verlag, 1985.

[11] F. Maraninchi. The Argos language: Graphical representation of automata and description of reactive
systems. In Proceedings of the IEEE Workshop on Visual Languages, Kobe, Japan, October 1991.

[12] F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for reactive systems. In
Proceedings of the European Symposium on Programming (ESOP), Lisbon (Portugal), March 1998.
Springer-Verlag.

[13] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, Åarhus, Denmark, 1981.

[14] Dumitru Potop-Butucaru. Optimizations for faster execution of Esterel programs. In Proceedings of
the 1st International Conference on Formal Methods and Models for Codesign (MEMOCODE), pages
227–236, Mont St. Michel, France, June 2003.

[15] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing safe state machines
from Esterel. In Proceedings of Languages, Compilers, and Tools for Embedded Systems (LCTES),
page FIXME, Ottawa, Canada, June 2006.

[16] Serial ATA Workgroup. Serial ATA: High Speed Serialized AT Attachment, August 2001.
www.serialata.org.

[17] Olivier Tardieu. Goto and concurrency: Introducing safe jumps in Esterel. In Proceedings of
Synchronous Languages, Applications, and Programming (SLAP), Electronic Notes in Theoretical
Computer Science, Barcelona, Spain, 2004. Elsevier.

[18] Olivier Tardieu and Robert de Simone. Instantaneous termination in pure Esterel. In Proceedings of
the 10th Annual Static Analysis Symposium, volume 2694 of Lecture Notes in Computer Science, pages
91–108, San Diego, California, June 2003.

[19] Olivier Tardieu and Robert de Simone. Curing schizophrenia by program rewriting in Esterel.
In Proceedings of the 2nd International Conference on Formal Methods and Models for Codesign
(MEMOCODE), San Diego, California, June 2004.

[20] Michael von der Beeck. A comparison of Statecharts variants. In Formal Techniques in Real-Time and
Fault-Tolerant Systems: Third International Symposium Proceedings, volume 863 of Lecture Notes in
Computer Science. Springer-Verlag, 1994.

15


	Introduction
	Esterel and gotopause
	Syntax and Intuitive Semantics
	Formal Semantics
	Instantaneous Loops and Reincarnation

	Introducing catch in Esterel
	Example
	Catch in Sequential Code
	Catch and Concurrency
	Formal Semantics
	Correctness Results

	Related Work
	Conclusions
	References

