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Abstract

Esterel is a design language for the specification of real time embedded systems.
Based on the synchronous concurrency paradigm, its semantics describes execution
as a succession of instants of computation. In this work, we consider the introduction
of a new gotopause instruction in the language, which acts as a non-instantaneous
jump instruction compatible with concurrency. It allows the programmer to activate
state control points anywhere in the program, from where the execution is resumed
in the next instant. In order to provide the formal semantics of the extended lan-
guage, we first define a state semantics of Esterel, which we prove observationally
equivalent to the original logical behavioral semantics. Including gotopause in the
state semantics is then straightforward. We sketch two key applications of our new
primitive: a direct encoding of automata and a quasi-linear rewriting of programs
eliminating schizophrenic behaviors.

Key words: synchronous languages, program transformations.

1 Introduction

Esterel [4,5,6,7,8] is a high-level control-oriented synchronous reactive lan-
guage (Section 2). Sophisticated control-flow patterns can be built through
sequential and parallel compositions of behaviors, tests, loops and preemption
mechanisms. These are all structural statements. No jump instruction is avail-
able or easily encoded in Esterel. This has important drawbacks, such as
making flat automata encoding unnaturally difficult [1]. Therefore, the oppor-
tunity of adding a goto-like construct to the language is a subject of debate.

On one hand, such an extension would produce a more expressive lan-
guage, allowing more compact specifications, with an enhanced support for
automata. Moreover, most compilers [4,9,11,16] for Esterel are based on
intermediate formats, languages or representations that involve jumps so that
the implementation of this instruction should be straightforward.

On the other hand, gotos are widely regarded as a bad idea [10], especially
in a concurrent framework such as Esterel, where they can easily break the
semantics. In addition, specific correctness issues such as instantaneous loop
detection [18] could become much worse because of gotos.
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1: pause;

action 1;
present A then gotopause 2 end;

present B then gotopause 3 end;

gotopause 1;

2: pause;

action 2;
gotopause 1;

3: pause;

action 3;
gotopause 2

2
3

1
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B

 1  2

 3

action action

action

Fig. 1. Automata in Esterelsp

Thus, to the best of our knowledge, no successful attempt of extension
in this direction has been reported that provides both the necessary formal
background and convincing practical applications.

In this paper, we detail what we believe is the right way to extend Es-
terel. We add to the language an instruction we call gotopause. Both pause

and gotopause instructions are now labeled. When the control reaches some
“gotopause label”, it stops for the current instant, as if it had reached a
regular pause instruction. However, when the execution is resumed in the fol-
lowing instant, instead of restarting from the “gotopause label” location, it
starts from the corresponding “label : pause” location. This allows to branch
non-instantly to a remote section of the program.

Thanks to non-instantaneity, the semantics remains simple enough to be
defined and proved to be adequate, as well as understood and used.

Because of the non-locality of branching, such an extension usually requires
some kind of continuation-passing style semantics. In the case of Esterel,
we first have to reformulate the standard logical behavioral semantics [4,18] in
the form of a state semantics that we prove observationally equivalent (Sec-
tion 3). Then, we introduce and formalize gotopause and the semantics of
the extended language, which we call Esterelsp (Section 4).

Automata made of non-instantaneous transitions are now easily encoded
with conditional jumps, as shown by the example of Figure 1. More im-
portantly, quasi-linear reincarnation [4,14,17] can be achieved by a simple
preprocessing in Esterelsp (Section 5).

2 The Pure Esterel Kernel Language

Esterel [4,5,6,7,8] is an imperative synchronous programming language ded-
icated to reactive systems [12,13]. Pure Esterel is the fragment of the full
Esterel language where data variables and data-handling primitives are ab-
stracted away. As our only concern is with control-flow primitives, we concen-
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nothing does nothing
pause retains the control until next tick
signal S in p end declares signal S in p
emit S emits S (i.e. S is present)
present S then p else q end if S is present then does p else does q
trap T in p end declares and catches exception T in p
exit T raises exception T which propagates upward

p; q

{
first starts p then q if/when p terminates
terminates if/when q does

[p || q]

{
starts p in parallel with q
terminates when both p and q are done

loop p end repeats p forever

Fig. 2. Pure Esterel

trate in this paper on Pure Esterel. Moreover, without loss of generality, we
focus on the Pure Esterel kernel language as defined by Berry in [4], which
retains just enough of the language syntax to attain its full expressive power.
Finally, for lack of space, we do not consider the statement suspend in the
sequel. It raises no particular problem.

Figure 2 describes the grammar of this language, as well as the intuitive
behavior of its constructs. The non-terminals p and q denote statements (i.e.
programs), S signals, and T exceptions. An Esterel program runs in steps
called reactions in response to the ticks of a global clock. Each reaction takes
one instant. When the clock ticks, a reaction occurs. It may either finish the
execution instantly or delay (part of) it till the next tick, because of pause
instructions.

“emit A; pause; emit B; emit C; pause; emit D” emits the signal A
in the first instant of its execution, then emits B and C in the second instant,
then emits D and terminates in the third instant. It takes three instants to
complete, or in other words, proceeds by three reactions.

Sequences, tests and (infinite) loops are the usual control-flow operators.
Execution propagates in parallel branches in a deterministic synchronous way.
“emit A;[pause;emit B;pause;emit D||emit C;pause;emit E];emit F”
emits A and C, then B and E, and finally D and F.

Instantly broadcast signals and exceptions provide ways of interaction with
the environment (through free identifiers) as well as local communication chan-
nels (through identifiers lexically scoped by signal and trap instructions).

An Esterel program p has a tree structure. Three nodes have more
than one child: the test (of presence), sequence and parallel nodes. Thus,
two disjoint sub-terms q and r of p are connected through one of these three
operators. We note “q//r” and say that q and r are compatible if q and r are
non-disjoint or composed in parallel; we note “q#r” and say that q and r are
exclusive otherwise. For example, in “p;[q||r]”, p and q are exclusive, p and
r are exclusive, q and r are compatible.
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3 From the Logical Semantics to a State Semantics

We consider a family of semantics for Esterel. Reactions of a term p are
specified in a structural operational style [15] by a labeled transition system:

p
E′, k−−−→

E
p′

The terms p and p′ will either be programs or states (cf. Section 3.4).
We call domain of the semantics the set of terms p it applies to. The sets E
of present signals and E ′ of emitted signals encode 2 the I/Os of the reaction.
The integer k is the completion code of the reaction and the term p′ its residual:

• If k = 1 then this reaction does not complete the execution of p.
It has to be continued by the execution of p′ in the next instant.

• If k 6= 1 then this reaction ends the execution of p (p′ is never executed):
· k = 0 if the execution completes normally,
· k = kT ≥ 2 if exception T escapes from p, aborting the execution 3 .

In general, a term p may admit zero, one or many possible reactions and
thus executions. An execution is a potentially infinite chain of reactions such
that all completion codes but the last one are equal to 1:

p
E′

1, 1
−−−→

E1

p1

E′
2, 1

−−−→
E2

...
E′

n, k 6=1−−−−→
En

pn or p
E′

1, 1
−−−→

E1

p1

E′
2, 1

−−−→
E2

...
E′

n, 1−−−→
En

...

3.1 Bisimulation and Observational Equivalence

In order to compare various semantics, we need mathematical tools: bisimu-
lation and observational equivalence [3]. Because the residual p′ of a reaction
is irrelevant if k is not 1 (i.e. not further executed), we consider an ad hoc
definition of 1-bisimulation in which we require p′ ∼ q′ only if k is 1.

Definition 3.1 1-bisimulation. Let → and 7→ be two semantics of respective
domains P and Q. A 1-bisimulation between → and 7→ is a relation ∼ of
domain P ×Q such that:

• for all p ∈ P there exists q ∈ Q such that p ∼ q

• for all q ∈ Q there exists p ∈ P such that p ∼ q

• if p ∼ q and p
E′, k−−−→

E
p′ then there exists q′ such that

{
q |E

′, k−−−→
E

q′

k = 1 ⇒ p′ ∼ q′

• if p ∼ q and q |E
′, k−−−→
E

q′ then there exists p′ such that

{
p

E′, k−−−→
E

p′

k = 1 ⇒ p′ ∼ q′

2 The sets I and O of input and output signals are such that E = I ∪ O and E′ = O.
Program p reacts to inputs I with outputs O, completion code k and residual p′ iff p

O, k−−−→
I∪O

p′.
3 Exceptions are numbered according to priorities [4,18], so that if p terminates with com-
pletion code k and q with code l then [p||q] terminates with code max(k, l).
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Definition 3.2 Observational Equivalence. If there exists a 1-bisimulation
between two semantics, we say these semantics are observationally equivalent.

In particular, if → and 7→ are observationally equivalent then:

• if p0

E′
1, 1

−−−→
E1

p1

E′
2, 1

−−−→
E2

...
E′

n, k−−−→
En

pn then ∃q0 : q0 |
E′

1, 1
−−−→

E1

q1 |
E′

2, 1
−−−→

E2

... |E
′
n, k−−−→
En

qn

• if ∀n ≥ 0, pn

E′
n+1, 1

−−−−→
En+1

pn+1 then ∃(qn)n≥0 : ∀n ≥ 0, qn

E′
n+1, 1

−−−−→
En+1

qn+1

3.2 Logical Behavioral Semantics

In Figure 3, we define a class of logical behavioral semantics for Esterel,
parametrized by the auxiliary functions δk. We note → the usual logical
behavioral semantics [18] obtained by setting δk equal to the identity for all k.

(1) nothing
∅, 0−−→
E

nothing
S ∈ E p

E′, k−−−→
E

p′

present S then p else q end
E′, k−−−→

E
p′

(7)

(2) pause
∅, 1−−→
E

nothing
S /∈ E q

F ′, l−−→
E

q′

present S then p else q end
F ′, l−−→
E

q′
(8)

(3) exit T
∅, kT−−−→

E
nothing

p
E′, k−−−→

E
p′ k = 0 or k = kT

trap T in p end
E′, 0−−−→

E
nothing

(9)

(4) S ∈ E

emit S
{S}, 0−−−−→

E
nothing

p
E′, k−−−→

E
p′ k > 0 and k 6= kT

trap T in p end
E′, k−−−→

E
δk(trap T in p′ end)

(a)

(5)
p

E′, k−−−→
E

p′ k 6= 0

p; q
E′, k−−−→

E
δk(p′; q)

p
E′, k−−−→

E
p′ q

F ′, l−−→
E

q′ m = max(k, l)

[p || q]
E′∪F ′, m−−−−−−→

E
δm([p′ || q′])

(b)

(6)
p

E′, 0−−−→
E

p′ q
F ′, l−−→
E

q′

p; q
E′∪F ′, l−−−−−→

E
q′

p
E′, k−−−→

E
p′ k 6= 0

loop p end
E′, k−−−→

E
δk(p′; loop p end)

(c)

(d)
p

E′, k−−−−→
E∪{S}

p′ S ∈ E′

signal S in p end
E′\{S}, k−−−−−−→

E
δk(signal S in p′ end)

(e)
p

E′, k−−−−→
E\{S}

p′ S /∈ E′

signal S in p end
E′, k−−−→

E
δk(signal S in p′ end)

Fig. 3. Logical Behavioral Semantics
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We note 7→ the semantics corresponding to the alternate definition of δk:

δk(p) =

{
nothing if k 6= 1
p if k = 1

While matching the original semantics in term of observational equivalence,
our alternate version of the semantics enjoys an extra normalization property:
it maps completed or aborted executions to nothing. For example,

[nothing || nothing]
∅, 0−−→
E

[nothing || nothing]

[nothing || nothing] | ∅, 0−−→
E

nothing

Theorem 3.3 Equivalence. → and 7→ are observationally equivalent.

Proof. By defining a 1-bisimulation between → and 7→. 2

Theorem 3.4 Normalization. If p |E
′, k−−−→
E

p′ and k 6= 1 then p′ is nothing.

Proof. By induction on the proof of p |E
′, k−−−→
E

p′. 2

These logical semantics do not lead to intuitive behaviors and efficient
algorithms for computing reactions, thus the need for constructive semantics
[4,19]. Intuitively, it consists in restricting the semantics to programs with
deterministic causal (i.e non-speculative) executions. As with Esterel, such
refinements are possible in Esterelsp but not mandatory (cf. Section 4.4).

3.3 Labeled Semantics

We suppose that pause instructions are labeled by integers, which we note
pausel or l : pause. We do not require labels to be unique yet. We call L(p)
the set of labels of p, for example L(pause1;emit S;pause2;pause1) = {1, 2}.

In Figure 4, we introduce a labeled semantics ◦→ for Esterel by adding
a set of labels L to the previous semantics ( 7→) as an extra component:

p ◦ E′, k, L−−−−→
E

p′

This set collects the labels of the active pauses of the statement, that
is to say the pause instructions that will retain the control at the end of
the reaction. For example, “present S then pause1 else pause2 end” in
the presence of S produces the set {1}. Provided that the labeling is non-
ambiguous, L carries enough information to characterize p′ (cf. Section 3.4).

If “pause” and “exit T” are reached concurrently then this pause shall
not be marked as active. The reaction of “trap T in pause1||exit T end”
shall lead to an empty set L for example. Hence, in addition to δk, we define
functions γk to be used in Rule (b) of the labeled semantics as follows:

γk(L) =

{
∅ if k 6= 1
L if k = 1

6
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(1) nothing ◦ ∅, 0, ∅−−−→
E

nothing
S ∈ E p ◦E′, k, L−−−−→

E
p′

present S then p else q end ◦E′, k, L−−−−→
E

p′
(7)

(2) pausel ◦ ∅, 1, {l}−−−−→
E

nothing
S /∈ E q ◦ F ′, l, L−−−−→

E
q′

present S then p else q end ◦ F ′, l, L−−−−→
E

q′
(8)

(3) exit T ◦ ∅, kT , ∅−−−−→
E

nothing
p ◦E′, k, L−−−−→

E
p′ k = 0 or k = kT

trap T in p end ◦E′, 0, L−−−−→
E

nothing
(9)

(4) S ∈ E

emit S ◦ {S}, 0, ∅−−−−−→
E

nothing

p ◦E′, k, L−−−−→
E

p′ k > 0 and k 6= kT

trap T in p end ◦E′, k, L−−−−→
E

δk(trap T in p′ end)
(a)

(5)
p ◦E′, k, L−−−−→

E
p′ k 6= 0

p; q ◦E′, k, L−−−−→
E

δk(p′; q)

p ◦E′, k, L−−−−→
E

p′ q ◦ F ′, l, L′
−−−−→

E
q′ m = max(k, l)

[p || q] ◦E′∪F ′, m, γm(L∪L′)−−−−−−−−−−−−−→
E

δm([p′ || q′])
(b)

(6)
p ◦E′, 0, L−−−−→

E
p′ q ◦ F ′, l, L′

−−−−→
E

q′

p; q ◦E′∪F ′, l, L∪L′
−−−−−−−−−→

E
q′

p ◦E′, k, L−−−−→
E

p′ k 6= 0

loop p end ◦E′, k, L−−−−→
E

δk(p′; loop p end)
(c)

(d)
p ◦E′, k, L−−−−→

E∪{S}
p′ S ∈ E′

signal S in p end ◦E′\{S}, k, L−−−−−−−→
E

δk(signal S in p′ end)

(e)
p ◦E′, k, L−−−−→

E\{S}
p′ S /∈ E′

signal S in p end ◦E′, k, L−−−−→
E

δk(signal S in p′ end)

Fig. 4. Labeled Semantics

Theorem 3.5 Equivalence. ∀p, E,E ′, k, p′
[
p |E

′, k−−−→
E

p′ ⇔ ∃L : p ◦ E′, k, L−−−−→
E

p′
]
.

Proof. Except from the recursive computation of L, this new semantics does
not differ from the previous one. No hypothesis relies on L value. 2

Theorem 3.6 Completion. If p◦ E′, k, L−−−−→
E

p′ then L ⊂ L(p) and k 6= 1 ⇔ L = ∅.
A reaction completes (k=0) or aborts (k=kT ) an execution iff no label is set.

Proof. By induction on the proof of p ◦ E′, k, L−−−−→
E

p′. 2

Corollary 3.7 In Rule (6) of the labeled semantics, L is always empty. Thus,
the merging of two non-empty sets of labels can only occur in Rule (b).
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p̂ ::= p̂ause
l ε−→ nothing

p̂; q
ε−→ ε(p̂); q

p; q̂
ε−→ ε(q̂)

present S then p̂ else q end
ε−→ ε(p̂)

present S then p else q̂ end
ε−→ ε(q̂)

trap T in p̂ end
ε−→ trap T in ε(p̂) end

p̂ || q̂
ε−→ ε(p̂) || ε(q̂)

p̂ || q
ε−→ ε(p̂) || nothing

p || q̂
ε−→ nothing || ε(q̂)

loop p̂ end
ε−→ ε(p̂); loop p end

signal S in p̂ end
ε−→ signal S in ε(p̂) end

Fig. 5. Active States and their Expansion

3.4 States

By adding hats on top of some of the pause instructions of a statement p, we

obtain what we call a state of p. For example, “pause1; emit S; p̂ause
2
”

is a state of “pause1; emit S; pause2”. Intuitively, a state represents some
possible point 4 in the execution of a program. Similar introductions of states
and state expansions are found in [4,14].

We say that a term is well labeled iff the labels of its pause instructions are
pairwise distinct. From the combination of the well-labeled statement p and
the set of labels L, we build the state pL by selecting the pause instructions
that have a label in L. For example, “(pause1; emit S; pause2){2,3}” is the

state “pause1; emit S; p̂ause
2
”. In the sequel, we will use either representa-

tion, as convenient. From now on, we note pL only if p is well labeled. On the
other hand, as in previous example, L is not supposed to be a subset of L(p).

We remark that p is both a statement and a state (of the statement p
itself), further referred to as the inactive state of p, as no pause is selected.
We say that pL is a valid state of p iff pL is either the inactive state or some
active state p̂ of p, that is to say a state that conforms to the grammar of
Figure 5. In particular, an active state has at least one pause selected.

Intuitively, invalid states are states that cannot be reached in the execution
of the program 5 . For example, “p̂ause

1
; p̂ause

2
” is not a valid state. A state

is valid iff pause instructions are not selected in both branches of a test or both
parts of a sequence, i.e. iff selected pause instructions are pairwise compatible.

3.5 State Expansion

In Figure 5, we also define a state expansion function ε : p 7→ ε(p). It derives a

4 We will use states to represent starting and ending points of reactions. However, micro-
steps within a reaction cannot be represented by states.
5 Valid states are not always reachable! [p̂ause1

||pause2] is both valid and unreachable.
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statement from an active state. Let ε(p) be nothing for inactive states. This
extends ε to valid states.

The expansion retains labels. We observe that even if pL is a valid state (of
the well-labeled term p), the labeled term ε(pL) is not necessarily well labeled,
as loop unrolling may occur. For example,

ε(loop pause1;pause2 end) = nothing;pause2;loop pause1;pause2 end

Theorem 3.8 Stability. If pL is valid and ε(pL) ◦ E′, k, L′
−−−−→

E
p′ then pL′

is valid.

Proof. If k ∈ L′, l ∈ L′ then there exists two compatible occurrences of
pausek and pausel in ε(pL) by Corollary 3.7. Thus, pausek and pausel are
compatible in p, as the expansion does not introduce parallel operators. 2

Theorem 3.9 Expansion. If p is well labeled and p◦ E′, k, L−−−−→
E

p′ then ε(pL) = p′.

Proof. Obvious if k 6= 1 otherwise by induction on the proof of p◦ E′, k, L−−−−→
E

p′.2

This proves that p′ can be rebuild from L (and p). The result of the
reaction is equivalently characterized by either the residual p′ (as defined by
the logical behavioral semantics) or the state pL we have just introduced. This
is the key that enables the definition of a state semantics for Esterel in the
following section.

3.6 State Behavioral Semantics

We define our state behavioral semantics ↪→ of Esterel as follows:

for all pL valid, E, E ′, k, L′, we note pL ↪
E′, k−−−→

E
pL′

iff ∃p′ : ε(pL) ◦ E′, k, L′
−−−−→

E
p′.

One reaction of the well-labeled term p in the valid state pL produces the
valid state pL′

(Theorem 3.8) iff L′ is the set of active labels computed by the
labeled semantics for the term ε(pL) (being well labeled or not).

Theorem 3.10 Equivalence. 7→ and ↪→ are observationally equivalent.

Proof. Let ∼ be the relation: pL ∼ q iff ε(pL) = q or ε(pL) = nothing; q.
This relation is a 1-bisimulation between ↪→ and 7→. In particular,

pL ↪
E′

1, 1
−−−→

E1

pL1 ↪
E′

2, 1
−−−→

E2

... ↪
E′

n, k−−−→
En

pLn ⇔ ε(pL) |
E′

1, 1
−−−→

E1

ε(pL1) |
E′

2, 1
−−−→

E2

... |E
′
n, k−−−→
En

ε(pLn)

2

State semantics for Esterel have already been proposed [4,14]. Similarly,
our semantics describes the execution of a program in term of “moving hats”:

p̂ause;[pause||pause] ↪
∅, 1−−→
E

pause;[p̂ause||p̂ause] ↪
∅, 0−−→
E

pause;[pause||pause]

But this new definition remains very close to the logical behavioral seman-
tics. The progression of the execution “within the instant” is still handled by
the logical semantics, which makes the proof of Theorem 3.10 tractable.
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Our state semantics is nevertheless different from the logical semantics in
the way it chains reactions. Instead of resuming from the logical residual p′ of
the previous reaction, the execution is restarted from the (expansion of) the
state pL′

that was also computed.

Our labeled semantics is a combination of a logical behavioral semantics,
which takes care of the current instant of execution, and of a state computation
(the set of labels), which prepares for the next instant of execution.

While up to now these two computations (p′ and L′) coincide in the labeled
semantics (Theorem 3.9), the fact extra labels may be inserted into L′ without
modifying p′ makes the addition of gotopause to the language possible.

4 Introducing gotopause in Esterel

We extend Esterel syntax with the instruction gotopausel (or gotopause l)
for any integer label l. We note Esterelsp for the extended language. We
would like this new construct to behave as follows:

p̂ause
1
;gotopause2;emit S;pause2 ↪

∅, 1−−→
E

pause1;gotopause2;emit S;p̂ause
2

• the hat first moves from pause1 to gotopause2 since the term obtained
by replacing gotopause by pause instructions with fresh labels reacts as
follows:

p̂ause
1
;pause3;emit S;pause2 ↪

∅, 1−−→
E

pause1;p̂ause
3
;emit S;pause2

• the hat then jumps from pause3 ≡ gotopause2 to pause2, as hats on top
of gotopausel instructions are removed and moved to the corresponding
pausel instructions at the end of the instant.

This is more or less what we formalize below. But this intuitive algorithm
breaks on more complex programs. In the following example, whereas the
initial state p{1} is valid, the derived state p{2,3} is not:

p̂ause
1
;[gotopause2||pause3];pause2 ↪

∅, 1−−→
E

pause1;[gotopause2||p̂ause
3
];p̂ause

2

While the execution of the program is supposed to be continued (k = 1), it

cannot be since ε(pause1;[gotopause2||p̂ause
3
];p̂ause

2
) is undefined. Such

a state does not make sense. Thus, “pause1;[gotopause2||pause3];pause2”
cannot be considered to be a correct program. This is dealt with through a
proper definition of well-formedness, which ensures that gotopause occur-
rences are compatible with Esterel concurrency.

4.1 Well-Formedness

Definition 4.1 Well-formedness. A well-labeled program p is well formed iff:

∀k,∀l : pausek#pausel ⇒


gotopausek # gotopausel

gotopausek # pausel

pausek # gotopausel

10
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If pausek and pausel are exclusive then their respective “triggers” have
to be exclusive, too. This purely static (syntactic) condition can be checked
easily while building the abstract syntax tree of a program. Of course, every
well-labeled Esterel program is a well-formed Esterelsp program.

4.2 Labeled Semantics

We build the labeled semantics of Esterelsp by adding a rule for gotopause
to the labeled semantics of Esterel (Figure 4):

gotopausel ◦ ∅, 1, {l}−−−−→
E

nothing

States and state expansion retain their definitions in Esterelsp. Thus,
(gotopause1;emit S;pause1;pause2){1} = gotopause1;emit S;p̂ause

1
;pause2

and ε(gotopause1;emit S;p̂ause
1
;pause2) = nothing;pause2, for example.

Theorem 4.2 If p is well formed and ε(pL) ◦ E′, k, L′
−−−−→

E
p′ then pL′

is valid.

Proof. Similarly to Proof 3.8, if k ∈ L′, l ∈ L′ then there exists two compat-
ible occurrences of (goto)pausek and (goto)pausel in ε(pL) by Corollary 3.7
(which remains valid). Thus, by definition of ε, there exists two compatible
occurrences of (goto)pausek and (goto)pausel in p. As a consequence, by
definition of well-formedness, pausek and pausel are compatible in p. 2

4.3 State Semantics

We now define the state semantics of Esterelsp. For all p well formed,

for all pL valid, E, E ′, k, L′, we note pL ↪
E′, k−−−→

E
pL′

iff ∃p′ : ε(pL) ◦ E′, k, L′
−−−−→

E
p′.

Thanks to Theorem 4.2, this semantics is well defined on the domain of
valid states over well-formed programs. Of course, in Esterelsp, Theorem 3.9
no longer holds: ε(pL′

) is not p′. This times we are really using L′.

This formalizes our naive semantics: (i) gotopause behaves just as pause
during the reaction, (ii) as the definition of the expansion ε remains un-
changed, both gotopausel and pausel potentially activate pausel by inserting
l into L′.

We remark that, for a given label l, there may be several occurrences of
gotopausel in p or there may be no pausel even if there is one gotopausel.
This is fine. Simultaneous jumps to the same target make sense. Although
“goto nowhere” should probably be forbidden in practice, it is semantically
harmless.

This state semantics of Esterelsp is adequate: its restriction to programs
of the original Esterel language (i.e. the state semantics of Section 3.6)
is observationally equivalent to the initial semantics of Esterel, by Theo-
rems 3.3 and 3.10.

11
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4.4 Constructive Semantics

For lack of space we only briefly sketch the constructive semantics of Es-
terelsp. Esterel constructive semantics is essentially a way to get around
the issue of the overlapping between Rules (d) and (e) of the logical behavioral
semantics [4,19], which are both applicable to some programs. For example,

signal S in present S then...

...emit S else pause end end


∅, 0−−→
∅

signal S in nothing end

∅, 1−−→
∅

signal S in nothing end

It can be obtained by defining two exclusive predicates Must and Cannot,
used for disambiguation. The condition “S ∈ E ′” of Rule (d) and “S /∈ E ′” of
Rule (e) are respectively replaced by “p must emit S” and “p cannot emit S”.

Let Must(gotopausel) and Must(pausel) be defined as Must(pause) is in
Esterel. Let Cannot(gotopausel) and Cannot(pausel) be Cannot(pause).
An identical rewriting of Rules (d) and (e) of our labeled semantics of Es-
terelsp leads to an adequate constructive semantics of Esterelsp.

Intuitively, as gotopause and pause instructions only differ via their non-
instantaneous effects, causality (i.e. correctness with respect to the construc-
tive semantics) is essentially unchanged. Of course, a causal Esterel pro-
gram is a causal Esterelsp program. Then, as the constructive and logical
behavioral semantics of causal programs match, the adequacy of this con-
structive semantics of Esterelsp is a consequence of the adequacy of its
state semantics.

5 Schizophrenia and Reincarnation

A well known complexity of Esterel semantics is illustrated by the infinite
loop of Figure 6. Intuitively, as the signal S is local to the loop, a fresh instance
is accessed each time the loop is entered. Thus the signal O is never emit-
ted. Formally, loop unrolling in the logical semantics produces two separate
instances of S, so that the emission of S never reaches the test. Although there
is a single object S in the source program, there are, in this case, two objects
S involved in each reaction (starting from the second one). Such objects and
programs are said to be schizophrenic [4,14,17].

loop
signal S in

present S then emit O end;
pause;
emit S

end
end

∅, 1−−−→
∅

signal S in nothing; emit S end;
loop

signal S in
present S then emit O end;
pause;
emit S

end
end

Fig. 6. Schizophrenia
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loop
signal S1 in

present S1 then emit O end;
pause;
emit S1

end;
signal S2 in

present S2 then emit O end;
pause;
emit S2

end;
end

loop
signal S1 in

present S1 then emit O end;
gotopause 1;
emit S1

end;
signal S2 in

present S2 then emit O end;
1: pause;
emit S2

end;
end

Fig. 7. Reincarnation in Esterel and Esterelsp

For reasons beyond the scope of this paper, compiling schizophrenic pro-
grams is hard. It is usually achieved either directly through complex and
error-prone compilation algorithms (such as those described in [4]) or in a
two-step process: programs being first rewritten to get rid of schizophrenic
behaviors, then more easily compiled, as in [16]. The first step is called rein-
carnation. It can be obtained by a recursive replication of loop bodies:

loop p end =.loop p;p end

Applied to our example, this method produces 6 the first program of Fig-
ure 7. Each reaction involves one instance of S1 and one of S2. The resulting
program is not schizophrenic. This algorithm however leads to a potentially
exponential growth in code size in the presence of nested loops (not illustrated
here), which is not acceptable. Improved schemes have been proposed [16,17]
with various drawbacks such as the need of ad hoc intermediate languages for
the representation of programs, complex rewriting rules, etc.

On the contrary, using the gotopause instruction of Esterelsp, a simple
and efficient source to source transformation is possible. For a piece of a
well-labeled Esterel program p, we obtain the Esterelsp code p by replac-
ing the pause instructions of p by gotopause instructions, labels unchanged,
and the loops by their bodies. For example, “loop pause1;pause2 end” is
“gotopause1;gotopause2”. We now consider the recursive rewriting of loops:

loop p end =.loop p;p end

The new rewriting generates the second program of Figure 7. With this
preprocessing the worst-case growth is only quadratic, because loops are re-
moved from p. Moreover, because unreachable pieces of program are frequent
(in italic in Figure 7) and may be erased (dead code), the growth is quasi-
linear in practice, which is admittedly as efficient as reincarnation can get (as
well as direct compilation of schizophrenic programs).

6 For readability, we rename the two signals S into S1 and S2.
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6 Conclusion and Perspectives

We have designed gotopause a new Esterel primitive and fully formalized
the extended language Esterelsp by providing an adequate state behavioral
semantics for it. While we focused in this report on a subset of Esterel,
gotopause can of course be embedded in the complete language. The new
construct was coded into our prototype (full) Esterel compiler within a few
hours.

With gotopause, compiling Esterel becomes easier. The core compiler
can concentrate on non-schizophrenic programs, relying on the preprocessing 7

of Section 5 to get rid of schizophrenic behaviors. Compiling to Esterelsp

is also easier. We expect compilers for graphical formalisms built over Es-
terel such as SyncCharts [1,2] to take advantage of the enhanced support
for automata in Esterelsp.

We believe gotopause is both powerful and simple. It has a very intuitive
behavior and, because its action is delayed (i.e not instantly different from a
regular pause instruction), the intuition is not misleading. In particular, it
cannot contribute to instantaneous loops or causal cycles. Thus, it is not only
convenient for implementation purpose but can be made available to the end
user.
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