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Abstract. The diffuse Web is an alternative way of using the Web 2.0
infrastructure for building personal diffuse applications. Systems that let
users tune the temperature of their house with a cell-phone, check that
the shutters are closed with a PDA, or select the music to be played on
a Hi-Fi system with a PC are examples of the targeted applications.

Diffuse Web applications have similarities with Web 2.0 applications: i)
they rely on fast bi-directional interactions between servers and clients,
and ii) they make extensive use of non-cachable dynamic contents. On
the other hand, diffuse applications have also an important difference
with respect to traditional Web applications: they generally do not need
to deal with a huge number of simultaneous users. That is, diffuse Web
applications are built on top of standard technologies but they use it
differently. Therefore they demand different optimizations and tunings.

Hop (http://hop.inria.fr) is a platform designed for building and run-
ning diffuse Web applications. Its software development kit contains two
compilers, one interpreter, and a bootstrapped Web server. That is, the
Hop Web server is implemented in Hop. This paper shows that this imple-
mentation strategy allows Hop to dramatically outperform the popular
mainstream Web servers for delivering dynamic contents. Contrary to
most servers, Hop delivers static and dynamic contents at a comparable
pace. The paper details the implementation of the Hop Web server.

1 Introduction

The Web is the new ubiquitous platform where applications of tomorrow will
be deployed. Though already wide, the Web will eventually become even wider
when it connects all the appliances that surround us. The Web has already
produced amazing new applications such as Google Map but a radically new
way of thinking will be required.

Our answer to the challenge of programming ubiquitous Web applications
relies on a small number of principles [31]. A Web application is not a federation
of dynamic pages but a single, coherent program with multiple projections on
servers or (perhaps roaming) clients. A typical application syndicates multiple
data sources and, at the same time, is driven by multiple event streams.

Managing home appliances and organizing multimedia streams are typical
targets for these new Web applications. Building these applications requires
appropriate programming languages whose semantics, compilation process and



runtime environment must fit the technologies offered by the Web. This paper
focuses on this latter aspect.

Hop is a platform for programming ubiquitous, or diffuse, Web applications
[31,33,34]. Its development kit contains two compilers, one interpreter, and one
Web server. The first compiler is in charge of generating the native code executed
by the server-side of the application. The second compiler produces JavaScript
code executed by the client-side. The interpreter, which resides on the server, is
used for fast prototyping. It has poor speed performance but since it may call
compiled code and vice versa without any overhead, its speed is generally not a
performance bottleneck.

The Hop Web server has been specially designed and tuned for serving ef-
ficiently the HTTP requests needed by diffuse applications. This paper focuses
on studying its performance. It will be shown that using a bootstrapped software
architecture where the server is implemented and executed in the same runtime
environment as that used to execute user programs, may lead to a major speed
improvement in comparison to mainstream Web servers that rely on CGI or
FastCGI protocols. More precisely, it will be shown that for serving dynamic
contents, Hop outperforms traditional generalist Web servers by a factor that
increases with the number of dynamic responses. The paper presents the software
architecture and the implementation techniques deployed in Hop.

1.1 The context

The diffuse applications targeted by Hop use the Web differently than tradi-
tional Web 1.0 and 2.0 applications. They mostly use HTTP as a general pur-
pose communication channel and they merely consider HTML and JavaScript as
intermediate languages such as the ones used by compilers. The most important
characteristics of diffuse Web applications are as follows.

– Most devices involved in the execution of a diffuse application may both act
as server and as client. For instance, in a multimedia application, a PDA can
be used to control the music being played as it can serve music files itself.
That is, diffuse Web applications do not strictly implement a client-server
architecture. They share some similarities with a peer-to-peer application.

– The applications frequently involve server-to-server, server-to-client, and client-
to-server communications. For instance, a multimedia application playing
music uses these communications for updating the state of all the GUIs
controlling the music being played back.

– Programs are associated with URLs. Programs start when a Web browser
requests such an URL. This generally loads a GUI on that browser. Apart
from that initial transfer, most other communications will involve dynamic
contents which can either be dynamic HTML documents or serialized data
structures.

– The number of simultaneous concurrent requests is small because in general,
only one user raises the temperature of the heating system or raises the
volume of the Hi-Fi system. Hence dealing efficiently with a large number of
connections is not a topmost priority for the servers considered here.



These characteristics have consequences on the implementation strategy a dif-
fuse Web server should use. For instance, the first one, requires servers to have
a small enough memory footprint to be embeddable inside small devices such
as mobile phones. The second one requires servers to handle persistent con-
nections efficiently. The third one demands short response times for dynamic
documents. The fourth one impacts the concurrency model that should be de-
ployed. Therefore, although diffuse Web applications probably have workloads
that resemble those of Web 2.0 applications [25], they demand dedicated imple-
mentation strategies. In practice, general purpose Web servers that are mostly
optimized for dealing with a large number of simultaneous connections are not
suitable for most diffuse applications.

The vast majority of studies concerning the performance of Web servers con-
centrate on one crucial problem as old as the Web itself: sustaining the maximal
throughput under heavy loads. This problem has been mostly addressed from
a network/system programming perspective. For instance, a paper by Nahum
et al. [26] surveys the impact on the performance of using various system ser-
vices combinations. Another paper by Brech et al. explores and compares the
different ways to accept new connections on a socket [6]. The seminal events-
versus-threads dispute is more active than ever [1,40] and no clear consensus
emerges. Hop is agnostic with respect to the concurrency model. Its software
architecture supports various models that can be selected on demand.

The long debated question regarding kernel-space servers versus user-space
servers seems to be now over. Initially it has been observed that kernel-space
servers outperformed user-space servers [13], independently of the hosting op-
erating systems. Adding zero-copy functions in the system API, such as the
sendfile, has changed the conclusion [29]. In addition, another study [35] has
shown that the gap between kernel-space and user-space that prevailed in older
implementations unsurprisingly becomes less significant when the percentage of
requests concerning dynamically generated content increases. Since Hop is de-
signed mainly for serving dynamic contents, this study is of premium importance.

1.2 Organization of the paper

Section 2 presents the general Hop’s software architecture. Then Section 3 shows
how the architecture is actually implemented. Section 4 presents the overall
performance evaluation of the Hop Web server and compares it to other Web
servers. It shows that Hop is significantly faster than all mainstream Web servers
for serving dynamic documents. Section 5 presents related work.

2 The implementation of the HOP Web server

This section presents the general implementation of the Hop Web server. It first
briefly sketches the Hop programming language and its execution model. Then,
it shows the general architecture of the server.



2.1 The HOP programming language and its implementation

Since the Hop programming language has already been presented in a previous
paper [31], only its main features are exposed here. Hop shares many charac-
teristics with JavaScript. It belongs to the functional languages family. It relies
on a garbage collector for automatically reclaiming unused allocated memory. It
checks types dynamically at runtime. It is fully polymorphic (i.e., the univer-
sal identity function can be implemented). Hop has also several differences with
JavaScript, the most striking one being its parenthetical syntax closer to HTML
than to C-like languages. Hop is a full-fledged programming language so it offers
an extensive set of libraries. It advocates a CLOS-like object oriented program-
ming [5]. Finally, it fosters a model where a Web application is conceived as
a whole. For that, it relies on a single formalism that embraces simultaneously
server-side and client-side of the applications. Both sides communicate by means
of function calls and signal notifications. Each Hop program is automatically as-
sociated with an unique URL that is used to start the program on the server.
The general execution pattern of a Hop program is as follows:

– When an URL is intercepted by a server for the first time, the server auto-
matically loads the associated program and the libraries it depends on.

– Programs first authenticate the user they are to be executed on behalf of
and they check the permissions of that user.

– In order to load or install the program on the client side, the server elaborates
an abstract syntax tree (AST) and compiles it on the fly to generate a HTML
document that is sent to the client.

– The server side of the execution can be either executed by natively compiled
code or by the server-side interpreter. If performance matters compiled code
has to be preferred. However, for most applications, interpreted code turns
out to be fast enough.

Here is an example of a simple Hop program.

(define-service (hello)

(<HTML> (<DIV> :onclick ~(alert "world!") "Hello")))

Provided a Hop server running on the local host, browsing the URL http://-

localhost:8080/hop/hello loads the program and executes the hello service.
Contrary to HTML, Hop’s markups (i.e., <HTML> and <DIV>) are node con-
structors. That is, the service hello elaborates an AST that is compiled on-the-
fly into HTML when the result is transmitted to the client. It must be emphasized
here, that a two phased evaluation process is strongly different from embedded
scripting language such as PHP. The AST representing the GUI exists on the
client as well as on the server. This brings flexibility because it gives the server
opportunities to deploy optimized strategies for building and manipulating the
ASTs. For instance, in order to avoid allocating an new AST each time a hello

request is intercepted by the server, the AST can be elaborated at load-time and
stored in a global variable that is reused for each reply.



(define hello-ast

(<HTML> (<DIV> :onclick ~(alert "world!") "Hello")))

(define-service (hello) hello-ast)

2.2 The overall HOP Web server architecture

As most servers, when Hop intercepts a request it builds a reifying data structure
which contains general informations such as the requested URL, the IP address
of the client, and the date of the connection. In addition, Hop also proceeds to an
early request authentication. That is, using the optional HTTP authorization

field, it automatically searches in its database of declared users one whose lo-
gin matches. If this query fails, a default anonymous user is associated with
the request. This allows Hop to handle all requests on behalf of one particular
user. Permissions to access the file system and to execute programs are granted
individually, user by user.

Once users are authenticated and the request fully reified Hop builds a re-
sponse object. This transformation is accomplished by a Hop program that can
be changed as needed by users [32]. This gives flexibility to Hop that can there-
fore be used in various contexts such as smart proxies, application servers, load
balancers, etc. It also strongly constraints its implementation because it forbids
some classical optimizations. For instance it prevents Hop from re-using already
allocated objects for representing requests because since these objects are used
by user-defined programs they have dynamic extent.

Hop uses a traditional pipeline for processing HTTP requests, whose graphi-
cal representation is given in Figure 1. The advantages of using such an architec-
ture for implementing Web servers have been deeply studied and are now well
understood [42,44,9]. This Section presents the Hop pipeline without addressing
yet the problem of scheduling its execution flow. In particular, it is not assumed
here any sequential or parallel execution of the various stages. The scheduling
strategies will be described in Sections 2.3 and 2.4.

Fig. 1. The 4-stage HOP’s pipeline.

In the Hop’s pipeline, the first stage (“Accept”), establishes connections with
clients. The second stage (“Request”), parses HTTP requests and builds the data



structure reifying the authenticated requests. The stage “Response” elaborates
responses to the requests. As suggested by the work on SEDA [42], provision
is taken to let the Hop scheduler handle static replies and dynamic replies dif-
ferently. This is reflected by the pipeline fork after the “Response” stages. Per-
sistent connections are handled by looping backward in the pipeline after the
“Reply” stages. In order to avoid cluttering the next pipeline figures, keep-alive
connections will be no longer presented.

The last two stages of the pipeline spawn user Hop programs executions.
Services, such as hello defined in Section 2.1, are executed during the “Re-
sponse” stage. For instance, when the server handles the request http://-

localhost:8080/hop/hello the “Response” stage establishes the connection
between the absolute path of the request URL, namely /hop/hello, and the
defined service hello. It then invokes the latter. In this particular case, this
service returns an AST representing a HTML tree. The “Response” stage wraps
the values returned by services into response objects that are used by the final
“Reply” stages. The “Static reply” stage handles static files or constant strings.
It simply sends the characters composing the response to the clients. The “Dy-
namic reply” stage handles all other cases. When a dynamic response is an AST,
this stage traverses the structure for compiling it on the fly into a regular HTML
or XHTML document. That traversal can be controlled by user programs. The
AST is represented by an object hierarchy that can be extended by user programs
and the methods that implement the traversal can be overridden.

Server side executions can either involve compiled codes or interpreted codes.
Server-side interpreted code has not been optimized for performance but for
flexibility. Hence the performance ratio between the two execution modes is
strongly in favor of the former.

Flexibility is the main motivation for separating the elaboration of an AST
and its compilation into a final document. As already mentioned in Section 2.1
this gives users the opportunity to cache ASTs. It also allows programs to re-
use the same tree in different contexts. For instance, a same tree can be once
compiled to HTML 4.01 and once to XHTML 1.0, depending on the capacities
of the requesters that are identified in the HTTP request header.

2.3 HOP concurrency

Hop aims at alleviating as much as possible the complexity of programming dif-
fuse applications on the Web. This motivation has deeply impacted the overall
design of the language. For instance, the language relies on a garbage collec-
tor, higher order functions, full polymorphism, and transparent serialization for
function calls that traverse the network, because all these features make pro-
grams easier to write and to maintain. Obviously, the concurrency model is
also another fundamental aspect of the language which has been impacted by
the general Hop’s philosophy. The concurrency model has been mainly designed
with expressiveness and simplicity of programming in mind, more than runtime
speed.



In Hop, responses to HTTP requests are all produced by user defined pro-
grams. This characteristic allows users to change the whole behavior of the server.
This also deeply impacts its implementation because the concurrency model has
to accommodate the spawning of user programs from various pipeline stages.
Since running these programs may be unpredictably long, provisions have to be
taken to execute them without blocking the entire server. That is, the server
must still be able to answer other requests while executing user programs. This
requires the server to be able to process multiple requests in parallel.

Although some previous studies might lead us to think that avoiding pro-
cesses and threads by using an event-driven model can increase the speed [28,42],
this form or concurrency forces programs to adopt a discipline that consists in
splitting execution into a list of small call-backs that are scheduled by an event
loop. Each of these call-backs must be as fast and short as possible in order to
avoid monopolizing the CPU for too long. We have considered that organizing
user programs into a well balanced list of call-backs was an unacceptable burden
for the programmers. Hence, in spite of any performance considerations, we have
decided to give up with pure event-driven models for Hop.

Currently Hop relies on a preemptive multi-threaded execution for user pro-
grams. However, the server and more precisely, the pipeline scheduler, is inde-
pendent of the concurrency model of user programs, as long as they are executed
in parallel with the stages of the pipeline. Hence, alternative concurrency mod-
els such as cooperative threads or software memory transactions could be used
in Hop. This independence also allows many Web architectures to be used for
scheduling the Hop pipeline. For instance, Hop may use multi-processes, multi-
threads, pipeline [44,9], AMPED [28] or SYMPED [29], or a mix of all of them.
In order to avoid early decisions, we have extracted the Hop scheduler from
the core implementation of the server. That is, when the server is spawned, the
administrator can select his scheduler amongst a set of predefined schedulers or
provide his own. Hop pipeline schedulers are actually regular Hop user programs
because the API that connects the scheduler to the server is part of the standard
Hop library. The rest of this section emphasizes the simplicity of developing and
prototyping new schedulers. In particular, it will be shown that adding a new
scheduler is generally as simple as defining a new class and a couple of new
methods. Using the server interpreter this can even been tested without any
recompilation.

2.4 Hop pipeline scheduler

The Hop pipeline scheduler is implemented using a class hierarchy whose root is
an abstract class named scheduler. Three methods accept, spawn, and stage

implement the pipeline machinery. The Hop Web server provides several concrete
subclasses of scheduler that can be selected using command line switches or
by user programs. Extra user implementations can also be provided to Hop on
startup. This feature might be used to easily test new scheduling strategies.



(abstract-class scheduler)

(define-generic (accept s::scheduler socket))

(define-generic (spawn s::scheduler proc . o))

(define-generic (stage s::scheduler th proc . o))

In this section, the general pipeline implementation is presented, followed by
several concrete schedulers. For the sake of simplicity many details of the actual
implementation are eluded. Exception handling is amongst them.

The pipeline implementation When the Hop Web server is started, it first
creates a socket that listens to new connections. The function make-server-

-socket of the Hop standard API takes one mandatory argument, a port num-
ber, and one optional argument, a backlog size:

(define-parameter port 8080)

(define-parameter somaxconn 128)

(define socket-server (make-server-socket (port) :backlog (somaxconn)))

Once the command line is parsed and the Runtime Command file loaded, the
pipeline scheduler is created by instantiating the class corresponding to the se-
lected scheduler.

(define-parameter scheduling-strategy ’pool)

(define-parameter max-threads 20)

(define pipeline-scheduler

(case (scheduling-strategy)

((nothread) (instantiate::nothread-scheduler))

((one-to-one) (instantiate::one-to-one-scheduler))

((pool) (instantiate::pool-scheduler (size (max-threads))))

...))

The main server loop is entered with:

(accept pipeline-scheduler socket-server)

The function accept is a generic function function [5]. That is, a function whose
default implementation might be overridden by methods. When a generic func-
tion is called, the actual implementation, i.e., the method to be executed, is
chosen according to the dynamic types of the arguments of the call. The default
implementation of accept is as follows:

1: (define-generic (accept S::scheduler serv)

2: (let loop ()

3: (let ((sock (socket-accept serv)))

4: (spawn S stage-request sock 0)

5: (loop))))



On line 3 , a new connection is established. The request starts to be processed
on line 4 . The function spawn being also a generic function, its actual imple-
mentation depends on the dynamic type of the scheduler.

The spawn function requires at least two parameters: a scheduler (S) and
a function (stage-request) which can be considered as a continuation. The
function spawn starts an engine which calls the function with the scheduler S, the
engine itself, and all the other optional parameters spawn has received. As it will
be presented in the next sections, the concurrency model used for executing the
pipeline entirely depends on the actual implementation of the scheduler which
may override the definition of spawn. This gives the freedom to each scheduler to
use an implementation of its own for creating and spawning new engines. That is,
one scheduler may implement its engine with sequential functional calls, another
one may implement it with threads, and a third one could implement it with
processes.

The function stage-request implements the second stage of the pipeline. It
parses the HTTP header and body in order to create the object denoting the
HTTP request.

1: (define (stage-request S th sock tmt)

2: (let ((req (http-parse-request sock tmt)))

3: (stage S th stage-response req)))

The request is parsed on line 2 . The function http-parse-request reads the
characters available on the socket sock with a timeout tmt. A value of 0 means
no timeout at all. Parsing the request may raise an error that will be caught
by an exception handler associated with the running thread. This handler is in
charge of aborting the pipeline. Once the request object is created and bound
to the variable req (see on line 2 ), the third stage of the pipeline is entered.
The function stage is the last generic function defined by the scheduler class.
Although its semantics is equivalent to that of spawn there is a point in sup-
porting two different functions. As it will be illustrated in the next sections,
distinguishing spawn and stage is needed for enlarging the scope of possible
scheduler implementations.

The function stage-response creates a response object from a request object.
It is implemented as:

1: (define (stage-response S th req)

2: (let* ((rep (request->response req))

3: (p (if (http-response-static? rep)

4: stage-static-answer

5: stage-dynamic-answer)))

6: (stage S th p req rep)))

The two functions stage-static-answer and stage-dynamic-answer being
similar only one is presented here:



(define (stage-static-answer S th req rep)

(stage-answer S th req rep))

Using two functions instead of one gives the scheduler the opportunity to deploy
different strategies for dealing with static and dynamic requests [42].

(define (stage-answer S th id req rep)

(let* ((sock (http-request-socket req))

(conn (http-response rep sock)))

(if (keep-alive? conn)

(if (= (scheduler-load S) 100)

;; use a minimal timeout (1mus)

(stage S th stage-request sock 1))

;; use the default timeout (3ms)

(stage S th stage-request sock 3000))

(socket-close sock)))

After this sketch of the pipeline implementation the next sections present several
actual scheduler implementations.

The row pipeline scheduler Several Hop schedulers execute the stages of the
pipeline sequentially, that is, they associate a new thread or a new process with
each newly established connection that is used all along the pipeline. In order
to alleviate the implementation of new schedulers that belong to this category,
Hop provides a dedicated abstract class, namely row-scheduler, that overrides
the stage generic function.

(abstract-class row-scheduler::scheduler)

(define-method (stage S::row-scheduler t p . o) (apply p S t o))

When no threads are used, jumping from one stage to another is implemented
as a traditional function call. Hence, the implementation of the stage method of
a row-scheduler, just consists in calling the function it has received as second
argument.

The nothread pipeline scheduler The simplest form of scheduler implements
no parallelism at all. Within an infinite loop, the nothread scheduler waits for
a new connection to be established, it then executes in sequence all the stages
of the pipeline and it loops back, waiting for new connections (see Figure 2).

Implementing the nothread scheduler is straightforward because it only re-
quires to override the generic function spawn with a method that merely calls
the procedure it receives with the optional arguments and a dummy thread that
is created by the scheduler. This thread is never used but it is required for the
sake of compatibility with the other schedulers.



Fig. 2. The nothread pipeline scheduler.

(class nothread-scheduler::row-scheduler)

(define *dummy* #f)

(define-method (spawn S::nothread-scheduler p . o)

(unless (thread? *dummy*) (set! *dummy* (instantiate::hopthread)))

(apply stage S *dummy* p o))

The nothread scheduler is fast but unrealistic since it cannot handle more than
one request at a time. Using such a scheduler would prevent Hop from being
used for serving long lasting requests such as music broadcasting.

The one-to-one scheduler The one-to-one scheduler creates one new thread
per connection (see Figure 3). Within an infinite loop it waits for connections. As
soon as such a connection is established, it creates a new thread for processing
the request. The main loop starts this new thread and waits for a new socket
again.

Fig. 3. The one-to-one pipeline scheduler.

Implementing the one-to-one scheduler is as simple as implementing the
nothread scheduler. It only requires to override the spawn generic function.



(class one-to-one-scheduler::row-scheduler)

(define-method (spawn S::one-to-one-scheduler p . o)

(letrec ((th (instantiate::hopthread

(body (lambda () (apply p S th o))))))

(thread-start! th)))

The one-to-one scheduler supports parallel execution for requests so it over-
comes the major drawback of the nothread scheduler. It is easy to implement
persistent HTTP connections using this scheduler because after a response is
sent to the client, the same thread can check if new requests are pending on the
socket. However, in spite of this progress, the one-to-one scheduler is still in-
efficient because the system operations involved in creating and freeing threads
are expensive.

The thread-pool scheduler To eliminates the costs associated with the thread
creation of the one-to-one scheduler, the thread-pool scheduler has been im-
plemented. It is almost identical to the one-to-one scheduler with two noticeable
differences: i) it uses a pool of early created threads, and ii) the accept loop is
implemented inside each thread loop. That is, all the threads implement the
same loop that executes all the stages of the pipeline (see Figure 4). Persistent
connections are handled inside the same thread as the initial request. In sce-
narios where HTTP requests are sent to the server in sequence, this scheduler
is able to avoid all context switches because a single thread executes the entire
pipeline, from the “Accept” stage to the “Reply” stage. Context switches only
occur when several requests are accepted in parallel.

Fig. 4. The thread-pool pipeline scheduler.

The bookkeeping needed to manage the pool of threads makes the implemen-
tation of the thread-pool scheduler obviously more complex than the previous
ones. As this is a classical problem of concurrent programming it is probably not



useful to present it here. Therefore all the details that are not strictly specific
to Hop are therefore omitted.

The pool-scheduler class inherits from the row-scheduler class which it
extends with two fields for holding the threads of the pool.

(class pool-scheduler::row-scheduler

(threads::list read-only)

(size::int read-only))

Each thread in the pool executes an infinite loop. When its action is completed
a thread goes to sleep state. It will be awaken by the scheduler when a new
connection will be assigned to this sleeping thread. Two functions implement
this interface: get-thread-pool and resume-thread-pool.

(define-method (spawn S::pool-scheduler p . o)

;; get a free thread from the pool (may wait)

(let ((th (get-thread-pool S)))

(with-access::hopthread th (proc)

;; assign the new task to the thread

(set! proc (lambda (S t) (stage S t p o)))

;; awake the sleeping thread

(resume-thread-pool! th)

th)))

Contrary to other schedulers, the call to socket-accept that waits for new
connections is not invoked from the server main loop but inside each thread
started by the scheduler. This is implemented by overriding the generic func-
tion accept for the pool-scheduler class and by creating an new function for
implementing the “Accept” stage.

(define-method (accept S::pool-scheduler serv)

(for (i 0 (pool-scheduler-size S))

(spawn S stage-accept)))

(define (stage-accept S th)

(let loop ()

(let ((sock (socket-accept serv)))

(stage S th stage-request sock 0)

(loop))))

Other schedulers Other schedulers have been implemented inside Hop. In
particular we have tried a scheduler inspired by the cohort scheduling [16] (see
Figure 5), a scheduler using an accept-many strategy [6], and a scheduler using
a queue of waiting tasks. Early observations yield us to think that none performs
faster than the thread-pool scheduler for our targeted application field.

The cohort scheduling experienced in Hop consists in grouping threads by
tasks rather than by requests. It is hard to implement and even harder to op-



Fig. 5. The cohort pipeline scheduler.

timize so up to now we have not been able to achieve good performance with
it.

The queue strategy consists in associating stages of the pipeline to tasks.
When a task must be executed, one thread is extracted from the pool. When the
task completes, the thread goes back to the pool. A straightforward optimization
of this scheduler removes superfluous queue operations and allows this scheduler
to handle request in a row. When a thread should go back to the queue, if first
checks if is queue of available threads is empty or not. If not empty, the same
thread is used to execute the next stage of the pipeline.

The accept-many strategy consists in modifying the accept stage of the
thread-pool scheduler in order to accept many connections at a time for purging
as quickly as possible the socket backlog. All the connections that are established
at a time are then processed by a pool of threads as the thread-pool sched-
uler does. Although the authors of the accept-many technique report significant
speed acceleration when deploying this strategy in mainstream Web servers, it
fails at accelerating Hop. The reason for this different behavior is probably to
be searched in the application field targeted by Hop where massively parallel
requests burst are rare.

3 Optimizations

The online paper Server Design [10] highlights three major reasons for a Web
server to behave inefficiently: i) data copies, ii) memory allocations, and iii)
context switches. According to this paper, an ideal server would be a server that
avoids them all. Of course, this is not practically feasible but still, working as
hard as possible on these issues improves the chances of success in the quest
of a fast server. Section 2.4 has shown that some Hop schedulers are able to
accept, parse, and reply to requests without any context switch. Section 2.4 has
presented an example of such a scheduler. This section shows how Hop addresses
the two other points.



3.1 Limiting the memory allocation

High level programming languages such as Hop help programmers by supporting
constructions that abstract low level mechanisms involved at runtime. Providing
high level powerful forms alleviates programmers from tedious tasks but it also
generally comes with a price: it makes writing efficient programs more difficult.
A major reason for this inefficiency is excessive memory allocations.

Excessive memory allocation dramatically limits the performance for two
main reasons: i) programs spend a significant percentage of their execution to al-
locate and free memory chunks and, ii) it introduces additional context switches
for parallel executions that run in shared-memory environments. When the heap
is a shared resource, allocating and freeing memory require some sort of synchro-
nization. In general this is implemented with locks that eventually conduct to
context switches. Hence, polishing a thread scheduling strategy can be pointless
if, at the same time, memory allocation is not tamed.

Version 1.8.7 of Hop allocates 47.5MB for serving 10,000 times a file of 512
bytes. The same test run on the version 1.10.0-pre3 allocates only 4.3MB, that
is 457 bytes per request. This section presents the two transformations that have
lead us to shrink memory by more than 10 times.

BglMem Contrary to a popular belief, garbage collectors generally used in high
level languages impose no or minor runtime overhead [45]. The inefficiency of
high level languages is more to be searched in the implicit memory allocations
that are potentially hidden everywhere in the programs. For instance, calling
a function might allocate lists if it accepts a variable number of arguments,
declaring a function might yield to creating a closure if it makes use of free
variables, opening a file or a socket might allocate inadequate buffers, etc.

In order to help programmers tame memory allocations, the Hop develop-
ment kit provides an exact memory profiler. A dynamic tool keeps trace of the
exact call graph at each allocation points. An offline tool produces histograms
that, for each function of the programs, show: i) the number of data structures
that have been allocated by this function and the overall size in bytes these al-
locations represent, and ii) the number of data structures and the size in bytes
for all the functions the function dynamically calls. Using BglMem, we have, for
instance, easily discovered that during a Hop test consisting in replying to 10,000
requests, the Hop function http-parse-method-request has allocated 60,006
pairs for a total of 468KB and 30,003 strings for a total of 654KB. In addition,
the histograms produced by BglMem show that one of the children of this func-
tion has allocated 10,000 data structures representing the HTTP requests for a
total size of 976KB.

The next sessions shows how BglMem has been used to reduce the Hop
allocation and memory footprint.

One transformation Because of the size constraint of the paper, it is not
possible to present the exhaustive list of optimizations that have been applied to



Hop to reduce its memory allocation. Hence only one exemplar transformations
is presented here. It gets rid of implicit memory allocations that, once spotted
are straightforward to eliminate.

Optimizing IO buffers: The function socket-accept waits for new con-
nections on a socket. Once established the connection is associated with an input
port for reading incoming characters and an output port for writing outgoing
characters. BglMem reported that with Hop 1.8.7, socket-accept was respon-
sible for allocating about 10MB of strings of characters! These 10MB came from
the default configuration of socket-accept that creates a buffer of 1024 bytes
for the input port associated with a connection. Removing these buffers has
saved 10000 * 1024 bytes of memory.

Hop uses sockets in a way that allows it to use its own memory management
algorithm which is more efficient than any general purpose memory manager.
Hop needs exactly as many buffers as there are simultaneous threads parsing
HTTP requests. Hence, the obvious idea is to associate one buffer per thread
not by socket. This can be implemented more or less efficiently depending on
the nature of the scheduler. Some schedulers such as the nothread-scheduler

or pool-scheduler (see Section 2.4 and Section 2.4) accept an optimal solution
that totally eliminates the need to allocate buffers when the server is ready to
accept requests. It consists in allocating one buffer per thread when the scheduler
is initialized. These buffers are then simply reset each time the thread they are
associated with is about to parse characters. The modification in the source code
is minor. It only requires one additional line of code:

(define-method (accept S::nothread-scheduler serv)

;; create a buffer before the thread loop

(let ((buf (make-string 1024)))

(let loop ()

;; reuse buffer for each connection

(let ((sock (socket-accept serv :inbuf buf)))

(spawn S stage-request sock 0)

(loop)))))

Wrap up Memory allocation has been measured on a test that consists in
serving 10,000 a 512 bytes long file, without persistent connection. Each HTTP
request of this memory test contained 93 bytes. Parsing each request produces a
data structure made of strings (for denoting the path of the request, the client
hostname, etc.), lists (for holding the optional lines of the HTTP header), sym-
bols (for the HTTP version, the transfer encoding, the mime type, etc.) and an
instance of the class http-request for packaging the parsed values plus some
extra values such as a time stamp, an authenticated user, etc. In the test this
structure uses the whole 457 bytes allocated per request. That is, applying the
optimizations described in this section has successfully removed all the memory
allocations not strictly needed for representing the HTTP requests. In particu-
lar, all the hidden allocations that can take place in high level languages such as



Hop have been eliminated. The current version of Hop is then close to optimal
regarding memory allocation.

3.2 Persistent connections

Persistent connections have been one of the main reasons of the creation of
HTTP/1.1. Two early papers report that significant accelerations can be ex-
pected from implementing persistent connections [21,27]. A client has two means
for discovering that it has received the full body of a response: i) the connection
is closed by the server or, ii) the length of the response to be read is explicitly
provided by the server. Persistent connections, of course, can only use the second
method.

Providing the length of a static response, i.e, a file or a string of characters, is
straightforward (although some Web servers, such as Lighttpd, implement caches
to eliminate repetitive calls to the expensive fstat system operation). Providing
the size of a dynamic response is more challenging. One solution consists in
writing the response in an auxiliary buffer first, then getting the length of that
buffer and then writing the length and the buffer to the socket holding the
connection. This technique is generally inefficient because it is likely to entail
data copies. The characters have to be written to the buffer first which might
need to be expanded if the response is large. Then, this buffer has to be flushed
out to the socket, which is also likely to use a buffer of its own.

Hop uses a solution that avoids auxiliary buffers. It relies on chunked HTTP
responses that break the response body in a number of chunks, each prefixed
with its size. Using chunked responses in Hop is possible because of a dedicated
facility provided by its runtime system. The Hop I/O system allows programs
to associate flush hooks with input and output ports. Output flush hooks are
functions accepting two arguments: the port that is to be flushed and the number
of characters that are to be flushed out. The values produced by calling these
hooks are directly written out to the physical file associated with the port before
the characters to be flushed out.

Using output flush hook, chunked responses can be implemented as:

(define (chunked-flush-hook port size)

(format "\r\n~x\r\n" size))

Using output port flush hooks is efficient because it imposes no overhead to
the I/O system. The written characters are stored in a buffer associated with
the output port, as usual. When the buffer is flushed out, the chunk size is
written by the hook. Writing the chunk size is the only extra operation that has
been added to answering responses. It is thus extremely lightweight and it allows
persistent connections to be implemented efficiently (i.e., without extra copy nor
extra memory allocation) for dynamic documents as well. Chunked HTTP re-
sponses have probably been designed for enabling this kinds of optimization but
we have found no trace of equivalent techniques in the literature.



3.3 Operating system interface

Implementing fast I/Os with sockets requires some operating system tunings and
optimizations. This section presents two of them.

Non-copying output Several studies have measured the benefit to be expected
from using non-copying output functions such as the Linux sendfile facility
[26,29]. This system service is supported by Hop. In addition to be fast because
it avoids data copies and user-space/kernel-space traversals, it also simplifies the
implementation of servers because it makes memory caches useless for serving
static files. As in a previous study [29], we have noticed no acceleration when
using memory cache for serving files instead of using a pure sendfile-based
implementation. Using sendfile or a similar function actually delegates the
caching to the operating system which is likely to perform more efficiently than
a user-land application.

Network programming The default setting of sockets uses the Nagle algo-
rithm [24] that is aimed at avoiding TCP packets congestion. We know from
previous studies that this algorithm combined with the acknowledgment strat-
egy used by TCP may cause an extra 200ms or 500ms delay for delivering the
last packet of a connection [12]. This is called the OF+SFS effect that has been
identified to be due to the buffer tearing problem [22]. Persistent HTTP connec-
tions are particularly keen to exhibit this problem and thus it is recommended to
disable the Nagle algorithm for implementing more efficiently Web servers that
support persistent HTTP connections [27]. Therefore, Hop supports configura-
tion flags that can enable or disable the Nagle algorithm.

The TCP CORK hybrid solution (or a super-Nagle algorithm) is supported by
some operating systems. However, as reported by Mogul & Mingall [22] this
socket option does not solve the OF+SFS problem in presence of HTTP per-
sistent connections. We confirm this result because in spite of several attempts
we have failed to eliminate the 200ms delay it sometimes imposes (in between 8
and 20% of the responses according to Mogul & Mingall, much more according
to our tests) between two persistent connections. Hence, we gave up on using it.

Other configurations impact the overall performance of socket based applica-
tions. For instance, previous studies have suggested that an adequate calibration
on the backlog of a listen socket (controlled by the system limit somaxconn) may
improve significantly the performance [4]. For the workloads used to test Hop
we have found that mid-range values (such as 128) yield better results.

4 Performance study

Although most HTTP requests involved in diffuse applications address dynamic
contents, they also use static file transfers for cascading style sheets, images,
and client-side libraries. Hence a fast server for the diffuse Web should be able
to deliver efficiently dynamic and static documents. In this section we compare
Hop to other Web servers for serving the two kinds of requests.



4.1 Performance evaluation caveat

This paper focuses on the performance evaluation of the Hop Web server, which
is not to be confused with a performance evaluation of the Hop server-side pro-
gramming language. Hop relies on the Bigloo compiler for generating server-side
native code. It has already been shown that this compiler delivers native code
whose performance is only 1.5 to 2 times slower than corresponding C code [30].
That is, the Hop server-side compiled code significantly outperforms the popular
scripting languages such as PHP, Ruby, Python, as well as bytecode interpreted
languages such as Java. In order to avoid overemphasizing the performance of
the Hop programming language against PHP, Ruby, Java, or even C, we have
only used simplistic generated documents that require minimalist computations.
Our typical generated documents only require a few “prints” to be produced.
Restricting to simple documents minimizes the performance penalty imposed by
slow scripting languages implementations and allows us to focus on the evalu-
ation of the mechanisms used by the server for running user programs on the
server-side of the application.

4.2 Experimental Environment

Our experimental environment consists of three computers connected to a LAN:
i) a server made of a bi-processor Intel PIV Xeon, 3Ghz with 1GB of RAM
running Linux-2.6.27, ii) a first client running Linux-2.6.27 executed by an Intel
Core 2 Duo ULV 1.06Ghz with 1.5GB of RAM, and iii) a second client running
Linux-2.6.27 executed by an Intel Code 2 Duo 2.0Ghz with 2GB of RAM. The
network traffic is ensured by a Cisco Gigabit ethernet router Catalyst 3750G.
Using the Unix tool iperf we have experimentally verified that this setting
indeed permits ethernet frames to be transferred at the pace of one gigabit per
second.

In this paper, the workloads used for our tests are generated by httperf [23]
version 0.9.0, a tool dedicated to measuring the performance of Web servers.

Before concentrating on the actual performance of the servers, we have mea-
sured the requests rate our setting can sustain. Following the protocol suggested
by Titchkosky et al [38], we have observed that our clients can sustain a combined
workload of more than 6,000 requests per second, which is enough to saturate
the tested servers.

4.3 Hop vs other Web servers

There are so many Web servers in vicinity that it is impossible to test them
all1. Hence, we have tried to select a representative subset of existing servers.
We have used two mainstream servers implemented in C, one mainstream server
implemented in Java, and two servers implemented in functional languages:

1 At the time this paper has been written, the wikipedia articles comparing Web
servers described 68 general purpose servers and 79 lightweight Web servers! See
http://en.wikipedia.org/wiki/Comparison of web servers.
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– Apache-2.2.10, a popular Web server implemented in C. For producing
dynamic documents with Apache, we have measured the performance of
mod perl-2.0.4 and mod php5, which both rely on the FastCGI protocol.

– Lighttpd-1.4.20, another popular Web server implemented in C. It is fre-
quently used as a replacement of Apache on embedded devices such as routers
and NASes.

– Tomcat-5.5.27, the popular Web server implemented in Java that relies on
JSP for producing dynamic documents.

– Yaws-1.77, a small server implemented in Erlang [3].
– PLT Web server-4.1.2, a web server implemented in PLT-Scheme [14,15,43].

For this experiment all servers are used with their default configuration except for
logging that has been disabled when possible. The Hop default configuration is as
follows: i) use the thread-pool pipeline scheduler with 20 threads, ii) somaxconn
= 128, iii) initial heap size = 4MB, iv) keep-alive timeout = 5 seconds, v) the
socket send buffer size is 12KB (as recommended by [27]).

As much as possible we have tried to write comparable versions of the dy-
namic test. That is for each of the tested languages, namely PHP, Perl, JSP,
Erlang, Scheme, and Hop, we have tried to write a fair version of the test, that
is a version as equivalent as possible to the version of the other languages.

Figures 6 and 7 presents the performance evaluation which calls for several
observations:

Observation 1: In the considered application context where only a small
number of users simultaneously connect to the server, Hop is one of the fastest
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server for delivering static content. In particular, it is as fast as C servers such as
Apache and Lighttpd. The test presented in the paper involves serving a file of
about 1KB. We have conducted a second test that involves a file of 64KB. This
second test confirms the results presented in Figure 6. The speed hierarchy of
Web servers for serving a 64KB file is roughly the same as the one found when
serving the 1KB file.

Observation 2: Hop is the fastest server for delivering dynamic content.
Observation 3: Hop and Yaws are the only two servers that deliver static

content and dynamic content at approximately the same speed.

Observation 4: Yaws runs remarkably steady. In particular, its performance
seems hardly impacted when the server load increases. Further investigation
would be needed but this early result seems to demonstrate that the advantage
claimed by the Erlang programming language [2] for dealing with massively
concurrent applications is also observable for Web servers. Those concerned by
overloaded servers should probably consider using message passing as fostered
by Erlang.

Observation 5: PHP and Perl present comparable performance. They are
both significantly slower than Hop.

Tomcat performance drops dramatically around 4000 requests per second
because its memory footprint becomes too large (more than 700MB), which
forces the operating system to start swapping the main memory. It should be
noticed here that none of the servers is stopped and restarted when the load
increases. Hence if a Web server leaks memory its performance will continuously



slow down. The PLT Scheme server suffers from the same problem as Tomcat.
Its memory footprint rapidly approaches 1GB of memory. Hence, very soon it
is not able to do anything useful because it is swapped out. Tomcat and PLT
show how important it is to restrain memory allocation. An excessive memory
allocation dramatically reduces the performance of a server.

From these observations, we can draw some conclusions. The experiment em-
phasizes persistent connections even for dynamic content delivery because each
client emits consecutively 5 requests using the same connection. This corresponds
to a real use-case for the targeted applications but it strongly penalizes all the
systems that are not able to implement them efficiently. This might explain the
poor performance of Apache and Lighttpd servers.

The file 984 bytes long file used for testing static delivery is exactly the file
that gets generated by the dynamic content test. Hence, the static delivery and
the dynamic delivery end up with the same characters written to the socket. The
only difference between the two tests is the way these characters are obtained:
from a static file in the first case, from an in-memory computation in the sec-
ond. Hop and Yaws are the two fastest servers for delivering dynamic contents.
They are both bootstrapped. This might be considered as an indication that
bootstrapped Web servers should outperform other servers for delivering dy-
namic content. Tomcat is bootstrapped too but since its performance is deeply
impacted by its excessively large memory footprint, no conclusion can be drawn
from studying its performance.

5 Related work

Many high level languages have been used to implement Web servers but actually
only a few of them can be compared to Hop. Functional languages have a long
standing tradition of implementing Web servers, probably pioneered by Common
Lisp that, as early as 1994, was already concerned by generating dynamic HTML
content [18]! Today, Haskell seems very active with HWS [19], Wash/CGI [37],
and HSP [7]. HWS is a server that uses a four-stages pipeline and a one-to-one

scheduler. It relies on user-threads instead of system-threads for handling each
requests. User-threads work well as long as no user program can be spawn from
the stages of the pipeline. This probably explains why HWS is not able to serve
dynamic content. HSP is a Haskell framework for writing CGI scripts. It used to
be implemented as an Apache module [20] and but it is now hosted by a dedicated
server HSP(r) based on HWS. Unfortunately HSP(r), as well as Wash/CGI, is
incompatible with the currently released version of GHC, the Haskell compiler.
Hence we have not been able to test any of them.

Smalltalk has Seaside which is one of the precursors in using continuations
for modeling Web interactions [11]. It would have been interesting to measure
its performance because Smalltalk, as Hop is a dynamic programming language
but unfortunately it was not possible to install it on our Linux setting.

The impact of the concurrency model on the performance of the servers has
been largely studied and debated but no clear consensus prevails yet. Some pre-



tend that an event-based model is superior to a thread model. Some pretend the
contrary. A third group claims that blending the two models should be preferred
[41]! Hence, the idea of proposing system independent models of the concurrency
has emerged. Jaws is an adaptive Web server framework that allows program-
mers to implement their own Web server using on-the-shelf components [36].
This framework provides elementary blocks that can manage a pipeline, nor-
malize URLs, support various styles of I/Os, etc. Combining these components
simplifies the development of a server without penalizing its performance.

Flux [8] and Aspen [39] are two programming languages that allow pro-
grammers to choose, at compile-time, the concurrent model used at run-time.
Flux consists in a set of syntactic extensions to C/C++ that are expanded,
at compile-time, into regular C/C++ programs. Aspen like Erlang [3], eschews
shared memory in favor of message passing. The parallel structure of an Aspen
program is specified independently of its computational logic and, at run-time,
Aspen dynamically allocates threads according to the dynamic workload of the
server. Prototypical Web servers have been implemented in Flux and Aspen that
show performance not significantly better than Apache for static and dynamic
contents.

Saburo is an Aspect Oriented framework for generating concurrent programs
[17]. The PhD thesis introducing Saburo focuses on the performance of Web
servers. Contrary to Hop that relies on a dynamic selection of the concurrency
model (implemented by means of classes and late binding), Saburo as Flux and
Aspen relies on a static model. In theory these systems should then be able
to perform faster than Hop because they have opportunities to optimize the
implementation of the concurrency model at compile-time. In practice, the Hop
implementation of the late binding used in the pipeline scheduler is fast enough
not to impact the overall performance of the server.

6 Conclusion

This paper presents the Hop server that is mainly designed for running diffuse
applications on the Web. The paper presents its versatile architecture that sup-
ports various concurrent programming models as well as significant parts of its
implementation.

The paper shows that programming an efficient server for the diffuse Web is
not only a problem of good system and network practices, although these still
have a large impact on the overall performance. The new problem is to combine,
fast network and system programming and fast interactions between the server
main loop that deals with HTTP requests and the user helper programs that
produce responses.

The solution supported by Hop consists in merging, inside a single runtime
environment, the server main loop and the user programs. This can be build by
using the same programming language for implementing the server itself and the
user programs. Such a bootstrapped Web server can eliminate all communication
costs between the server main loop and user programs. Hence, it can outperform



traditional general purpose Web servers that handle user programs as external
processes. The Hop Web server that delivers dynamic documents significantly
faster than all the other tested servers shows this can achieved using high level
dynamic programming languages.
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