
Hop Client-Side Compilation

Florian Loitsch and Manuel Serrano

INRIA, Sophia Antipolis, France
{florian.loitsch,manuel.serrano }@sophia.inria.fr

Abstract

Hop is a new language for programming interactive Web applications. It aims to
replace HTML, JavaScript, and server-side scripting languages (such as PHP, JSP)
with a unique language that is used for client-side interactions and server-side com-
putations. A Hop execution platform is made of two compilers: one that compiles the
code executed by the server, and one that compiles the code executed by the client.
This paper presents the latter.
In order to ensure compatibility of Hop graphical user interfaces with popular plain
Web browsers, the client-side Hop compiler has to generate regular HTML and Java-
Script code. The generated code runs roughly at the same speed as hand-written code.
Since the Hop language is built on top of the Scheme programming language, com-
piling Hop to JavaScript is nearly equivalent to compiling Scheme to JavaScript. The
compiler we have designed supports the whole Scheme core language. In particular,
it features proper tail recursion. However complete tail recursion optimization may
slow down the generated code and is hence disabled in Hop. Most of our benchmarks
were unaffected by the transformation but in the worst case programs were more than
two times slower with it enabled.
The techniques presented in this paper can be applied to moststrict functional lan-
guages such as ML and Lisp.

1 INTRODUCTION

Hop [11] is a new functional language designed for programming Web 2.0 applica-
tions. It is tuned for programming interactive graphical user interfaces for the Web.
A Hop application executes simultaneously on two computers: one for computing
the logic of the application, which we refer to as theserver or broker (conforming
to existing practice [16]) and one for running the graphicaluser interface, which
is henceforth denoted as theclient. The Hop execution model is distributed but
a Hop program is made of one unique source code. Inside that code, a syntactic
construction introduces broker code, another one specifiesclient code. Compiling
a Hop program involves two different compilation processes. The broker code is
compiled to native code by a compiler that has already been described in various
papers [12,10]. The client code is compiled to JavaScript which is the natural lan-
guage for programming graphical user interfaces on the Web.This paper describes
that compilation. In Section 1.1, we shortly present the Hopprogramming lan-
guage by an example. Then, in Section 1.2, we present the maincharacteristics of
the client code compilation.

XX–1

1.1 Hop at a glance

The following code snippet shows a small Hop program that mimics the famous
Google suggest application: given the first characters of the entered search term
popular completions are proposed.

1: (let ((def (<DIV> ""))
2: (svc (service (w)
3: (<P> (sql-exec db
4: "SELECT * FROM dict WHERE (prefix= ˜ a)"
5: w)))))
6: (<HTML>
7: (<INPUT> :onkeyup
8: ˜ (set! $def.innerHTML ($svc this.value)))
9: "The definitions are:"
10: def))

Basically a page (starting at line6) is constructed and sent to the client. It contains
a<DIV> area (nameddef) and a text field, which reacts ononkeyup -events. At
each event it calls the service1 svc on the broker, and updatesdef . The function
svc (declared at line2) executes a database query and returns the result.
Note that (except for the database query) both server and client are written in
Scheme, and that switching from one to the other can be done using only one
character. Client code is introduced by a˜ (tilde) and one can escape back to
server-code using$. This construct strongly resembles Scheme’squasiquotes in
that$ escaped expressions are already evaluated during elaboration before sending
the page to the client. During that elaboration stage the reference todef is then
transformed to JavaScript code retrieving thediv , and the service is transformed
into a server call. The following example further demonstrates this property:

1: (let * ((x 0)
2: (svc (service ()
3: (set! x 1))))
4: (<HTML>
5: (<BUTTON>:onclick ˜ (begin ($svc) (alert $x)))))

Since the elaboration of this site has replacedx with its actual value0, the modi-
fication in the service has no effect on the client side and thealert shows0. Even
though the service-call in line5 modifies the variablex the program will alert0.
During elaboration of the site,x had already been replaced with0 and the modifi-
cation in the service is not transmitted to the client anymore.
The Hop server associates URLs to programs. Hence, in order to start a Hop pro-
gram one has to direct his Web browser to one of these URLs. This starts the
execution of the program on the server. In general, web basedprograms are event-
based, and implement the following pattern: the program is started and the server
elaborates a response which is sent to the client. That response is usually made of

1Theservice form creates a function that can be invoked by both client andserver code.

XX–2

a data structure implementing an HTML element representingthe graphical user
interface. Once the client has received its graphical user interface it interacts with
the user and, when necessary, invokes other services on the server.
One should note that while server code and client code are expressed in the same
language they are intended for different purposes. The server code can access
all resources of the server computer. In particular, it can access the file system,
the network interfaces, or it can execute long lasting CPU intensive computations.
However, it is not knowledgeable of any characteristics of the graphical user in-
terface that are only known to the client code. The client code on the other hand
knows everything about the graphical user interface but, for security reasons, has
no access to other resources. This dichotomy between servercode and client code
is reflected by two different APIs that are available to the server and to the client.
We finish this Section by summarizing the main characteristics of Hop.(i) Hop is
a functional language built on top of the Scheme programminglanguage [8] with
which it shares most of its syntax.(ii) Server code and client code are expressed in
the same language.(iii) The tilde sigñ introduces client code and that the dollar
sign$ inside client code escapes back to server code.(iv) A service is a function
defined on the server (line2) that can be invoked from the client (line8). (v) Finally
service invocations involve transmitting and receiving complex values that can be
any compound data structure.
This section has presented a short overview of the Hop programming language. A
more complete presentation can be found in [11] or at the URL of the project2.

1.2 Compiling Hop client code: the Scm2Js compiler

1: (define (server-info) (string-append (host-name) " " (date)))
2: (<HTML>
3: (<BUTTON>:onclick
4: ˜ (f $(server-info)))
5: (<SCRIPT>
6: ˜ (define (f val) (alert val))))

FIGURE 1: Hop program example.

We have developed a compiler, named SCM2JS, to compile Hop client code to
JavaScript. Hop server code is compiled by another compilerand in Figure 1
only line 4 and line6 are hence of interest. Hop extracts these lines and sends
the list of expression to SCM2JS. As can be seen, Hop client side code resem-
bles Scheme. In fact Hop client code is a superset of IEEE Scheme [8] with one
exception: it does not support exact arithmetic. Most Hop extensions consist of
additional library functions or new syntactic forms that are macro-expanded be-

2http://hop.inria.fr .

XX–3

fore the compilation takes place. The example however demonstrates some addi-
tional difficulties: SCM2JS has to deal with opaque objects (the call to the server,
$(server-info) , is server-code and has to be treated as a black box), out-of-
order compilation (the functionf is defined in a line following the first use off),
and the use of unbound variables (likealert).
When compiling Hop client code SCM2JS allows unbound variables, and both
symbol-related difficulties are hence avoided. Opaque objects are straight-forward
to implement and from this point on Hop client-side compilation is mostly equiv-
alent to a Scheme-to-JavaScript compilation. In consequence, all the techniques
presented in this paper would equally apply to a pure Scheme-to-JavaScript com-
piler. By extension, most of the material presented here could also be useful for
compiling other strict functional languages (e.g., ML) to JavaScript. In the rest of
this paper we will indiscriminately use the terms “Hop client code” or “Scheme”
for denoting the input language of SCM2JS.
Hop client code compilation has to fulfill two requirements:

• CPU intensive parts of Hop programs are executed on servers.However,
in order to let GUIs be as reactive as possible it is importantto make the
Hop client code as efficient as possible. We consider of primeimportance
to guarantee that Hop imposes no performance penalty in comparison with
traditional Web development kits whose client code is implemented in Java-
Script. That is the performance of compiled Hop client code must be on par
with equivalent handwritten JavaScript code. We consider performance as a
potential issue even though we have noticed tremendous differences of per-
formance depending on the hardware architecture and the JavaScript inter-
preter used for testing. For instance, we have found that running JavaScript
programs within Firefox is nearly ten times faster than running the same pro-
grams within Konqueror. This tends to demonstrate that mostusers are not
paying much attention to performance. Developers, on the other hand, are
more concerned with performance, and a noticeable slower client side code
is not acceptable.

• Scheme and JavaScript must be tightly integrated. That is all global bindings
should be easily accessible from both languages, and data structures must be
usable indifferently in both language. Function calls should have always the
same syntax, independently where the call target has been created.

1.3 Main Contributions

From a practical point of view the main contribution of this work is the creation of
a fully functional efficient Scheme-to-JavaScript compiler. Without complete tail-
recursion the compiled code is on par with hand-written code, and is hence suitable
for daily work.
From a technical point of view we suggest improvements to existing tail call tech-
niques. Proper tail recursion does not exist in JavaScript and must hence be coded

XX–4

by hand. We advertise the use of JavaScript’sthis -keyword to adapt existing
trampoline techniques so they become compatible with existing JavaScript code
(Section 4.1). We also propose an optimization to the tail recursion mechanism
that allowed us to remove 40% of the tail call instrumentation in our benchmarks
(Section 4.2).

1.4 Organization of the paper

Section 2 shows how SCM2JS compiles Scheme’s core language to JavaScript.
In Section 3 we discuss the function compilation. This specifically includes our
while transformation for recursive loop functions. This transformation always
improves the performance. The compilation of the remainingtail calls is then
presented in Section 4. This transformation has no impact onmost benchmarks but,
in the worst case, can slow down the execution by more than a factor of 2. Section
5 shows the results of our benchmarks. Related work is discussed in Section 6.
Section 7 provides the download locations of this project, and we finally conclude
this paper in Section 8.
Our compiler supports fullflegded continuation, but their compilation is too com-
plex and extensive to fit into this paper and will be the subject of another publica-
tion.

2 CORE COMPILATION

This section introduces the compilation of the Scheme core language. Function
compilation and proper tail call handling are discussed in Sections 3 and 4.
JavaScript has been inspired by Scheme, and both languages are hence similar in
many respects. Like Scheme, JavaScript treats functions asfirst class citizens and
uses automatic memory management. SCM2JS is hence freed from the burden of
implementing closures or a garbage collector. Moreover, many Scheme constructs
can be naturally mapped to semantically equivalent JavaScript counterparts. Most
transformations are as simple as transforming an array to a list. Variable argument
functions, for instance, use arrays to pass the variables inJavaScript, but expect lists
in Scheme. A compiled variable argument function simply copies the members of
the given array into a list.
Despite the similarities compiling Scheme to JavaScript can not be accomplished
by a mere source-to-source transformation. Peculiar JavaScript scoping rules and
the demand for optimizations require the construction of a true abstract syntax true.
JavaScript and Scheme do not share the same data types either. JavaScript, for in-
stance, does not have any list data type and SCM2JS therefore compiles Scheme
lists to instances of a new classsc_Pair which is part of the SCM2JS runtime
system. In fact only Scheme’s booleans, procedures and numbers (to a certain ex-
tent)3 are semantically compatible with their respective counterparts in JavaScript.

3JavaScript numbers are floating point only. Scheme usually offers exact numbers (integers) too.

XX–5

The remaining types either behave differently or do not haveany corresponding
JavaScript type:

• JavaScript strings are, contrary to Scheme strings, immutable. This restric-
tion is not very limiting and users often prefer the ease of interfacing with
JavaScript over a correct string representation. Depending on a compiler
flag SCM2JS can either directly compile Scheme strings to JavaScript strings
(thereby simplifying the interface between JavaScript andScheme code), or
translate Scheme strings to JavaScript objects of classsc_String . In-
stances of this class represent mutable strings by holding one of JavaScript’s
immutable strings and transparently replacing it when necessary.

• Symbols are mapped to JavaScript strings. If SCM2JS is configured for mu-
table strings, then JavaScript strings are unused and hencefree to use as
symbols (which are also immutable). Otherwise Scheme strings and sym-
bols are both compiled to JavaScript strings, and symbols are prefixed by a
special unused Unicode character in order to distinguish them from strings.

• Pairs and characters are both compiled to JavaScript objects (respectively of
classsc_Pair andsc_Char). The empty list is represented bynull .

• Vectors are mapped to JavaScriptArray s.4

Due to the high level of JavaScript many standard optimizations are difficult to im-
plement within SCM2JS. It is for instance not easy to take advantage of a typing
pass. JavaScript itself is dynamically typed and does not offer any means to an-
notate variables with typing information. The lack of agoto statement too, rules
out other common optimizations [13]. On the other hand the optimizations that are
still applicable can have a big impact on performance. For instance, our inlining
pass (modeled after [10]) was able to cut the execution time of some benchmarks
in half. Inlining library functions (like+, - , etc.) proved to be even more impor-
tant. Our benchmarks were up to 25 times faster with this optimization enabled.
Other optimizations include hoisting of constant assignments (especially function
creations) or constant propagation.

3 FUNCTION COMPILATION

Scheme procedures and JavaScript functions are very similar and a naive compi-
lation would be straightforward. Scheme, however, makes more extensive use of
procedures than JavaScript. In particular, it promotes theuse of tail-recursive func-
tions as loops. Using recursive tail calls as loops is only possible if they do not
consume any stack (called “proper tail recursion”). Currently all important Java-
Script interpreters are known not to perform tail call optimization and SCM2JS

4Despite being called “Array”, this data-type is an object and consists, like all JavaScript objects,
of a hashtable.

XX–6

needs to handle tail calls by itself. A loop optimization pass transforms most re-
cursive tail calls into loops. It is presented in the remainder of this Section. An
optional transformation (Section 4) limits the call stack size for the remaining tail
calls.
In Scheme nearly all loops are implemented as recursive tailcalls. The following
example demonstrates a typical loop pattern:

1: (let loop ((x 0)
2: (y 0))
3: (if <test>
4: <body1>
5: (begin
6: <body2>
7: (loop (+ y 1) x))))

Whenever SCM2JS encounters a tail call to the surrounding function it compiles
this pattern into awhile loop as in figure 2.

1: var x = 0, y = 0;
2: while (true) {
3: if (<test>) {
4: <body1>;
5: } else {
6: <body2>;
7: var tmp = y + 1;
8: y = x;
9: x = tmp;

10: continue ;
11: }
12: break ;
13: }

(a) unoptimized

1: var x = 0, y = 0;
2: while (!<test>) {
3: <body2>;
4: var tmp = y + 1;
5: y = x;
6: x = tmp;
7: }
8: <body1>;

(b) optimized

FIGURE 2: Unoptimized and optimizedwhile compilation of recursive loops.

Such naive source-to-source translations are only sufficient as long as loop vari-
ables are not captured. As the transformation reuses loop variables during each
iteration explicit closure handling becomes necessary. The following example
demonstrates this issue:

1: (let loop ((x 1))
2: (store! (lambda () x))
3: (loop (+ x 1)))

In this code snippet the loop variablex is captured by anonymous functions in
line 2. At each iteration a freshx is captured and all closures of line2 reference
different variables (of the same name). As the previous transformation hoists loop
variables outside the loop, all anonymous functions would now share the samex .

XX–7

In JavaScript, locally declared variables are visible within the whole function body
as if they had been declared at the beginning of the function.The declaration of a
new variable within thewhile body would hence deliver the same result.

1: var x = 1;
2: while (true) {
3: var storage = new Object();
4: storage.x = x;
5: store(function (storage_) {
6: return function () {
7: return storage_.x;
8: };
9: }(storage));

10: x = storage.x + 1;
11: }

var x = 1;
while (true) {

var storage = new Object();
storage.x = x;
with (storage) {

var tmp_fun =
function () { return x; };

}
store(tmp_fun);
x = storage.x + 1;

}

FIGURE 3: Explicit closure allocation with anonymous functions on the left and
with on the right.

SCM2JS solves the problem by pushing a new frame on the call stack (thus creat-
ing an artificial scope). In JavaScript this can be accomplished by either invoking
a function, or by pushing an object onto the stack (using the JavaScriptwith
statement). Both techniques are implemented in SCM2JS (they can be selected
with a compiler flag). Figure 3 shows the result of both approaches. An object
is allocated in line3, which will hold the captured variables. In line5 the stor-
age object is pushed onto the stack. In the first case an anonymous function is
executed. The parameterstorage is thereby copied and the capturing function
(created in line6) hence captures a localstorage_ -object. In the second case
JavaScript’swith statement pushes thestorage object on the stack itself. The
fields contained withinstorage consequently become local variables for the en-
closed statements. The capturing function saves the stack during its creation and
hence holds a reference to the pushed object.
In both approaches the use ofx in line 7 references now a differentx for each
generated function.
The impact on the performance is largely dependent on the source-program and
the target browser. A very short loop, like in our example, isthe worst case and
is respectively 17 (with technique) and 28 (anonymous function technique) times
slower under Firefox (than the same version without explicit closure handling).
Under Opera and Konqueror the impact is less noticeable (about 3 times slower for
with and 4-6 times slower with anonymous functions). However, this program-
ming pattern is rare enough not to impact the performance of most programs (and
none of our benchmarks).

XX–8

4 TAIL CALLS

It is well known that tail calls [3] can be implemented without stack consumption
when the execution platform supportsgoto . In the example of Figure 4 the calls at
line 3, and7 are both tail calls and could be implemented with agoto if compiled
to assembly.

1: function even(x) {
2: if (x === 0) return true ;
3: else return odd(x- 1);
4: }
5: function odd(x) {
6: if (x === 0) return false ;
7: else return even(x- 1);
8: }
9: is2even = even(2);

FIGURE 4: A simple tail call intensive program.

In languages withoutgoto , such as JavaScript, most5 tail calls can be transformed
into while loops (as in Section 3). Our example shows that this is not always pos-
sible and there exist two other popular techniques to achieve proper tail recursion
for the remaining tail calls. In the rest of this section we shortly present Baker’s
technique [2] and a naive version oftrampolines [17]. Section 4.1 discusses a
more efficient version of trampolines developed for the Funnel compiler [15] and
our modification to make this technique compatible with native JavaScript calls.
Section 4.2 then presents our tail call optimization.
Baker’s technique requires the program to be transformed into Continuation Pass-
ing Style (henceforth CPS) first. Function invocations allocate frames on the stack
which are used as the first generation of a generational garbage collector. When-
ever the stack reaches the stack limit a garbage collection is performed, and the
program restarts with an empty stack.
Trampolines on the other hand avoid tail calls by passing thetarget of tail calls
to the caller waiting for the result of the currently runningfunction. It is then the
caller’s task to invoke the received function (which itselfcould return another tram-
poline closure). The following code presents a trampoline version of the previous
even/odd example. The code for the omittedodd function would be similar to
theeven function.

5Except foreven/odd andewal all other benchmarks were tail-call free after thewhile
transformation.

XX–9

1: function even(x) {
2: if (x === 0) return true ;
3: else return new Trampoline(odd, x- 1);
4: }
5: res_or_tramp = even(2);
6: while (res_or_tramp instanceof Trampoline)
7: res_or_tramp = res_or_tramp.restart();
8: is2even = res_or_tramp;

At each tail call a new closure is allocated and returned (line3). The caller in line5
then needs to restart potential trampoline-closures. In this basic form trampolines
are expensive. Each tail call needs to create a closure and non tail calls have to test
for trampoline closures within awhile loop.

4.1 Efficient trampolines

A more efficient version of trampolines has been proposed by the authors of the
Funnel-to-Java compiler [15]. They trade space for speed: instead of returning
after each tail call, a constant numberc of consecutive tail calls are allowed. Once
this limit is reached an exception is thrown or a trampoline closure is repeatedly
returned. After thec frames have been popped the trampoline closure is invoked.
If the limit is not reached (either the function returns or reaches a non tail call),
then the execution continues normally without removing theframes. Settingc to 1
is hence equivalent to the naive trampoline technique. A higher value yields faster
programs, but consumes more memory. According to their experiments a value of
about 40 seemed to be a good compromise.
SCM2JS’s tail call handling resembles this technique in that it allows more than
one consecutive tail call. Our implementation differs in the way the call counter
is passed to functions. When the counter is passed as supplementary parameter
it breaks the call convention, and interfacing with existing code becomes diffi-
cult. The naive use of global variables has its problems too:library functions do
not modify the global variables, and instrumented functions would wrongly ignore
them. Suppose for instance the following code wheretail_f is an instrumented
function that might throw a tail-exception andlib_f is a library function that
comes from an existing JavaScript library:

1: function tail_f() {
2: /* instrumentation and other code*/
3: return lib_f(tail_f); // tail call
4: }
5:
6: function lib_f(f) {
7: f(); // non-tail call
8: remaining_code;
9: }

lib_f does not modify the global variables, andtail_f has hence no idea of
the existence of the remaining continuation on the stack (the remaining_code

XX–10

of lib_f). Whentail_f reaches the imposed limitc it will throw a tail excep-
tion. lib_f however does not know how to handle this exception and will simply
ignore it. The continuation oflib_f is lost.
Measures to overcome this problem are expensive and we finally decided to send
the counter like a hidden additional parameter as part of thethis object. Java-
Script does not make any distinction between functions and methods. Any function
can be used as method (as inobj.f()) or as a function (f()). In the first case
the functionf is a member of the objectobj and executed as method. In the latter
casef is simply invoked as function. Whenever a function is invoked as method,
the keywordthis points to the object as part of which it was executed (in our
exampleobj). If a function is executed as simple function (and not method), then
this points to theglobal object which contains all global variables.
Generally thethis object is unused in functions that are not invoked as methods.
SCM2JS therefore uses it to as a container for the counter value. Thecall target
is stored as field in a unique objectTAIL_OBJECT and then executed as method
call. The fieldcalls of TAIL_OBJECT represents the tail-call counterc .

1: function even(x) {
2: var sc_tailCalls = TAIL_OBJECT.calls;
3: // nonTailCall();
4: if (x === 0) return true ;
5: else {
6: if (this === TAIL_OBJECT) {
7: if (sc_tailCalls == MAX_TAIL_CALLS) {
8: return new Trampoline(odd, [x- 1]);
9: } else {

10: TAIL_OBJECT.calls = sc_tailCalls + 1;
11: TAIL_OBJECT.f = odd;
12: return TAIL_OBJECT.f(x- 1);
13: }
14: } else {
15: TAIL_OBJECT.calls = 1;
16: TAIL_OBJECT.f = odd;
17: var sc_tailTmp = TAIL_OBJECT.f(x- 1);
18: if (sc_tailTmp instanceof Trampoline)
19: return sc_tailTmp.restart();
20: else
21: return sc_tailTmp;
22: }
23: }
24: }
25: is2even = even(2);

FIGURE 5: SCM2JS’s optimized implementation of trampolines.

The (simplified) code in Figure 5 presents our technique on the transformed ver-
sion of the previous example (without theodd function which would be simi-

XX–11

lar to theeven function). At the beginning of the function the counter variable
sc_tailCalls is initialized with the tail call counter stored in the tail object.
For each tail call the function first tests if it was called as tail call (line 6). If
the test succeeds another test (line7) determines ifMAX_TAIL_CALLS(our c)
consecutive tail calls have been executed. If the limit has been reached a trampoline
has to be returned (line8). If the limit has not yet been reached then the counter is
incremented (line10), and the target is called as method (line12). No type check
is necessary as the result would be returned verbatim indifferently of its type. If the
procedure was not called as target of a tail call (line14), then it resets the counter
to 1 and handles potential trampoline closures. The result of the tail call (line17)
is tested (line18), and according to the result either restarted or simply returned.
Therestart method of the trampoline is responsible for restarting any potential
further trampoline closures.
Note that the non tail calls (like the one in line25) are not modified, and that
tail calls (line12, and17) are compatible with all JavaScript functions that do not
accessthis . Functions that use thethis object are methods and usually attached
to some object. As method calls have a different syntax they are not instrumented
by our tail call implementation.

4.2 Acyclic trampoline optimization

We have developed a static analysis that detects tail-call chains and potential cycles
(or more importantly their absence) in them. Chains that do not finish in a cycle are
compiled to direct calls without trampoline instrumentation. As such they do not
test against the limitc anymore and may exceed thec consecutive tail calls. As
the chain does not end in any cycle the number of supplementary calls is however
bound by the length of this chain. The following code illustrates the idea:

1: (define (my-print msg) (print msg) msg)
2: (define (approx-print val)
3: (if (< val 10)
4: (my-print "small")
5: (my-print "big")))
6: (define (len-print l)
7: (approx-print (length l)))

In this example there are three tail call sites (line4, 5, and7). Furthermore the tail
call chainlen-print -¿approx-print -¿my-print does not end in a cycle.
All three call locations are hence not instrumented.
If len-print is thec th consecutive call in a tail-call chain then it should return a
trampoline, but without the instrumentation it continues tail calling, thus exceeding
the limit. The “damage” is however limited as there is only one other tail call
afterwards. In the worst case the program hence exceeds the given limit c by 2 (the
length of the chain).
As this optimization is done at compile time it is not possible to determine all call
targets, and some tail calls keep the trampoline instrumentation even though they

XX–12

can not reach any cycle. In our tail call intensive benchmark40% of all tail calls
have been simplified by this optimization.
Our experiments show that the cost for proper tail recursionis largely program-
dependent. Most tail calls are loops (which are already handled by thewhile
transformation) and programs tend to have few remaining tail calls. More than 80%
of our benchmarks were tail-call free after thewhile transformation. Typical tail-
call intensive programs however suggest a slow down of about1.5, and extreme
cases (like theeven/odd example) run at most 2.5 times slower.

5 BENCHMARKS

Native vs. Scm2js

Mozilla Opera Konqueror

1

Even/Odd
0.9

0.6
0.8

Towers
1.0

1.1
1.1

Tak
1.3

0.9
1.0

Sieve
1.1

1.1
1.0

Quicksort
0.6

0.7
0.8

Nested
1.7

1.0
1.3

Mbrot
1.1

1.0
0.8

Mb100
1.1

1.0
1.1

Fib
1.0

0.6
0.9

Bague
0.8

0.6
0.5

(a) Compiled Scheme relative to handwritten JavaScript files, which are the 1.0 mark. Lower is better.

Trampolines

Mozilla Opera Konqueror

1 2

Ewal 1.7
1.5

1.2

Even/Odd 2.0
1.8

2.4

(b) Trampolined code relative to compiled code with the trampoline flag disabled, which are the 1.0
mark. Lower is better.

FIGURE 6: SCM2JS compiled code interpreted by Firefox, Opera and Konqueror.

To evaluate the performance of SCM2JS and trampolines we ran several bench-

XX–13

marks under three Internet browsers:

• Firefox 2.0.0.2,

• Opera 9.10 build 521, and

• Konqueror 3.5.6

All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GB, running Linux
2.6.20. Each program was run 5 times, and the minimum time wascollected. The
time measurement was done by a small JavaScript program itself. Any time spent
on the preparation (parsing, precompiling, etc.) was hencenot measured.
Our first test measured the performance of SCM2JS generated code compared to
handwritten JavaScript code. We wrote our benchmarks both in JavaScript and
Scheme and then compared the execution time of the JavaScript version with the
time of the compiled Scheme version. Figure 6a presents the ratio of the JavaScript
time by the execution time of the compiled program. A value of1.0 represents the
reference time of the handwritten JavaScript code. Any value lower (resp. higher)
than 1.0 means that the compiled Scheme code ran faster (resp. slower) than this
code. SCM2JS fares quite well in this comparison. The compiled code generally
approaches the reference value of 1.0. The good performancein bague , fib ,
quicksort and even/odd can be explained by our inlining pass. The bad
value inNested by the nature of this benchmark.Nested consists (as the name
suggests) of several nested loops incrementing a counter inthe most nested loop.
The while loops themselves are minimal and any additional expressionslows
down the program. The JavaScript versionwhile(e--) {... } is up to 1.7 times
faster than the generated versionwhile(e>0) {... --e; }.
Figure 6b shows the performance penalties introduced by trampolines. As SCM2JS

is able to prove that none of the previous benchmarks buteven/odd contains any
cyclic tail calls (at least after thewhile transformation), enabling or disabling
proper tail-recursion has no effect on the generated code. Their performance would
have been equal to 1, and we therefore do not print their results. We added another
benchmark (ewal), which implements a meta circular Scheme interpreter thatex-
ecutes an iterative version offact . The program uses many anonymous func-
tions and tail calls and is hence a good candidate for this test. The extreme case
even/odd is at most 2.5 times slower and has 2 times more lines than without
trampolines. The more realisticewal is only about 1.7 times slower and 1.6 times
bigger.

6 RELATED WORK

Related work can be classified into three categories: projects that run Scheme in
Web-browsers, projects that use JavaScript as compilationtarget and projects that
propose to unify client and server development.

XX–14

There are many attempts to run Scheme and Lisp like languageson the client side.
Contrary to SCM2JS these projects are either interpreters or they change the se-
mantics of the input-language to match the semantics of JavaScript. For instance,
ParenScript [9] (a compiler of a Lisp like language to JavaScript) keeps the distinc-
tion between statements and expressions from JavaScript. As such thedo construct
(compiled to JavaScript’swhile statement) can not be used at an expression loca-
tion, and it does not return any value. Examples for interpreters are jsScheme [1]
and Little Scheme [4].
JavaScript is a high-level language and hence not well suited as a compilation
target. However, due to the ubiquity of JavaScript, such compilations have become
more and more attractive.
Google [7] compiles Java to JavaScript. Java’s object modelcan be simulated
with JavaScript’s prototype object model, and both share many common constructs
(with identical syntax). Java is statically typed and permits many optimizations that
are infeasible in highly dynamic languages like JavaScriptand Scheme. The com-
pilation from Java to JavaScript hence seems to be a good choice for efficient code.
Powerful features like higher order functions and variableargument functions are
however lost in the process. Due to the different nature of Java and JavaScript it
is necessary to use the JSNI (JavaScript Native Interface) to interface with existing
JavaScript code.
Script# [14] and NeoSwiff [6] both compile C# to JavaScript and face hence the
same difficulties and share the same advantages as the GoogleJava compiler.
All these compilers greatly simplify the development of Webprojects, but still
separate client and server development. In particular the communication between
client and server is still complicated.
Links [5] eliminates this boundary. Links (a typed language) uses annotations to
force the execution of functions on either the server or the client, but allows the
execution of non-annotated functions on either side. When calls pass the client-
server boundary they are transparently compiled to xml-http-requests. The client-
side portion of a program written in Links is transformed to aCPS JavaScript,
which breaks the call-convention with standard JavaScriptfunctions.

7 DOWNLOAD

SCM2JS, the compiler presented in this paper, can be downloaded athttp:/-

/www-sop.inria.fr/mimosa/personnel/Florian.Loitsch/ scheme2js/ . It is
also distributed along with Hop which can be found athttp://hop.inria.fr .

8 CONCLUSION

In this paper we have presented SCM2JS, a Scheme to JavaScript compiler. Our
work shows that such a compiler is feasible and can be efficient. We discussed
the compilation of proper tail calls, one of the major differences between the two

XX–15

languages. Thewhile transformation we presented compiles a large percentage
of tail recursive calls into cheapwhile iterations, and the trampoline implemen-
tation takes care of the rest. At the same time strict compatibility with existing
JavaScript code is preserved. It is thus possible to interface easily with existing
JavaScript libraries. Also SCM2JS generates efficient code. We therefore achieved
both of our initial requirements for this compiler: good integration with JavaScript
and good performance. The integration of SCM2JS into Hop (the framework which
motivated the creation of SCM2JS) opened the door for a single language for Web
programming. As Hop itself is a variant of the Scheme language it is now possible
to write client-code and server-code of sophisticated web applications exclusively
in Scheme.

9 REFERENCES

[1] Alex Yakovlev – jsScheme– http://alex.ability.ru/scheme.html.

[2] Baker, H. –CONS Should Not CONS Its Arguments, Part II: Cheney on the M.T.A ¡1¿–
Notices, 30(9), Sep, 1995, pp. 17–20.

[3] Clinger, W. –Proper Tail Recursion and Space Efficiency– Conference on Programming
Language Design and Implementation, Jun, 1998.

[4] Douglas Crockford –Little Scheme– http://www.crockford.com/javascript/scheme.html.

[5] Ezra Cooper and Sam Lindley and Philip Wadler and Jeremy Yallop –Links: Web Program-
ming Without Tiers – http://groups.inf.ed.ac.uk/links/papers/links-icfp06/links-icfp06.pdf ,
2006.

[6] GlobFX Technologies –NeoSwiff– http://www.globfx.com/products/neoswiff/ .

[7] Google Inc. –Google Web Toolkit – http://code.google.com/webtoolkit/ .

[8] IEEE Std 1178-1990 –IEEE Standard for the Scheme Programming Language– Institute
of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[9] Manuel Odendahl and Edward Marco Baringer –ParenScript – http://parenscript.org.

[10] Manuel Serrano –Inline expansion: when and how– Int. Symp. on Programming Languages,
Implementations, Logics, and Programs, Southampton, UK, Sep, 1997, pp. 143–147.

[11] Manuel Serrano and Erick Gallesio and Florian Loitsch –Hop, a Language for Programming
the Web 2.0– Dynamic Languages Symposium, Oregan, USA , Oct, 2006.

[12] Manuel Serrano and Marc Feeley –Storage Use Analysis and its Applications– 1fst Int’l
Conf. on Functional Programming, Philadelphia, Penn, USA,May, 1996, pp. 50–61.

[13] Muchnick, S. –Advanced Compiler Design Implementation– Morgan Kaufmann, 1997.

[14] Nikhil Kothari – Script# – http://projects.nikhilk.net/Projects/ScriptSharp.aspx.

[15] Schinz, M. and Odersky, M. –Tail call elimination of the Java Virtual Machine – Proceed-
ings of Babel, Florence, Italy, Sep, 2001.

[16] Serrano, Manuel –The HOP Development Kit – Invited paper of the Seventh sigplan Work-
shop on Scheme and Functional Programming, Portland, Oregon, USA, Sep, 2006.

[17] Tarditi, D. and Acharya, A. and Lee, P. –No assembly required: Compiling Standard ML
to C – ACM Letters on Programming Languages and Systems, 2(1), 1992, pp. 161–177.

XX–16

