Hop Client-Side Compilation

Florian Loitsch and Manuel Serrano

INRIA, Sophia Antipolis, France
{florian.loitsch,manuel.serrano @sophia.inria.fr

Abstract

Hop is a new language for programming interactive Web appbos. It aims to
replace HTML, JavaScript, and server-side scripting laggs (such as PHP, JSP)
with a unique language that is used for client-side intévastand server-side com-
putations. A Hop execution platform is made of two compilerse that compiles the
code executed by the server, and one that compiles the cedatex by the client.
This paper presents the latter.

In order to ensure compatibility of Hop graphical user ifgees with popular plain
Web browsers, the client-side Hop compiler has to geneegtig@ar HTML and Java-
Script code. The generated code runs roughly at the sameé apéand-written code.
Since the Hop language is built on top of the Scheme progragfanguage, com-
piling Hop to JavaScript is nearly equivalent to compilirdh&me to JavaScript. The
compiler we have designed supports the whole Scheme cagedge. In particular,
it features proper tail recursion. However complete tailirgsion optimization may
slow down the generated code and is hence disabled in Hopt.d¥losr benchmarks
were unaffected by the transformation but in the worst casgrams were more than
two times slower with it enabled.

The techniques presented in this paper can be applied tostrastfunctional lan-
guages such as ML and Lisp.

1 INTRODUCTION

Hop [11] is a new functional language designed for programgni/eb 2.0 applica-
tions. Itis tuned for programming interactive graphicausterfaces for the Web.
A Hop application executes simultaneously on two computeng for computing
the logic of the application, which we refer to as saever or broker (conforming
to existing practice [16]) and one for running the graphigeser interface, which
is henceforth denoted as tlshent. The Hop execution model is distributed but
a Hop program is made of one unique source code. Inside that eosyntactic
construction introduces broker code, another one speciiesg code. Compiling
a Hop program involves two different compilation processtse broker code is
compiled to native code by a compiler that has already bescaritbed in various
papers [12,10]. The client code is compiled to JavaScripthvis the natural lan-
guage for programming graphical user interfaces on the Weis.paper describes
that compilation. In Section 1.1, we shortly present the opgramming lan-
guage by an example. Then, in Section 1.2, we present theaharacteristics of
the client code compilation.

XX-1

1.1 Hop at a glance

The following code snippet shows a small Hop program thatiocsrthe famous
Google suggest application: given the first characters of the entered betmn
popular completions are proposed.

1: (let ((def (<DIV> ")
2 (svc (service (w)

3 (<P> (sqgl-exec db

4: "SELECT * FROM dict WHERE (prefix= ~a)"
5: w)))

6 (<HTML>

7 (<INPUT> :onkeyup

8 ~ (set! _ $def.innerHTML ($svc this.value)))

9 "The definitions are:"

0 def))

Basically a page (starting at lif® is constructed and sent to the client. It contains
a<DIV> area (namedef) and a text field, which reacts amkeyup -events. At
each event it calls the servicevc on the broker, and updateef . The function
svc (declared at lin@) executes a database query and returns the result.

Note that (except for the database query) both server aedtdire written in
Scheme, and that switching from one to the other can be dang osly one
character. Client code is introduced by atilde) and one can escape back to
server-code using. This construct strongly resembles Schenggiasiquotes in
that$ escaped expressions are already evaluated during eliandoafore sending
the page to the client. During that elaboration stage thereete tadef is then
transformed to JavaScript code retrieving the , and the service is transformed
into a server call. The following example further demortsgahis property:

1: (let_» ((x 0)

2: (svc (service 0

3 (set! x 1))

4 (<HTML>

5| (<BUTTON>:onclick ~ (begin ($svc) (alert $x))))

Since the elaboration of this site has replagedith its actual value, the modi-
fication in the service has no effect on the client side ancatbe showd). Even
though the service-call in linB modifies the variable the program will alerD.
During elaboration of the site, had already been replaced w@tand the modifi-
cation in the service is not transmitted to the client anyamor

The Hop server associates URLs to programs. Hence, in aydgait a Hop pro-
gram one has to direct his Web browser to one of these URLss Sthrts the
execution of the program on the server. In general, web hasepgams are event-
based, and implement the following pattern: the prograntaitedd and the server
elaborates a response which is sent to the client. Thatmespe usually made of

ITheservice form creates a function that can be invoked by both clientsamder code.

XX-2

a data structure implementing an HTML element represerntieggraphical user
interface. Once the client has received its graphical ugerface it interacts with
the user and, when necessary, invokes other services oarthes.s

One should note that while server code and client code anegsgd in the same
language they are intended for different purposes. Thees@de can access
all resources of the server computer. In particular, it cacess the file system,
the network interfaces, or it can execute long lasting CRehisive computations.
However, it is not knowledgeable of any characteristicshef graphical user in-
terface that are only known to the client code. The clientecod the other hand
knows everything about the graphical user interface butségourity reasons, has
no access to other resources. This dichotomy between smyglerand client code
is reflected by two different APIs that are available to theveeand to the client.
We finish this Section by summarizing the main charactegstf Hop. (i) Hop is

a functional language built on top of the Scheme programn@nguage [8] with
which it shares most of its syntatii) Server code and client code are expressed in
the same languagdiii) The tilde sign- introduces client code and that the dollar
sign$ inside client code escapes back to server c@og.A service is a function
defined on the server (li@ that can be invoked from the client (li@. (v) Finally
service invocations involve transmitting and receivingnpdex values that can be
any compound data structure.

This section has presented a short overview of the Hop pmogiag language. A
more complete presentation can be found in [11] or at the URheproject.

1.2 Compiling Hop client code: the Scm2Js compiler

(define (server-info) (string-append (host-name) " " (date)))
(<HTML>
(<BUTTON>:onclick
~(f $(server-info)))
(<SCRIPT>
~(define (f val) (alert val))))

PHALBDRE

FIGURE 1: Hop program example.

We have developed a compiler, namedv2Js, to compile Hop client code to
JavaScript. Hop server code is compiled by another compiher in Figure 1
only line 4 and line6 are hence of interest. Hop extracts these lines and sends
the list of expression to &v2Js. As can be seen, Hop client side code resem-
bles Scheme. In fact Hop client code is a superset of IEEESeh8] with one
exception: it does not support exact arithmetic. Most Hoermsions consist of
additional library functions or new syntactic forms that¢ amacro-expanded be-

Zhttp://hop.inria.fr

XX-3

fore the compilation takes place. The example however detrairs some addi-
tional difficulties: SmM2Js has to deal with opaque objects (the call to the server,
$(server-info) , Is server-code and has to be treated as a black box), out-of-
order compilation (the functioh is defined in a line following the first use 9,

and the use of unbound variables (lkiert).

When compiling Hop client code (342Js allows unbound variables, and both
symbol-related difficulties are hence avoided. Opaquectbpre straight-forward

to implement and from this point on Hop client-side comjiatis mostly equiv-
alent to a Scheme-to-JavaScript compilation. In consempjeall the techniques
presented in this paper would equally apply to a pure SchierdavaScript com-
piler. By extension, most of the material presented herddcalso be useful for
compiling other strict functional languages (e.g., ML) &dScript. In the rest of
this paper we will indiscriminately use the terms “Hop ctiende” or “Scheme”

for denoting the input language ot&2Js.

Hop client code compilation has to fulfill two requirements:

e CPU intensive parts of Hop programs are executed on senkdosvever,
in order to let GUIs be as reactive as possible it is importanhake the
Hop client code as efficient as possible. We consider of pimmortance
to guarantee that Hop imposes no performance penalty in @aosop with
traditional Web development kits whose client code is im@ated in Java-
Script. That is the performance of compiled Hop client codestive on par
with equivalent handwritten JavaScript code. We consiéefopmance as a
potential issue even though we have noticed tremendoiereliites of per-
formance depending on the hardware architecture and tlaSdept inter-
preter used for testing. For instance, we have found thatimgnJavaScript
programs within Firefox is nearly ten times faster than ingrthe same pro-
grams within Konqueror. This tends to demonstrate that mests are not
paying much attention to performance. Developers, on therdiand, are
more concerned with performance, and a noticeable slowstdide code
is not acceptable.

e Scheme and JavaScript must be tightly integrated. Thaltgéoddal bindings
should be easily accessible from both languages, and datastes must be
usable indifferently in both language. Function calls $tidwave always the
same syntax, independently where the call target has beatedr

1.3 Main Contributions

From a practical point of view the main contribution of thisnk is the creation of
a fully functional efficient Scheme-to-JavaScript compiM/ithout complete tail-
recursion the compiled code is on par with hand-written cadd is hence suitable
for daily work.

From a technical point of view we suggest improvements tstigxg tail call tech-
niques. Proper tail recursion does not exist in JavaScnigtnaust hence be coded

XX-4

by hand. We advertise the use of JavaScrifitis -keyword to adapt existing
trampoline techniques so they become compatible with iagistavaScript code
(Section 4.1). We also propose an optimization to the ta&ilirgon mechanism
that allowed us to remove 40% of the tail call instrumentaiio our benchmarks
(Section 4.2).

1.4 Organization of the paper

Section 2 shows how @Gu2Js compiles Scheme’s core language to JavaScript.
In Section 3 we discuss the function compilation. This djadly includes our
while transformation for recursive loop functions. This tramsfation always
improves the performance. The compilation of the remainaigcalls is then
presented in Section 4. This transformation has no impawctast benchmarks but,
in the worst case, can slow down the execution by more thactarfaf 2. Section
5 shows the results of our benchmarks. Related work is discus Section 6.
Section 7 provides the download locations of this projeat] we finally conclude
this paper in Section 8.

Our compiler supports fullflegded continuation, but th@mpilation is too com-
plex and extensive to fit into this paper and will be the subjé@nother publica-
tion.

2 CORE COMPILATION

This section introduces the compilation of the Scheme camguage. Function
compilation and proper tail call handling are discussedaati®ns 3 and 4.
JavaScript has been inspired by Scheme, and both languegbsrece similar in
many respects. Like Scheme, JavaScript treats functiofissaslass citizens and
uses automatic memory managementM3Js is hence freed from the burden of
implementing closures or a garbage collector. Moreovenyn&heme constructs
can be naturally mapped to semantically equivalent JaygtSmunterparts. Most
transformations are as simple as transforming an arrayisb. &/ariable argument
functions, for instance, use arrays to pass the variabl#smmScript, but expect lists
in Scheme. A compiled variable argument function simplyiesphe members of
the given array into a list.

Despite the similarities compiling Scheme to JavaScriptrat be accomplished
by a mere source-to-source transformation. Peculiar gayaScoping rules and
the demand for optimizations require the construction afi@ &bstract syntax true.
JavaScript and Scheme do not share the same data types &atveeBcript, for in-
stance, does not have any list data type anth&Is therefore compiles Scheme
lists to instances of a new class_Pair which is part of the 8m2Js runtime
system. In fact only Scheme’s booleans, procedures andensniio a certain ex-
tentf® are semantically compatible with their respective coyrates in JavaScript.

3JavaScript numbers are floating point only. Scheme usutilyscexact numbers (integers) too.

XX-5

The remaining types either behave differently or do not hewe corresponding
JavaScript type:

e JavaScript strings are, contrary to Scheme strings, inofeitd his restric-
tion is not very limiting and users often prefer the ease tdriacing with
JavaScript over a correct string representation. Depgndima compiler
flag ScM2Js can either directly compile Scheme strings to JavaScripigst
(thereby simplifying the interface between JavaScript &oldeme code), or
translate Scheme strings to JavaScript objects of dasString . In-
stances of this class represent mutable strings by holdiegobJavaScript’s
immutable strings and transparently replacing it when s&ag.

e Symbols are mapped to JavaScript strings.dfu@Js is configured for mu-
table strings, then JavaScript strings are unused and Hezedo use as
symbols (which are also immutable). Otherwise Schemegstrand sym-
bols are both compiled to JavaScript strings, and symbelpeafixed by a
special unused Unicode character in order to distinguismtfrom strings.

e Pairs and characters are both compiled to JavaScript slijespectively of
classsc_Pair andsc_Char). The empty list is represented hyll

e \ectors are mapped to JavaScigtay s’

Due to the high level of JavaScript many standard optinopatiare difficult to im-
plement within £m2Js. It is for instance not easy to take advantage of a typing
pass. JavaScript itself is dynamically typed and does rfet ahy means to an-
notate variables with typing information. The lack ofjeto statement too, rules
out other common optimizations [13]. On the other hand therpations that are
still applicable can have a big impact on performance. Fstaimce, our inlining
pass (modeled after [10]) was able to cut the execution tifrs®me benchmarks
in half. Inlining library functions (liket, - , etc.) proved to be even more impor-
tant. Our benchmarks were up to 25 times faster with thisngpétion enabled.
Other optimizations include hoisting of constant assigmsi¢especially function
creations) or constant propagation.

3 FUNCTION COMPILATION

Scheme procedures and JavaScript functions are very siamtha naive compi-
lation would be straightforward. Scheme, however, makeseregtensive use of
procedures than JavaScript. In particular, it promotesifieeof tail-recursive func-
tions as loops. Using recursive tail calls as loops is onlgspge if they do not
consume any stack (called “proper tail recursion”). Cuityeall important Java-
Script interpreters are known not to perform tail call opgation and $m2Js

4Despite being called “Array”, this data-type is an objed annsists, like all JavaScript objects,
of a hashtable.

XX-6

needs to handle tail calls by itself. A loop optimization pasnsforms most re-
cursive tail calls into loops. It is presented in the remaindf this Section. An
optional transformation (Section 4) limits the call statdedor the remaining tail
calls.

In Scheme nearly all loops are implemented as recursived#d. The following
example demonstrates a typical loop pattern:

(let_ loop ((x 0)

1

2 (y 0)

3 (if _ <test>

4. <bodyl>

5 (begin

6 <body2>

7 (loop (+ y 1) x))))

Whenever 8M2Js encounters a tail call to the surrounding function it compil
this pattern into avhile loop as in figure 2.

1: var x = 0,y = 0; 1: var x = 0,y = 0;
2: while (true) { 2: while (I<test>) {
3: if (<test>) { 3: <body2>;

4: <body1>; 4: var tmp =y + 1;
50 }else { 5 y=x
6: <body2>; 6: X = tmp;

7: var tmp =y + 1, 7:

8: y = X 8: <bodyl>;

9: X = tmp; -
10: continue _; (b) optimized
11: }

12: break ;
13: }

(a) unoptimized

FIGURE 2: Unoptimized and optimizashile compilation of recursive loops.

Such naive source-to-source translations are only suifieie long as loop vari-
ables are not captured. As the transformation reuses loggbl@s during each
iteration explicit closure handling becomes necessarye foflowing example
demonstrates this issue:

1: (let loop ((x 1))
2: (store! (lambda 0 x)
3: (loop (+ x 1))

In this code snippet the loop variabkeis captured by anonymous functions in
line 2. At each iteration a fresh is captured and all closures of lirkereference
different variables (of the same name). As the previousstcamation hoists loop
variables outside the loop, all anonymous functions woold share the same.

XX=7

In JavaScript, locally declared variables are visible imithe whole function body
as if they had been declared at the beginning of the funciite. declaration of a
new variable within thevhile body would hence deliver the same result.

1. var x = 1; var x = 1;

2: while (true) { while (true) {

3: var storage = new Object(); var storage = new Object();
4 storage.x = Xx; storage.x = X;

5: store(function (storage) { with (storage) {

6: return _ function () { var tmp_fun =

7. return storage_.x; function () { return x; };
8 i

9 }(storage)); store(tmp_fun);

10: X = storage.x + 1; X = storage.x + 1;

11: } }

FIGURE 3: Explicit closure allocation with anonymous funaos on the left and
with on the right.

ScmM2Js solves the problem by pushing a new frame on the call stacis @heat-
ing an artificial scope). In JavaScript this can be accorhetisby either invoking

a function, or by pushing an object onto the stack (using tweaScriptwith
statement). Both techniques are implemented am3Js (they can be selected
with a compiler flag). Figure 3 shows the result of both apphes. An object
is allocated in line3, which will hold the captured variables. In lirethe stor-
age object is pushed onto the stack. In the first case an amasyfunction is
executed. The parametstorage is thereby copied and the capturing function
(created in lined) hence captures a locatorage -object. In the second case
JavaScript'swith statement pushes tls¢éorage object on the stack itself. The
fields contained withistorage consequently become local variables for the en-
closed statements. The capturing function saves the staikgdits creation and
hence holds a reference to the pushed object.

In both approaches the use xfin line 7 references now a different for each
generated function.

The impact on the performance is largely dependent on thesgrogram and
the target browser. A very short loop, like in our examplethis worst case and
is respectively 17with technique) and 28 (anonymous function technique) times
slower under Firefox (than the same version without exptitdsure handling).
Under Opera and Konqueror the impact is less noticeableu{aotimes slower for
with and 4-6 times slower with anonymous functions). Howevas, plnogram-
ming pattern is rare enough not to impact the performanceast programs (and
none of our benchmarks).

XX-8

4 TAIL CALLS

It is well known that tail calls [3] can be implemented with@tack consumption
when the execution platform suppogsto . In the example of Figure 4 the calls at
line 3, and7 are both tail calls and could be implemented witipodo if compiled

to assembly.

1: function even(x) {

2 if (x === 0) return true ;
3 else return odd(x- 1);

4: }

5: function odd(x) {

6 if (x === 0) return false ;
7 else return even(x- 1);

8: }

9: is2even = even(2);

FIGURE 4: A simple tail call intensive program.

In languages withougoto , such as JavaScript, mésil calls can be transformed
into while loops (as in Section 3). Our example shows that this is nayvpos-
sible and there exist two other popular techniques to aehiegper tail recursion
for the remaining tail calls. In the rest of this section wertly present Baker’s
technique [2] and a naive version twmpolines [17]. Section 4.1 discusses a
more efficient version of trampolines developed for the Rlmwompiler [15] and
our modification to make this technique compatible with veatiavaScript calls.
Section 4.2 then presents our tail call optimization.

Baker’s technique requires the program to be transformiedGontinuation Pass-
ing Style (henceforth CPS) first. Function invocations@dle frames on the stack
which are used as the first generation of a generational gartallector. When-
ever the stack reaches the stack limit a garbage colledigeiformed, and the
program restarts with an empty stack.

Trampolines on the other hand avoid tail calls by passingtdhget of tail calls
to the caller waiting for the result of the currently runnifugction. It is then the
caller’s task to invoke the received function (which itsmdtild return another tram-
poline closure). The following code presents a trampolieesion of the previous
even/odd example. The code for the omittedid function would be similar to
theeven function.

SExcept foreven/odd andewal all other benchmarks were tail-call free after thiile
transformation.

XX-9

function even(x) {
if (x === 0) return true ;
else return new Trampoline(odd, x- 1);
}
res_or_tramp = even(2);
while (res_or_tramp instanceof Trampoline)
res_or_tramp = res_or_tramp.restart();
is2even = res_or_tramp;

PG L@NE

At each tail call a new closure is allocated and returne@ @)n The caller in lineb
then needs to restart potential trampoline-closures. igntihsic form trampolines
are expensive. Each tail call needs to create a closure antaihgalls have to test
for trampoline closures within &hile loop.

4.1 Efficient trampolines

A more efficient version of trampolines has been proposechbyatithors of the
Funnel-to-Java compiler [15]. They trade space for speestead of returning
after each tail call, a constant numlzeof consecutive tail calls are allowed. Once
this limit is reached an exception is thrown or a trampolitesare is repeatedly
returned. After the frames have been popped the trampoline closure is invoked.
If the limit is not reached (either the function returns oagkes a non tail call),
then the execution continues normally without removingftames. Setting to 1

is hence equivalent to the naive trampoline technique. Adrigalue yields faster
programs, but consumes more memory. According to theirrérpats a value of
about 40 seemed to be a good compromise.

Scm2Js's tail call handling resembles this technique in that iba$ more than
one consecutive tail call. Our implementation differs ie thiay the call counter
is passed to functions. When the counter is passed as sugntkey parameter
it breaks the call convention, and interfacing with exigticode becomes diffi-
cult. The naive use of global variables has its problems liboary functions do
not modify the global variables, and instrumented fundiamuld wrongly ignore
them. Suppose for instance the following code whaief is an instrumented
function that might throw a tail-exception afith f is a library function that
comes from an existing JavaScript library:

function tail_f() {
/* instrunmentation and ot her codex*/
return lib_f(tail_f); /1 tail call

}

function lib_f(f) {
f); // non-tail call
remaining_code;

CHIPTL2RXNE

}

lib_f does not modify the global variables, atadll f has hence no idea of
the existence of the remaining continuation on the stackr@&maining_code

XX-10

oflib_f). Whentail f reaches the imposed lingtit will throw a tail excep-
tion. lib_f however does not know how to handle this exception and wilpéy
ignore it. The continuation dib_f s lost.

Measures to overcome this problem are expensive and weyfitatided to send
the counter like a hidden additional parameter as part othil®e object. Java-
Script does not make any distinction between functions agithoas. Any function
can be used as method (asoibj.f()) or as a functionf()). In the first case
the functionf is a member of the objecdtbj and executed as method. In the latter
casef is simply invoked as function. Whenever a function is invkes method,
the keywordthis points to the object as part of which it was executed (in our
exampleobj). If a function is executed as simple function (and not mdjhthen
this points to theglobal object which contains all global variables.

Generally thehis object is unused in functions that are not invoked as methods
Scm2Js therefore uses it to as a container for the counter value. cBlig¢arget

is stored as field in a unique objeEAIL_OBJECT and then executed as method
call. The fieldcalls of TAIL_OBJECT represents the tail-call counter

1: function even(x) {

2 var sc_tailCalls = TAIL_OBJECT.calls;

3: /1 nonTail Call ();

4. if (x === 0) return true ;

5. else {

6 if (this === TAIL_OBJECT) {

7 if (sc_tailCalls == MAX_TAIL_CALLS) {
8: return ~ new Trampoline(odd, [x- 1));
9: } else {

10: TAIL_OBJECT.calls = sc_tailCalls + 1;
11: TAIL_OBJECT.f = odd;

12: return TAIL_OBJECT.f(x- 1);

13: }

14: } else {

15: TAIL_OBJECT.calls = 1;

16: TAIL_OBJECT.f = odd;

17: var sc_tailTmp = TAIL_OBJECT.f(x- 1);
18: if (sc_tailTmp instanceof Trampoline)
19: return sc_tailTmp.restart();

20: else

21: return sc_tailTmp;

22: }

23:

24: }

25: is2even = even(2);

FIGURE 5: M2Js's optimized implementation of trampolines.

The (simplified) code in Figure 5 presents our technique erntréinsformed ver-
sion of the previous example (without tleld function which would be simi-

XX-11

lar to theeven function). At the beginning of the function the counter whie
sc_tailCalls is initialized with the tail call counter stored in the tabject.

For each tail call the function first tests if it was called a# tall (line 6). If

the test succeeds another test (liH)edetermines iMAX_TAIL_CALLS(our c)
consecutive tail calls have been executed. If the limit lstreached a trampoline
has to be returned (lin®). If the limit has not yet been reached then the counter is
incremented (linel0), and the target is called as method (It®). No type check

is necessary as the result would be returned verbatim endiitly of its type. If the
procedure was not called as target of a tail call (4§ then it resets the counter
to 1 and handles potential trampoline closures. The reétittectail call (linel7)

is tested (linel8), and according to the result either restarted or simplyrnetd.
Therestart method of the trampoline is responsible for restarting astemtial
further trampoline closures.

Note that the non tail calls (like the one in lirg5) are not modified, and that
tail calls (linel12, and17) are compatible with all JavaScript functions that do not
accesshis . Functions that use thihis object are methods and usually attached
to some object. As method calls have a different syntax theyat instrumented
by our tail call implementation.

4.2 Acyclic trampoline optimization

We have developed a static analysis that detects taildzaihs and potential cycles
(or more importantly their absence) in them. Chains thatatdinish in a cycle are

compiled to direct calls without trampoline instrumerdati As such they do not
test against the limit anymore and may exceed theconsecutive tail calls. As
the chain does not end in any cycle the number of supplenyea#dis is however

bound by the length of this chain. The following code illaséis the idea:

=

(define (my-print msg) (print msg) msg)
(define (approx-print val)
(if (< val 10)
(my-print "small")
(my-print "big”)))
(define (len-print)
(approx-print (length 1)))

RO OTR B ORI

In this example there are three tail call sites (h&®, and7). Furthermore the tail
call chainlen-print -¢approx-print -¢my-print does not end in a cycle.
All three call locations are hence not instrumented.

If len-print is thect" consecutive call in a tail-call chain then it should return a
trampoline, but without the instrumentation it continuagi§¢alling, thus exceeding
the limit. The “damage” is however limited as there is onlyeasther tail call
afterwards. In the worst case the program hence exceedwérelignit ¢ by 2 (the
length of the chain).

As this optimization is done at compile time it is not possitd determine all call
targets, and some tail calls keep the trampoline instruatient even though they

XX-12

can not reach any cycle. In our tail call intensive benchn#6 of all tail calls
have been simplified by this optimization.

Our experiments show that the cost for proper tail recursdargely program-
dependent. Most tail calls are loops (which are already leanby thewhile
transformation) and programs tend to have few remainimga#is. More than 80%
of our benchmarks were tail-call free after thibile transformation. Typical tail-
call intensive programs however suggest a slow down of abdytand extreme
cases (like theven/odd example) run at most 2.5 times slower.

5 BENCHMARKS

Native vs. Scm2js

M Mozila Opera Il Konqueror
1

Bague 22 0.6 08
Fib ——— X 09 10
Mb100 —————————————————————————————— 11%?‘11

— . |
Mbrot ———
Nested 00) 13 e
Quicksort v
Sieve L1,
Tak - s
Towers Tt
Even/Odd ———— 106 - 0.9

(a) Compiled Scheme relative to handwritten JavaScrifg, fikdich are the 1.0 mark. Lower is better.
Trampolines

M Mozilla Opera I Konqueror

2.4

Even/Odd 1.8

Ewal 15 17

(b) Trampolined code relative to compiled code with the alime flag disabled, which are the 1.0
mark. Lower is better.

FIGURE 6: M2Js compiled code interpreted by Firefox, Opera and Konqueror.

To evaluate the performance ot82Js and trampolines we ran several bench-

XX-13

marks under three Internet browsers:
e Firefox 2.0.0.2,
e Opera 9.10 build 521, and
e Konqueror 3.5.6

All benchmarks were run on an Intel Pentium 4 3.40GHz, 1GBning Linux
2.6.20. Each program was run 5 times, and the minimum timecaiéected. The
time measurement was done by a small JavaScript progralin Asg time spent
on the preparation (parsing, precompiling, etc.) was heoteneasured.

Our first test measured the performance ofv@Js generated code compared to
handwritten JavaScript code. We wrote our benchmarks botravaScript and
Scheme and then compared the execution time of the Java8ergion with the
time of the compiled Scheme version. Figure 6a presentatteaf the JavaScript
time by the execution time of the compiled program. A valué.Ofrepresents the
reference time of the handwritten JavaScript code. Anyevldwer (resp. higher)
than 1.0 means that the compiled Scheme code ran faster @lesyer) than this
code. £M2Js fares quite well in this comparison. The compiled code gaher
approaches the reference value of 1.0. The good perforniangague , fib |,
quicksort andeven/odd can be explained by our inlining pass. The bad
value inNested by the nature of this benchmarkiested consists (as the name
suggests) of several nested loops incrementing a countbe imost nested loop.
The while loops themselves are minimal and any additional expressimns
down the program. The JavaScript versianile(e--) {... }isupto 1.7 times
faster than the generated versighile(e>0) {... --e; }.

Figure 6b shows the performance penalties introduced bypiméines. As 8mM2Js

is able to prove that none of the previous benchmarkgben/odd contains any
cyclic tail calls (at least after therhile transformation), enabling or disabling
proper tail-recursion has no effect on the generated cadeir performance would
have been equal to 1, and we therefore do not print theirtsediMe added another
benchmarkéwal), which implements a meta circular Scheme interpretereakat
ecutes an iterative version &dct . The program uses many anonymous func-
tions and tail calls and is hence a good candidate for thts Tse extreme case
even/odd is at most 2.5 times slower and has 2 times more lines tharoutith
trampolines. The more realistawval is only about 1.7 times slower and 1.6 times
bigger.

6 RELATED WORK
Related work can be classified into three categories: psojpbat run Scheme in

Web-browsers, projects that use JavaScript as compiltdiget and projects that
propose to unify client and server development.

XX-14

There are many attempts to run Scheme and Lisp like languagtee client side.
Contrary to $M2Js these projects are either interpreters or they change the se
mantics of the input-language to match the semantics ofStai@®. For instance,
ParenScript [9] (a compiler of a Lisp like language to JavigdBckeeps the distinc-
tion between statements and expressions from JavaScsiudh thelo construct
(compiled to JavaScriptwhile statement) can not be used at an expression loca-
tion, and it does not return any value. Examples for integoseare jsScheme [1]
and Little Scheme [4].

JavaScript is a high-level language and hence not well giEtea compilation
target. However, due to the ubiquity of JavaScript, suchgtations have become
more and more attractive.

Google [7] compiles Java to JavaScript. Java’s object modelbe simulated
with JavaScript's prototype object model, and both shansynsammon constructs
(with identical syntax). Java is statically typed and pésmiany optimizations that
are infeasible in highly dynamic languages like JavaSeniyt Scheme. The com-
pilation from Java to JavaScript hence seems to be a goodecfariefficient code.
Powerful features like higher order functions and variabfgument functions are
however lost in the process. Due to the different nature wd dad JavaScript it
is necessary to use the JSNI (JavaScript Native Interfadajdrface with existing
JavaScript code.

Script# [14] and NeoSwiff [6] both compile C# to JavaScriptidace hence the
same difficulties and share the same advantages as the Gewgleompiler.

All these compilers greatly simplify the development of Weiojects, but still
separate client and server development. In particular dh@enunication between
client and server is still complicated.

Links [5] eliminates this boundary. Links (a typed languagses annotations to
force the execution of functions on either the server or ffent; but allows the
execution of non-annotated functions on either side. Wiadls pass the client-
server boundary they are transparently compiled to xnpHtatjuests. The client-
side portion of a program written in Links is transformed t&€BS JavaScript,
which breaks the call-convention with standard JavaStuipttions.

7 DOWNLOAD

Scm2Js, the compiler presented in this paper, can be downloadeatpat
www-sop.inria.fr/mimosa/personnel/Florian.Loitsch/ scheme2js/ . It is
also distributed along with Hop which can be foundhigt://hop.inria.fr

8 CONCLUSION

In this paper we have presentedM®2Js, a Scheme to JavaScript compiler. Our
work shows that such a compiler is feasible and can be efficiéfe discussed
the compilation of proper tail calls, one of the major difeces between the two

XX-15

languages. Thwhile transformation we presented compiles a large percentage
of tail recursive calls into cheaphile iterations, and the trampoline implemen-
tation takes care of the rest. At the same time strict cornititi with existing
JavaScript code is preserved. It is thus possible to irteréasily with existing
JavaScript libraries. Also@v2Js generates efficient code. We therefore achieved
both of our initial requirements for this compiler: gooddgtation with JavaScript
and good performance. The integration af&Js into Hop (the framework which
motivated the creation of&u2Js) opened the door for a single language for Web
programming. As Hop itself is a variant of the Scheme langut now possible

to write client-code and server-code of sophisticated walieations exclusively

in Scheme.

9 REFERENCES

[1] Alex Yakovlev —jsScheme- http://alex.ability.ru/scheme.html.

[2] Baker, H. —CONS Should Not CONS Its Arguments, Part II: Cheney on the M.TA j1¢ —
Notices, 30(9), Sep, 1995, pp. 17-20.

[3] Clinger, W. —Proper Tail Recursion and Space Efficiency- Conference on Programming
Language Design and Implementation, Jun, 1998.

[4] Douglas Crockford -Little Scheme— http://mww.crockford.convjavascript/scheme.htm.

[5] Ezra Cooper and Sam Lindley and Philip Wadler and Jereailoly —Links: Web Program-
ming Without Tiers — http://groups.inf.ed.ac.uk/links/paperg/links-icfp06/links-icfp06.pdf
2006.

[6] GlobFX Technologies NeoSwiff— http://Awww.globfx.conVproducts/neoswiff/ .
[7] Google Inc. -Google Web Toolkit— http://code.google.com/webtool kit/ .

[8] IEEE Std 1178-1990 4EEE Standard for the Scheme Programming Language- Institute
of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

[9] Manuel Odendahl and Edward Marco BaringdParenScript— http://parenscript.org.

[10] Manuel Serrano #nline expansion: when and how- Int. Symp. on Programming Languages,
Implementations, Logics, and Programs, Southampton, &4, $997, pp. 143-147.

[11] Manuel Serrano and Erick Gallesio and Florian Loitséthop, a Language for Programming
the Web 2.0— Dynamic Languages Symposium, Oregan, USA , Oct, 2006.

[12] Manuel Serrano and Marc FeeleyStorage Use Analysis and its Applications- 1fst Int'l
Conf. on Functional Programming, Philadelphia, Penn, U84y, 1996, pp. 50-61.

[13] Muchnick, S. -Advanced Compiler Design Implementation— Morgan Kaufmann, 1997.
[14] Nikhil Kothari — Script# — http://projects.nikhilk.net/Projects/ScriptShar p.aspx.

[15] Schinz, M. and Odersky, M. Fail call elimination of the Java Virtual Machine — Proceed-
ings of Babel, Florence, Italy, Sep, 2001.

[16] Serrano, Manuel ¥he HOP Development Kit— Invited paper of the Seventh sigplan Work-
shop on Scheme and Functional Programming, Portland, @r&ieA, Sep, 2006.

[17] Tarditi, D. and Acharya, A. and Lee, PNo assembly required: Compiling Standard ML
to C — ACM Letters on Programming Languages and Systems, 2(2p, . 161-177.

XX-16

