
IS
S

N
 0

24
9-

63
99

appor t
d e r e c herche

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Rational approximation of transfer functions in the
hyperion software

Jośe Grimm

No ????

Septembre 2000

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Rational approximation of transfer functions in the hyperion
software

José Grimm ∗

Thème 4 — Simulation et optimisation
de systèmes complexes

Projet MIAOU

Rapport de recherche no ???? — Septembre 2000 — 241 pages

Abstract: The objective of this paper is to explain how rational approximation is performed within
the hyperion software. This work is divided into three parts. In the first part, we explain the theory
underlying the algorithm: given some Fourier coefficients, find a rational transfer function of McMillan
degree n of best approximation in the l2-sense to the corresponding Fourier series. This gives a certain
number of equations for stationary points and we detail in the second part how they can be efficiently
solved numerically, using techniques of automatic differentiation. In the last part, we further discuss the
complexity of the implementation thus obtained.

Key-words: System theory, stable linear systems, transfer function, McMillan degree, Schur parame-
ters, automatic differentiation, code generation, complexity.

The author wishes to thank all members of the Safir and Miaou teams.

∗ This work was mainly done while the author was in the Safir team.

Approximation rationelle de fonctions de transfert dans le
logiciel hyperion

Résumé : Dans cet article, nous supposons donné un certain nombre de coefficients de Fourier, qui est
censé représenter la fonction de transfert d’un système linéaire stable, rationnel de degré de McMillan
n. Nous présentons un algorithme qui permet de retrouver ce système. L’article contient essentiellement
trois parties : d’une part, une étude théorique du problème qui nous donne un ensemble d’équations, puis
une implémentation effective de ces équations, et de leur dérivées via des techniques de différentiation
automatique, et finalement, une discussion sur la complexité de cette implémentation dans le logiciel
hyperion.

Mots-clés : Théorie des systèmes, systèmes linéaires stables, fonction de transfert, degré de McMillan,
paramètres de Schur, différentiation automatique, génération automatique de code, complexité.

Rational approximation of transfer functions in the hyperion software 3

Chapter 1

Introduction

The aim of this paper is the following: given the Fourier coefficient of a stable, rational, transfer function,
find the function as the quotient of two polynomials. This is the heart of the hyperion software. We
shall distinguish the scalar and the non-scalar case, because there is a fundamental difference in the
topological structure of the set of functions we are looking for, see for instance [3]

Let H be the transfer function, this is a p × m matrix. The scalar case is when m = 1 or p = 1,
the non-scalar case is when m 6= 1 and p 6= 1. In the scalar case, we can assume m = p = 1. The
problem is then: find two polynomials p and q such that H = p/q, and deg(q) = n, deg(p) < n. In
the non-scalar case, we write H = PQ−1, where P and Q are matrices. There are different kinds of
factorisations of this form. We shall chose Q inner, of McMillan degree n, and P ∈ H∞. This is called
the Douglas-Shapiro-Shields factorisation.

In this chapter we shall give some definitions, some well-known theorems, and some general properties
needed later on. We shall explain what an inner matrix is, how to define the McMillan degree of a matrix,
etc. In the scalar case, a necessary condition for p/q to be of degree n is that p and q are coprime. The
same is also required in the non-scalar case, but the definition of coprime is more complex.

It happens, in general, that the Fourier coefficients of H are not precise, that only a finite number of
coefficients are given, that the physical device that gives H is only an approximation of a linear system,
etc. For all these reasons, it is impossible to have an equality H−PQ−1 = 0. Hence, we try to minimise
the norm of the difference. If the norm well-chosen, then the solution is defined by P = L(Q), where Q
minimises the function ψ. The aim of the chapter 2 is to define the functions L and ψ, and study their
properties.

In Chapter 3, we study in great detail the set of inner matrices of given McMillan degree. This set is
a manifold, and we shall define charts, associated to the Schur algorithm. Hence, given u, almost every
inner function Q can be written as Q = f(u, y), for some function f , where y lies in open set of Rk.
Minimising ψ(Q) is then the same as minimising ψ1(y).

In Chapter 4, we explain how the formulas given in the previous chapters are implemented in hyperion
in an efficient way. In the last chapter, we compute the complexity of the implementation, and of
equivalent formulas.

1.1 Definitions

Throughout this paper, if z is a complex number, we shall denote the complex conjugate of z by z. The
notations <z and =z stand for the real and imaginary parts of z.

If A is a matrix, At will be the transpose of A, and A∗ the transpose conjugate of A. If q is a
polynomial, then q̃ will be znq(1/z). Unless stated otherwise, n is the degree of q, or is clear from the
context; in particular, if p is the remainder of the Euclidean division of A by B, then p̃ = znp(1/z) where
n is the degree of B minus one. If q =

∑n
k=0 qkz

k, then q̃ =
∑n
k=0 qkz

n−k. We have ÃB = ÃB̃, so that,

RR no 0123456789

4 José Grimm

if q =
∏

(z − αi), then q̃ =
∏

(1− αiz). Note that q̃ has degree exactly n if and only if q(0) 6= 0. If A is
a matrix of polynomials of degree ≤ n, then Ã is the matrix of all Ãji, it is also znA∗(1/z).

If A and B are two matrices, two polynomials, or two matrices of polynomials, we define

〈A |B〉 =
1
2π

∫ 2π

0

Tr[A(eiθ)
t
B(eiθ)]dθ, (1.1)

‖A‖ =
√
〈A |A〉.

Here Tr stands for the trace of the matrix. If the entries of A and B are Aij and Bij , then the trace of
AtB is

∑
ij AijBij , so that 〈A |B〉 =

∑
〈Aij |Bij〉. Note that if A and B are vectors, then Tr(A∗B) is

just A∗B.
If A and B are polynomials, say A =

∑
akz

k and B =
∑
bkz

k, then

〈A |B〉 =
1
2π

∫ 2π

0

∑
kl

akble
iθ(l−k)dθ =

∑
k

akbk.

Finally, if A is a matrix of polynomials with entries Aij =
∑
k aijkz

k, then 〈A |A〉 =
∑
ijk |aijk|2, and

〈A |B〉 is the Hermitian form associated to this quadratic form.
A consequence of equation (1.1) that will be used throughout this paper is

〈AB |C〉 = 〈Azn | B̃C〉 (B̃ = znB(1/z)).

1.2 Hp spaces

Let T be the set of all complex numbers z with |z| = 1 (the unit circle in the complex plane), U be the
set of all complex numbers z with |z| < 1 (the open unit disk) and U the set of all complex numbers with
|z| ≤ 1 (the closed unit disk).

If f is analytic in U, we define

Mp(f, r) =
{

1
2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ}1/p

(0 < p <∞),

M∞(f, r) = sup
θ
|f(reiθ)|.

Let ‖f‖p be the limit (if it exists) of Mp(f, r) as r → 1, and Hp the set of all functions analytic in U
for which this quantity is finite. It can be shown, if p ≥ 1, that Mp(f, r) is a monotonically increasing
function of r, so that ‖f‖p exists, and Hp is a Banach space. If 1 ≤ s ≤ p <∞ then

H∞ ⊂ Hp ⊂ Hs.

One can show (for instance [17, Th 17.12]) that if f ∈ H1 (hence for f ∈ Hp, p ≥ 1), that

f∗(eiθ) = lim
r→1

f(reiθ)

exists at almost every point in T, and

lim
r→1

1
2π

∫ 2π

0

|f∗(eiθ)− f(reiθ)|dθ = 0.

Moreover, f is the Poisson integral, and the Cauchy integral of f∗. This can be sharpened in the case of
of H2 (cf [17, Th 17.10])

INRIA

Rational approximation of transfer functions in the hyperion software 5

• If f is analytic in U, f(z) =
∑∞
k=0 akz

k, then f ∈ H2 if and only if
∑
|ak|2 < ∞. We have

‖f‖22 =
∑
|ak|2.

• If f ∈ H2, the function f∗ is in L2(T), the n-th Fourier coefficient of f is an for n ≥ 0, zero
otherwise, and the mapping f → f∗ is an isometry from H2 onto the subset of L2(T) formed of
those functions for which Fourier coefficients with negative index vanish.

• If f(z) =
∑
akz

k, g(z) =
∑
bkz

k then

1
2π

∫ 2π

0

f∗(eiθ)g∗(eiθ)dθ =
∑
k

akbk

is a scalar product in H2 that makes it a Hilbert space. Note that this is 〈f∗ | g∗〉, so that H2 is
nothing else than the completion of the set of polynomials for the inner product defined by (1.1).

• If Pr(θ) =
1− r2

1− 2r cos θ + r2
is the Poisson kernel, then f is the Poisson integral of f∗, i.e.

f(reiθ) =
1
2π

∫ 2π

0

Pr(θ − t)f∗(eit)dt.

• f is the Cauchy integral of f∗, that is

f(z) =
1

2iπ

∫
Γ

f∗(ξ)
ξ − z

dξ

where Γ is the positively oriented unit circle. If |α| < 1, this is

f(α) = 〈 1
1− zα

| f∗〉.

Recall that Lp(T) is the set of functions f defined on T such that

‖f‖p =
{

1
2π

∫ 2π

0

∣∣f(eiθ)
∣∣p dθ}1/p

<∞

and ‖f‖p makes this set a Banach space for p ≥ 1. If 1/p + 1/q = 1, f ∈ Lp and g ∈ Lq, then fg ∈ L1,
so that the integral of |fg| is defined. The n-th Fourier coefficient of f is defined as

cn =
1
2π

∫ 2π

0

f(eiθ)e−inθdθ.

Assume cn = 0 for n < 0. Then F (z) =
∑
cnz

n is analytic in U. If p > 1 and f ∈ Lp, then F ∈ Hp.
Hence, if 1/p+ 1/q = 1, f ∈ Hp and g ∈ Hq, the product fg is in H1.

Lemma 1
Assume p > 1 and g ∈ Lp(T) and

h(ω) =
1
2π

∫ 2π

0

g(eiθ)
dθ

eiθ − ω

vanishes on Ω, which is a subset of U that has an accumulation point in U. Then there exists a function
g1 ∈ Hp, such that g∗1(eiθ) = g(e−iθ) almost everywhere on T.

RR no 0123456789

6 José Grimm

Proof. We have

h(ω) =
∞∑
k=0

ωk
1
2π

∫ 2π

0

g(eiθ)e−i(k+1)θdθ.

Hence h is analytic in U. The assumption says that h is identically zero, so that Fourier coefficients of g
with positive index are zero. If we replace g by g(e−iθ), we get a function in Hp. 2

If f is a function of z, we shall define

f̌(z) = (1/z)f(1/z).

If f is analytic in U, then f̌ is analytic outside U. The set H−
2 will be the set of all f̌ for f in H2. A

function f is in H−
2 if and only if it has the form

∑
k≥0 ak/z

k+1 where
∑
|ak|2 < ∞. We can define f∗

as previously (f∗(eiθ) = limr→1 f(reiθ), r > 1), and the mapping f → f∗ is a isometry from H−
2 into a

subspace of L2(T), which is the orthogonal of the image of H2 by the mapping f → f∗, f ∈ H2.
We define H2 to be the set of all f(1/z) where f is in H2. In what follows, we shall identify f and

f∗, and reserve the notation x∗ for the transpose conjugate of x. We shall sometimes write H2 instead
of H2. In particular, Hp

2 and Hn×m
2 will be the set of vectors of size p, or matrices of size n ×m with

components in H2. If M is a n×m matrix, we sometimes say M ∈ H2 instead of M ∈ Hn×m
2 .

Note that if f is a rational function, f = p/q, p and q coprime, then f is in H2 if and only if the roots
of q lie outside U. Then f is also in H∞.

If q is of degree n, then q̃(z) = znq(1/z). If the roots of q are in U, then q is called stable. Hence
f = p/q is in H2 if and only if q̃ is stable (if p and q are coprime). If deg(p) < deg(q), then f is called
strictly proper. If q is stable, then f is called stable. Hence a rational function f is in H−

2 if and only if
f is strictly proper and stable.

Lemma 2
If f is analytic in Ω, q a polynomial with roots in Ω, there exists a unique polynomial r, deg(r) < deg(q)
such that (f − r)/q is analytic in Ω. If Ω = U, if f ∈ H2, then (f − r)/q ∈ H2.

Writing f = aq + r will be called the Euclidean division of f by q.
Proof. Unicity of r is obvious, since r/q can be analytic only if its has no poles, hence r = 0 because
of the condition on degrees.

We shall prove existence by induction on the degree of q. We may hence assume q = z − α. Take
r = f(α). Define g(z) = (f(z) − r)/q(z) for z 6= α and g(α) = f ′(α). This defines a function which is
analytic in Ω, it will be denoted by Rα(f) later on.

Assume now α ∈ U, f ∈ H2. We must show g ∈ H2. Write fα(z) = f(z)− f(α). Let now r be a real
number, and

Mr =
1
2π

∫ 2π

0

∣∣∣∣fα(reiθ)
reiθ − α

∣∣∣∣2 dθ.
By definition, if this has a limit as r → 1, then g is in H2 and the limit is the square of the norm of g.
Assume r > |α|. The quantity |rz−α| is minimal on T for z = α/|α|, and the minimum is r−|α|. Hence

Mr ≤
1
2π

∫ 2π

0

|fα(reiθ)|2dθ/(r − |α|)2.

The integral is an increasing function of r, so that Mr ≤ ‖fα‖2/(r − |α|)2. Hence, the limit of Mr is
bounded by ‖fα‖2/(1− |α|)2. 2

Note: assume q = z − α, where |α| > 1. If f ∈ H2, then (f − r)/q ∈ H2 for every constant r.

Lemma 3
Assume that q is a stable polynomial. There exists a constant C such that, for every x ∈ H2, ‖x‖ ≤ C‖qx‖.

INRIA

Rational approximation of transfer functions in the hyperion software 7

Proof. Let x ∈ H2, α ∈ C. Define A = 〈zx |x〉/‖x‖2. Then

‖(z − α)x‖2 = ‖x‖2(1 + |α|2 − 2<αA).

Taking α = 1/A shows |A| ≤ 1, hence <αA ≤ |α|. Thus

‖(z − α)x‖2 ≥ ‖x‖2(1− |α|)2.

The proof is now obvious: take for 1/C the product of the leading coefficient of q and the 1− |αi|, where
αi is a root of q. 2

1.3 Form of Smith McMillan

We consider here a ring R and its quotient field K.
If M is a square matrix in R and has an inverse in R, then M is called unimodular. M is unimodular

if and only if its determinant is an invertible element of R. If R = A[z], where A is a field, then M is
unimodular if and only if its determinant is a non-zero constant.

Theorem 1
Let R be a Euclidean ring, M a matrix with entries in R. There exist two unimodular matrices A and B

in R, such that AMB has the form

(
D 0
0 0

)
, where D is a k× k diagonal matrix, diagonal entries di of

D are non-zero, and di divides di+1. Moreover, if fi =
∏
j≤i dj , for i ≤ k, and fi = 0 for i > k, then fi is

the gcd of all minors of order i of M .
If K is the quotient field of R, M a matrix with entries in K, there are two unimodular matrices A

and B such that AMB has the form above, with di = ai/bi, ai and bi are coprime. Moreover ai divides
ai+1 and bi+1 divides bi. These quantities are unique up to an invertible factor in R.

Definition 1
If M is a matrix of polynomials, the quantities fi are called the invariants of M . If M is a matrix of
polynomials or rational functions, the matrix AMB is called the form of Smith of M . The maximum of
the degrees of

∏
ai and

∏
bi is called the McMillan degree of M .

Proof. 1. Let Eij be the matrix whose only non-zero element is one at position (i, j) and Fij(λ) =
I + λEij . Let also Gij be the matrix, which is like the identity matrix, but entries at location (i, i) and
(j, j) are zero, while entries at locations (i, j) and (j, i) are one. It is obvious that if i 6= j, Fij(λ) and Gij
are unimodular matrices. Moreover, if D is a diagonal matrix, whose diagonal elements are invertible,
then D is unimodular. The proof will show that every unimodular matrix is the product of matrices of
the form D, Fij(λ) and Gij . Note that, if A is a matrix, AGij is A with columns i and j swapped, while
AFij(λ) is A with column j replaced by its sum with λ times column i. Replacing A by AGij or AFij(λ)
is called an elementary operation.

2. Let a and b be elements of R. The extended gcd algorithm gives quantities u, v, x and y such that(
u v
x y

)(
a
b

)
=
(
c
0

)
(1.2)

where c is the gcd of a and b. The matrix in this equation is unimodular (its determinant is 1), and is the
product of elementary operations. In the same fashion, there exists elementary operations that replace
elements of column j, rows i1 and i2 by the gcd and 0, and only rows i1 and i2 are modified. Operating
on columns instead of rows, we can replace two elements of a row i, columns j1 and j2 by 0 and the gcd,
modifying only columns j1 and j2.

3. If the matrix M is identically zero, there is nothing to do. Otherwise, swapping columns, we may
assume that the first column is not identically zero. Swapping rows, we may assume that Mi1 = 0 if i > k

RR no 0123456789

8 José Grimm

and Mi1 6= 0 for i ≤ k. Consider operations (1.2) with a = M11 and b = Mi1, i = k, k − 1, . . . , 2. After
that, we have Mi1 = 0 for each i. We may do the same for the first row. However, this will modify the
first column. Apply these transformation as many times as needed, alternatively to the first row, and to
the first column. Let xk be the value of M11 after the k-th transformation. If the transformation is not
trivial (i.e. if there is a non-zero element on the row or the column, other than element at (1, 1)), then
xk+1 is a strict divisor of xk. Since x1 has only a finite number of divisors (up to an invertible factor),
this show that the process must end. We get

M ′ =
(
M11 0
0 M ′′

)
and conclude by induction that there are matrices A and B such that

AMB =
(
D 0
0 0

)
(1.3)

where D is diagonal, with non zero entries on the diagonal.
4. A consequence of (1.2) is(

u v
x y

)(
a 0
0 b

)(
1 −vb/c
1 ua/c

)
=
(
c 0
0 d

)
(1.4)

where d is the lcm of a and b. Note that the third matrix in this equation is the product of elementary
matrices, namely F21(1)F12(−vb/c). This means that there are elementary operations that replace di
and dj by their gcd and lcm. If we apply these operations for each i and j, we obtain the relation: di
divides di+1.

5. Assume now M unimodular. There exist matrices A and B, that are product of elementary
operations such that (1.3) holds. Note that the right hand side is unimodular, so that AMB = D,
M = A−1DB−1. This means that any unimodular matrix is the product of elementary matrices, and
unimodular diagonal matrices.

6. We show now unicity of the quantities di. The previous remark tells us that it suffices to show that
MA and M have the same invariants if A is of the form Fij(λ), or Gij , or diagonal unimodular. This is
obvious for the last two cases. Let’s show thatMFij(λ) andM have the same invariants. Consider a minor
of size k. Let U be the minor in M , V the same in MFij(λ). Let W be the minor obtained by replacing
column i with column j (this is zero in case column i does not appear in U). Then V = U +λW . If fk is
the k-th invariant of M , it divides U and W , hence V . Thus, if f ′k is the k-th invariant of M ′ = MFij(λ),
fk divides f ′k. The converse is true, because M = M ′Fij(−λ).

7. Finally, if M is a matrix over K, there exists u in R such that uM has entries in R. Hence, there
are unimodular matrices A and B such that

AMB =
(
D′ 0
0 0

)
, D′ = D/u.

We have d′i = di/u = ai/bi. If we take ai and bi coprime, then the relations “di divides di+1” imply ai
divides ai+1 and bi+1 divides bi. These quantities are unique, because, if we have another such form with
a′i/b

′
i on the diagonal, and multiply everything by

∏
bi
∏
b′i, we get, by unicity in R,

ai
bi
∏
bj
∏
b′j

=
a′i

b′i
∏
bj
∏
b′j

hence ai/a′i = bi/b
′
i. 2

INRIA

Rational approximation of transfer functions in the hyperion software 9

1.4 Inner matrices

If A is a square constant matrix, A∗A = I, then A is called unitary. If A is real, it is called orthogonal.
Unitary matrices satisfy

〈Ax |Ay〉 = 〈x | y〉.

If A is a matrix of functions with entries in H∞, x and y are vectors with entries in H2, the previous
relation is true (using the scalar product in H2) if A(z) is unitary for almost all z in T.

Definition 2
A matrix M(z) is called inner if it is square, its entries are in H∞, and the inverse of M(z) is M(z)∗

almost everywhere on T.

The following obvious theorem will be used everywhere.

Theorem 2
Let A and B be inner matrices. The product AB is inner. The quotients AB−1 and B−1A are inner
provided they are in H∞. The transpose and the conjugate of A are inner.

Let z = reiθ and α = seiφ be two complex numbers. Assume |α| < 1, i.e. s < 1. Let x =
(z − α)/(1− zα). We have

1
|x|2

− 1 =
(1− r2)(1− s2)

r2 − 2rs cos(θ − φ) + s2
. (1.5)

Thus z ∈ T is equivalent to x ∈ T, and z ∈ U is equivalent to x ∈ U. Hence, if c is a complex number,
with modulus one, αi are elements of U, the quantity

c
∏ z − αi

1− zαi

is inner. This is called a Blaschke product. See [17, Theorem 15.21] for how to construct infinite Blaschke
products. According to [17, Theorem 17.15], any inner function is the product of a Blaschke product and
a factor of the form

exp
{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
where µ is a finite positive measure which is singular with respect to the Lebesgue measure. For instance
exp((z+1)/(z−1)) is inner. At the end of the second chapter, we shall consider functions that are analytic
in the half plane (continuous time systems). The typical example of a non-rational inner function is then
the function exp(s).

Consider a Blaschke product as above. We can write it as cq/q̃, where q is defined by its roots and its
leading coefficient. If we change the leading coefficient, we get another value for c. In general, we shall
assume that q is monic, but in some other cases, we shall assume q(1) = 1 (recall that q(1) cannot be
zero). Hence, a Blaschke product will be a product of terms of the form

βω(z) =
(z − ω)(1− ω)
(1− zω)(1− ω)

. (1.6)

The notation βω will be used constantly in this paper.

Theorem 3
A rational function f is inner if and only if it is a Blaschke product.

Proof. Let f be an inner rational function. Since f is rational, there exists a polynomial p, with zeroes
in U, such that f = pg, g is analytic in U, and does not vanish in U. Let h = p̃g, so that f = hp/p̃.
Note that p/p̃ is a Blaschke product, so that h is inner. We have to show that h is constant.

RR no 0123456789

10 José Grimm

Since h is inner, we have
h(1/z) = 1/h(z) (∗)

for every z ∈ T. But since h is rational, this is true whenever both terms are defined. Since h does not
vanish on U, h(1/z) is defined on U. Since h has no poles, even at infinity, it must be constant. 2

Note: if h is inner, the maximum modulus principle says that h is bounded by 1 in U. Now 1/h is
analytic in U. If it is bounded (for instance if h is rational), then h must be constant. In the case of
h = exp((z + 1)/(z − 1)), it happens that h is not zero on U, but the minimum of |h| is zero.

Theorem 4
A rational matrix A is inner if and only if there exists a polynomial matrix D, whose entries are of
degree at most n, a stable polynomial q of degree n, an element c in T, such that, if q̃ = znq(1/z) and

D̃ = znD
t
(1/z), then

A =
D

q̃
, A−1 =

D̃

q
, detA = c

q

q̃
. (1.7)

The integer n is the McMillan degree of A.

Proof. By definition, A is inner if and only if

A−1(z) = A(1/z)t (∗∗)

for almost every z ∈ T. Since A is rational, this equation is true for every z for which both members are
defined. Since A is in H∞, it is defined on T, so that (∗∗) is true for each z ∈ T.

Let d be the determinant of A. We have

1
d(z)

= d(
1
z
),

so that d is inner, and d = cq/q̃ for some stable polynomial q of degree n, and some constant c. Let C be
the matrix of cofactors of A, so that A−1 = C/d. We have

cqA−1 = Cq̃.

The rational function E = qA−1 is defined for all |z| ≤ 1, being the right hand side of this equation. But
the left-hand side is defined for |z| ≥ 1 according to (∗∗). Thus E is a polynomial. Its degree is at most
n: E/zn has a limit as z → ∞, this limit being A−1(∞) = A(0)t (modulo the leading coefficient of q).
This means that there exists a polynomial matrix D such that E = D̃. The relation A = D/q̃ is now
obvious from (∗∗).

We have now to show that n is the McMillan degree of A. Consider the form of Smith of A. If the
diagonal elements are ai/bi, we have

c
q

q̃
=
∏
ai∏
bi
.

We pretend that
∏
ai and

∏
bi are coprime, so that the max of their degrees is the max of the degrees

of q and q̃, which is n.
If
∏
ai and

∏
bi were not coprime, there would exist a complex number α which is a root of ai and

bj , with i 6= j. For this α neither A(z) nor A(1/z) is defined. But equation (∗∗) says that, for any α,
A(z) or A(1/z) is defined. 2

Note: the McMillan degree n is uniquely defined by the determinant of Q. Thus, the McMillan degree
of the product of two inner matrices is the sum of the degrees.

Corollary 1
q̃i−1 divides every minor of size i of D.

INRIA

Rational approximation of transfer functions in the hyperion software 11

Proof. This is because the i-th invariant of D is

q̃i
∏
j≤i

(aj/bj) = cq̃i−1
∏
j≤i

aj
∏
j>i

bj .

2

The corollary will be used with i = 2: q̃ divides any minor of order 2.
In the case i = 1, we get the following: the first invariant is f1 = a1q̃/b1. If A has positive McMillan

degree, then b1 6= 1 (since bi divides b1). Hence q̃ does not divide f1. In other terms, q̃ does not
divide every entry of D. It can happen that D(z) = 0 whenever q̃(z) = 0. A typical case is: take
b = (z − a)/(1− az), and A = bIn. Then q = (z − a)n, D = (z − a)(1− za)n−1I.

It is well known that a polynomial can be written as the product of polynomials of degree one. We
shall show that the same holds for inner matrices.

Consider
Q0 = I − (1− βω)uu∗, (1.8.a)

Q1 = [I − (1− βω)uu∗][I − (1− βω)u′u′∗]. (1.8.b)

In the case where u has components (1, 0, . . . , 0), then Q0 has the form

Qω = diag(βω, 1, . . . , 1)

and if u is of unit norm, there exists a unitary matrix P such that Q0 = PQωP
−1.

Lemma 4
If ω ∈ U, and ‖u‖ = 1, then Q0 is inner, of McMillan degree one. Its determinant is βω, its value at
z = 1 is the identity matrix. If ‖u′‖ = 1, then Q1 is inner of McMillan degree two.

Assume that ω is not real. Let Q′0 be the second factor of Q1. Then Q1 is real if and only if u′ is
proportional to Q0(ω)∗u, this condition is equivalent to u proportional to Q′0(ω)u′. It is also

u′ = λ(1 +
ω − ω

1− |ω|2
− uu∗)u. (1.8.c)

Assume Q inner. Then Q−1
0 Q is inner if and only if u∗Q(ω) = 0. If Q is real, then Q−1

1 Q is inner if
and only if this condition is true, together with condition (1.8.c).

Proof. The first claim is obvious. We have

Q−1
0 = I − (1− 1/βω)uu∗.

Hence Q−1
0 Q is inner if and only if it has no singularity at z = ω, which is u∗Q(ω) = 0. The result in the

real case will be shown in chapter 3 (theorem 26). 2

Corollary 2
Assume that Q is inner, detQ = cq/q̃, and q(ω) = 0. There exists an inner matrix Q0 of the form (1.8.a)
such that Q−1

0 Q is inner. If Q is real, and ω is real, we can assume Q0 real. If Q is real, and ω is not
real, there exists a real matrix Q1 of the form (1.8.b) such that Q−1

1 Q is inner.

Proof. The assumption is that detQ vanishes at z = ω, and ω ∈ U. Hence, there exists a non-zero
vector u such that u∗Q(ω) = 0. We may assume ‖u‖ = 1. If Q and ω are real, we can also assume that
u is real. 2

RR no 0123456789

12 José Grimm

Theorem 5 (Potapov)
Assume that Q is an inner rational matrix, detQ = cq/q̃ and q = (z − ω1)(z − ω2) · · · (z − ωn). We can
write

Q = Q1Q2 · · ·QnA (1.9)

where each Qi has the form (1.8.a), with determinant βωi
:

Qi = I − (1− βωi)uiu
∗
i . (1.10)

If Q is real, and q = q1q2 . . . qn, where each qi is irreducible, then Qi has the form (1.8.a) in case qi
is of degree one, and the form (1.8.b) if qi is of degree two. In any case, the matrix A is constant and
unitary.

Proof. Denote by q(Q) the polynomial q such that detQ = cq/q̃. Then q(Q1Q2) = q(Q1)q(Q2). We
proceed by induction on the number of factors of q, hence obtain (1.9) for some matrix A, which is inner,
and has constant determinant. Thus A must be constant. Note that Qi(1) is the identity matrix, so that
A = Q(1). 2

Note: We shall give later (theorem 26) a more elaborate version of this theorem. If we impose the
condition Q(1) = I, then Q lies in a manifold of dimensuion np, where n is the degree and p the size of
Q. The decomposition above has exactly np free parameters, but we cannot use it to parameterise the
manifold. In fact, if q has n distint roots, then ui is uniquely defined (modulo a phase factor), once an
ordering for the roots is given. The next corollary implies that the span of the vectors ui depends only
on Q. We can also restate the theorem as: any inner matrix the product of some matrices Qω and some
unitary matrices, but in this decomposition, there are much more free parameters.

Corollary 3
If ω ∈ U, and Q is inner, rational, then ‖Q(ω)∗u‖ ≤ ‖u‖. We have equality if and only if u is orthogonal
to every ui, for a factorisation like (1.9), (1.10).

Proof. The proof is by induction on the McMillan degree of Q. There is nothing to show if Q is
constant. Assume Q = Q1B. Let λ = 1− βω1(ω) and w = Q1(ω)∗u = (I − λu1u

∗
1)u. We have

‖w‖2 = ‖u‖2 − (1− |βω1(ω)|2)|u∗1u|2

so that ‖w‖ ≤ ‖u‖, and ‖w‖ = ‖u‖ if and only if u∗1u = 0, case where w = u (recall that |β(ω)| < 1).
By induction,

‖Q(ω)∗u‖ = ‖B(ω)∗w‖ ≤ ‖w‖ ≤ ‖u‖.

If ‖Q(ω)∗u‖ = ‖u‖, then u = w, and ‖B(ω)∗u‖ = ‖u‖, hence by induction, u is orthogonal to every ui.
2

1.5 Shift invariant spaces

Assume that we have a discrete time system, which is defined by a time-invariant input-output relation.
Given a sequence (ui)i, which is the input, we associate a series U =

∑
uiz

−i. Given an input U , the
system defines an output Y . The origin of time is i = 0, the past is defined by i < 0, and the future by
i > 0. With our conventions, a polynomial U defines a sequence for which only a finite number of values
are not zero, none of them are in the future. The system is time-invariant if the output of ziU is ziY
whenever the output of U is Y . The system is said causal in case yi depends only on uj for j ≤ i (it is
called strictly causal if yi does not depend on ui). For details, see [19].

Under these assumptions, it is possible to compute the output associated to a given input, provided
that we can compute the output associated to an input with ui = 0 for i > 0. We shall say that the
system is stable in case

∑
i≤0 ‖ui‖2 gives an output where

∑
i<j ‖yi‖2 is finite, whatever j. For instance,

INRIA

Rational approximation of transfer functions in the hyperion software 13

if H is an element of H−
2 or H2, the system defined by Y = HU , is time-invariant, stable and causal (or

strictly causal).
We can identify two sequences ui and u′i (defined for i < 0) if, whatever vi (i ≥ 0), the outputs Y

and Y ′ corresponding to the concatenations of u and v, or of u′ and v, are identical for i ≥ 0. The state
of the system is then defined by the set of all past inputs, modulo this identification. If the system is
stable, we identify U with zero provided that Y is in H2.

If the system is not stable, we shall assume that, at some time t0 in the past, the state is zero, and we
consider only inputs ui such that ui = 0 if i < t0. We assume that this implies yi = 0 for i < 0. Such a
system can be defined by Y = HU , where H is proper (or strictly proper), this gives a causal (or stricly
causal) time-invariant system. Here the state is defined by all past inputs (here polynomials U), modulo
identification: U is identified to zero if it gives an output Y which is a polynomial.

In any case, the state space X is the quotient of past inputs, modulo a space V. If the system is
stable, both methods fo defined the state space give the same result. This property will be used in order
to show that Q is rational in the factorisation H = Q−1C. Since the system is time-invariant, the set V
is shift invariant.

In what follows, a shift invariant vector space will be a set E of functions, such that, if f ∈ E, then
the function z → zf(z) is in E. Since E is a vector space, it implies that pf ∈ E, whenever p is a
polynomial and f an element of E.

The easy case is when E is a set of polynomials over a field K. Then E is an ideal of K[z], hence is of
the form rK[z], for some polynomial r. In particular, if p and q are two polynomials, E is the set of all
up+ vq, where u and v are polynomials, then the polynomial r is the gcd of p and q. The polynomials p
and q are coprime if E = K[z].

We shall consider two extensions of this easy case: the case where E is a set of vectors of polynomials,
and the case where E is a set of analytic functions. In this last case, we have to make some assumptions.
For instance, if 1 ∈ E, then every polynomial is in E. However, there are many shift invariant spaces
that satisfy this condition. We shall restrict our attention to functions analytic in U, in fact, E will be a
subset of H2. Since H2 is a metric space, we may add the condition that E is closed. Now, the theorem
of Beurling says that E = rH2 for some inner function r. An extension of this theorem in the non-scalar
case will be given here.

Assume that E is formed of vectors of size p. Then E is called of full rank if there are p elements
x1, x2, . . . , xp such that for some evaluation point z0, the vectors xi(z0) are linearly independent.

Theorem 6
Let E be a subset of Cp[z], which is shift invariant, of full rank. There exists a matrix Q ∈ Cp×p[z],
with non-zero determinant, unique up to a unimodular factor, such that E is the set of all Qx, where
x ∈ Cp[z].

Theorem 7 (Beurling-Lax)
Let E be a subset of Hp

2 , which is shift invariant, closed, of full rank. There exists an inner matrix Q, of
size p, unique up to a constant unitary factor, such that E is the set of all Qx, where x ∈ Hp

2 .

Let’s first consider unicity. Assume that we have two matrices Q and Q′ that satisfy the conditions.
Hence, we get two matrices R and S such that Q′ = QR and Q = Q′S. Since Q and Q′ have non-zero
determinant, the matrix S is the inverse of R. In the polynomial case, it follows that R is polynomial,
with polynomial inverse, hence is unimodular. In the H2 case, S is in H2, with inverse in H2. Since
Q = Q′S, and Q and Q′ are inner, S is inner. We pretend that S is constant.

In the scalar case, the proof of [17, Th 17.21] is the following. Let h = s + 1/s. Now h is in H2,
and its imaginary part is zero on T (on T, we have ss = 1, hence h = 2<s). But h is the Poisson
integral of its value on T, hence h is real, thus h is constant. This implies that s is constant (take
square roots). In the matrix case, we cannot take square roots. We know for instance that St + S−1 is
constant, and d+ 1/d is constant, where d is the determinant of S. But this is not enough: for instance

S =
(

1 + cos z sin z − 1
1 + sin z 1− cos z

)
satisfies detS = 1 and St + S−1 constant.

RR no 0123456789

14 José Grimm

In the general case, we apply the following result.

Lemma 5
Assume that S is an inner p×p matrix, and S−1 has entries in H2. Then S is a constant unitary matrix.

Proof. Let x and y be constant vectors, t = S−1y. This is some element of H2. We have

〈znSx | y〉 = 〈znSx |St〉 = 〈znx | t〉.

Since y is constant, it is orthogonal to znSx for n > 0, so that t is orthogonal to znx for n > 0. Since x
is arbitrary, it implies that t is constant. Hence S is constant. 2

Assume that we have E = QCk[x] or E = QHk
2 . We know that there are p elements xi in E, of the

form xi = Qyi such that, evaluated at z0, this gives p linearly independent vectors. This implies k ≥ p.
Let’s show the existence in the polynomial case. Define Ei to be the set of all elements of E for which

components of index < i are zero. For 0 < i ≤ n, we consider an element pi in Ei for which component i
has smallest degree. It may happen that all elements p in Ei have 0 as i-the component, said otherwise
Ei = Ei+1. In this case, we chose pi = 0.

Let x be an element of E. We consider some polynomials yi, such that xi = x−
∑
j≤i yjpj is in Ei.

These numbers are found by induction on i. We define yi to be zero in case the i-th component of xi
is zero. Otherwise, yi is the remainder of the i-the component of xi by the i-th component of pi. This
shows that any x is a linear combinations (with coefficients in K[z]) of the pi. If Q is the matrix whose
columns are the non-zero elements pi, we have x = Qy for some y. Clearly, the rank of Q is the number of
columns, and the remark above says that it must br p, so that Q is square and has non-zero determinant.

Consider now the H2 case. Let zE be the set of all zx, x ∈ E. Let L be its orthogonal complement.
It is easy to show that zE is closed (recall that E is closed in H2). This implies that zE is the orthogonal
of L. In other words

∀x ∈ E, ∃t ∈ E,∃y ∈ L, x = y + zt. (1.11)

Consider n elements xi in L, of unit norm, which are orthogonal. Then

〈xizj |xkzl〉 = δikδjl. (1.12)

This is because the scalar product is 〈xizj−l |xk〉 or 〈xi |xkzl−j〉, depending on the sign of j− l. Since xi
and xk are in L, the product is zero if j 6= l; it is 〈xi |xk〉 otherwise. Let now vij(z) =

∑
k xik(z)xjk(z).

This is in L1(T), and (1.12) says

1
2π

∫ 2π

0

einθvjk(eiθ)dθ = 0

for each integer n ∈ Z (if n = 0, the relation is true only if j 6= k, if j = k, the integral is one). Thus,
vij is constant, it is δij . This means that the set of vectors xi(z) is orthonormal in Cp, for almost every
z ∈ T. In particular, L has finite dimension, at most p.

Let (Φα)α be an orthonormal basis of L. Let Q be the matrix whose columns are the Φα. Then
Q∗Q(z) is the identity matrix if z ∈ T. Equation (1.12) implies that

∑
i,α λi,αz

iΦα is in H2 provided
that

∑
|λi,α|2 <∞. Since E is closed, this expression is in E, and Qx ∈ E whenever x has components

in H2. On the other hand, let u ∈ E, λi,α = 〈ziΦα |u〉, and x0 = u −
∑
i,α λi,αz

iΦα. This element is
in H2. It is in E, and orthogonal to each ziΦα. Write x0 = zix, with i as large as possible. Then x is
orthogonal to each Φα. Write x = y + zt like in (1.11). Then y = 0, because (Φα)α is a basis of L. This
contradicts the fact that i is maximal. It implies x = 0, and u = Qy for some y.

The same argument as above shows that Q must have at least p columns. The relation Q∗Q(z) = I
on T says now that Q is inner.

INRIA

Rational approximation of transfer functions in the hyperion software 15

1.6 The state space

Let H be a m× p matrix. We shall consider the following sets

V(H) = {x ∈ Cp[z],Hx ∈ Cm[z]}

V ′(H) = {x ∈ Hp
2 ,Hx ∈ Hm

2 }.

Lemma 6
Assume H rational. Then V(H) is shift invariant, of full rank. Assume moreover H ∈ H2. Then V ′(H)
is shift invariant, of full rank, and closed.

Proof. We can always assume H = P/q, where P is a matrix of polynomials, and q a polynomial. If q
is of minimal degree, then H is defined if and only if 1/q is defined, so that, if H ∈ H2, we may assume
that the roots of q are in U.

If ei is a basis of Cp, then qei is a set of p vectors in V and V ′ which are linearly independent, whenever
evaluated at z0 which is not a zero of q. Thus V and V ′ are shift invariant, of full rank.

Let’s show that V ′ is closed. Consider a Cauchy sequence xi. Let yi = Hxi. Then qyi = Pxi.
Obviously, xi converges in H2 to some x, and Pxi converges to Px. Lemma 3 says that the sequence yi
is Cauchy, hence converges to some y. Obviously qy = Px. Thus y = Hx is in H2 and x is in V ′(H). 2

Theorem 8
Let H be a m × p matrix of rational functions. There exists a p × p polynomial matrix D, a m × p
polynomial matrix N , two polynomial matrices X and Y such that

H = ND−1, XN + Y D = I. (1.13)

If H = N1D
−1
1 , then D1 = DU for some polynomial matrix U . If moreover X1N1 + Y1D1 = I then U is

unimodular.
Assume moreover that H ∈ H2. There exists an inner matrix Q, a matrix C ∈ H∞, two matrices X ′

and Y ′ in H2 such that
H = CQ−1, X ′C + Y ′Q = I. (1.14)

If H = C1Q
−1
1 , then Q1 = QU for some matrix U in H2. If moreover X ′

1C1 + Y ′1Q1 = I, then U is
constant.

The matrix Q is rational. If its determinant is q/q̃, then q is the determinant of D. If H is real, all
matrices can be chosen real.

In the same fashion, we have a factorisation H = D−1N and H = Q−1C.
Proof. 1. We know that there exists a matrix D such that

x ∈ V(H) ⇐⇒ D−1x is a polynomial. (1.15)

From this, we deduce first that N = HD is a polynomial. Let E be the set of all N tx+Dty, where x and
y are polynomials. This space is shift invariant, of full rank, so that this is the set of all Rtu for some
polynomial matrix Rt; there are matrices X1, Y1, D1 and N1 such that

Rt = N tXt
1 +DtY t1 , Dt = RtDt

1, N t = RtN t
1.

If we transpose, we get
R = X1N + Y1D, D = D1R, N = N1R.

Note that (I −X1N1 − Y1D1)R = 0. Since R is of full rank, we get

X1N1 + Y1D1 = I.

RR no 0123456789

16 José Grimm

Since H = ND−1 = N1D
−1
1 , D1x ∈ V whenever x is a polynomial. Using (1.15) a second time, we see

that D−1D1 is a matrix of polynomials. Since it is R−1, R is unimodular. So

I = R−1X1N +R−1Y1D,

and we get (1.13) with X = R−1X1, Y = R−1Y1.
2. Suppose now H = N1D

−1
1 . Then

XN1 + Y D1 = D−1D1.

This implies that U = D−1D1 is a matrix of polynomials. If moreover X1N1 + Y1D1 = I, its inverse is
polynomial, hence unimodular. Note that, if H is real, we may chose D real. It follows that N is real,
and XN + Y D = I implies <(X)N + <(Y)D = I.

3. The second claim can be proved in the same fashion. We know that V ′(H) is closed, so that there
exists Q such that V ′(H) = QH2. Let C = HQ. This is in H2, but also in L∞, since H and Q are in
L∞. Hence C ∈ H∞. We can consider the space of all Ctx + Qty, where x and y are in H2. This is a
full rank, shift invariant closed subspace of H2.

Using lemma 5, we see that the matrices R and U are constant, wherever they were unimodular in
the previous point. This shows the second claim of the theorem. We shall see in the next point that Q
is rational. This implies that Q(1) is defined and invertible, so that we can multiply Q by Q(1)−1, hence
assume Q(1) = I. If H is real, we have H = CQ−1 = CQ−1, so that Q−1Q is constant. Since this is the
identity matrix for z = 1, it follows that Q is real, and C is real also. As above, we can then assume that
X ′ and Y ′ are real.

4. A consequence of the unicity relations is that Q−1D is in H2, with inverse in H2. Let ek be a basis
of Cp. We have

〈ekzi |Q−1Dej〉 = 〈Qekzi |Dej〉.

In the case where i is greater than the degree of D, the last scalar product is zero. Hence Q−1D is a
polynomial, and Q is rational.

We know that the determinant of Q has the form q/q̃. Let r be the determinant of D. Since Q−1D is
in H2, with inverse in H2, the same is true for the determinant rq̃/q. This means that q divides r, and
the stable part of r divides q. Since XH+ Y = D−1, all zeroes of r are in U, thus r/q is constant. 2

Let’s introduce the spaces X (H), the quotient of the Cp[z] by V(H), and X ′(H), the quotient of Hp
2

by V ′(H).

Lemma 7
Let A be a rational matrix. Assume that A = UBV , where U and V are unimodular, B =

(
C 0
0 0

)
.

Then X (A) = X (C). If C is diagonal, with terms ci on the diagonal, then X (A) is the direct sum of
X (ci). In the same fashion, X ′(A) is the sum of X ′(ci).

If c = a/b, a and b coprime, then X (c) is isomorphic to the set of polynomials of degree < deg(b).
The same is true of X ′(c), provided that b is stable.

Proof. It is obvious that X (B) = X (C) =
∑
i X (ci), and X ′(B) = X ′(C) =

∑
i X ′(ci),

Note that UBV x is a polynomial (resp. in H2) if and only BV x is, because U and U−1 are polynomial
matrices (hence are in H∞). On the other hand, the multiplication by V leaves the set of polynomial
vectors invariant, it leaves also H2 invariant. Hence, we can replace A by B.

Finally, any x can be written as x = bq + r, with deg(r) < deg(b). If x is a polynomial, then q is a
polynomial, if x is in H2, then q is in H2. Now xa/b = aq + ar/b. This is a polynomial if and only if b
divides ar. Since b is coprime to a, it is a polynomial if and only if r = 0. In the same fashion, ar/b is in
H2 if and only if r = 0, since b is stable. 2

INRIA

Rational approximation of transfer functions in the hyperion software 17

Theorem 9
Under the assumptions of the previous theorem, we have

V ′(H) = V ′(Q−1) = V ′(D−1) V(H) = V(D−1), X (H) = X ′(H).

Proof. The relations V ′(H) = V ′(Q−1) and V(H) = V(D−1) are obvious, equivalent to (1.13) and
(1.14). The relation V ′(H) = V ′(D−1) is clear also: it is a consequence of (1.13) and the fact that any
polynomial is in H2.

The last claim is X (D−1) = X ′(D−1). According to the lemma, we can replace D by its form of
Smith. But the form of Smith is D−1 = UCV , C = diag(1/ci), and detD =

∏
ci. Hence ci is stable.

2

Assume M square and invertible. Let the form of Smith of M be AMB = diag(ai/bi). Then
B−1M−1A−1 = diag(bi/ai). There are permutation matrices that replace this by diag(bn−i/an−i). This
is the form of Smith of M−1. Hence M and M−1 have the same McMillan degree.

Lemma 8
If M is rational and proper, the McMillan degree of M is the dimension of X (M). Thus, if A is constant,
M and M +A have same McMillan degree.

Proof. Let q be a polynomial of degree n, such that entries of Mq are polynomials. By assumption,
these entries are of degree ≤ n. Let f1, f2, . . . , fk be the invariant factors of Mq. Take a minor x of size
k × k of Mq. Then x has degree ≤ kn. Since fk is the gcd of these quantities, the degree of fk satisfies
this condition. Hence fk/qk is proper. But fk/qk is

∏
ai/bi, where ai/bi are the diagonal elements of the

form of Smith of M . Thus deg
∏
ai ≤ deg

∏
bi. This implies that the McMillan degree of M is deg

∏
bi,

which is the dimension of X (M). 2

Corollary 4
The matrices H, D and Q have the same McMillan degree.

Lemma 9
If Q is inner rational, Q = D/q̃, Q−1 = D̃/q, then Q−1C is strictly proper, stable, rational of McMillan

degree ≤ n and C is in H∞ if and only if q̃C and D̃C are polynomials of degree < n.

Proof. Assume Q−1C strictly proper, stable, rational. Then Q−1C = N/s, where N is a polynomial
matrix, and s a stable polynomial. We have C = DN/(q̃s). Since C ∈ H∞, s divides DN , DN = Ts,
hence qq̃N = D̃Ts. Thus s divides qq̃N . But s is stable, q̃ is unstable, and we may assume s coprime to
N (i.e. s coprime to the gcd of the entries of N). Hence s divides q, q = ks. Hence D̃C = kN , q̃C = T .
Since Q−1C is strictly proper, kN and T are of degree less than n.

On the other hand, if D̃C = N , then Q−1C = N/q, and Q−1C is rational, strictly proper and stable.
If moreover C = T/q̃, then C ∈ H∞. Since X (CQ−1) ⊂ X (Q−1), CQ−1 (hence Q−1C) cannot have
greater McMillan degree than Q−1. 2

1.7 Left shift

Assume that f is analytic in Ω, α ∈ Ω. We define g = Rα(f) by g(z) = (f(z) − f(α))/(z − α) and
g(α) = f ′(α). Then g is analytic in Ω. We also know that if f ∈ H2, then g ∈ H2. The case of interest
will be the case α = 0, because the orthogonal of QH2 is R0-invariant, and finite dimensional. The
operator Rα is called the left shift, or backwards shift.

An easy remark is the following: Rk0(f) = (f(z) − P)/zk, where P is some polynomial. Thus, if∑
λiR

i
0(f) = 0, then f = p/q where p and q are polynomials. Thus, if X is a finite dimensional R0-

invariant space, every element of X is a rational function. Moreover, it is obvious that there exists a
polynomial q of degree ≤ n, such that fq is a polynomial of degree ≤ n, for every f in X. The objective
of this section is to prove the more precise following result.

RR no 0123456789

18 José Grimm

Theorem 10
Assume that X is a set of functions, analytic in Ω, with range in Cp. Assume that X is Rα-invariant,
and is a vector space of finite dimension n. There exists an observable pair (A,C), C of size n, such that

X = A[I − (z − α)C]−1
C
n. (1.16)

The space X is Rβ-invariant for every β ∈ Ω, in fact, for every β such that I − (β − α)C is invertible.
Let B = I + αC, P an invertible constant matrix, and

K(z, ω) = A(B − zC)−1P−1(B∗ − ωC∗)−1A∗. (1.17)

Then X is the linear span of the vectors K(z, ωi)ci, ωi ∈ Ω0, ci ∈ Cp, provided that the subset Ω0 of Ω
has an infinite number of elements.

The condition (A,C) observable says that the space defined by (1.16) has dimension n. By definition,
(A,C) is observable if it satisfies the conditions (1.18). In the next chapter, we shall give an alternate
proof of the equivalence of these conditions.

Lemma 10
Assume that A is a p× n matrix, C is a square n× n matrix. The following conditions are equivalent.

∀x, ∀λ ∈ C, Ax = 0, Cx = λx implies x = 0. (1.18.a)

∀x, ACix = 0 (0 ≤ i < n) implies x = 0. (1.18.b)

Proof. Clearly, if Ax = 0 and Cx = λx, then ACix = λiAx = 0, so that (1.18.b) implies (1.18.a).
Define some numbers ai by P = det(zI − C) = zn −

∑
aiz

i. The Cayley-Hamilton theorem says

Cn = a0 + a1C + · · ·+ an−1C
n−1. (1.19)

Write P =
∏
i(z − λi)αi , with λi 6= λj for i 6= j. There are some polynomials ui such that∑

i

ui(z)
∏
j 6=i

(z − λj)αj = 1.

Fix some vector x, and define ai = ui(C)
∏
j 6=i(C − λj)αjx. Then x =

∑
ai, and (C − λi)αiai = 0.

Define ym = (C−λi)mai. Assume now ACix = 0. Then Ap(C)x = 0, for every polynomial p, so that
Aym = 0. Assume moreover (1.18.a) true. Then, if ym = 0, we have Aym−1 = 0, and Cym−1 = λiym−1

so that ym−1 = 0. Since ym = 0 for m = αi, by induction, we have ym = 0 for each m, thus ai = 0 and
x = 0. 2

Lemma 11
Assume (A,C) observable, C of size n, ωi ∈ C for 1 ≤ i ≤ n, ωi 6= ωj for i 6= j, and I − ωiC invertible.

Then, if A(I − ωiC)−1x = 0 for each i, we have x = 0. Moreover, if v ∈ Cn, there are some vectors
ci in Cp such that

v =
∑
i

(I − ωiC
∗)−1A∗ci. (1.20)

Proof. 1. The two claims are clearly equivalent. If f is any analytic function, defined on the eigenvalues
of C, then f(C) is a polynomial function of C, because of (1.19). Take f(C) = (I − ωC)−1. The proof
consists of finding an explicit formula for the coefficients of this polynomial.

2. Define some numbers xi by

xi = ωi
1− an−1ω − an−2ω

2 − · · · − ai+1ω
n−i−1

1− an−1ω − an−2ω2 − · · · − a0ωn
. (1.21)

INRIA

Rational approximation of transfer functions in the hyperion software 19

We consider an = −1, and ai is defined by (1.19). Thus, the denominator ∆ is just the determinant of
I − ωC. Let x′i = ∆xi. This is a multiple of ωi, so that there exists some numbers bik, depending only
on ai, such that

ωi = x′i +
∑
k>i

bikx
′
k. (1.22)

For each ωj , we define xij and x′ij . By assumption, the determinant of ωij is not zero, so that the
determinant of x′ij is not zero (moreover, the denominator of xij is not zero).

3. We have
n−1∑
i=0

x′iC
i = −

n∑
j=0

ajω
n−j

j−1∑
i=0

ωiCi

(I − ωC)
n−1∑
i=0

x′iC
i = −

n∑
j=0

ajω
n−j

j−1∑
i=0

ωiCi(I − ωC) = −
n∑
j=0

ajω
n−j + ωn

n∑
j=0

ajC
j .

If we apply (1.19) we get

(I − ωC)−1 =
n−1∑
i=0

xiC
i. (1.23)

4. Assume A(I − ωjC)−1y = 0. Then, for each j,
∑
x′ijAC

iy = 0. Since the determinant of x′ij is
not zero, it follows that ACiy = 0, hence y = 0, since (A,C) is observable. 2

Corollary 5
The space X defined by (1.16) is of dimension n, and the linear span of K(z, ωi)ci is X.

Lemma 12
Assume Rα(f) = λf for some constant λ, and f not identically zero. Then f(α) 6= 0, and if β = α+1/λ,
then β 6∈ Ω.

Proof. From

f(z) =
f(α)

1− λ(z − α)
=
f(α)/λ
β − z

it is obvious that, if f(α) = 0, then f is identically zero, otherwise f is not analytic at β. 2

From the relation

[I − (z − α)C]−1 − [I − (β − α)C]−1 = [I − (z − α)C]−1C(z − β)[I − (β − α)C]−1

we get
Rβ(A[I − (z − α)C]−1u) = A[I − (z − α)C]−1C(z − β)[I − (β − α)C]−1u.

Define
M = A[I − (z − α)C]−1.

Then
Rβ(Mu) = MC[I − (β − α)C]−1u. (1.24)

This shows that X is Rβ-invariant, whenever I − (β − α)C is invertible. It also shows that X is Rα-
invariant, and Rα is defined by the matrix C: Rα(Mu) = MCu.

Assume now that X is Rα-invariant. Define two operators A with range in Cp by Af = f(α) and C
with range in X by Cf = Rα(f). By definition, we have

f(α) = f(z) + αRα(f)− zRα(f). (1.25)

RR no 0123456789

20 José Grimm

If B = I + αC, this is
Af = (B − zC)f. (1.26)

Replace in (1.23) ω by z−α. Then (B−zC)−1 =
∑
xiC

i, where xi is some rational function. Then we get
f =

∑
xiAC

if , so that f is a rational function, the denominator being the determinant of I − (z−α)C.
If we want a more precise result, we have to use a basis.

Let (e1, . . . , en) be a basis of X, (ε1, . . . , εp) the canonical basis of Cp, and Mji the i-component of ei.
Then ei =

∑
Mjiεj . Define Cji by Cei =

∑
Cjiej , Bji = δij + αCji and Aji = Mji(α). Then (1.25) is

A = M(B − zC). (1.27)

Note that this is A = MB − zMC, where MB and MC are matrices, product of the matrices Mji, Bji
and Cji. It gives M = A(B − zC)−1.

Thus, X has the form (1.16). Assume now (B − βC)u = 0, u 6= 0. If λ = 1/(β − α), this is the same
as Cu = λu. Let f = Mu. Then Rα(f) = λf . We know that this implies β 6∈ Ω. This means that M
is analytic in Ω. It also implies f(α) 6= 0. But f(α) = Au, so that Au 6= 0. In other words, (A,C) is
observable, and this concludes the proof of the theorem.

INRIA

Rational approximation of transfer functions in the hyperion software 21

Chapter 2

System Theory

We know that a strictly proper stable rational matrix H can be factored as H = CQ−1, where Q is inner.
We show here that the minimum of ‖F − CQ−1‖ has the form ψF (Q), for fixed Q. Some properties of
this function ψ will be studied.

2.1 Realization

Definition 3
Let K be a field (C or R), H a m× p matrix of functions over K. A state-space realization of H is given
by a vector space X (called the state-space) and three linear mappings H, F and G, where G is from Kp

to X , F from X to X , and H from X to Km, such that

H = H(zI − F)−1G. (2.1)

The realization is called minimal if the space X has minimal dimension. (H,F) is observable if for every

complex λ, the matrix

(
λI − F
H

)
is of full rank (injective); (F,G) is reachable if (Gt, F t) is observable,

i.e. if (λI − F G) is of full rank. The realization is called canonical if (H,F) is observable and (F,G)
is reachable.

Note that if X is of finite dimension, then H is rational, strictly proper. If F is stable, then H is stable.
We shall prove the converse: if H is strictly proper, rational, it has a finite-dimensional realization, and
if H is stable, then F is stable for every minimal realization.

Unless stated otherwise, all results are valid in the real and in the complex case.

Theorem 11
We assume that X is of finite dimension n. A triple (H,F,G) is minimal if and only if it is canonical.
For every triple (H,F,G), there exists a minimal triple (H1, F1, G1) such that

H(zI − F)−1G = H1(zI − F1)−1G1, (2.2)

and if both triples are minimal, there exists a isomorphism U from X1 to X such that

G = UG1 F1 = U−1FU H1 = HU, (2.3)

RR no 0123456789

22 José Grimm

in other words, the following diagram commutes

X F // X
H

""DD
DD

DD
DD

Kp

G

=={{{{{{{{

G1 !!CC
CC

CC
CC

Km

X1

U

OO

F1

// X1

U

OO

H1

==zzzzzzzz

Proof. 1. Consider the matrix Aq =

H
HF

...
HF q−1

. The matrix An is called the observability ma-

trix of (H,F). The Cayley-Hamilton theorem says that Fn =
∑n−1
k=0 λkF

k, where zn −
∑
λkz

k is the
characteristic polynomial of F . Hence Aq has the same rank as An if q ≥ n. The matrix

(G FG F 2G . . . Fn−1G)

is called the reachability matrix of the pair (F,G). We shall show that (H,F,G) is canonical if and only
if the reachability and observability matrices are of full rank.

2. Assume An of full rank. If (λI − F)x = 0, Hx = 0 then HF ix = λiHx = 0, hence Anx = 0, so
that x = 0.

Assume now that An is not of full rank. There exists a regular matrix U such that AU = (B 0), B
is of full rank. Write

HU = (H1 H2) U−1FU =
(
F1 F2

F3 F4

)
U−1G =

(
G1

G2

)
. (2.4)

Since HF iU = HU(U−1FU)i, and the last columns of this matrix are zero, we get H2 = 0 and H1F
i
1F2 =

0 (0 ≤ i ≤ n− 2). Moreover B is the matrix whose rows are H1F
i
1. Hence BF2 = 0, F2 = 0.

Let y be any eigenvector of F4 associated to an eigenvalue λ, and x = U

(
0
y

)
. Then (λI − F)x = 0,

Hx = 0, so that (H,F) is not observable. In the same fashion (F,G) is reachable if and only if the
reachability matrix is of full rank.

3. If (H,F,G) is minimal, then it is canonical. This is because, if the system is not observable,
equation (2.4) together with F2 = 0, H2 = 0 gives H(zI−F)−1G = H1(zI−F1)−1G1, so that the system
is not minimal.

4. Assume that (H,F,G) and (H1, F1, G1) are canonical and H(zI − F)−1G = H1(zI − F1)−1G1.
Let x ∈ X1. Since (F1, G1) is reachable, there are vectors ui such that x =

∑n−1
i=0 F

i
1G1ui. This

representation is of course not unique, so consider also x =
∑
F i1G1u

′
i. Let y =

∑
F iGui and y′ =∑

F iGu′i. The relation H(zI − F)−1G = H1(zI − F1)−1G1 says

HF iy = HF iy′ = H1F
i
1x (i ≥ 0) (2.5)

and the observability of (H,F) says y = y′. We can define a mapping U from X1 to X , by defining
Ux = y. In the same fashion, since (F,G) is reachable and (H1, F1) observable, we can define a mapping
V from X to X1. These mappings U and V are obviously linear, and V is the inverse of U .

By definition G = UG1 (take x = G1u). On the other hand, (2.5) says

HF iU = H1F
i
1.

For i = 0, this gives H1 = HU , hence HF i = H(UF1U
−1)i. Write UF1U

−1 = F +X. Then HF iX = 0
for every i, X = 0, and UF1U

−1 = F .

INRIA

Rational approximation of transfer functions in the hyperion software 23

5. Assume (H,F,G) is canonical. There exists a minimal realization (H1, F1, G1) such that H(zI −
F)−1G = H1(zI −F1)−1G1. Since (H1, F1, G1) is canonical, the existence of U with UF1U

−1 = F shows
that F and F1 have the same size. 2

The converse is the following.

Theorem 12
Let H be a strictly proper rational matrix of McMillan degree n. Then H has a minimal realization, the
dimension of the state space being n.

Proof. 1. Let X = X (H) be the space defined in the previous chapter. Recall that this is the space of
polynomial vectors, and x = y in X if and only if H(x− y) is a polynomial. The dimension of the space
is the McMillan degree of H.

2. If u is a constant vector, we can consider it as a polynomial vector of degree zero, hence as an
element Gu of X . Obviously, this defines a linear function G. Now, if x = y in X , then zx = zy, so
that the multiplication by z is defined in X . Call it Fx. Then F is a linear mapping, and clearly every
element of X can it be written as

∑
F iGui, so that (F,G) is reachable.

3. For every polynomial x, we can uniquely write Hx =
∑
k>K αk/z

k+1. If Hy =
∑
k>K βk/z

k+1,
then x = y in X is αk = βk for k ≥ 0. Hence, the mapping x→ α0 is well defined. If we denote it by H,
we have HF ix = αi, so that HF ix = 0 for every i implies that Hx is a polynomial, hence x = 0 in X .
Thus (H,F) is observable.

6. Finally, if H =
∑
k≥0Hk/z

k+1 (recall that H is strictly proper), then HF iG = Hi, hence H =
H(zI − F)−1G. 2

In the remainder of this section, we explain how to get the matrices H, F and G. According to the
theorem, it suffices to find a basis (ei) of X and compute the Taylor expansion of Hei (this gives H). We
get F and G if we know how constants and zei are expressed in this basis.

Assume first H = CQ−1, where C and Q are coprime. Then X = X ′(Q−1). Define

KQ(z, ω) =
I −Q(z)Q(ω)∗

1− zω
.

One of the results of the next chapter is that we can find ei = KQ(z, ωi)ci, such that every element
x ∈ H2 can be uniquely written as

x = Qa+
∑

λiei,

where a ∈ H2 and λi is complex. Hence ei can be chose as a basis. Moreover,

〈KQ(z, ω)c |x〉 =
∑

λic
∗ei(ω),

so that finding F and G becomes easy: it suffices to compute some scalar products, evaluate ei(ω) and
invert a matrix. We do not explain here how ei is to be chosen. We just consider a simple example, the
case where Q is of McMillan degree one. It can be written as Q = I − (1− βω)uu∗, so that

KQ(z, µ) =
A

1− zω
, A =

1− |ω|2

1− µω
uu∗.

Taking e1 = KQ(z, ω)u gives A = uu∗. Because u is of unit norm, we get

λ = 〈1− |ω|
2

1− zω
u |x〉

Hence λ = (1 − |ω|2)u∗x(ω). The matrix G is trivial: evaluate this expression for a constant x. The
matrix F is even more trivial: if we evaluate at x = zei, we get F = ω (since ω is the single pole of H,
F has to be equal to ω).

RR no 0123456789

24 José Grimm

In what follows, we consider the decomposition H = ND−1. Since this decomposition has more free
parameters, it is possible to chose one for which the matrices F and G are easy to compute.

Let A be a matrix of polynomials. Denote by dij the degree of entry Aij and by dj the maximum of
all dij . This will be called the degree of column j. The column j can be written as Bjzdj + Cj , where
Cj is of degree less then dj , and Bj is constant. In case the matrix whose columns are Bj is of full rank,
the matrix A is called column reduced.

Lemma 13
Let D be a square matrix, with non-zero determinant of degree n. There exists a unimodular matrix U
such that DU is column reduced. The sum of the degrees of the columns is n.

Proof. Assume D not column reduced. There exist some λi such that
∑
λiBi = 0. Chose k such

that λk 6= 0 and dk is maximal. Subtract form column k column i multiplied by zdk−diλi/λk. Then the
degree of column k decreases. Note that no column of D can be identically zero, and the degree of the
determinant is at most d =

∑
di. If the matrix is column reduced, the coefficient of zd in the determinant

is the determinant of the Bj , hence is not zero, so that n =
∑
di. 2

Lemma 14
Let D be a square matrices of polynomials, with non-zero determinant. There exists a permutation
matrix V , a unimodular matrix U such that A = V DU satisfies the following conditions, where dij is the
degree of Aij :

1. Diagonal elements have degree dii = di, they are monic, and di ≤ dj for i ≤ j.

2. dij < di for j > i;

3. dij ≤ dj for j < i;

4. dij < di for j < i.

Conditions (1), (2) and (4) imply that row i is of degree di. In fact, there is only one term on the
row which is of degree di, this element is on the diagonal. In particular, the matrix A is row reduced (its
transpose is column reduced). Since diagonal terms are monic, for the matrix B = V DU − diag(zdi),
row i is of degree < di. Thus column j is a linear combination of vectors of the form ekz

i, with i < dk,
where ek is the canonical basis of Cp.

Conditions (1), (2) and (3) imply dij ≤ dj , (and dij < dj if i < j). Thus dj is the degree of column
j, and A is column reduced, because the matrix that must be of full rank is triangular.
Proof. Let’s start with D, and apply the following operations. We may assume that D is column
reduced, with degree dj on column j. We may also assume that the sequence dj is non-decreasing, by
re-ordering the columns.

We assume that for every i, every j < k, dij satisfies conditions (2) and (3). Moreover, if j < i < k,
condition (4) is true. These relations are trivially true for k = 1, because they are empty. We apply some
operations to the matrix so that they become true for k + 1.

Let ai be the term Aik, and bi its degree. Consider index i < k such that bi − di = t is maximal.
If t < 0, then relation (2) is true. Otherwise, subtract from column k the column i, multiplied by αizt,
where αi is the leading coefficient of ai.

Consider now what happens on row j. First, all elements of column i are of degree at most di, so
that we add terms of degree at most di + t. This is bi ≤ dk. Thus, the degree of row k will remain at
most k. Assume j 6= i. Then dji < dj . This means that we add a term of degree less than di + t. On
the other hand, if i = j, we add a term of degree bi = di + t, and by construction, the leading coefficient
vanishes. After this operation, the number of rows i such that t = bi − di has diminished. If all rows
satisfy bi + di < t, we can chose a smaller t.

Assume now that condition (2) is satisfied. For i ≥ k, we have dik ≤ dk, which is condition (3). But
equality must hold somewhere (otherwise the degree of the determinant would be smaller that

∑
di). By

INRIA

Rational approximation of transfer functions in the hyperion software 25

permuting rows, we may assume that element of row k has degree dk (this is the only operations on rows
that will be performed). By multiplication of the column by a scalar, we may assume that this element
is monic.

We must now modify our matrix so that condition (4) holds, namely dkj < dk, for j < k. We know
dkj < dj , so that there is nothing to do if dj < dk. Otherwise, it is of degree ≤ dk, and equality can
happen. We handle columns k − 1, k − 2, etc., in order. If (4) is true, there is nothing to do; otherwise,
let α be the leading coefficient of Akj .

Subtract from column j the column k multiplied by α. On row i, the following conditions must be
true: if i < j, the degree must be less than di. This is true before the operation on columns j and k, and
remains true after subtraction. If i > k, the degree must be at most dj and dk. This is true before the
subtraction, and remains true after it, because dj = dk. If j ≤ i < k, the degree on column k is less than
dk. The degree on column j is at most dj (equal if i = j, different otherwise, because these columns are
already handled). Finally, if i = k, we add the quantity that makes the degree decrease. 2

The proof is a bit complicated, but the algorithm is easy to implement. Finding U such that DU is
column reduced is numerically harder, because we have to compute determinants.

Lemma 15
Let D be a square matrix of polynomials, A = V DU as in the previous lemma. If x is any polynomial
vector, either x = 0, or y = V Dx has at least one entry yi of degree ≥ di.

Proof. Let t = U−1x. Then y = At, and t = A−1y. Let δ be the determinant of A and B the matrix of
cofactors. We have δt = By. If n is the degree of δ, then B is column reduced, the degree of the column
i being n− di (this is because A is row reduced). Thus entries of By are of degree < n if entries of yi are
of degree < di. This implies t = 0. 2

Lemma 16
Let D be a square matrix of polynomials, U and V as above. Let A = V D. Let εj be the set of vectors
eiz

j , with j < di.

For every polynomial vector y, there exists a vector polynomial x, and constants λi, uniquely defined,
such that

y = Ax+
∑

λiεi. (2.6)

Proof. Unicity comes from the previous lemma. Of course, elements zjei with j < di can be written in
this form, with x = 0. We want to show that this is true for every j.

Every y can be written as a sum of elements of the form zjei, each term having one of the following
forms: either j < ei, and zjei is some εk, or di 6= 0, and zjei = zkεl, or di = 0. In the last case, we know
that ei −AUei is a linear combination of the εi. Thus, for some x

zjei = Axzj +
∑

λkεkz
j .

Thus, this last case reduces to the other ones.
We also know that zdiei can be written in this form (with x = Uei). This means that zεi can be

written in this form.
zεi = Axi +

∑
λijεj . (2.7)

From this relation, it is obvious that we can write zkεi in this form. 2

This lemma says that εi is a basis of X (D−1), the state-space of H, and the matrices of F and G in this
basis are easy to obtain from A.

RR no 0123456789

26 José Grimm

2.2 Study of the approximation problem

Let

F =
∞∑
k=0

Fk
zk+1

, G =
∞∑
k=0

F ∗k z
k.

We assume that F ∈ H−
2 , that is, G ∈ H2, or

∑
‖Fk‖2 <∞. We want to find H, strictly proper, stable,

of McMillan degree n such that
‖F −H‖ is minimal.

We shall assume in what follows that G (or F) has only a finite number of coefficients, hence G =∑M
k=0Gkz

k is a polynomial. In principle, the theory works with an infinite number of coefficients, but
the program can handle only a finite number of inputs. Moreover, unless stated otherwise, we consider
the L2 norm.

2.2.1 Scalar case

Statement of the problem In this subsection, we use the factorisation H = ND−1. We know that
H is of degree n if D and N are coprime, and detD is of degree n. If F is a m× p matrix, then D is a
square p× p matrix, but there is no simple bound on the degree of the entries of D. If however p = 1, we
know that D is a scalar, whose degree is n. In the case m = 1, we transpose F , apply the theory, and
transpose the result.

Hence, we may assume H = P/q, where P is a vector of polynomials and q is a polynomial. The
condition “P and q coprime” is that there exists a polynomial vector X, a polynomial y such that
X∗P + qy = 1. This means that q is coprime to the gcd of the entries Pi of P . The problem is hence:

Find P and q such that
‖F − P/q‖ (2.9)

is minimal, under the conditions: 1) q is stable, of degree n, 2) entries of P have degree < n, and 3) P
and q are coprime.

This problem has been studied extensively in [2]. Before solving this problem, let’s discuss the
conditions introduced before. It is obvious that we can take q of the form zn+

∑
i<n qiz

i. Then q will be
of degree n. The set of stable polynomials q is bounded (with the usual metric), but is not compact. This
will introduce some difficulties (in particular, there is no guaranty that (2.9) has a minimum). What we
shall do is establish formulas for the stable case, and discuss what happens otherwise. In particular, we
shall see that minimising (2.9) is equivalent to minimising ψ(q) on the set of all polynomials with roots
in U, which is a compact.

We can trivially relax the condition that P is of degree < n, for if P = Aq +B (Euclidean division),
then ‖F − P/q‖2 = ‖F −B/q‖2 + ‖A‖2, and this can be minimal only if A = 0. On the other hand, we
can add the condition degP < n− k, see section 2.3.7.

We shall ignore the last condition and, later on, check if it is satisfied. The trouble is essentially that
the set of polynomials q, with roots in U, which are coprime to L(q), is not compact (L(q) is the unique
P which minimises (2.9) when q is fixed). In fact, if F = P0/q0 is rational and has McMillan degree
< n, if q1 is any stable polynomial, which is coprime to q0, and whose degree is such that deg(q0q1) = n,
then P/q = P0/q0 + ε/q1 has McMillan degree n for non-zero ε, and the norm of the distance to F is (a
constant times) ε. Thus min ‖F − P/q‖ is zero, and the minimum is not of degree n.

We shall prove that the algorithm we propose is a good one, namely that it gives P and q which are
coprime, whenever this is possible, in fact, in all cases where F is not a rational function of McMillan
degree < n.

The equation for ψ For every polynomial S we have

‖F − P + S

q
‖2 = ‖F − P

q
‖2 + ‖S

q
‖2 − 2<〈F − P

q
| S
q
〉.

INRIA

Rational approximation of transfer functions in the hyperion software 27

A necessary and sufficient condition for P/q to be minimal is

〈F − P

q
| S
q
〉 = 0 (2.10)

for every polynomial S of degree less than n. This means that P/q is the orthogonal projection of F on
the space of all functions S/q. Note: this is true whenever the norm used in (2.9) is associated to a scalar
product. In case we use the H2 norm, more can be said, in fact, we have a formula for the projection.

Let’s consider
Gq̃ = V q +R (2.11.a)

the Euclidean division of Gq̃ by q. Here R is a polynomial of degree < n, and V an element of H2 (if G
is a polynomial, it is a polynomial with the same degree as G). Define

P = R̃ = zn−1R
t
(1/z). (2.11.b)

Recall that V̌ = (1/z)V
t
(1/z) (this is in H−

2) and q̃ = znq(1/z). Then Equations (2.11) are

F − P

q
= V̌

q̃

q
. (2.12)

If X is the RHS of this equation, then ‖X‖ = ‖X̌‖ and X̌ = V q/q̃. Since q is stable, q/q̃ is inner and
‖V q/q̃‖ = ‖V ‖. Thus

‖F − P

q
‖2 = ‖V ‖2. (2.13)

Note: this relation is only true if we use the L2 norm.
Let S be any polynomial of degree less than n. We have

〈F − P

q
| S
q
〉 = 〈V̌ q̃

q
| S
q
〉 = 〈V q

q̃
| S̃
q̃
〉.

(the last equation is obtained by replacing x by x̌). The last scalar product is also 〈V | S̃/q〉. This is zero
because p/q ∈ H−

2 if p is a polynomial, deg p < deg q.
Define LF (q) = P and ψF (q) = ‖V ‖2. We shall sometimes write LG and ψG instead of LF and

ψF . Equations (2.10) and (2.13) say now: ‖F − P/q‖ is minimal if and only if P = LF (q) and ψF (q) is
minimal. Taking S = P in (2.10) gives

‖F − P

q
‖2 = ‖F‖2 − 〈F | P

q
〉. (2.14)

Note. Let F ′ = λF , where λ is a positive, real number. Then G′ = λG, LF ′(q) = λLF (q) and
ψF ′(q) = λ2ψF (q). In the case λ = 1/‖F‖, we have ‖F ′‖ = 1, this simplifies a bit (2.14). In fact, we have

0 ≤ ψF ′(q) ≤ 1.

The first inequality is an equality if and only if F = P/q, the second is an equality if and only if P = 0.

2.2.2 Matrix case

We consider here the factorisation H = Q−1C, where Q is inner, of McMillan degree n, and C is in H∞.
According to lemma 9, Q−1C is strictly proper stable, of McMillan degree ≤ n, if and only if q̃C and D̃C
are polynomials with entries of degree < n, assuming

Q =
D

q̃
Q−1 =

D̃

q
.

RR no 0123456789

28 José Grimm

Condition (2.10) becomes
〈F −Q−1C |Q−1C ′〉 = 0. (2.15)

The equivalent of (2.11.a) is
GD̃ = V q +R. (2.16.a)

Let S = RD/q. The relation DD̃ = qq̃ says

Gq̃ = V D + S. (2.16.b)

Let C = R̃/q̃, then q̃C = R̃ is a polynomial, and D̃C = S̃; note that S = Gq̃ − V D is in H2, but
S = RD/q says that S is rational and stable, so that S is a polynomial. Obviously R and S have degree
< n. Now equations (2.16) give a function H = Q−1C = S̃/q, which is rational, stable, strictly proper,
of McMillan degree ≤ n. It minimises ‖F −Q−1C‖: in fact, equation (2.16.a) gives

F −Q−1C = Q−1V̌ (2.17)

so that the scalar product in (2.15) is

〈F −Q−1C |Q−1C ′〉 = 〈Q−1V̌ |Q−1C ′〉 = 〈V Q | Č ′Q〉 = 〈V | Č ′〉.

The last quantity is zero since V ∈ H2 and Č2 ∈ H−
2 .

The equivalent of (2.13), (2.14) is now, with P = S̃, Q−1C = P/q:

‖F −Q−1C‖2 = ‖F − P/q‖2 = ‖V ‖2 = ‖F‖2 − 〈F |Q−1C〉 = ‖F‖2 − 〈F |P/q〉.

Note: Equation (2.16.a) says that GQ−1 = V +R/q. But V is in H2 and R/q is in H−
2 so that these

terms are orthogonal, hence
‖F‖2 = ‖V ‖2 + ‖R/q‖2. (2.18)

The quantity ‖V ‖2 will be denoted by ψF (Q), and the quantity C by LF (Q).

2.3 Properties of ψ

2.3.1 Optimisation methods

The problem now is to find the minimum of ψ. In the scalar case, ψ is a function of q, where q is a
stable polynomial. Let S be the set of stable polynomials. We shall see that S is an open subset of Cn,
which has compact closure. Thus, there exists q, in the closure of S, that minimises ψ. This q has the
form q = q1q2, where q1 is stable and q2 has all its roots in T. We shall show that ψ is defined for these
polynomials, and that ψ(q) = ψ(q1). If q is a minimum of ψ, then q1 is also a minimum of ψ (at smaller
order). We shall show that, in this case, the gradient of ψ points outwards (more about this will be
explained later), and this gradient can only be zero if ψ(q1) = 0. Said otherwise, either F = P/q, where
P/q has McMillan degree < n, or ψ has a minimum in S.

In the matrix case, we have to parameterise all inner functions Q of McMillan degree n. We shall
give formulas of the form Q = f(u, y). Here y is constraint to be in a set Su. When we use the Schur
formulas, it happens that Su is independent of u, and it is much easier to check y ∈ Su than to check
q ∈ S in the scalar case. The set Su has compact closure. The question is: what happens if y = lim yk
is in the boundary of Su. It can happen that Q has a limit, and this limit can be of McMillan degree
n, or of smaller degree; sometimes the limit does not exist. In the first case, there exists u′ such that
f(u, yk) = f(u′, y′k), and y′k has a limit in Su′ . In the second case this is false. The conditioning of the
formulas are in general bad in case y is near the boundary of Su. For this reason, we try to use a “better”
u whenever possible.

As in the scalar case, there exists Q that minimises ψ, and there exist infinitely many quantities u
such that Q = f(u, y) (in fact, almost every u can be chosen). However, for fixed u, it is not true that

INRIA

Rational approximation of transfer functions in the hyperion software 29

ψ(f(u, y)) has a minimum in Su (consider for instance f(u, y) = ei(u−y), with the restriction |y| < π.
Then the set of all f(u, y) is T, with −eiu removed). Assume that our algorithm finds a sequence Qk
such that ψ(Qk) is decreasing. It is possible, if u is fixed, that yk has a limit, which is on the boundary
of Su, and that this limit is such that Q = f(u, y) is not a minimum of ψ (consider the example above,
with ψ(Q) = |Q+ 1|2, the starting point is −eiε, and the unreachable point on the boundary is −eiε/2).
This means that we must use an algorithm that changes the value of u from time to time. We use an
algorithm that, in the complex case, always finds a “good” value of u. As a consequence, we cannot
assert that the limit of the sequence Qk is a critical point of ψ.

One can design an algorithm that finds a minimum of ψ in the following way. We construct a
sequence of points qk, such that qk+1 = qk + tkdk. We first define a direction dk such that the function
f(t) = ψ(qk + tdk) is decreasing at t = 0. This means that the derivative at t = 0 is negative. If ∇ψ is
the gradient of ψ, it means that the scalar product of ∇ψ and dk is negative. This is true if for instance
dk = −W∇ψ, where W is a symmetric, definite positive matrix. There is at least one choice for W : the
identity matrix. In the case where the Hessian of ψ is positive definite, a good choice is to take for W
the inverse of the Hessian. In this case, we can take tk = 1: If the initial condition q0 is near enough to a
local minimum of ψ, then this will converge to the local minimum. There are other methods, like BFGS,
which construct a matrix W that has good properties.

Once the direction dk is found, we are looking for t such that f(t) = ψ(qk + tdk) is minimal. It can be
shown that, in certain cases, it is not necessary to find the absolute minimum of f , a good approximation
is enough. In general, we do not know under which conditions these algorithms work.

Consider what happens in the scalar case. If q =
∑
qiz

i, then∇ψ will be the polynomial
∑n−1
i=0 z

i∂ψ/∂qi.
In the complex case, each qk has the form uk + ivk. Then ∂ψ/∂qk = ∂ψ/∂uk + i∂ψ/∂vk. This is a well
defined polynomial. The function f(t) is defined, provided that qk + tdk is a stable polynomial. Note
that the set of stable polynomials is not convex, so that the set of all t for which f(t) is defined is not an
interval. However, there exists t0 > 0 such that the polynomial is stable for 0 < t < t0, and such that,
for t1 > t0, there exists t2, for which the polynomial is unstable and t0 < t2 < t1. We have to find the
minimum of f on [0, t0]. This minimum may be t = t0. We shall explain later what can be done in this
case. Note that finding t0 is not obvious. Hence, we just look for an approximation of it. Another way
to proceed is the following. It is possible to define ψ for all polynomials. Hence f(t) is defined for all t.
Moreover, the limit of f is +∞ for t = +∞. This means that f has a minimum, and we can compute it
(what we do, in fact, is to find a local minimum). If the polynomial we find is stable, there is no problem.
Otherwise, we can check if f has another local minimum. We can also pretend that the direction dk is
wrong. In this case, we can try −∇ψ as a better direction.

The situation is much different in the matrix case. We must have yk + tdk ∈ Su, and this condition
is easy to check. This means that computing t0 is not a problem. However, on the boundary, the
conditioning of ψ and its derivatives is very bad. For this reason, we always minimise f on an interval of
the form [0, (1− ε)t0], for some small ε. This has as side effect that qk never reaches the boundary (and
that we cannot be sure that the algorithm converges).

In practice this method works well: if we chose a random initial condition, then, in some cases, we
reach the boundary, and the algorithm stops. But this is fast. Otherwise, we stay in the domain, and
find a minimum. This may take a longer time. Hence the strategy: chose random initial conditions, until
a local minimum is found. Instead of choosing random initial conditions, we can chose a condition for
which ψ is small. If ψ(Q) is smaller than ψ(Q′), for every Q′ of degree less than n, then we can never
reach the boundary of the manifold (as in the scalar case, if we are on the boundary of the manifold, we
have ψ(Q) = ψ(Q′), where Q′ is of degree < n). Note however that this does not mean that we cannot
reach the boundary of the chart.

We shall also see that, if we take as starting point a point on the boundary, constructed from Q′

such that ψ(Q) = ψ(Q′), then −∇ψ points into Su (in a degenerate case, it might be tangent to the
boundary), provided that Q′ is a local minimum of ψ at order n′ < n. This will be explained in the next
chapter.

RR no 0123456789

30 José Grimm

There is another method of finding a local minimum of ψ: we integrate the differential equation

dq

dt
= −∇ψ(q(t)). (2.19)

The function ψ(q(t)) is decreasing. If q remains in a compact, then q(t) is defined for every t, and
q(∞) exists and is a critical point of ψ. This will be a local minimum, because other critical points are
numerically unstable.

A general method for solving the equation dy/dt = f(y, t) is the following. Let tn = t0 + nh, where
t0 is the initial value of t, and h is the step. We define yr = sr(h) for 0 ≤ r < k, for some functions si
(obviously s0 = y0, the initial condition for y). For each n, we write

k∑
i=0

αiyn+i/h = φf (tn; yn+k, yn+k−1, . . . , yn;h) (2.20)

(for details, see [11]; we use a Gear method as described in [10]). The method is explicit in case φf does
not depend on yn+k, it is implicit otherwise. Implicit methods are more stable, but we have to solve a
non-linear system. The simplest method is the Euler method, yn+1 = yn + hf(tn, yn). A well-known
method is RK4 (Runge-Kutta of order four), it requires four evaluations of f at each step. In methods
of type Adams/Gear, we consider the Lagrange interpolation polynomial of degree k whose value at ti is
yi (n ≤ i ≤ n+ k) in order to find αi and φf .

The local error is the difference yn+k − y(tn+k), assuming yi = y(ti) for i < n + k. In general, this
is small if h is small. However, the global error (the difference between the exact value of y(t) and the
computed value) is not necessarily small if h is small (essentially because of rounding errors, their limit is
not 0 for small h). What happens when t→∞ and h→ 0 is in general unknown. What we know is just
that the limit of the execution time is ∞. What we desire is to compute the solution as fast as possible.

We do not explain here how the integrator computes the step size h. On figure 2.1, we plotted the
distance between y100(k+1) and y100k in a case where the integrator fails to find a minimum.

The idea is to take it as large as possible, keeping the local error small (say 10−5), if we are far from
the solution, and much smaller otherwise. The main idea here is that q(t) will converge to q0. For small
t, we do not need much precision, what we need is just to go in the right direction. However, if we are
near q0, more precision is needed, for otherwise, we would circle around q0.

In order to explain what happens near q0, consider the following example. Assume that q = (x, y),
and ψ(q) = (ax2 + by2)/2. Now, ψ has a minimum at the origin. If we use a method of order one, we get

q(t0 + h) = (x0 − ax0h, y0 − by0h).

We must have h < 1/a, and h < 1/b. This gives a condition on h that is independent of the current point.
Note that, in general, if we are far from the minimum, h should be large when ∇ψ is small (because if
h∇ψ is small, then q(t+h)− q(t) is small, if it is too small, we have q(t+h) = q(t) numerically). Now, if
a is much smaller then b, it means that the y-part of q will converge, while the x-part will not converge.

This is a typical flaw in this method. In case q is far from the optimum, then the method works well,
if q is near, it does not work. For this reason, we use a mixed method. Let IK(q) be the result of the
integration scheme, with q as initial condition, after K steps. Then IK(q) is (an approximation to) q(t),
the solution of the differential equation, for some t. Let N0(q) = q−W−1∇ψ(q), where W is the Hessian
of ψ. Let N(q) be defined as follows: we start with q, and replace it by N0(q), as many times as needed.
If W is not definite positive, we return nothing. If the process does not converge after some iterations,
we return nothing. If q is too far from the initial q, we return nothing. Otherwise, we return q.

Now the method is the following: replace q by IK(q), and consider N(q). If N(q) is defined, this is
the end of the algorithm. Otherwise, we restart. This works, because N(q) is defined when q is near a
local minimum q0, and the result is q0. We shall discuss convergence of the Newton method later.

In chapter 4, we shall give the code that computes ψ, its first derivative and the second derivative.
These computations are done in double and quadruple precision. Quadruple precision is much more time
consuming than double precision (by a factor of ten or so), but is needed for the following reasons.

INRIA

Rational approximation of transfer functions in the hyperion software 31

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0.00055

0 50 100 150 200 250 300 350

’xx5’ u 0:1

Figure 2.1: In this example, the integrator has some difficulties, and uses a order-one method, yk+1 =
hk.f(yk). The function f is nearly constant, and can see the value of the step hk, by plotting the difference
between y100(k+1) and y100k for some values of k.

RR no 0123456789

32 José Grimm

First, as shown in the example, it can happen that the integrator uses something like q(t + h) =
q(t) + hδq, with small h. If we are near a local minimum, we can ignore this, because Newton will help
us. There are cases where we cannot apply the Newton method. This means that, from time to time,
we use quadruple precision for this expression, so that every component of q will vary. There are other
cases where ∇ψ is not precise in double precision. We can find, in some cases, two ways to compute ∇ψ,
a slow and precise one, and a fast, but less precise one. In some cases, the second method is faster using
quadruple precision than the first one using double precision. Note that the integrator needs the Hessian
of ψ, but there is in general no problem of precision (the documentation of the lsode program says that,
if computing the Hessian costs too much, it suffices to compute the diagonal elements).

The situation is quite different for Newton. Recall that the Hessian at the minimum has to be
definite positive. There are cases where one eigenvalue is near zero, and is negative, when computed in
double precision, but positive when computed in quadruple precision. This not the general case, so that
we compute first the Hessian in double precision, and if this fails with a small negative eigenvalue, we
re-compute it in quadruple precision.

The main problem with the Newton algorithm is the convergence test. We pretend that we have
found the minimum in case: qk+1 − qk is small, ψk+1 − ψk is small, and ψ′k+1 is small. The question is
in the definition of “small”. In the matrix case, we know that y ∈ Su (recall that y is the equivalent of
q and Su does not depend on u). In the scalar case, q must be stable, and this gives a bound on the
coefficients of q, which depends on the degree n. In the code, we say that qk+1 − qk is small if less than
10−14, and large if greater than 10−8. Moreover 0 ≤ ψ ≤ 1. We say that ψk+1 − ψk is small if smaller
than 10−13. The big problem is with ∇ψ small. This is due to the fact that more operations (hence
more rounding errors) are involved in computing ∇ψ than in computing ψ. This means that 10−8 can
be considered a small value for ∇ψ. In some cases, this is much too big. The trick is the following. We
compare the norm of ∇ψk, computed in quadruple precision, to the value of ∇ψ0, computed in double
precision. Since the Newton method is quadratic, it is very easy to make the quotient small. This gives
a method that works well in any case.

The integration/Newton method has an advantage over the QuasiNewton methods: it find q(∞)
where q(t) is the solution of the differential equation, instead of finding something that depends on how
we chose the directions dk, and how precise we are when we minimise in the direction dk.

However, in the matrix case, we solve

dy

dt
= −∇ψ(f(u, y(t))). (2.21)

Obviously y depends on u, but Q = f(u, y) depends also on u. This has two consequences: a) it can
happen that, for some u, the trajectory remains inside the manifold, while for some other u, it goes out.
This is bad news; b) the time spent to integrate depends on u. In particular, for the example given
above, one could chose u such that a = b, in other words, chose u such that the Hessian of ψ has a good
conditioning. This is good news; however we have absolutely no idea of how to chose u in order to do
this.

Choice of initial conditions. Let C(q) be the set of all q′ such that the value at t = ∞ of the solution
of the differential equation is q, when the initial condition is q′. Let q0 be the minimum of ψ. Then
any initial condition in C(q0) will work. We do not know q0, neither C(q0). Let C be the union of all
C(q), where q is a local minimum of ψ. Points that are not in C(q) are points for which the solution of
the differential equation does not remain in the manifold, or the limit is a critical point of ψ that is not
a local minimum. We can ignore these points: if q0 is a saddle point, q1 an initial condition for which
q(∞) = q0, then rounding errors of the integrator process will modify q enough that the limit is another
critical point.

The technique we use is the following. Let ψ0 be the minimum of ψ at order < n. In case ψ(q) < ψ0,
then q ∈ C, because, if for some t, q(t) is on the boundary of the manifold, we have ψ(q(t)) < ψ(q) < ψ0.
On the other hand, q(t) = q1q2, where q2 has all its roots on T, so that ψ(q(t)) = ψ(q1) ≥ ψ0.

INRIA

Rational approximation of transfer functions in the hyperion software 33

Let q = q1q2, and assume that q1 is the minimum of ψ at order n− 1. We know that q(t) is stable for
small t, for almost every q2 having its roots on T. Thus q ∈ C. The theory says: if F , the quantity we
have to approximate, is near enough to a rational matrix of degree n, than ψ has a unique local minimum,
which is the global minimum. In other words, starting with q gives us the minimum of ψ.

This is a beautiful theory, but the trouble is now: how to find q1. At order n− 1, ψ may have more
than one local minimum (there is absolutely no reason why F should be near a matrix of degree n− 1).
We can chose a local minimum, and hope. This is how we do it (essentially, because we do not know
what else can be done in the non-scalar case).

Another approach is the following. We start with any initial condition at order n. We integrate. If
we find a local minimum we stop. If we go out, we write q = q1q2, where q1 is stable, q2 has roots on T.
We use q1 as initial condition at order n1. This gives a local minimum q′1 at order n1. We continue with
q′1q

′
2. We shall see later that, for almost every q′2, this is a good initial condition.

2.3.2 Primality

The aim of this subsection is to show the following theorem.

Theorem 13
If Q is a local minimum of ψF , then Q is coprime to LF (Q) unless F is rational, of McMillan degree less
than n.

Some assumptions have to be made on the norm we use, because the result is false for the infinity
norm.

Lemma 17
Let q be a polynomial of degree n. There are at most 2n points on T such that q(z) is real.

Proof. Let z = (1 − t2 + 2it)/(1 + t2). If z = eiφ, then t = tan(φ/2). Clearly, (1 + t2)n=(q(z)) is a
polynomial of degree at most 2n as a function of t. 2

Lemma 18
Let f be a rational function, that has no pole on T, no zero on T. Let k be the number of stable zeroes
minus the number of stable poles, and m the absolute value of k. There exists m numbers xi and yi,
such that x1 ≤ y1 ≤ ... ≤ xm ≤ ym ≤ x1 + 2π, such that f(eixj) is real negative, and f(eiyj) is real and
positive.

Proof. Consider

I(f) =
1
2π

∫ 2π

0

f ′(eiθ)eiθ

f(eiθ)
dθ.

Then I(z − α) is zero if |α| > 1, it is one if |α| < 1. Since I(f1f2) = I(f1) + I(f2), we have I(f) = k, the
number of stable zeroes minus the number of stable roots.

Assume f(eiθ) = reiφ where φ is a continuous function. Near every point z0 on T, for which f(z0) is
not zero, we can write f(z) = exp g(z), and φ is the imaginary part of g, modulo 2π. Since the real part
of zf ′(z)/f(z) is the derivative of φ with respect to θ, we get

I(f) =
φ(2π)− φ(0)

2π
.

Thus φ(2π) = φ(0) + 2kπ. Since the interval [φ(0), φ(2π)] is of length 2kπ, it is possible to find 2|k|
numbers of the form jπ (j integer) hence θ such that φ(θ) is of this form. 2

Lemma 19
Let q be a stable polynomial of degree n. The best approximation in H∞ norm of q̃/(zq) at degree ≤ n
is zero.

RR no 0123456789

34 José Grimm

Proof. Let’s consider a function p/r. Replace f by f̌ , so that all functions are analytic in U. The
distance is

D = sup
z∈T

|q
q̃
− p̃

r̃
|.

Define N = (p̃q̃)/(r̃q). Since |q/q̃| = 1 on T, we have

D = sup
z∈T

|1−N |.

If p̃ = 0, then D = 1. All we have to show is that this quantity is greater than one otherwise. It suffices
to find z ∈ T such that the real part of N(z) is negative.

The main assumptions we make is that r is stable, and that the degree of p̃ is less than n, the degree
of q. Assume first that p̃ has no zero on T. Then I(N) is negative, so that there exists z ∈ T such that
N(z) is real and negative.

Assume now that p̃ has k zeroes on T. Write p̃ = p1p2, where p2 has no zeroes on T. Let p1 =∏
(z− ai). Define p3 =

∏
(z− ai(1+ ε)), where ε > 0. Let N1 = (p3p2q̃)/(r̃q). Then I(N1) < −k. Hence,

we can chose k + 1 quantities zi for which N1 is real and negative, and k + 1 quantities z′i such that N1

is real and positive. Consider what happens when ε is small. If one zi is different from all aj , then N/N1

has a limit, which is one, and N(zi) is real and negative.
Assume that the limit of zi is aj . Suppose that aj is a root of multiplicity s of p̃. Write

N1 = (z/aj − 1− ε)sN2.

The limit for ε → 0 of N2 is some non-zero number. Thus, near aj , N1 behaves like a polynomial of
degree s. It is impossible that near aj , N1 can be real 2s+ 1 times. Thus, it is impossible that the limit
of zi, zi+1, ..., zi+s+1 is aj (because the limit of z′u would be aj for 1 ≤ j ≤ s). Hence, the number of zi
that has aj as a limit is the degree of p1. But the number of zi exceeds the degree of p1. 2

Lemma 20
Let H1 and H2 be two rational, strictly proper matrices of McMillan degree n1 and n2. Then H1 +H2

is of degree ≤ n1 + n2. Equality holds in case H1 and H2 have no common pole.

Proof. Let (Hi, Fi, Gi) be a minimal realization of Hi. Define

H = (H1 H2), F =
(
F1 0
0 F2

)
, G =

(
G1

G2

)
.

Now, (H,F,G) is a realization of H1 +H2. If x =
(
x1

x2

)
, and Fx = λx, the assumption that H1 and

H2 have no common pole says that λ is not an eigenvalue of both F1 and F2. So that, either x1 = 0 and
F2x2 = λx2 or x2 = 0 and F1x1 = λx1. If Hx = 0, the observability of (Hi, Fi) implies then x1 = x2 = 0.
In the same fashion, (F,G) is controllable. 2

Define

xvwω =
vw∗

z − ω
, yvwω =

vw∗

z − ω
+

vw∗

z − ω
. (2.22)

Lemma 21
H has McMillan degree one if and only if it has the form xvwω, where v and w are non-zero constant
vectors, ω ∈ U. In case ω is not real, yvwω is of McMillan degree two.

Proof. Let

Q = I − (1− βω)vv∗ C =
1− ω

1− ω

vw∗

1− ωz
.

INRIA

Rational approximation of transfer functions in the hyperion software 35

Then Q−1C = vw∗/(z−ω) is of McMillan degree one. On the other hand, if H is of degree one, it can be
written as Q−1C, where Q has the form above. If Q = D/q̃, then q̃C and D̃C are polynomials of degree
< 1, hence constant. The first condition says that C = x/(1− ωz), for some constant x, the second that
x must be vw∗. 2

Lemma 22
If H0 is of degree less than n, we can write Q = Q0Q1 and C = Q0C1, where Q0 is of McMillan degree
one and Q0(1) = I. Moreover, ψ(Q) = ψ(Q1).

In the real case, the matrix Q0 is real. It can be of McMillan degree two, and in this case, it has two
complex conjugate poles (it is of the form (1.8.b)).

In the scalar case, we have H0 = P/q, where q = q0q1, P = q0P1, q0 is of degree one (is irreducible in
the real case).

Proof. The result is obvious in the scalar case. Consider now the non-scalar case. We know that H0

can be factored as H0 = Q−1
2 C2, where Q2 and C2 are coprime. Thus Q = Q3Q2, where Q3 is of positive

degree. We can use the Potapov decomposition (corollary to lemma 4) and write Q3 = Q0Q4, where Q0

is of degree one, or two in case Q3 is real and has no real poles. Take Q1 = Q4Q2. Then Q = Q0Q1, and
C = Q0C1 for some C1.

Let C ′1 = LF (Q1). We have ψ(Q1) ≤ ‖F −Q−1
1 C1‖2 = ψ(Q), and ψ(Q) ≤ ‖F − (Q0Q1)−1(Q0C

′
1)‖2 =

ψ(Q1), so that ψ(Q) = ψ(Q1). 2

From now on, we shall assume that Q is a local minimum of ψ, C = LF (Q), H0 = Q−1C, F ′ = F−H0,
and we shall assume that Q is not coprime to C. Thus H0 is of degree less than n, and H0 + xvwω is of
McMillan degree at most n. We consider the following set:

M = {H = xvwω, ‖F ′‖ ≤ ‖F ′ −H‖}. (2.22)

If Q is the global minimum of ψ, then evert xvwω is in M . If Q is only a local minimum, this is no longer
true, and one part of the proof consists of showing that M has a lot of elements. In the real case, if Q0

is of McMillan degree two, we have to replace xvwω by yvwω in the definition of M .
The only interest of the following lemma is formula (2.24) that will be used later again.

Lemma 23
The theorem is true, if ψ is defined by the H2 norm.

Proof. Consider
GD̃1 = V1q1 +R1 (2.23.a)

V1D̃2 = V2q2 +R2 (2.23.b)

Assume Q′ = Q2Q1, D′ = D2D1 and q′ = q2q1. Then GD̃′ = V q′+R, with V = V2 and R = R2q1+R1D̃2,
hence C = C2 +Q2C1. Equation (2.18) says

ψ(Q′) = ψ(Q1)− ‖C2‖2 = ψ(Q1)− ‖R2/q2‖2. (2.24)

If Q2 is near Q0, then ψ(Q′) ≥ ψ(Q) since Q′ is near Q. This gives ψ(Q1)−‖C2‖2 ≥ ψ(Q1) hence C2 = 0,
and R2 = 0. Now (2.23.b) says V1 = V2Q2. Theorem 28 says V1 = 0, hence F = Q−1

1 C1. 2

Lemma 24
M contains every element of the form xvwω, where v is proportional to Q−1

1 (ω)u, u is near u0, ω is near
ω0, and w arbitrary.

In the real case, if Q0 is of McMillan degree two, M contains yv′wω, where v′ is proportional to
Q−1

1 (ω)u′, u′ is near some u′0, ω is near ω0, and w arbitrary.
In the scalar case, the result is the same, but there is no constraint on v and w.

RR no 0123456789

36 José Grimm

Proof. 1. Consider the scalar case first. We have q = q0q1, H0 = P1/q1 for some P1. Let q0 = z − ω0,
q = z − ω. If ω is near ω0, then

H1 = xvwω =
P

q
, H0 +H1 =

P ′

qq1

for some P and P ′. We have

‖F ′‖2 = ψ(q0q1) ≤ ψ(qq1) ≤ ‖F − P ′/(qq1)‖2 = ‖F ′ −H1‖2.

Now H1 is in M because it is of McMillan degree one.
2. Consider now the non-scalar case. Assume

Q2Q1 = Q′1Q
′
2. (2.25)

Let Q′ = Q2Q1, C ′ = Q2C1 +Q′1C
′
2. Then

Q′−1C ′ = Q−1
1 C1 +Q′−1

2 C ′2. (2.26)

Let H1 = Q′−1
2 C ′2. If Q2 is near Q0, and H1 has the good McMillan degree, then H1 is in M .

3. The Potapov theorem says that

Q0 = I − (1− βω0)u0u
∗
0. (2.27.a)

Take
Q2 = I − (1− βω)uu∗. (2.27.b)

Consider
Q′2 = I − (1− βω)vv∗, C ′2 =

1− ω

1− ω

vw∗

1− ωz
(2.28.a)

Since Q′−1
2 C ′2 = xvwω, it has McMillan degree one. Equation (2.25) is true provided that

v =
Q−1

1 (ω)u
‖Q−1

1 (ω)u‖
(2.28.b)

according to lemma 4.
4. Assume now that we are in the real case, and Q0 has McMillan degree two. Then

Q0 = [I − (1− βω0)u0u
∗
0][I − (1− βω0)u

′
0u
′∗
0]. (2.29.a)

Take
Q2 = [I − (1− βω)uu∗][I − (1− βω)u′u′∗]. (2.29.b)

If u and u′ are related by (1.8.c), then Q2 is real. Since u0 and u′0 are related by a similar equation, if ω
is near ω0, and u is near u0, then Q2 is near Q0. Consider now

Q′2 = [I − (1− βω)vv∗][I − (1− βω)v′v′∗]. (2.29.c)

Write this as Q5Q6, and Q2 as Q3Q4. Now (2.25) is Q3Q4Q1 = Q′1Q5Q6. Now Q′1Q5 is inner provided
that v′ is parallel to (Q4Q1)−1u (cf. (2.28.b)). But the condition Q2 real says that u is parallel to Q4(ω)u′.
If we take complex conjugates, and remember that Q1 is real, this gives

v′ =
Q−1

1 (ω)u′

‖Q−1
1 (ω)u′‖

. (2.30)

We have now
Q3Q4Q1Q

−1
6 = Q′1Q5.

INRIA

Rational approximation of transfer functions in the hyperion software 37

Since Q2 is real, we can replace the first two factors by Q3Q4. Now Q′1 is inner, provided that v is parallel
to (Q4Q1Q

−1
6)−1(ω)u′. This condition simplifies to v parallel to Q6(ω)v′, which is the condition that

says that Q′2 is real.
If we chose C ′2 = Q5C

′′
2 , we get Q′−1

2 C ′2 = Q−1
6 C ′′2 . As in the previous case, we can chose C ′2 such that

this is v′w∗/(z−ω). If we take C ′2 plus its complex conjugate, we get a real result, namely yv′wω = yv′wω.
2

We make now some assumptions on ‖F‖. One assumption we can make is that it is associated to a
scalar product. For u near u0 and ω near ω0, we have

‖F ′‖ ≤ ‖F ′ − vw∗

z − ω
‖, v =

Q−1
1 (ω)u

‖Q−1
1 (ω)u‖

.

This gives

‖F ′‖ ≤ ‖F ′ − λ
vw∗

z − ω
‖, λ ∈ C, v = Q−1

1 (ω)u. (∗)

This implies

〈F ′ | vw
∗

z − ω
〉 = 0. (∗∗)

Let E be the set of all Q1(ω)xvwω which are orthogonal to F ′, for w and ω fixed. This is a vector space
and holds every vw∗/(z−ω) for u near u0, hence every uw∗/(z−ω). Thus, if εij is the matrix which has
one at position (i, j) and zero elsewhere, we have 〈F ′ | εij/(z − ω)〉 = 0. In the case where Q0 is real, of
McMillan two, we get 〈F ′ | εij/(z − ω) + εij/(z − ω)〉 = 0.

Assume F ∈ H−
2 . We can write 〈F ′ | fεij〉 = 〈Xij | f〉2, for every f ∈ H−

2 , where Xij is some element of
H−

2 , and 〈u | v〉2 is the scalar product of H−
2 . We get Xij(/ω) = 0, for ω near ω0. This implies that Xij is

identically zero, so that 〈F ′ | fεij〉 is zero whatever f , i and j, hence F ′ is identically zero, and this proves
the theorem. In the real case, if Q0 is of degree two, we have 〈Xij | y + y〉 = 0, if y = (a + ib)/(z − ω).
Assume 〈Xij | 1/(z − ω)〉 = u+ iv. Since Xij is real, we get <(a+ ib)(u+ iv) = 0 whatever a and b, hence
u+ iv = 0, and F ′ = 0.

There are other cases in which the theorem is true. Assume that F has coordinates Fij in the canonical
basis. Define

Fk =
∑

γijkFij ,

‖F‖ =
[

1
2π

∫ 2π

0

|Fk(eiθ)pdθ
]1/p

.

We assume F ∈ H−
p , this implies that Fij has a limit almost everywhere on T, and this limit is in Lp.

We assume that γijk is defined on T and is in L∞, so that Fk is defined almost everywhere on T, and is
in Lp. Moreover, we assume that if Fk is zero for each k, then Fij is zero, so that F itself is zero.

We have the equivalent of (∗) and (∗∗): if for all λ we have ‖F − λx‖ ≥ ‖F‖, then I(F, x) = 0, where
I(f, x) is a linear function of x. In fact

I(F, x) =
∑
k

1
2π

∫ 2π

0

|Fk(eiθ)|p−2Fk(eiθ)x(eiθ)dθ.

Note that, if 1/p + 1/q = 1, Gk = |Fk|p−2F k, then Gk ∈ Lq and I(F, x) is defined for x ∈ Lp. We have
the same result as above: I(F ′, εk/(z − ω)) = 0 if ω is near ω0. This condition is

∀i, j
∑
k

1
2π

∫ 2π

0

|Fk(eiθ)|p−2Fk(eiθ)γijk(eiθ)
dθ

eiθ − ω
= 0.

If we apply lemma 1, we find that
∑
|Fk|p−2F kγijk is analytic outside U. Multiply this by Fij and add.

Since Fij vanishes at infinity, we get a function that is analytic outside U, and vanishes at infinity. But
this function agrees on T, almost everywhere, with the function

∑
|Fk|p−2FkFk =

∑
|Fk|p. This function

is real. Since it is the Poisson integral of its value on T, it follows that it is analytic and real, hence is
constant, hence zero. Thus F ′k = 0, and F ′ = 0, and the theorem is true in this case.

RR no 0123456789

38 José Grimm

2.3.3 Scalar case of degree one

In this subsection, we consider the scalar case. For simplicity, we shall assume that we have one input,
and one output. For this reason, we shall write g instead of G. We shall assume that ‖f‖ = 1. We
examine what happens if q is of degree one, say q = z − a. By definition, we have

ψ(q) = 1− (1− |a|2)|g(a)|2.

If g(z) =
∑
gkz

k, the Cauchy-Schwarz inequality and the fact that g has unit norm say:

|
∑

akgk|2 ≤
∑

|ak|2.

In the case |a| < 1, we deduce:
0 ≤ ψ(a) ≤ 1.

Obviously, if |a| > 1, we have ψ(a) ≥ 1.
From the definition, we can deduce all partial derivatives. Assume a = u+ iv. Then

∂ψ

∂u
= 2u|g|2 − 2(1− |a|2)<(gg′) (2.31.1)

∂ψ

∂v
= 2v|g|2 − 2(1− |a|2)=(gg′) (2.31.2)

∂2ψ

∂u2
= 2|g|2 + 8u<(gg′)− 2(1− |a|2)[|g′|2 + <(gg′′)] (2.32.1)

∂2ψ

∂u∂v
= 4u=(gg′) + 4v<(gg′)− 2(1− |a|2)[=(gg′′)] (2.32.2)

∂2ψ

∂v2
= 2|g|2 + 8v=(gg′)− 2(1− |a|2)[|g′|2 −<(gg′′)]. (2.32.3)

We shall write ψ′ instead of ∂ψ/∂u+ i∂ψ/∂v, and ψ′′ will be the Hessian of ψ.
These formula simplify in the case g(a) = 0. In fact, ψ′ = 0 and ψ′′ is the identity matrix times

−2(1− |a|2)|g′(a)|2. If a is a multiple root of g, then ψ′ = ψ′′ = 0. The same happens if a is of module
one. Otherwise, a is a critical point of ψ. This is a maximum if a is inside the disc, a minimum otherwise.

As a consequence, in the real case, ψ has at least one more local minimum than g has stable roots. In
the complex case, this is not true. Note that, in any case, since ψ(a) = 1 on the circle, and is less than 1
inside, there is a local minimum inside the disc.

Assume that a is of module one. In that case, ψ′ is 2a|g(a)|2. This means that ψ′ is orthogonal to the
unit circle and points outwards. This has as consequence that the solution of the differential equation
(2.19) remains stable. The only problem that can happen is that the limit is a critical point that is not a
minimum. We pretend that these are in general numerically unstable. We shall present here an example,
in which the critical point is real. If the initial condition is real, then q(t) will be real for every t, and,
in this case, the algorithm fails to find a minimum. For this reason, if we are looking for a complex
minimum, we never use a real initial condition.

Note that critical points are all a such that g(a) = 0 or ag(a) = (1 − |a|2)g′(a). Whether it is a
minimum or not depends on g′′(a). In the last chapter of this report, we explain how to solve directly
the equation ag(a) = (1− |a|2)g′(a).

Let’s study completely the case where g is of degree one. For simplicity, we replace the condition
‖g‖ = 1 by the condition g monic, hence g(z) = z + β. We assume g real, and consider ψ(q), in the real
and complex cases. Say q = z − (u+ iv) = z − a. We have

ψ(u, v) = 1 + β2 − (1− u2 − v2)[(u+ β)2 + v2]. (2.33)

We shall assume β 6= 0, β 6= ±1. In fact, if β = 0, we have ψ(a) = 1−|a|2 + |a|4. In this case, every point
with |a|2 = 1/2 is an absolute minimum. In the real case, this gives two minima with the same value, in

INRIA

Rational approximation of transfer functions in the hyperion software 39

the complex case, we are in a degenerate case. The case β = 1 is special, because for v = 0 and u = −1,
ψ′ is zero, but ψ is monotonic near u = −1.

Let A = 1− u2 − v2 and B = (u+ β)2 + v2. Then the partial derivatives of ψ are

ψu = −2(−Bu+ (u+ β)A), ψv = 2(B −A)v.

Consider a point where the derivative of ψ is zero. In case v 6= 0, ψv = 0 implies A = B, hence ψu = 0
implies Aβ = 0. Then we get A = B = 0, which is absurd. This means that all critical points of ψ are
real. These points are defined by

(u+ β)2u = (u+ β)(1− u2),

in other words

u = −β, u =
−β ±

√
β2 + 8

4
. (2.34)

Note that, for the last two roots, we have 2u2 + βu − 1 = 0. Hence, if |β| < 1, we have three critical
points in the interval [−1, 1], and otherwise a single one.

If we consider the second derivative, if ψuu = (u+β)2+4u(u+β)−(1−u2) and ψvv = (u+β)2−(1−u2),
then the second derivative of ψ in the real case is 2ψuu, while in the complex case it is

ψ′′ = 2
(
ψuu 0
0 ψvv

)
.

Note that if u = −β, we get ψ′′ = −2(1− u2)I, and this is clearly a local maximum (assuming of course
−1 < u < 1). Assume now 2u2 + βu− 1 = 0. Then

ψ′′ = 2
1− u2

u2

(
1 + 2u2 0

0 1− 2u2

)
.

Since the product of the roots is −1/2, we have a positive and a negative root. Since 1− 2u2 = βu, for
one of the roots 1− 2u2 is positive, and for the other one, it is negative.

Hence, the situation is the following. If |β| > 1, there is one critical point. This critical point is
a minimum. If |β| < 1, there are three critical points. The point u = −β is a maximum, the point
1− 2u2 = βu with βu > 0 is a minimum. The other point is a local minimum in the real case, a saddle
point in the complex case.

Lemma 25
There are cases where g is real, ψ has a unique real critical point (which is a minimum), but this minimum
is not a complex minimum.

What we shall do is consider g(z) = z2 + az + b, and find the conditions on a and b. We shall see that
this set of conditions is not empty, this will prove the lemma.

We have, for q = z − u,

ψ(q) = 1 + a2 + b2 − (1− u2)(u2 + au+ b)2 (2.35.a)

and
ψ′(q) = 2(u2 + au+ b)(3u3 + 2au2 + ub− 2u− a). (2.35.b)

We know that if q has a root in [−1, 1], then ψ has a maximum on [−1, 1]. Hence, we are looking for the
conditions under which the first factor of (2.35.b) has no root in [−1, 1], while the second factor has a
single one.

Lemma 26
The polynomial g(z) = z2 + az+ b has no root in [−1,+1] if and only if |b+ 1| > |a|, and, if |a| ≤ 2, then
b > a2/4 or b < −1.

RR no 0123456789

40 José Grimm

-8

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

’dessin1’

Figure 2.2: Set of points a and b such that g = z2 + az + b has no root on the interval [−1, 1]. If b is
between the two curves, there is such a root. If b is above the upper curve, the polynomial is positive on
[−1, 1], if b is below the other one, the polynomial is negative.

Note that this condition becomes b < f1(a) or b > f2(a), for some functions f1 and f2. These functions
are plotted on figure 2.2.
Proof. The condition |b+ 1| ≤ |a| is g(1)g(−1) ≤ 0. If it is true, then g has a root in [−1, 1] and a root
outside. If it is false, then g has zero or two roots in [−1, 1]. In the case |a| ≥ 2, the relation |b+ 1| > |a|
implies |b| > 1, so that g has a root α with |α| > 1. This means that g cannot have two roots in [−1, 1].
Assume now |a| ≤ 2. If b < −1, then g has also a root with |α| > 1; if b > a2/4 then g has no real roots;
finally if −1 < b < a2/4, g has two real roots, the product is less than one in absolute value, thus one
root lies in [−1, 1]. 2

Let h(u) = 3u3 + 2au2 + ub− 2u− a. Note that h(1)h(−1) = a2 − (b+ 1)2. This means that, if g has
no root in [−1, 1], then h has an odd number of roots in [−1, 1]. Let c be a root of h. We have

h(u) = (u− c)(3u2 + (3c+ 2a)u+ 3c2 + 2ac+ b− 2).

Assume c = 0. Then h(c) = 0 gives a = 0. It is then obvious that ψ has a unique critical point in [−1, 1]
if and only if b > 2 or b < −1. Note that replacing a by −a replaces c by −c, so that we may assume
c > 0. We have

h(u) = 3(u− c)(u2 + (c+ 2a/3)u+ a/(3c)).

Let d = a/(3c). The last factor of h is

f(u) = u2 + c(1 + 2d)u+ d.

We are looking for a condition on c and d for which this polynomial has no roots in [−1, 1].

Lemma 27
In case 0 < c < 1, the polynomial f(z) = z2 + c(1 + 2d)z + d has no roots in [−1, 1] if and only if(

1− 2d
1 + 2d

)2

< 1− 2c2 (2.36.a)

if 0 ≤ d ≤ 1 and
1− 2c
c− 1

<
1
d

(2.36.b)

otherwise.

INRIA

Rational approximation of transfer functions in the hyperion software 41

-8

-6

-4

-2

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

’dessin’

Figure 2.3: Coefficients c, d, for which ψ has a unique critical point. The two curves are defined by (2.36).
If c (horizontally) is to the left of the curve, ψ has a unique real critical point.

This condition has the form 0 < c < c1(d), for some function c1(d), which is zero on [−1, 0] and non-zero
elsewhere. See figure 2.3.
Proof. We just apply the previous lemma with a = c(1 + 2d) and b = d.

Note that the lemma says: |b| > 1 and |b+ 1| > |a| or 0 ≤ b ≤ 1 and b > a2/4. Condition (2.36.a) is
just b > a2/4.

Condition |b+ 1| > |a| is |d+ 1| > c|1 + 2d|. In case d ≥ 0, it is d(1− 2c) ≥ c− 1, in case d ≤ −1 it
is d(1− 2c) ≤ c− 1. In both cases it is (2.36.b) because c < 1. Note that (1− 2c)/(c− 1) > −1, so that
(2.36.b) excludes the case −1 ≤ d ≤ 0. 2

Note: in case d < 0, we get c ≤ 1/2, and in case d > 0, we get c ≤
√

2/2. This gives the strange
condition: if ψ has a critical point c with |c| >

√
2/2, then ψ has at least another critical point.

Note also that if the conditions of the lemma are true, then g has no root in [−1, 1].
What we want to find is a critical point of ψ, which is the absolute real minimum, but is not a complex

minimum.
Consider now what happens if q = z − (u+ iv) is complex. We have

ψ = 1 + a2 + b2 − (1− u2 − v2)[(u2 + au+ b− v2)2 + (2u+ a)2v2]. (2.37)

If we differentiate ψ with respect to v we get

ψ′v = 2vA

with

A = (u2 + au+ b− v2)2 + (2u+ a)2v2 − (1− u2 − v2)[(2u+ a)2 − 2(u2 + au+ b− v2)].

The equation for the critical points is A = 0 or v = 0, together with the equation ψ′u = 0. In the case
v = 0, this is equation (2.35.b):

(u2 + au+ b)(3u3 + 2au2 + ub− 2u− a) = 0.

Let ψ1(u) = ψ(u, 0). At a point where v = 0, the second derivative is
(
C 0
0 A

)
, where C is the second

derivative of ψ1. If u is a local minimum of ψ1, then C > 0. This means that, if A > 0, then (u, 0) is a
local minimum of ψ, and if A < 0, this is a saddle point.

RR no 0123456789

42 José Grimm

Now, if v = 0 we have

A = (u2 + au+ b)2 − (1− u2)[(2u+ a)2 − 2(u2 + au+ b)].

In case ψ′1 = 0, we have u = c, (1− c2)(2c+ a) = c(c2 + ac+ b), hence

A = (c2 + ac+ b)(−3c2 + b+ 2).

The assumption is that g has constant sign on [−1, 1]. The sign is that of g(0) = b. Hence the condition
A < 0 is b(−3c2 + b + 2) < 0. Since we know c ≤

√
2/2, we have 2 − 3c2 > 0. Hence the condition is

3c2 − 2 < b < 0.
Recall that

3c2 + 6dc2 + b− 2− 3d = 0.

The conditions are
6c2(1 + d) < 4 + 3d 2 + 3d < 3c2(1 + 2d).

These conditions can be rewritten as

(6c2 − 3)(1 + d) ≤ 1 ≤ (6c2 − 3)(1 + 2d).

Since c ≤
√

2/2, it implies 1+2d ≤ 1+d, hence d < 0. Hence (2.36) says d < −1, and c ≤ (d+1)/(2d+1)
(this is (2.36.b)). This relation implies 1 ≤ (6c2 − 3)(1 + 2d) so that we are left with (see figure 2.4)

c2 ≥ 4 + 3d
6 + 6d

c ≤ d+ 1
2d+ 1

d < −1.

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

0 0.05 0.1 0.15 0.2 0.25

’dessin’

Figure 2.4: Conditions on which ψ has a unique real minimum, which is a complex saddle point. See the
text for the notations.

If we go back to parameters a and b, it is easy to see that the second equation is b + 1 < |a|. This
says that g has two real roots, with different sign, outside [−1, 1]. See figure 2.5. The other condition is

a2 < 12b2
b+ 2

(1 + 2b)2
.

Example: Take a = −0.35, b = −1.46. On figure 2.6, we show the value of ψ(u, v) for v = 0 and
v = 0.42. The real minimum is obtained for c = 1/10.

INRIA

Rational approximation of transfer functions in the hyperion software 43

-2

-1.8

-1.6

-1.4

-1.2

-1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

’dessin’

Figure 2.5: Set of points a and b such that ψG has a unique real critical point, which is a saddle point,
at degree one, for G = z2 + az + b. Between the two straight lines, G is negative on [−1, 1].

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

’v=0’
’v=0.42’

Figure 2.6: Values of ψG(q), for q = z − (u + iv), as a function of u for v = 0 and v = 0.42. We have
G = z2 − 0.35z − 1.46.

RR no 0123456789

44 José Grimm

Stable polynomials The problem, in the scalar case, is to minimise ψ(q) for stable q. In the case of
degree 2, if q = u + vz + z2, and q has real coefficients, then the set of stable polynomials is a triangle.
In the complex case, the result is the following.

Lemma 28
The polynomial q = u+ vz + z2 is stable if and only if

|u|2 + 1 > |v
2

2
− 2u|+ |v

2

2
| (2.38)

and |u| ≤ 1.

Proof. Write u = a+ ib, v = c+ id. The resultant of q and q̃ is

R = (a2 + b2 − 1)2 − (a2 + b2)(c2 + d2) + 2a(c2 − d2) + 4bcd− c2 − d2.

Note that R = (|u|2 − 1)2 − |uv − v|2, and this leads to a factorisation of R. However, if

R± = |u|2 + 1− |v
2

2
| ± |v

2

2
− 2u|

then R = R+R−. Set y = v2/2. Then R+ = |u|2 + 1 − |y| + |y − 2u|. The triangular inequality
|y| ≤ |y−2u|+|2u| implies that |R+| ≥ (|u|−1)2, so thatR+ vanishes only if |u| = 1 and |y| = |y−2u|+|2u|.
This last condition says that y/u is real and at least 2. Now, these equations are equivalent to say that
q has two roots α and β with αβ = 1.

Hence R− = 0 is the condition under which q has a root of modulus one. Let qλ = λ2u+ λv + z2. If
z is a root of qλ, then z/λ is a root of q.

Define f(λ) to be R−(λ2u, λv). If w = |v2/2 − 2u| + |v2/2|, then f(λ) = λ4|u2| − λ2w + 1 = g(λ2).
The triangular inequality says that |w| ≥ |2u|, so that there are two real numbers a and b such that
g(a) = g(b) = 0. Note that ab = 1/|u|2 and a+ b > 0. Hence a and b are positive. Then q has two roots,
with modules 1/

√
a and 1/

√
b. The condition q stable is now a > 1 and b > 1. In particular, 1 is not

between a and b, hence f(1) > 0. Obviously q stable implies |u| < 1. On the other hand, if |u| < 1, then
ab = 1/|u|2 says ab > 1. If 1 is not between a and b, then 1 < a < b. 2

This lemma is not used in hyperion: it is much easier to factor q, and check the roots (we have
explicit formulas in the case of degree 2).

Note: assume q real. If u ≥ v2/4, the condition becomes (u− 1)2 > 0, hence u 6= 1. Otherwise, it is
(u+ 1)2 > v2. Since we have −1 ≤ u ≤ 1, the set defined by the lemma is the triangle defined by u < 1,
v < u+ 1 and −v < u+ 1 (see figure 2.7 on page 51).

2.3.4 Boundary conditions

Let’s assume that we are in the scalar case. Hence, we can consider polynomials q which have roots
outside U.

One can show (see [2]) that there exists a C∞ function, defined for all polynomials q, that is equal
to ψ(q) for q stable. In the case where F has only a finite number of Fourier coefficients, this is obvious,
because ψ is a polynomial function with respect to the entries of F and q.

Theorem 14
Let ψ1(q) be the minimum of ‖F − P/q‖2. It is possible to define a C∞ function ψ such that ψ(q) = ψ1(q),
whenever q is stable. This function is uniquely defined as ψ(q) = ψ(q1) in the case where q = q1q2, q1 is
stable and q2 has all its roots on T.

Proof. For the first claim, see [2]. In the case where F has only a finite number of Fourier coefficients,
the result is obvious, since ψ(q) is a polynomial function of q.

INRIA

Rational approximation of transfer functions in the hyperion software 45

Assume now q = q1q2, where q1 is stable, and roots of q2 are outside U. If P and S are polynomials,
since q1 and q2 are coprime, we can write

P

q
=
P1

q1
+
P2

q2

S

q
=
S1

q1
+
S2

q2
.

Then
〈F − P

q
| S
q
〉 = 〈F − P1

q1
| S1

q1
〉 − 〈P2

q2
| S2

q2
〉.

Since P/q is a minimum if and only if this vanishes for every S1 and S2, it follows that P2 must be zero,
and P1 must be L(q1). This means that ψ1(q) = ψ(q1). We get ψ(q) = ψ(q1) by continuity. 2

Consider equations (2.23) in the scalar case.

Gq̃1 = V1q1 +R1

V1q̃2 = V2q2 +R2

ψ(q) = ψ(q1)− ‖R2/q2‖2. (2.39.a)

The last equation was established under the condition that q2 is stable. Assume that all roots are outside
U. Let q3 = q̃2. Then

V2q̃3 = V1q3 −R2.

This gives
ψ(q) = ψ(q1) + ‖R2/q̃2‖2. (2.39.b)

Note that ψ(q) ≥ ψ1(q): our algorithm does not chose the best numerator in this case. In fact, ψ1(q) is
not C1 on the boundary. The difference between (2.39.a) and (2.39.b) can be explained in the following
way. When we write V1q̃2 = V2q2 +R2, we consider the division in H2. But if q2 has its roots outside U,
then the remainder R2 is zero. In the case of (2.39.b), we consider the division of polynomials. Here we
get a non-zero remainder.

In the special case where q2 is of degree one, say q2 = z − α, we get

ψ(q) = ‖V1‖2 + (|α|2 − 1)|V1(α)|2. (2.40)

This equation is valid, whether or not α is in U. In the case where q2 is of degree two, and has two
different roots, a similar formula can be written (see [2, lemma 4.5]).

Another question is the following. Assume that q has some roots on the boundary, and let q′ = q−ε∇ψ.
Then ψ(q′) < ψ(q) for small positive ε. The question is now: is q′ stable? The answer is true if q has one
root on T, but may be false otherwise. We consider here a simple example:

g = z2 + t, q = z2 + uz + v.

We have
ψ = |v|2 + |u− vu|2 + |1 + vt− |v|2 − u(u− vu)|2.

Write u = a+ ib, v = c+ id. If we assume that t is real, and define

A1 = a− ac− bd, A2 = −b− bc+ ad

then
ψ = c2 + d2 +A2

1 +A2
2 + (1− ct− c2 − d2 − aA1 + bA2)2 + (−dt− aA2 − bA1)2.

Let’s compute the derivative of ψ, assuming that q has two roots of modulus one. This implies |v| = 1
and u = vu. In other words, A1 = A2 = 0, so that the derivative of A2

1 +A2
2 is zero. We have

1
2
∂ψ

∂a
= ct(bd− a(1− c))− dt(−ad− b(1− c))

RR no 0123456789

46 José Grimm

1
2
∂ψ

∂b
= ct(ad− b(1 + c))− dt(a(1 + c) + bd)

1
2
∂ψ

∂c
= c+ ct(t− 2c+ a2 − b2)− dt(2ab)

1
2
∂ψ

∂d
= d+ ct(−2d+ 2ab)− dt(−t− a2 + b2).

We can simplify a bit these formulas. In effect, the coefficient of t in ∂ψ/∂a is bd− ac+ a(c2 + d2). But
c2 + d2 = 1 and a = ac+ bd. Hence we get

1
2

(
∂ψ

∂a
+ i

∂ψ

∂b

)
= tu(v − v)

1
2

(
∂ψ

∂c
+ i

∂ψ

∂d

)
= v[1 + t2 + t(u2 − v − v)].

The gradient of ψ is defined, if q has degree two, as

∇ψ =
(
∂ψ

∂a
+ i

∂ψ

∂b

)
z +

∂ψ

∂c
+ i

∂ψ

∂d
.

Let
q(λ) = q − λ∇ψ.

If we solve the differential equation dq/dt = −∇ψ, the solution for small t will be q(t). So the question
is: is q(t) stable? (we write here q(λ) because t appears in g in the example above). In the case where
∇ψ = Az +B, the root of q(λ) near α is

z = α[1 + γλ+ o(λ)]

γ =
Aα+B

α(α− β)
=
A+Bα

α− β
, (2.41)

where α is a root of q(0). This root is stable if the real part of γ is negative.
Assume now that, for small positive λ, q(λ) has two unstable roots. Now <γ > 0. The same is true

if we exchange α and β in (2.41). If we take the sum, and use v = (α− β)/(β − α), we get <Bv < 0.
For the example above, we get

<[1 + t2 + t(u2 − v − v)] < 0

which is absurd, because |u2 − v − v| ≤ 2. Said otherwise, at least one root of q(λ) is stable. However,
some roots can be unstable. For instance, if α = 1 and β = i, we have

γ = −t2 − 6t− 1 + i(t− 1)2.

Thus, the root near 1 is unstable if t2 + 6t+ 1 < 0. This happens if t is near −1 (note that, for t = −1,
α = 1 is a root of g). In fact, the root is unstable if t is between the two roots of the equation t2+6t+1 = 0,
namely −3±

√
8.

Consider now the general case. With the notations of (2.40),

∂ψ

∂α
= 2α|V1(α)|2.

Assume that all roots of q are in T. Then V1 is a constant time G so that

∂ψ

∂α
= 2α|G(α)|2. (2.42)

INRIA

Rational approximation of transfer functions in the hyperion software 47

This formula allows us to find the derivatives of ψ with respect to the coefficients of q. For simplicity, we
consider only the case where q has two roots α and β. Let u = −(α+ β) and v = αβ. Then

A =
1
2
∂ψ

∂u
=
|G(α)|2 − |G(β)|2

β − α
, (2.43.a)

B =
1
2
∂ψ

∂v
=
α|G(α)|2 − β|G(β)|2

β − α
, (2.43.b)

and (2.41) gives

γ =
|G(α)|2 − |G(β)|2 + (α|G(α)|2 − β|G(β)|2)α

−|β − α|2
.

Let A1 = |G(α)|2 and A2 = |G(β)|2. Then

γ =
−2A1 + (1 + αβ)A2

|β − α|2
.

In the special case where 1 + αβ = 0, we have <γ < 0 (we exclude the case where G(α) = 0, this is a
degenerate case). The condition 1 + αβ = 0 is α = −β. Thus, for q = z2 − 1, q(λ) is stable.

Let x = <(1 + αβ). We have 0 ≤ x ≤ 2. The root near α is unstable if

−2A1 + xA2 > 0.

Note that this condition is false if A1 = A2. In particular, this is the case if q has two complex conjugate
roots. The root near β is unstable if

−2A2 + xA1 > 0.

If both roots are unstable, by addition, we get x > 2, which is absurd.

Theorem 15
Consider q(t), the solution of the differential equation

dq

dt
= −∇ψ(q(t)).

Assume that q(t0) = q1q2 where q1 is stable and q2 has all its roots on T. Assume that we are in a generic
case.

If q2 is of degree one, and q1 is a critical point of ψ, then q(t) is stable for small positive t − t0. On
the other hand, if q(t) is stable for small negative t− t0, then q2 is not a critical point of ψ.

Proof. 1. If t − t0 is small, we can factor q(t) = q1(t)q2(t), where q1(t) and q2(t) are continuous and
q1(t0) = q1, q2(t0) = q2. The polynomial q1(t) will be stable for small t− t0.

If λ = t− t0, then q(t) is near q − λ∇ψ, where ∇ψ is the gradient of ψ at q(t0).
2. Assume now that q1 is a critical point of ψ. Equation (2.39) says ψ(q(t)) = ψ(q1(t0))+o(t−t0)+f(t),

where f(t) is positive if q2(t) has all its roots out of U, negative if q2(t) has all its roots in U. The main
trick now is that ψ(t) is decreasing.

Let α(t) be a root of q2. Since we are in a generic case, we may assume that α(t0) is a root of
multiplicity one. If this is not the case, it will in general happen that the two roots split, and we get
a stable and an unstable root. [Consider the function 1 − |α(t)|2. This function is zero at t = t0. We
assume that its derivative is not zero. If this is not the case, in general we have an unstable root for
t < t0 and t > t0 (consider α(t) = 1 + it).]

Thus, the assumption we make is just that f(t) has a non-zero derivative at t = t0, so is f(t) =
A(t − t0) + o(t − t0), with A 6= 0. We have A < 0 if q1 has only stable roots for t > t0, A > 0 if q2 has
only unstable roots.

RR no 0123456789

48 José Grimm

3. Assume now that q2 is stable for t < t0. This gives A > 0, and contradicts the fact that ψ is
decreasing. This shows that q1 cannot be a critical point of ψ.

4. The same argument shows that q2 must have at least one stable root for t > t0. The example
above shows that it can have some unstable roots. Thus, let’s assume that it is of degree one. Then it
must be stable, at least generically. In fact, a straight-forward computation says that the root is

α(t) = α+ 2(t− t0)|V1(α)|2 n

|q1(α)|2
+ o(t)

where α = α(t0). Thus q(t) is stable, provided that V1(α) 6= 0. If this condition fails, then q is a critical
point of ψ. 2

What this theorem says is the following. Assume that q0 is stable. Consider the solution of the
differential equation, and t0 such that q(t) is stable for t < t0, and not stable at t0. If no such t0 exists,
then the limit q(∞) is a critical point of ψ. Write q(t0) = q1q2 where q1 is stable, and q2 is not. Then all
roots of q2 are in U. Thus, q1 is not a critical point of ψ. We can consider the differential equation with
q1 as initial condition. We then find q′1 such that ψ(q′1) < ψ(q1) (if we are lucky, q′1 is just the solution
of the differential equation at t = ∞). This q′1 is a critical point of ψ (in the generic case, it is a local
minimum, if we are lucky, it is the global minimum).

Let’s take q′1q2 as initial condition. What the theorem says now is that for small positive t, q(t) will
be stable. Our example shows that this may be false in the case where q2 has degree ≥ 2. Note that
generically, only one root will be of modulus one (unless we are in the real case, and we have two complex
conjugate roots). Hence, the algorithm will be: consider q′1(z − α) as initial condition. This will give q′′1 .
Then consider q′′1 (z − β), and iterate until we find a polynomial of degree n. This will come to an end,
because ψ is strictly decreasing.

Note: the question is how to chose α. What we need is V1(α) 6= 0. This is always possible, because,
if V1 is identically zero, then F , the quantity to approximate at degree n, is rational, of lesser degree.
There is however a small problem: it can happen that we are looking for a real solution and V1 vanishes
at ±1.

Consider for instance g(z) = t + z2 − z4, with t = 8. Let’s compute the critical points at order one.
If q = z − α is a critical point, then α is a root of a polynomial of degree 9. Note that g does not vanish
in the interval [−1, 1], and this will exclude 4 values. It remains α = 0 and 5α4 − 7α2 − 6. This last
equation has a negative root in α2, and α2 = 2. Thus, q = z is the only critical root of ψ at order one.
Now, we have V1 = z(1− z2), which vanishes at ±1. (Note that if g(z) = t+ z(1− z2)f(z), V1 vanishes
at ±1; z = 0 is a critical point if g is an even function, the simplest case is when f(z) = z, we adjust t
such that z = 0 is the unique critical point).

Thus, it is impossible to find the minimum at order 2 with the method explained above. Consider
q = z2 + uz + v. Then

V = −z4v + (−u+ vu) z3 +
(
v − 1 + v2 + u2 − vu2

)
z2 +

(
2u− 2 v2u− u3 + vu3

)
z +

+ tv + 1− v2 + v − v3 − vu2 + 3 v2u2 − 2u2 + u4 − vu4.

We have
ψ = 2 + t2 + ψ2,

ψ2 = (v2 − 1)(t− v − v2)2 + u2(1− v)B,

B = u6−vu6+6 v2u4−3u4−3 vu4−11 v3u2−v2u2+9 vu2+2 tvu2+3u2+6 v4+6 v3−4 v2−6 tv2−4 tv−5 v−1.

If we ask Maple for the critical points of ψ, we get a list of 7 solutions.

• u = 0, two values for v.

• u = 0, three values for v.

• v = 1, four values for u.

INRIA

Rational approximation of transfer functions in the hyperion software 49

• v = ±
√
−t, four values for u.

• P4(v) = 0, u = ±
√
f(v), where P4 is a polynomial of degree four.

• P6(v) = 0, u = ±
√
f(v), where P6 is a polynomial of degree six.

• v = 0, u = ±1.

This gives a total of 35 solutions. Of course, what we want is q real and stable. In the special case t = 8,
Maple can factor P6. The critical points are

• u = 0, v2 + v − 8 = 0; numerically, v = −3.372281323 and v = 2.372281323.

• u = 0, 3v3 + 2v2 − 10v − 1 = 0, i.e. v = −2.146944380, v = −.09835082394 and v = 1.578628537.

• v = 1, 8u4 − 39u2 − 36 = 0. This gives u = ±2.380927653 (and two complex roots).

• v = i
√

8, and u is a function of v.

• v3 + 3v2 + 6v + 14 = 0, 2u2 − 4 − 4v − v2 = 0. There is a unique real solution for v, namely
v = −2.698885490. We get u = ±0.4941866692.

• w3 − 11w2 + 72w − 408 = 0, v = w/5, 15u2 + 9− 6w + w2 = 0. There is no real solution.

• 60v4 − 104v3 + 151v2 − 152v + 54 = 0, P (u) = 0. No real solution.

• v = 0, u = ±1.

Thus, we have 11 real solutions, and only one stable solution, u = 0, v = −.09835082394.
Note that in general, computer algebra systems are unable to solve P (u, v) = Q(u, v) = 0. In our

case, there are lots of solutions with u = 0 (since g is even), and the solutions v = 0, u = ±1. This helps
a lot.

Intersection with the boundary Assume that q(t) is the solution of the differential equation, q(t1)
is stable and q(t2) is not. We want to find is t0, defined such that q(t0) has a root on T, all roots are
in U. If r(t) is the maximum of the modulus of the roots of q(t), we want r(t0) = 1. We have t1 and t2
with r(t1) < 1 < r(t2). Using dichotomy, we can find t3 and t4, with t4 − t3 small, and r(t3) < 1 < r(t4).
In practice, the best thing to do seems to factor q3, find the root α with greatest modulus, consider
β = α/|α|, and pretend that q(t0) = q(t3)(z − β)/(z − α).

We propose here an alternate solution: define

qλ = λq3 + (1− λ)q4.

Then q(t0) is qλ for some 0 ≤ λ ≤ 1, with a very good approximation (q3 = q(t3), q4 = q(t4)). Note
that r(0) < 1 < r(1) if r(λ) is now the largest modulus of the roots of qλ, so that there exists a λ with
r(λ) = 1.

Let α be a root of qλ with modulus one. Then

λ =
q4(α)

q4(α)− q3(α)
. (2.44)

Consider the complex case first. For λ to be real, we need q3(α)q4(α) to be real. Assume q3 =
∑
aiz

i

and q4 =
∑
biz

i. Of course, we have an = bn = 1. We get

=
∑
ij

aibjα
iαj = 0. (2.45)

RR no 0123456789

50 José Grimm

Let Sk =
∑
i aibi+k. Then (2.45) becomes

=[S0 +
n∑
k=1

(Skαk + S−kα
k)] = 0.

If Sk = Ak + iBk, this is

B0 +
n∑
k=1

(Bk +B−k) cos kφ+ (A−k −Ak) sin kφ = 0 (2.46)

with α = eiφ. If t = tanφ/2, we get, after multiplication by (1 + t2)n, an equation of the form P (t) = 0,
where P is a polynomial of degree 2n, hence 2n solutions. Note that, if P has degree less than 2n, then
t = ∞ is a solution, this is α = −1.

Consider as an example the case n = 1. Write q3 = z − β = z − reiψ, q4 = z − γ = z − seiθ. With
A = s− r cos(ψ − θ), B = r sin(ψ − θ), C = rs sin(ψ − θ) and φ′ = φ− θ, this becomes

A sinφ′ +B cosφ′ = C. (2.47)

This equation does not always have a solution. We know that the condition is A2 +B2 ≥ C2 (in general,
not all roots of P are real). If this equation has a solution, it can always be written as

cos(φ′ − φ0) = cosφ1

so that φ = θ + φ0 ± φ1. Details are left to the reader. However, equation (2.47) just says that the line
passing through the points β and γ intersects the unit circle. It is well known that, unless the line is
tangent, it has zero or two intersection points. Assume that β in the disk, and γ is out of the disc (this
is just: q3 stable, q4 not stable). In this case, the line does intersect the circle. In fact, the segment
[β, γ] intersects the circle at a unique point. The conditions: the line (resp. the segment) intersects the
circle are equivalent to say that (2.44) gives a real value for λ (resp. a value with 0 ≤ λ ≤ 1). In higher
dimension, the geometry is not easy (remember equation (2.38)).

Consider now the real case. Here α may be real. In this case it has to be ±1, and λ is automatically
real. The condition 0 ≤ λ ≤ 1 is then q3(α)q4(α) < 0. But α can also be complex. It has then the form

α = −a±
√
a2 − 1

for some a with −1 ≤ a ≤ 1. Define a sequence of polynomials Qk and Rk by Q0 = 0, R0 = 1 and

Qk+1 = Rk Rk+1 = −2zRk −Qk. (2.48)

We have
(−z ±

√
z2 − 1)k = Rk + zQk ±

√
z2 − 1Qk.

Assume q3 =
∑
αkz

k, q4 =
∑
βkz

k, and define

P1 =
∑

αk(Rk + zQk), P2 =
∑

αkQk,

P3 =
∑

βk(Rk + zQk), P3 =
∑

βkQk.

Then
q3(−a±

√
a2 − 1) = P1(a)±

√
a2 − 1P2(a),

q4(−a±
√
a2 − 1) = P3(a)±

√
a2 − 1P4(a).

Now (2.44) becomes

λP1(a) + (1− λ)P3(a) = 0, λP2(a) + (1− λ)P4(a) = 0.

INRIA

Rational approximation of transfer functions in the hyperion software 51

q0 q1

q2

q4

q3

III

I

II

Figure 2.7: Two polynomials q3, q4, and the set of stable polynomials, which is in the triangle defined by
q0 = (z − 1)2, q1 = (z + 1)2 and q2 = z2 − 1. A polynomial q = z2 + az + b is defined by the point x = a
and y = b. The half lines that start at q3 and pass by qi define three sectors out of the triangle.

If we eliminate λ, we get
P1(a)P4(a)− P2(a)P3(a) = 0. (2.49)

A priori, this is an equation of degree 2n. In fact, it has only degree n− 1. This is because it simplifies
to ∑

αiβj(RiQj −RjQi) = 0.

Note that, if Sij = RiQj −RjQi, then equation (2.48) says Si+1,j+1 = Sij , so that we get∑
ik

(αiβi+k − αi+kβi)Qk = 0. (2.50)

This is of degree n − 1. Note that each solution a gives two complex conjugate values α, thus 2n − 2
solutions. If we add α = ±1, we get 2n solutions, as in the complex case.

In order to understand what happens, consider the case n = 2. To each polynomial q = z2 + uz + v,
we associate the point (u, v) in the plane. Let q0 = (z−1)2, q1 = (z+1)2 and q2 = z2−1 (see figure 2.7).

These three polynomials define a triangle. A polynomial q3 is stable if and only if it is in the triangle.
On the figure, we have shown the triangle, a stable polynomial q3, an unstable one q4, the line that joins
them. The half lines that start at q3 and that pass through qi (0 ≤ i ≤ 2) define three sectors in the
plane (shown as I, II and III).

Let’s write q3 = α0 + α1z + z2 and q4 = β0 + β1z + z2. Consider (2.44) with α = 1. We assume q3
stable, so that, in particular q3(1) > 0. The condition 0 ≤ λ ≤ 1 says q4(1) > 0, so that q4 is not in the
triangle (in fact, the line (q0q2) intersects the segment [q3q4]). Since qλ has 1 as root, the other root is
easy to find. It is stable if and only if

|α0(β0 + 1)− β0(α1 + 1)| ≤ |β0 + β1 − α0 − α1|.

RR no 0123456789

52 José Grimm

This condition (together with q4(1) < 0) says that q4 is not in the triangle, and is in the sector II.
On the other hand, the solution to (2.50) is

2a =
β1 − α1

β0 − α0
(1− α0) + α1, 1− λ =

1− α0

β0 − α0
.

Since q3 is stable, we have α0 < 1. Hence the condition 0 ≤ λ ≤ 1 says β0 > 1. It is easy to check
that this condition, together with −1 ≤ a ≤ 1 says that q4 is not in the triangle, and is in the sector I.
Geometrically, it is obvious that if q3 is in the triangle, and q4 is outside of the triangle, then the segment
[q3, q4] intersects one and only one side of the triangle.

In dimension greater than two, things are more complicated. For instance, the set of stable polynomials
is not convex. Thus, (2.44) can have more than one solution λ with 0 ≤ λ ≤ 1.

2.3.5 Derivatives of ψ

We give here formulas in the scalar case for the derivative of ψ with respect to the coefficients of q. The
complexity of these formulas will be given in the last chapter. We can also use automatic differentiation,
see chapter 4. There is another technique we once used: let q =

∏
(z − αi). We get dψ/dαi via (2.40).

This works only if q has simple roots.
We write here f , g and p instead of F , G and P , assuming that everything is a scalar. In the case of

a vector, nothing changes. In order to get the first derivative of ψ, we introduce the following quantities,
obtained by division by q:

gzn−i = Uiq + Ci V zi = Wiq +Di. (2.51.a)

These are needed for computing the second derivative.

Uiz
j = Xijq + Zij Wiz

j = Yijq + Tij . (2.51.b)

We shall use the relation
〈A |BC〉 = 〈AC̃ |Bzn〉

if C is a polynomial of degree n.
We have, for deg(r) < 1,

〈f − p

q
| rs
q2
〉 = 〈 r̃

q
| V s
q
〉. (2.52)

In fact

〈f − p

q
| rs
q2
〉 = 〈V̌ q̃

q
| rs
q2
〉 = 〈z

n−1

q
| V rs
q
〉 = 〈 r̃

q
| V s
q
〉.

We introduce the polynomial Y defined so that, for each D of degree n− 1:

〈f | D
q
〉 = 〈D̃ |Y 〉

Such an Y exists, because the left-hand side is a linear operator on polynomials of degree less than n.
Note that if Y =

∑
yiz

i, then, by linearity, yi = 〈f | zn−i−1/q〉 = 〈fzi | zn−1/q〉.
Write q =

∑
k(qk + irk)zk, where qk and rk are real coefficients. If ∂r is the partial derivative of r

w.r.t. rk or qk, since ψ = 〈f − p/q | f − p/q〉 we have

∂ψ = 2<〈f − p

q
| −∂p
q

+
p∂q

q2
〉 = 2<〈f − p

q
| p∂q
q2
〉.

We applied relation (2.10) to ∂p. If we apply relation (2.52), this gives:

∂ψ = 2<〈 p̃
q
| V ∂q
q
〉.

INRIA

Rational approximation of transfer functions in the hyperion software 53

If s and D are the quotient and remainder of the division of V ∂q by q, we get

∂ψ = 2<〈 p̃
q
| D
q

+ s〉 = 2<〈 p̃
q
| D
q
〉 = 2<〈D̃

q
| p
q
〉 = 2<〈D̃

q
| f〉 = 2<〈Y |D〉.

Computing ∂q is obvious. We have hence:

∂ψ

∂qi
= 2<〈Di |Y 〉, (2.53.a)

∂ψ

∂ri
= 2=〈Di |Y 〉. (2.53.b)

We can also use the relation ψ = ‖V ‖2, so that ∂ψ = 2<〈V | ∂V 〉. Differentiating (2.11.a) gives:

gzn−i =
∂V

∂qi
q + V zi +

∂R

∂qi
,

−igzn−i =
∂V

∂ri
q + iV zi +

∂R

∂ri
.

Since derivatives of R are of degree less than n, we get

∂V

∂qi
= Ui −Wi

∂V

∂ri
= −i(Ui +Wi).

Hence:
∂ψ

∂qi
= 2<〈V |Ui −Wi〉, (2.54.a)

∂ψ

∂ri
= 2=〈V |Ui +Wi〉. (2.54.b)

Computing second derivatives is now obvious, by differentiation of (2.54). The derivatives of Ui and
Wi are given by

∂Ui
∂qj

= −Xij ,

∂Ui
∂rj

= −iXij ,

∂Wi

∂qj
= −Xji − Yji − Yij ,

∂Wi

∂rj
= −i(Xji + Yij + Yji).

Hence:
∂2ψ

∂qi∂qj
= 2<〈Ui −Wi |Uj −Wj〉+ 2<〈V |Yij + Yji −Xij −Xji〉, (2.55.a)

∂2ψ

∂qi∂rj
= −2=〈Uj +Wj |Ui −Wi〉+ 2=〈V | −Yij − Yji +Xij −Xji〉, (2.55.b)

∂2ψ

∂ri∂rj
= 2<〈Ui +Wi |Uj +Wj〉 − 2<〈V |Yij + Yji +Xij +Xji〉. (2.55.c)

RR no 0123456789

54 José Grimm

2.3.6 Other formulas

Assume that q has n distinct roots, q =
∏

(z − αi). Equation (2.11.a) gives R(αi) = G(αi)q̃(αi). Now
P/q =

∑
βi/(z − αi),

〈F | P
q
〉 =

∑
〈F | βi

z − αi
〉 =

∑
βiG(αi). (2.56)

Question: what is the complexity of this algorithm compared to the complexity of using (2.11.a)? We
may assume ‖F‖ is pre-computed (it is independent of q). Let M be the number of coefficients of G, and
m× p the dimension of G. In the scalar case, we can assume m = p = 1. It will cost Mn multiplications
to evaluate G(αi). It will costs an multiplications to find βi (use Lagrange interpolation to find the
coefficients of R, and βi is nothing else than the derivative at z = αi of R̃(z − αi)/q. Computing these
quantities is independent of M). Finally n multiplications are required for computing βiG(αi).

This means that we can compute ψ using nM + bn multiplications, where bn is a function of n only.
There must surely exists an algorithm with the same complexity, that works even if q has multiple roots.
Note that the complexity of (2.11.a) is 2Mn, because multiplying G by q̃, and dividing this by q costs
nM multiplications. In fact, we gain because we exploit the relation between q and q̃. In the matrix case,
the only relation between D̃ and q is that the quotient is inner. Can we exploit it?

Consider
G = V1q +R1 R1D̃ = V2q +R2. (2.57)

We have R = R2, and V = V1D̃+V2. Note that computing V1D̃ costs almost as many multiplications as
GD̃. Hence the idea is to not compute V , but use (2.18) twice. In fact ‖F‖2 − ‖V ‖2 is the square of the
norm of R/q, and ‖R1‖2 − ‖V2‖2 is the square of the norm of R2/q. Since R = R2 we get

ψ = ‖F‖2 − ‖R1‖2 + ‖V2‖2. (2.58)

The complexity for the general algorithm is mpM(n + 1)(p + 1): it costs mp2M(n + 1) to multiply
G which is a m × p matrix of degree M by a D̃, which is a p × p matrix of degree n. It costs mpMn
multiplications to divide GD̃ which is a m×p matrix of degree M+n by the monic polynomial q. Finally,
it costs mpM multiplications to compute the norm of V .

For the new algorithm, we need mp(M−n)n multiplications for computing V1, 2n2mp2 multiplications
for computing V2, 2nmp multiplications for computing the norms of R1 and V2.

The complexity is now mpn(M + pn+ 2− n). The ratio between the two complexities is

r =
n

M

M + 2pn+ 2− n

(p+ 1)(n+ 1)
.

In the scalar case (p = 1), we can exploit the fact that D̃ = q̃ is monic, so that we get

r =
n(M + 2 + n)
M(2n+ 1)

.

This is roughly 1/2. In the general case, it is roughly 1/(p + 1), see the last chapter for details. Note:
this trick does not work in the case of weighted approximation. The formulas established in the previous
subsection are now invalid.

2.3.7 Weighted approximation

In this section, we study some properties of orthogonal polynomials. Classically, if we have a scalar
product of the form

〈f | g〉 =
∫ b

a

f(x)g(x)h(x)dx

(where h is a positive function) which is defined for all polynomials, there exists a unique sequence Pn
of polynomials of degree n, which is orthonormal, and such that the leading coefficient of Pn is real and

INRIA

Rational approximation of transfer functions in the hyperion software 55

positive. The main property of the scalar product is 〈xP |Q〉 = 〈P |xQ〉, from which one can deduce two
properties: there is a recurrence relation of the form

Pn+1 = (an + bnx)Pn + cnPn−1,

and Pn has n real roots on the interval [a, b]. For more details, see [18].
In this section, we consider a scalar product of the form

〈f | g〉 =
1
2π

∫ 2π

0

f(eiθ)g(eiθ)h(eiθ)dθ (∗)

and show that there is a recurrence relation, and the roots of Pn satisfy some properties (see also [18]).
We start with the recurrence relation, study it, and then show that it is associated to a scalar product.
Finally, we explain how these polynomials can be used (see [13]).

Assume that Φi is defined by

Φi−1 =
1
z

Φ̃i(0)Φi − Φi(0)Φ̃i√
|Φ̃i(0)|2 − |Φi(0)|2

. (2.59)

If Φi is a polynomial of degree i, then Φi−1 is a polynomial of degree i− 1, and its leading coefficient
is

κi−1 =
√
|Φ̃i(0)|2 − |Φi(0)|2. (2.60)

An alternate formula is
Φ̃i−1(0)Φ̃i−1 = Φ̃i(0)Φ̃i − Φi(0)Φi. (2.61)

A consequence of (2.60) is

κ2
i =

i∑
j=0

|Φj(0)|2. (2.62)

A consequence of (2.59) is

Φ̃i =
1
κi

i∑
k=0

Φk(0)Φk. (2.63)

We shall see later the interest of these formulas. In particular, we shall prove the converse of the
following theorem.

Theorem 16
If Φi is defined for 0 ≤ i ≤ n, then Φi is stable.

Proof. The main assumption is that the quantity that appears in the square root of (2.59) is positive.
Combining all equations gives

zΦi−1 =
κi
κi−1

Φi −
Φi(0)
κiκi−1

i∑
k=0

Φk(0)Φk. (2.64)

Consider now the scalar product, defined for polynomials of degree ≤ n, by 〈Φi |Φj〉 = δij . Assume
j ≤ i. We have

〈zΦi−1 | zΦj−1〉 = A−B − C +D

with
A =

κi
κi−1

κj
κj−1

〈Φi |Φj〉 =
κiκj

κi−1κj−1
δij .

RR no 0123456789

56 José Grimm

B =
κi
κi−1

Φj(0)
κjκj−1

〈Φi |
j∑

k=0

Φk(0)Φk〉.

In case j ≤ i, the last scalar product is Φi(0)δij , so that

A−B =
κi
κi−1

(
κi
κi−1

− |Φi(0)|2

κiκi−1

)
δij = δij .

We have

C =
Φi(0)
κiκi−1

C ′ D =
Φi(0)
κiκi−1

D′,

C ′ = 〈
i∑

k=0

Φk(0)Φk |
κj
κj−1

Φj〉 =
κj
κj−1

Φj(0)

D′ =
Φj(0)
κjκj−1

〈
i∑

k=0

Φk(0)Φk |
j∑

k=0

Φk(0)Φk〉 =
Φj(0)
κjκj−1

j∑
k=0

|Φk(0)|2 = Φj(0)
κ2
j

κjκj−1
= C ′.

Hence 〈zΦi−1 | zΦj−1〉 = δij if j ≤ i. By symmetry, it is true for all i and j. From this, we deduce

〈zA | zB〉 = 〈A |B〉 (2.65)

whenever A and B are polynomials of degree < n. Hence

‖(z − α)A‖2 = ‖A‖2(1 + |α|2)− 2<(α〈zA |A〉)

from which we get |〈zA |A〉| < ‖A‖2 if A 6= 0.
Hence, if Φi = (z − β)A, 〈Φi |A〉 = 0 implies β = 〈A | zA〉/‖A‖2, hence |β| < 1 and Φi is stable. 2

Note: if Φi is a polynomial of degree exactly i, then we have a relation

zΦn−1 =
n∑
i=0

ainΦi.

If Φi is orthogonal for a scalar product that satisfies 〈zP |Q〉 = 〈P | zQ〉, then ain = 0 unless i = n, n−1,
n−2. On the other hand, if the scalar product satisfies (2.65), then coefficients ain are defined by (2.64).
The argument is as follows.

Assume that we have a scalar product defined for all polynomials that satisfies (2.65). There exists
an orthonormal basis Φi, where Φi is of degree i (if we require that the leading coefficient of Φi is real
and positive, this basis is unique). Define

Kn(z, a) =
n∑
i=0

Φi(a)Φi(z). (2.66)

Lemma 29
If p is a polynomial of degree ≤ n, then |p(a)| ≤ ‖p‖

√
Kn(a, a), and equality holds if and only if there

exists a constant λ such that p(z) = λKn(z, a).

Proof. Write p =
∑
λiΦi. Apply Cauchy-Schwarz to p(a) =

∑
λiΦi(a), and use

∑
|λi|2 = ‖p‖2. 2

Lemma 30

Kn(z, a) = (za)nKn(1/a, 1/z). (2.67)

INRIA

Rational approximation of transfer functions in the hyperion software 57

Proof. Take p of degree ≤ n. Let r = p̃. The main assumption on the scalar product is ‖p‖ = ‖r‖.
Apply the lemma for p(a) and r(1/a). We get

|p(a)|2 ≤ ‖p‖2Kn(a, a),

|p(a)|2 ≤ ‖p‖2|a|2nKn(1/a, 1/a).

Now, equality can hold in both cases. Hence

Kn(a, a) = |a|2nKn(1/a, 1/a). (∗)

Moreover, equality holds if p = Kn(·, a), so that r must be a multiple of Kn(·, 1/a). This means

znKn(a, 1/z) = λKn(z, 1/a)

(because Kn(a, b) = Kn(b, a)). Replace a by 1/a, and use (∗) to identify λ. 2

Corollary 6

Kn(z, a) =
n∑
i=0

(za)nΦ̃n(a)Φ̃n(z).

Kn(z, 0) = Φ̃n(0)Φ̃n(z).

Moreover, equations (2.59) and (2.61) hold.

Proof. Replace in the right-hand side of (2.67) the value of Kn obtained from (2.66). This gives the
first relation. Evaluate at a = 0, this gives the second one. Evaluate this at n = i, n = i − 1, take the
difference. This gives (2.61) hence (2.59). 2

In what follows, we consider the scalar product

〈f | g〉h =
1
2π

∫ 2π

0

f(eiθ)g(eiθ)
dθ

|h(eiθ)|2
. (2.68)

We shall make the assumption that h is continuous and non-zero on T (later on that h is a polynomial), so
that the scalar product is defined whenever f and g are in H2. In particular, there exists an orthonormal
basis Φi, denoted by Φi(h), that satisfies equation (2.59).

Lemma 31
Let q be a stable polynomial of degree n. There exists a sequence of polynomials Φi, that satisfy the
recurrence relation (2.59) and Φn = q.

This is the converse of Theorem 16.
Proof. Assume first that the leading coefficient of q is real and positive. We pretend that q is orthogonal
to each polynomial p of degree < n for the scalar product 〈f | g〉q, this is trivial to check. This implies
Φn(q) = q and the sequence Φi(q) satisfies the requirements. If we multiply q by an element of T, the
value of Φn−1 is unchanged. 2

Note that Φi+n(q) = ziq. Hence, it is possible to compute every Φi. In the general case, assume that
Kn has a limit K∞ when n→∞. Then

〈K∞(z, a) | f〉 = f(a) (∗)

whenever everything is defined. Moreover, there exists a function D such that

K∞(z, a) =
1

D(a)D(z)
1

1− az

RR no 0123456789

58 José Grimm

(see [18, Formula 12.3.17] for details).
In the special case under consideration, we have

K∞(z, a) = Kn−1(z, a) +
q(a)q(z)
1− az

.

In fact

K∞(z, a) =
q̃(a)q̃(z)
1− az

(because of the next lemma). Quantities K that satisfy relation (∗) are called reproducing kernels, and
are studied in the next chapter.

Lemma 32
We have

Kn−1(z, a) =
Φ̃n(a)Φ̃n(z)− Φn(a)Φn(z)

1− az
. (2.69)

Proof. Let T be the numerator of the right-hand side of (2.69), and S = T/(1− az). It is obvious that
S is a polynomial of degree at most n. The leading coefficient of S is the complex conjugate of

Φn(a)Φ̃n(0)− Φ̃n(a)Φn(0)
a

which is κn−1Φn−1(a) according to (2.59). According to (2.66), this is the complex conjugate of the
leading coefficient of Kn−1.

Let p be a polynomial of degree < n. Write r = (p(z) − p(a))/(z − a) so that p = (z − a)r + p(a).
Now 〈S | p〉 = 〈T | rz〉+ 〈S | p(a)〉. Since rz is of degree < n, it is orthogonal to Φn. It is also orthogonal
to Φ̃n because 〈Φ̃n | rz〉 = 〈r̃ |Φn〉, and r̃ is of degree n − 1. Hence 〈S | p〉 = p(a)〈S | 1〉 = Cap(a), where
Ca depends only on a.

By definition, 〈Kn | p〉 = p(a) whenever p has degree less than n. Hence Kn(z, a) = CaS(z, a).
Comparing leading coefficients gives Ca = 1. 2

Theorem 17
Assume w stable, of degree k. For each n, there exists a number αn > 1, such that if q is of degree n,
and has roots less than αn in module, then the recurrence relations (2.59) are satisfied for k ≤ i ≤ n+ k
with Φn+k = qw.

Proof. 1. Let’s define Φi(q) to be the polynomial of degree i defined by the recurrence relation (2.59)
with Φn(q) = q for n = deg(q). This agrees with the previous definition in case q is stable.

2. Assume q = q1q2, where qi has degree ni. Suppose that q1 is stable and q2 has its roots on T.
The previous theorem says that Φi(q1) is defined. Since q2 = q2(0)q̃2, equation (2.59) says Φi+n2(q1q2) =
q2Φi(q1). Hence Φi(q1q2) exists for i ≥ n2. Note that Φn2(q1q2) is a constant times q2. Trying to apply
(2.59) to it will fail.

3. Let λ be a real number. Define qλ(z) = λnq(z/λ). Let

κi(q, λ) = |Φ̃i(wqλ)(0)|2 − |Φi(wqλ)(0)|2.

Polynomials Φi(wqλ) are defined if κi(q, λ) is real and positive. For fixed q, this is a continuous function
of λ. Assume that q has all its roots in U. Then κi(q, 1) > 0 for i > k, because w is stable. Hence
κi(q, λ) > 0 if λ ≤ λ0 for some λ0 > 1. The conclusion follows now from the compactness of U. 2

INRIA

Rational approximation of transfer functions in the hyperion software 59

Approximation of type (n−s, n) Let 〈f | g〉q be the scalar product defined by (2.68), Φi the orthogonal
polynomials associated to this scalar product. Equation (2.10) is

〈Fq − P |S〉q = 0.

Let (e1, . . . , em) be a basis of Cm. We can write P =
∑
ij λijΦjei. The condition is, for each Φk, el,

〈Fq −
∑

λijΦjei |Φkel〉q = 0. (∗)

Hence
〈Fq |Φjei〉q = λij

and

P =
m∑
i=1

n−1∑
j=0

〈Φjei
q

|F 〉Φjei. (2.70.a)

Assume that we want to minimise ‖F − P/q‖ with deg(P) < n − s. The minimum P0 is like P above,
but the sum is for j = 0 to j = n− s− 1.

P0 =
m∑
i=1

n−s−1∑
j=0

〈Φjei
q

|F 〉Φjei. (2.70.b)

If we apply (2.14) to P and P0 we get

‖F − P0/q‖2 = ‖F − P/q‖+ 〈F | (P − P0)/q〉

hence

‖F − P0

q
‖2 = ‖V ‖2 +

m∑
i=1

n−1∑
j=n−s

|〈Φjei
q

|F 〉|2. (2.70.c)

Weighted approximation Assume that we want to approximate ‖F − P/q‖w, where the scalar prod-
uct is defined by (2.68). We consider here only the case where w is a polynomial. Assume that w is stable,
of degree k. Let Fw = F/w. Then ‖F − P/q‖w = ‖Fw − P/(qw)‖. We want deg(P) < deg(qw) − k.
Applying equations (2.70) gives

〈Φi |Φj〉qw = δij , (2.71.1)

(this equation is equivalent to Φn+k = qw, together with (2.59)),

Gzk q̃ = V qw +R, (2.71.2)

(note that Gw = Gzk/w̃),

ψw(q) = ‖V ‖2 +
m∑
i=1

n+k−1∑
j=n

|〈Φjei
q

|F 〉w|2, (2.71.3)

and

P = R̃−
m∑
i=1

n+k−1∑
j=n

〈Φjei
q

|F 〉wΦjei. (2.71.4)

Theorem 17 says that polynomials Φj that appear in (2.71.3) and (2.71.4) are defined even if q is
unstable, but its roots are not too big. In other words, ψw is still C∞ on the boundary of the set of
stable polynomials. In fact, if q = q1q2, where q1 is stable, and q2 has roots on T, if Φ′i is the orthogonal
polynomial defined for the scalar product 〈· | ·〉wq1 , we have Φ′m+i = q2Φi (m is the degree of q1) so that
equations (2.71) say ψw(q1q2) = ψw(q1) and Lw(q)/q = Lw(q1)/q1.

RR no 0123456789

60 José Grimm

Note: assume that we have any scalar product. If we can compute 〈zi/q | zj/q〉, it is easy to find
polynomials Φi such that

〈Φi
q
| Φj
q
〉 = δij . (2.72)

Then (2.70.a) is still true, and
P

q
=
∑
i

∑
j

〈Φjei
q

|F 〉Φjei
q

. (2.73)

We have

‖F − P/q‖2 = ‖F‖2 −
m∑
i=1

n−1∑
j=0

|〈Φjei
q

|F 〉|2. (2.74)

We can compute this quantity provided that we can compute a scalar product of the form 〈F | zi/q〉.

2.4 Continuous time systems

Consider the equations
xk+1 = Fxk +Guk, yk = Hxk. (2.75)

Define
H = H(zI − F)−1G. (2.76)

The matrix H is called the transfer function of the discrete time system (2.75). If we define X =∑∞
k=0 xk/z

k+1, and likewise for U and Y , we get

Y = HU +
∞∑
k=0

HF kx0/z
k+1.

If x0 = 0, then Y = HU . But if F is stable, the contribution of the additional term to yk is small for
large k. This means that, if we wait long enough, we can measure H with great precision.

Consider now
dx

dt
= Fx+Gu, y = Hx. (2.77)

We have

y(t) =
∫ t

0

He(t−s)FGu(s)ds+HetFx(0). (2.78)

Assume that F is stable. This means here that the eigenvalues of F satisfy <z < 0. It implies that the
second term is small if t is large. Consider now u = eiωtu0. Let H(iω) = Aeiφ. Then

y(t) = ei(ωt+φ)Au0. (2.79)

Assume now H real. This means H(−iω) = Ae−iφ. Replace in (2.79) ω by −ω, and add. We get

u = cos(ωt)u0 =⇒ y = cos(ωt+ φ)Au0. (2.80)

Of course, these equations are valid only if x(0) = 0. In the case where F is stable, they are valid, if we
neglect the transitory term.

What we can say is the following. Assume that equations (2.77) describe a physical stable system, and
that (H,F,G) is canonical. Then we can measure H(iω) for some values of ω. Of course, the equations
are only approximations, that are in general false if ω is too big. On the other hand, if ω is too small,
we have to wait a long time before we can find something (at least 2π/ω). One part of the hyperion
software solves this problem. Given some measurements, it returns a function H which is stable, and
approximates the measurements; this is called the completion algorithm. However, this H is not rational.

INRIA

Rational approximation of transfer functions in the hyperion software 61

It has a priori a big McMillan degree. The second part of hyperion is the rational approximation: find
a rational matrix of given McMillan degree that approaches at best the result of the previous part of the
software. This report explains how to do rational approximation.

One difficulty however, is that the rational approximation algorithm works only for functions that are
stable in the discrete case. The remainder of this chapter explains how to deal with this problem. The
idea is the following

1. We start with a device with transfer function H′0 ∈ Σcn. We measure it and obtain H′.

2. We consider the discrete time equivalent H of H′: H = σ−1
n (H′).

3. We consider the completion H1 of H: H1 = ck(H).

4. We compute the rational approximation H2 of H1: H2 = an(H1).

5. We convert H2 to a continuous time system: H′2 = σn(H2).

Let’s start with some definitions. If U is a simply connected region of the complex plane (but not
the plane itself), it is conformally equivalent to U (see [17, 14.8]). For instance, if P is the half plane,
the set of complex numbers s such that <(s) < 0, it is conformally equivalent to the disk. This gives
one possibility for σn. More generally, it allows us to define the Hardy space of U . This definition is not
unique. For instance, in the case of the half plane, there are are two natural possibilities.

We shall define H(P) and H(P) to be the set of analytic functions in P and outside P, that have a
limit (in fact a non-tangential limit) almost everywhere on the imaginary axis such that

c

∫ ∞

−∞

|f(iω)|2

1 + ω2
dω (2.81)

is finite (we could omit the denominator, this gives the alternate Hardy space of the half plane). Note
that the constant function one is in the Hardy space. We can chose c such that the quantity (2.81) is 1
for this function. It happens that a function of H(P) is uniquely defined by its value on the imaginary
axis. If we define the norm of f to be the square root of the quantity (2.81), then H(P) is a Hilbert
space, as well as H(P), and the mapping f(z) → f(−z) is an isometry between these two spaces.

If U is a set, we define Σ(U) to be H(U). We shall use this notation only in the case where the set
U is the disk or the half plane. It is a subset of the functions analytic outside U . We define also Σ′(U)
to be the functions that vanish at infinity.

If U is any set, we define Σn(U) to be the set of rational functions of McMillan degree n which are
analytic outside U (more precisely, which have poles in U). We define Σ′n(U) to be the functions of Σn(U)
which are strictly proper (vanish at infinity). Moreover

Σdn = Σn(U) Σcn = Σn(P) (2.82.a)

Σd = Σ(U) Σc = Σ(P). (2.82.b)

Note that Σcn is a subset of Σc (of course, Σdn is a subset of Σd).
In the algorithm proposed above, we assume that H′0, the transfer function of the device to approx-

imate is in Σcn. This means that it is rational, of McMillan degree n. The first requirement we make
is that the result H′2 is also in Σcn. The second requirement is that H′2 should be near H′0. This means
that the functions σ−1

n , ck, an and σn has to satisfy some properties. Let’s discuss them.
We first start with an and ck. The function ck is the completion algorithm. It satisfies the following

properties: it takes as argument some measurements of the transfer function and returns a stable transfer
function. Since only a finite number of measurements can be made, it takes as input K numbers and
returns an infinite number of Fourier coefficients, and hence is not well-defined. To solve the problem, we
shall assume that the measurements are done on a whole interval [a, b] (numerically, we interpolate the
finite number of data by cubic splines). The function ck depends on the interval [a, b], and on the norm

RR no 0123456789

62 José Grimm

of the function outside the interval [a, b]. This means that the user has to guess this. We shall assume
that, if the device to approximate is rational, of McMillan degree n, if the interval [a, b] is big enough, if
enough measurements are made in the interval, and if k is well chosen, then ck(H) is near H0.

The function an is the rational approximation algorithm:

an : Σd → ΣdN .

It can be defined as the best rational approximation of McMillan degree N (for the H2 norm) of its
argument. We shall make the assumption that, if Hk converges in some sense to H, which is rational,
of McMillan degree n then an(Hk) converges in the H∞ norm to H (note that if a sequence of rational
functions fk of degree N converge to a rational function of degree N , it converges in the H∞ norm,
because everything under consideration is in a finite dimensional space; this is true if, for instance, the
convergence of fk implies that fk(zj) converges for an infinite number of values of zj).

In short, we shall assume that, if the device to approximate is rational, of McMillan degree N , if the
interval [a, b] is big enough, if enough measurements are made in the interval, and if k is well chosen,
then an(ck(H)) is near H0, the discrete-time equivalent of H′0.

The question is now: how to chose σn and σ−1
n . Note first that σ−1

n maps a function defined on
an interval [ω1, ω2] into a function defined on [θ1, θ2]. For simplicity, we may assume that [θ1, θ2] is
[−π/2, π/2] (this makes the code of ck easier). This is OK if the measurement interval is fixed, but is
inadequate if we let −ω1 = ω2 →∞. In this latter case, we can chose tan(2θi) = ωi.

Consider a generic system with n poles, and apply σ−1
n , then the completion algorithm. If the rational

approximation gives N poles, applying σn must give n poles. This will imply N ≥ n (in general every
element of Σcn must be in the image of σn). The question is: can we have N > n? The answer is, yes,
of course, provided that we add additional conditions on ck and an. An example is the following. Let
σn be as below (i.e. MacMillan degree preserving). We consider σ′−1

n (f) = σ−1
n (f)/z. The completion

algorithm takes a function, multiplies it by z, applies ck, and multiplies the result by 1/z. The rational
approximation takes its argument, multiplies it by z, calls an, and divides the result by z. Now, σ takes
its argument, multiplies it by z, and calls σn. What is wrong here? The trouble is that the modified
an can only be used in this case (otherwise, it is non-continuous, or non McMillan degree preserving).
Moreover, the computations are exactly the same as for a McMillan degree preserving σn.

We shall from now on assume that σn is McMillan degree preserving. In fact, we shall moreover
assume that it is linear, so that

σn(
∑ ai

z − αi
) =

∑
aiσn(

1
z − αi

). (2.83.a)

This gives a function σ such that

σ(
a

1− zα
) =

ab

z − β
. (2.83.b)

Since every a/(z−α) can be the result of the rational approximation, we get a function β = φ(α) defined
on U, with values in P. On the other hand, σ−1

n maps ab/(z − β) onto some a/(z − α), this gives a
function α = ψ(β), defined on P, with values in U. Moreover

∀β ∈ P φ(ψ(β)) = β. (2.84)

We assume that φ and ψ are continuous. The open mapping theorem says that the image of ψ is open.
The continuity of φ and ψ, together with equation (2.76) says that the image of ψ is closed (with respect
to the topology induced on U). Thus, ψ is surjective. Hence φ and ψ are bijections.

The result of this discussion is: a good σn is such that its action on the poles is well defined, and is a
bijection between the set of discrete-time stable poles and the set of continuous-time stable poles.

Let’s define three spaces, X0, X1, X2, formed of bijections P → P, U → U and U → P. Now φ is
in X2. Note that X1 contains a lots of functions, for instance the mapping z → z. If we assume that
φ1 ∈ X1 is rational, it has to be an inner function, hence a Blaschke product, with a single pole. The
Schwarz lemma shows that if φ1 is analytic, then it has to be rational (in the proof of the next theorem,
point 2 is nothing else than the Schwarz lemma).

INRIA

Rational approximation of transfer functions in the hyperion software 63

Theorem 18
The sets X0 and X1 are groups. If we restrict elements to be analytic, then the spaces Xi are manifolds
of dimension three. Each Xi is formed of functions φi of the form

φ0(z) =
az + ib

icz + d
, ∃λ, λa, λb, λc, λd real ,<φ0(−1) < 0, (2.85.a)

φ1(z) = c
z − α

1− αz
, |c| < 1, |α| < 1, (2.85.b)

φ2(z) = λ
ze−iψ1 − eiψ1

ze−iψ2 + eiψ2
, λ real ,<φ2(0) < 0. (2.85.c)

Proof. 1. The first claim is obvious. It remains true if every function is assumed analytic.
2. Let φ be an element of X1. Let c be an element of U such that cφ′(0) is real and positive (note

that φ′ is never zero), and α = −cφ(0). Let

φ1(z) =
cφ(z) + α

1 + cαφ(z)
.

We have

φ(z) = c
φ1(z)− α

1− αφ1(z)
.

These formulas show that φ1 is an element of X1. If we show that φ1(z) = z, then φ has the form (2.85.b).
Note that elements of the form (2.85.b) map U into itself, and are obviously bijective.

By construction, we have φ1(0) = 0. Because

φ′1(0) =
c

1− |α|2
φ′(0)

the quantity φ′1(0) is real positive.
Let now ψ(z) = φ1(z)/z. This function is analytic in U. If ψ(z) =

∑
akz

k, we have

∑
|ak|2r2k =

1
2π

∫ 2π

0

|ψ(reiθ)|2dθ,

if 0 < r < 1. Since φ1 maps U into itself, the last term is at most 1/r2. Taking the limit for r = 1
gives

∑
|ak|2 ≤ 1 (this is just the maximum modulus principle). In particular, we get |a0| ≤ 1. But

a0 = φ′1(0). If φ2 is the inverse mapping of φ1, it satisfies the same condition, |φ′2(0)| ≤ 1. But the chain
rule says φ′1(0)φ′2(0) = 1. Thus |φ′1(0)| = 1. Since |a0| = 1, the condition

∑
|ak|2 ≤ 1 says ak = 0 for

k > 0, so that φ is constant. Since we assumed that a0 is real and positive, we have a0 = 1, ψ(z) = 1
and φ1(z) = z.

3. Let
φ3(z) =

z − 1
z + 1

It is obvious to check that this is an element of X2. If φ2 is any element of X2, φ−1
3 ◦ φ2 ∈ X1. If this

has the form (2.85.b) then

φ2(z) = C
z −A

z +B

with
A =

cα+ 1
c+ α

, B =
1− cα

c− α
, C =

c+ α

c− α
.

Note that |A| = |B| = 1, C2A/B = |(1+cα)/(1−cα)|2 > 0, and AC/B = −1/φ3(cα), hence <(AC/B) >
0. If A = e2iψ1 and B = e2iψ2 , then for λ = Ceiψ2−iψ1 we get (2.85.c). The condition C2A/B > 0 is
λ2 > 0, so that λ is real.

RR no 0123456789

64 José Grimm

4. If φ0 ∈ X0, then φ−1
3 ◦ φ0 ◦ φ3 ∈ X1, from which it is easy to deduce (2.85.a). Note that this can

also be written as

φ0(z) =
z − iβ + iλc

ic(z − iβ) + λ

where β, λ and c are real, and λ is positive. 2

Theorem 19
Let φ = (az+ b)/(cz+ d) with ad− bc 6= 0. Let V be an open subset of the plane, and U = φ(V). Define

H1(z) = H(
az + b

cz + d
) H2(z) =

1
cz + d

H(
az + b

cz + d
). (2.86)

Define σφ and σ′φ by σφ(H) = H1 and σ′φ(H) = H2.
Assume that ∞ is neither in V nor U (this means that there is no λ such that |z| ≥ λ implies z ∈ V).

Then σφ is a bijection from Σn(U) into Σn(V) and σ′φ is a bijection from Σ′n(U) into Σ′n(V).

Proof. Consider a minimal realization of H

H = H(zI − F)−1G+ J. (2.87.a)

Assume that H is in Σn(U) or Σ′n(U). Then F is of size n, and its eigenvalues are in U . Since a/c = φ(∞)
is not in φ(V), it implies that a/c is not an eigenvalue of F , so that aI − cF is an invertible matrix.

Define
F ′ = (−bI + dF)(aI − cF)−1

then
H1 = σφ(H) = (ad− bc)H(aI − cF)−2(zI − F ′)−1G+ cH(aI − cF)−1G+ J (2.87.b)

H2 = σ′φ(H) = H(aI − cF)−1(zI − F ′)−1G. (2.87.c)

In fact, to the quantity H2 defined above, we have to add the term J/(cz + d). If J 6= 0, the McMillan
degree of H2 is in general not the same as the McMillan degree of H. When we consider σ′φ, we assume
that its argument is in Σ′, i.e. that J = 0.

Assume F ′x = λx, with x 6= 0. In other words, x is an eigenvector of F ′, with eigenvalue λ. Then
(d+ λc)Fx = (λa+ b)x. Since d+ λc and λa+ b cannot vanish simultaneously, we have d+ λc 6= 0. Let
µ = φ(λ). Then x is an eigenvector of F , with eigenvalue µ.

Let y = (aI − cF)−ix. Then y = (a− cµ)−ix, so that y is also an eigenvector of F . If Hy = 0, then
y = 0, hence x = 0. Said otherwise, if Hi = H(aI − cF)−i, then the pair (Hi, F

′) is observable. Since
(F ′, G) is reachable (the transpose of F and F ′ having the same eigenvalues and eigenvectors), it follows
that H1 and H2 have McMillan degree n. There poles are in σ(U), hence V .

Thus, σφ and σ′φ map an element of Σn(U) or Σ′n(U) onto an element of Σn(V) or Σ′n(V). Note that

σφ1◦φ2 = σφ2 ◦ σφ1 . (2.88)

The reason why σφ is bijective is that, if λ is an eigenvalue of F ′, then φ(λ) 6= ∞. Since ∞ 6∈ U , this
explains the surjectivity of σφ. 2

One question is now: is σφ an isometry? Note that, if in φ, we multiply a, b, c and d by λ, this does
not change the function φ, but multiplies σ′φ by 1/λ. We can always divide by

√
ad− bc, but this defines

σ′φ only up to a sign. Moreover, in the real case, ad− bc could be negative.

Lemma 33
Assume that φ ∈ X1, and |ad− bc| = 1. Then σ′φ is an isometry from Σ′dn into itself.

INRIA

Rational approximation of transfer functions in the hyperion software 65

Proof. If we apply the previous theorem with U = U, we get the first result, namely that σ′φ is a
bijection from Σ′dn into itself. According to (2.85.b) we have

H2 =
λ

1− zα
H(c

z − α

1− αz
)

where |λ|2 = 1− |α|2. We have

‖H2‖2 =
1
2π

∫ 2π

0

1− |α|2

|1− eiθα|2

∣∣∣∣H(c
eiθ − α

1− αeiθ
)
∣∣∣∣2 dθ. (2.89)

Let eit = φ(eiθ), so that eitdt = φ′(eiθ)eiθdθ. This is

c
eiθ − α

1− αeiθ
dt = c

1− |α|2

(1− eiθα)2
eiθdθ

and simplifies to

dt =
1− |α|2

|1− eiθα|2
dθ.

If we make this change of variables in (2.89), we get ‖H2‖ = ‖H‖. 2

Assume now that φ ∈ X2. Now σφ maps Σcn into Σdn. We can ask the same question. Consider

φ0(z) =
1− z

1 + z
. (2.90)

φ(z) =
z − 1
1 + z

. (2.91)

Since every element of X2 is the composition of this φ and an element of X1, according to (2.88), it
suffices to answer the question for this φ. In fact, we consider:

H′(s) =
1

1− s
H(

1 + s

1− s
), H(z) =

2
z + 1

H′(z − 1
z + 1

). (2.92)

This is the equation H = σ−1
n (H′), H′2 = σn(H2) considered in the introduction of this section, and

used by default in hyperion. Note that the input to the rational approximation algorithm is not H (an
element of H−

2), but G = H(1/z)/x. This gives

G(z) =
2

z + 1
H′(φ0(z)).

Note that, if z = eiθ, then φ0(z) = iω, with 1/ω = tan(θ/2). A change of variable in the integral that
gives the norm of H gives

‖H‖2 =
1
2π

∫ ∞

−∞
|H′(iω)|2dω. (2.93)

As said above, we can define H(P) to be the set of all functions H′ analytic in the half plane for which
the previous integral converges. Thus σ′φ is an isometry.

Note that H′ has to be strictly proper. One way of solving the problem is just the following: we take
H′, subtract it constant term J (the value at infinity), convert it, consider its rational approximation,
convert it back to a continuous time system, and then add the constant term J .

There is another solution: we can use σφ instead of σ′φ. Then

H′(s) = H(
1 + s

1− s
), H(z) = H′(z − 1

z + 1
). (2.94)

RR no 0123456789

66 José Grimm

We have now
‖H‖2 =

1
2π

∫ ∞

−∞
|H′(iω)|2 dω

1 + ω2
. (2.95)

If we adjust the constant c in (2.81), we get an isometry. Note that H is not strictly proper. If H is
defined by (2.87.a), the value at infinity of H′ is

J −H(I + F)−1G.

What we do is now the following: we convert H′ to a discrete time system, remove the constant term,
approximate this, add the constant term, and convert back to a continuous time system. This mechanism
is only partly implemented in hyperion.

INRIA

Rational approximation of transfer functions in the hyperion software 67

Chapter 3

The Schur algorithm

3.1 Schur functions

In this chapter, we study the set of inner matrices of given McMillan degree. The main section is
section 3.5 where we shall show how to construct a matrix B of degree n+ k given a matrix A of degree
n.

In this short section, we analyse the scalar case. We know that the mapping (c, ω1, . . . , ωn) →
c
∏

(z−ωi)/(1− zωi) maps an element of T and n elements of U onto an inner function of degree n. The
main trouble is that this function has no well-defined inverse.

If we consider polynomials instead of inner functions, the remedy is obvious: take as parameters the
coefficients of the polynomials instead of the roots. If q is a polynomial, we define s(q) to be q(0) and
S(q) = (q − q(0))/z. Let q0 = q, and qk+1 = S(qk). Then q =

∑
s(qk)zk.

The generalisation of this is the following. We define

S(f) =
1
z

f(z)− f(0)
1− f(0)f(z)

.

Define f0 = f , fk+1 = S(fk). The quantities fk(0) are called the Schur parameters of f .
Recall that a rational function, analytic in U, is called inner if f(T) ⊂ T. We call it a Schur function

if f(T) ⊂ U. Hence inner functions are just special Schur functions. Note that the maximum modulus
principle says that, if f is a Schur function, then f(U) ⊂ U. Recall that equation (1.5) says that, if
|a| < 1, then (z − a)/(1− az) is in T (resp. U) if and only if z is in T (resp. U).

Lemma 34
Assume h =

zg + f

1 + zfg
. In the case |f | ≤ 1 and |z| = 1, we have h ∈ T (resp. h ∈ U) if and only if g ∈ T

(resp. g ∈ U).

Proof. Let a = −zf . Then |h| = (g − a)/(1− ga). 2

Consider now

C =
A− y

1−Ay
=

(1− zω)(1− ω)
(z − ω)(1− ω)

B − y

1−By
, y = B(ω). (∗)

Lemma 35
Assume f rational, and |f(0)| < 1. Then f is a Schur function (resp. an inner function) if and only if
S(f) is a Schur function (resp. an inner function).

Moreover, if f is inner, of McMillan degree n, then S(f) is inner, of McMillan degree n− 1. In (∗), if
one of A, B, C is inner and rational, then the others are inner and rational. If A has degree n, then C
has degree n, and B has degree n+ 1.

RR no 0123456789

68 José Grimm

Proof. Let g = S(f). We have

f =
zg + f(0)
1 + zgf(0)

.

If g is a Schur function, then 1 + zgf(0) does not vanish on U so that f is analytic in U. On the other
hand, if f is a Schur function, then g is analytic in U. The previous lemma gives the first part of the
proof.

The same argument shows that A is inner if and only if C is inner. Assume A = cq/q̃. Then

C = c
q − cyq̃

q̃ − cqy
.

Hence A and C have the same McMillan degree.
Assume now g = cq/q̃, q polynomial, c ∈ T. Then

f = c
zq + caq̃

q̃ + zcqa
, a = f(0).

Since q̃+zcqA does not vanish on U, it follows that f is of degree n+1 in case g is of degree n. Evaluating
at ω instead of at 0, shows that B is inner, and has degree n+ 1 if A has degree n. 2

Thus, if f is inner and rational, its Schur parameters are s0, s1, . . . , sn, with |sn| = 1 and |si| < 1 for
0 ≤ i < n (the maximum modulus principle says that, if f is a Schur function, and |f(0)| = 1, then f is
constant). Instead of using S(f), we shall use the transformation (∗), that gives A from B. Take

βω(z) =
(z − ω)(1− ω)
(1− zω)(1− ω)

. (3.1)

Note that βω is a Blaschke product of degree one such that βω(1) = 1. Now, equation (∗) is just

B − y

1−By
= βω

A− y

1−Ay
.

Expressing B gives

B =
(β − |y|2)A+ (1− β)y
1− β|y|2 − (1− β)yA

. (3.2)

Note that β(1) = 1 implies A(1) = B(1).
In the matrix case, we shall extend relation (3.2) as

B = TΘ(A) = (Θ11A+ Θ12)(Θ21A+ Θ22)−1. (3.3)

One possibility for Θ is

Θ =
(

Θ11 Θ12

Θ21 Θ22

)
=

β − |y|2

1− |y|2
(1− β)y
1− |y|2

(β − 1)y
1− |y|2

1− β|y|2

1− |y|2

 = I − 1− β

1− |y|2

(
1 −y
y −yy

)
. (3.4)

3.2 The Schur algorithm

The formula we use is a bit more general than (3.4). We use a vector y, a vector u and a number ω. We
assume ‖u‖ = 1, ‖y‖ < 1 and |ω| < 1. The matrix Θ is

Θ =
(

Θ11 Θ12

Θ21 Θ22

)
= I − 1− βω

1− ‖y‖2

(
uu∗ −uy∗
yu∗ −yy∗

)
. (3.5)

INRIA

Rational approximation of transfer functions in the hyperion software 69

We shall introduce

b = (z − ω)(1− ω), b̃ = (1− zω)(1− ω), α =
1− βω

1− ‖y‖2
. (3.6)

Note that βω = b/b̃, and that α is the factor that appears in (3.5).

3.2.1 Direct formulas

Introduce the vector v = A∗u− y. Then

B = TΘ(A) = (A− αuv∗)(I − αyv∗)−1.

Using relations like (uv∗)(yv∗) = (v∗y)(uv∗) we get

B = (A− αuv∗)(I +
αyv∗

1− αv∗y
) = A+

α(Ay − u)v∗

1− αv∗y
. (3.7.a)

B =
A(1− α‖y‖2) + α[Ayu∗A− u∗AyA+ uy∗ −Ayy∗ − uu∗A]

1 + α‖y‖2 − αu∗Ay
. (3.7.b)

If A is inner and rational, we can write

A =
DA

q̃A
, A−1 =

D̃A

qA
, detA = εA

qA
q̃A
. (3.8)

Now formulas (3.7) can be written as

B =
DB

q̃B
, B−1 =

D̃B

qB
, detB = εA

qB
q̃B

(3.9)

with
q̃B = (b̃− b‖y‖2)q̃A − (b̃− b)u∗DAy (3.10.a)

DB = (b̃− b‖y‖2)DA + (b̃− b)[
DAyu

∗DA − u∗DAyDA

q̃A
+ q̃Auy

∗ −DAyy
∗ − uu∗DA] (3.10.b)

qB = (b− b̃‖y‖2)qA + (b̃− b)y∗D̃Au (3.10.c)

D̃B = (b− b̃‖y‖2)D̃A + (b̃− b)[D̃Auu
∗ + yy∗D̃A − yu∗qA] +

b− b̃

qA
[D̃Auy

∗D̃A − y∗D̃AuD̃A]. (3.10.d)

The fact that B has the desired form is a simple computation, the same is true for the formulas that give
the inverse of B. Now, (3.7.a) and det(I +XY ∗) = 1 + Y ∗X give

detB = detA
1− αv∗A−1u

1− αv∗y
,

1− αv∗y =
q̃B

b̃(1− ‖y‖2)q̃A
, 1− αv∗A−1u =

qB

b̃(1− ‖y‖2)qA
.

This shows the formula for detB.
We know that, if a = u∗Ay, then |a| ≤ ‖y‖. Since β and y are in U, relation (1.5) says that

(1 − β)‖y‖/(1 − β‖y‖2) is also in U, hence t = (1 − β)a/(1 − β‖y‖2) ∈ U. Since 1 − αv∗y = (1 −
β‖y‖2)(1− t)/(1− ‖y‖2), this cannot vanish for z ∈ U. Thus qB is a stable polynomial.

RR no 0123456789

70 José Grimm

3.2.2 Inverse formulas

Assume that B satisfies (3.9) and B = TΘ(A). An easy computation says that equations (3.8) are satisfied
if

qA = (b̃− b‖y‖2)qB − (b̃− b)y∗D̃Bu, (3.11.a)

q̃A = (b− b̃‖y‖2)q̃B + (b̃− b)u∗DBy, (3.11.b)

DA = (b− b̃‖y‖2)DB + (b̃− b)[
u∗DByDB

q̃B
− DByu

∗DB

q̃B
+DByy

∗ + uu∗DB − q̃Buy
∗], (3.11.c)

D̃A = (b̃− b‖y‖2)D̃B + (b− b̃)[
y∗D̃BuD̃B

qB
− D̃Buy

∗D̃B

qB
+ D̃Buu

∗ + yy∗D̃B − qByu
∗]. (3.11.d)

3.2.3 Properties of the Schur algorithm

Lemma 36
Assume A inner, B = TΘ(A). Then DB and D̃B are polynomial matrices. In the same fashion, if B is

inner, then DA and D̃A are polynomial matrices.

Proof. Let Y = D̃Auy
∗D̃A − y∗D̃AuD̃A. Let Dij and Yij the entries of D̃A and Y . Then

Yij =
∑
I,J

uJyI(DiJDIj −DIJDij).

In other words, Yij is a linear combination of the minors of order 2 of D̃A. These are multiple of qA,
hence D̃B is a polynomial. In the same fashion, DB is a polynomial. 2

In the case p = 1, we have Y = 0. In the case p = 2, we have

Y = (uy∗ − y∗u) det D̃A.

In the special case εA = 1, we have det D̃A = qAq̃A, Y/qA = q̃A(uy∗ − y∗u).

Theorem 20
If A is inner of McMillan degree n, then B = TΘ(A) is inner, of McMillan degree n+ 1 and B(ω)∗u = y.

Proof. Note that
B∗u− y =

v

1− αy∗v
[1 + α(‖y‖2 − 1)]

and that β vanishes at z = ω, so that α(ω) = 1/(1− ‖y‖2). Hence B(ω)∗u = y.
Since D̃B is a polynomial matrix, and qB is a stable polynomial, it follows from (3.9) that B is inner.

Since qB and D̃B are of degree n+ 1, the McMillan degree of B must be n+ 1. 2

Theorem 21
Assume that the property “B is inner and B(ω)∗u = y” implies that A = T−1

Θ (B) is inner. Then, if B is
of degree n+ 1, A is of degree n, and (z− ω)(1− zω) divides each terms of the right-hand side of (3.10).

Proof. Assume A inner. Then A = D/q̃, A−1 = D̃/q and detA = c1q/q̃, where c1 is some constant.
Now, detA = c2qA/q̃A. Since q and q̃ are coprime, there exists a polynomial r such that

qA = rq q̃A = c3rq̃

for some constant c3. Since ω is a zero of q̃A, but not of q̃, z−ω divides r, and r = c4(z−ω)(1−ω) for some
polynomial c4. Now, A has McMillan degree n−deg(c4), so that B has McMillan degree n+1−deg(c4),
and c4 is constant. 2

INRIA

Rational approximation of transfer functions in the hyperion software 71

Our objective now is to show the assumption of the theorem, namely to show that the condition
B(ω)∗u = y is sufficient for A = T−1

Θ (B) to be inner. We know that is is necessary. Obviously, it suffices
to show that (z − ω)(1− zω) divides each terms of the left-hand side of (3.10). The non-trivial point is
to show that it divides DA. This is rather easy to show directly in case z − ω is coprime to qB , but not
so in the general case.

3.3 Reproducing kernel Hilbert spaces

Definition 4
A reproducing kernel Hilbert space is a Hilbert space H formed of functions f which are analytic in some
set Ω with values in Cp, together with a p× p matrix function K(z, ω), called the kernel, such that, for
every ω ∈ Ω, every c ∈ Cp, K(·, ω)c is in H, and

〈K(·, ω)c | f〉 = c∗f(ω). (3.12)

Note that the mapping f → c∗f(ω) is continuous. On the other hand, if this mapping is continuous,
there exists a (unique) element Kω,c ∈ H such that

〈Kω,c | f〉 = c∗f(ω).

Obviously, Kω,c is a linear function of c, so that there exists a function K such that Kω,c(z) = K(z, ω)c,
so that H is a reproducing kernel Hilbert space.

As a consequence, if H is a finite dimensional space, there exists always a reproducing kernel. For
instance, if H contains all polynomials of degree at most n, and Φi is a polynomial of degree i, such that
the set of all Φi is an orthonormal basis, then formula (2.66) gives the kernel.

The typical example of a space of infinite dimension is H2, where K(z, ω) = 1/(1 − zω), because
(3.12) is just the Cauchy formula. On the other hand, if H ′ is a subset of H, which is a Hilbert space for
the same inner product (in particular H ′ must be closed), then H ′ is also a reproducing kernel Hilbert
space. We shall see that, if Q is inner, and H ′ the orthogonal of QH2, then the kernel is

KQ(z, ω) =
I −Q(z)Q(ω)∗

1− zω
. (3.13)

A consequence of (3.12), replacing f by K(·, µ)d is

〈K(·, ω)c1 |K(·, µ)c2〉 = c∗1K(ω, µ)c2. (3.14)

From this we deduce

‖
n∑
i=1

K(·, ωi)ci‖2 =
∑
ij

c∗iK(ωi, ωj)cj (3.15)

and
‖K(·, ω)c‖2 = c∗K(ω, ω)c. (3.16)

Theorem 22
If Q is inner and rational, then H(Q), the orthogonal of QH2, is the reproducing kernel Hilbert space
associated to KQ. Its dimension is the McMillan degree of Q. This space is the linear span of elements
of the form KQ(·, ω)c, where c ∈ Cp and ω ∈ Ω, where Ω is an infinite subset of U.

We prove here only the first claim, namely that H(Q) is a reproducing kernel Hilbert space.
Proof. Since Q is inner, we have 〈Qx |Qy〉 = 〈x | y〉 whenever x and y are in H2. Now, the Cauchy
formula says that Qx is orthogonal to KQ(·, ω)c, whatever c and ω, if x is in H2. From this we deduce
(3.12). 2

RR no 0123456789

72 José Grimm

Corollary 7
If Q is inner and rational, then, for ω ∈ U we have ‖Q(ω)∗u‖ ≤ ‖u‖. If Q is not constant, for any ω ∈ U,
for almost all u, we have ‖Q(ω)∗u‖ < ‖u‖.

Note that this is the same as corollary 3.
Proof. Since Q is inner, we have Q(z)Q(z)∗ = I whenever |z| = 1, so that ‖Q(ω)∗u‖ = ‖u‖ if |ω| = 1.
Assume now |ω| < 1. We have

(1− |ω|2)‖KQ(·, ω)u‖2 = ‖u‖2 − ‖Q(ω)∗u‖2.

Let T = Q(ω)Q(ω)∗. We have T = T ∗ and 0 ≤ u∗Tu ≤ ‖u‖2. There exists an orthonormal basis (ei)i
such that Tei = λiei, and 0 ≤ λi ≤ 1. If, for at least one j, we have λj < 1, then u∗Tu < ‖u‖2 whenever
u is not orthogonal to ej . Hence, for almost every u, we have ‖Q(ω)∗u‖ < ‖u‖.

On the other hand, if λi = 1 for every i, we have ‖Q(ω)∗u‖ = ‖u‖ for each u, and ‖KQ(·, ω)u‖ = 0.
This means I = Q(z)Q(ω)∗, and Q is constant. 2

Note: if ‖Q(ω)∗u‖ = ‖u‖, then KQ(·, ω)u = 0, hence for every µ, ‖Q(µ)∗u‖ = ‖u‖.

Definition 5
A positive function P is a function P (z, ω), defined for z and ω in Ω, with values in Cp×p, such that, for
every ω ∈ Ω, P (·, ω) is analytic in Ω, and

∑
ij c

∗
iP (ωi, ωj)cj ≥ 0, whenever ωi ∈ Ω and ci ∈ Cp.

Theorem 23
A reproducing kernel is a positive function. If P is a positive function on Ω, there exists a unique
reproducing kernel Hilbert space with reproducing kernel P .

Proof. 1. If K is a reproducing kernel, then equation (3.15) says that K is a positive function.
2. Assume now that P is a positive function. Consider two vectors c1 and c2, two elements z and ω

in Ω. We have
c∗1P (z, z)c1 + c∗2P (ω, ω)c2 + c∗1P (z, ω)c2 + c∗2P (ω, z)c1 ≥ 0. (3.17)

The first two terms in this expression are real, and c∗1P (z, ω)c2 + c∗2P (z, ω)∗c1 is also real. Taking the
difference,

c∗2[P (ω, z)− P (z, ω)∗]c1

is real. Since this is true for every c1 and c2, the terms in brackets must be zero, hence P (z, ω)∗ = P (ω, z).
3. Let H0 be the set of finite sums x =

∑
i P (·, ωi)ci, with ωi ∈ Ω and ci ∈ Cp. Each element of H0

is analytic in Ω.
If y =

∑
j P (·, ω′j)c′j , we define

f(x, y) =
∑
ij

c∗iP (ωi, ω′j)c
′
j . (3.18)

We have f(x, y) = f(y, x), and f(x, λy) = λf(x, y) whenever λ is a complex number.
Note that the representation y =

∑
i P (·, ω′j)c′j may not be unique. Nevertheless, f(x, y) depends

only on y since f(x, y) =
∑
i c
∗
i y(ωi). In the same fashion, f depends only on x, not on the particular

choice of ci and ωi.
4. Define 〈x | y〉P = f(x, y) and ‖x‖P =

√
〈x |x〉P . This is a scalar product on H0. In fact, we

know 〈x |x〉P ≥ 0 for every x. Assume 〈x |x〉P = 0. Then, for every vector u, every complex λ, we have
‖x+ λu‖2P ≥ 0, and this implies 〈x |u〉P = 0. Take u = P (·, ω)c. We get c∗x(ω) = 0, hence x = 0.

5. Let H be the completion of H0. Consider an element f of H, which is the limit of some sequence
fn of elements of H0. Note that fn is a Cauchy sequence, so that, for every ε, there exists N such that,
if n ≥ N and m ≥ N , ‖fn − fm‖P ≤ ε. For every x we have

|〈x | fn − fm〉P | ≤ ε‖x‖P .

INRIA

Rational approximation of transfer functions in the hyperion software 73

Let C be any compact subset of Ω. Take x = P (·, ω)c. Since P (ω, ω) is continuous, there exists M such
that ‖x‖P ≤M , if ω ∈ C. Hence

|c∗fn(ω)− c∗fm(ω)| ≤ εM.

This shows that c∗fn converges uniformly on every compact subset of Ω. The limit Fc is an analytic
function. Moreover,

〈P (·, ω)c | f〉P = Fc(ω).

This equation shows that there exists an analytic function F such that Fc = c∗F ,

〈P (·, ω)c | f〉P = c∗F (ω).

If we identify now f and F , H is a Hilbert space of analytic functions on Ω that satisfies the required
conditions.

6. Unicity. If H ′ is a reproducing kernel Hilbert space with kernel P , it is obvious that it contains
H0, hence H. Moreover, if f is an element of H ′ orthogonal to every element of H, it is orthogonal to
every P (·, ω)c, hence c∗f(ω) = 0, and f = 0, so that H = H ′. 2

In what follows, we shall use the following result: Assume that H is a finite dimensional vector space,
which is the linear span of all P (·, ω)c. Assume that 〈x | y〉 is a hermitian form that satisfies equation
(3.14) with K replaced by P . Then 〈x | y〉 is a scalar product on H.

3.4 J-inner functions

3.4.1 Introduction

In what follows, J will be a signature matrix, a matrix such that J2 = I and J = J∗. Define J+ =
(J + I)/2, J− = (J − I)/2. We have J2

+ = J+, J2
− = −J−, J+J− = J−J+ = 0, J∗+ = J+, J∗− = J−.

These relations say that Cp is the direct, orthogonal sum of the kernels of the orthogonal projectors

J+ and −J−. Said otherwise, there exists a matrix A with A−1 = A∗ and J = A

(
I 0
0 −I

)
A∗. We

could, without loss of generality, assume that A is the identity matrix. Define

〈x | y〉J = 〈x | Jy〉 = 〈Jx | y〉. (3.19)

If Ax has components x1 and x2, we get 〈x |x〉J = x2
1 − x2

2. Unless J is the identity matrix, 〈x | y〉J
defines a Hermitian form which is not positive definite.

Definition 6
A matrix A is called J-unitary in case J = AJA∗, it is called J-contractive in case J −AJA∗ is positive,
semi-definite.

By definition, if A is J-unitary, then

〈Ax |Ay〉J = 〈x | y〉J . (3.20)

We shall consider in what follows matrices Θ that are J-unitary on T. If Θ ∈ H∞, x and y are in H2,
then the previous relation is true, for the H2 scalar product. A J-inner matrix will satisfy this condition,
plus some others. These additional conditions are justified as follows. Introduce first

KΘ(z, ν) =
J −Θ(z)JΘ(ν)∗

1− zν
(3.21)

and

KΣ(z, ν) =
I − Σ(z)Σ(ν)∗

1− zν
. (3.22)

RR no 0123456789

74 José Grimm

If Σ is defined by the equivalent formulas

Σ = (J+ −ΘJ−)−1(ΘJ+ − J−) = (J+Θ + J−)(J+ + J−Θ)−1, (3.23.a)

then Θ can be obtained from

Θ = (J+Σ + J−)(J+ + J−Σ)−1 = (J+ − ΣJ−)−1(ΣJ+ − J−). (3.23.b)

In the case

J =
(
I 0
0 −I

)
, Θ =

(
Θ11 Θ12

Θ21 Θ22

)
we have

Σ =

 Θ11 −Θ12Θ−1
22 Θ21 −Θ12Θ−1

22

Θ−1
22 Θ21 Θ−1

22

 ,

so that Σ is defined if Θ22 is invertible. Let F (z) = J+ −Θ(z)J−. Then

KΘ(z, ω) = F (z)KΣ(z, ω)F (ω)∗. (3.24)

Assume Θ rational. If Θ is J-unitary on T, then Σ is unitary on T. If Σ is inner, then KΣ, hence KΘ

are positive functions. On the other hand, if Θ is J-contractive on U (this is a weaker condition), then

Σ will be bounded, hence inner, and KΘ will be a positive function. Note that, if Θ
(

0
x

)
=
(
y
0

)
, the

condition 〈Θu |Θu〉J = 〈u |u〉J gives −‖x‖2 = ‖y‖2, hence x = y = 0. Thus, if Θ is J-unitary on T, Θ22

is invertible on T, so that Σ is always defined.

Definition 7
We say that Θ is J-inner if it is in H∞, is J-unitary almost everywhere on T, and KΘ is a positive
function.

We introduce now two vector spaces

H(Θ) = {
∑
i

KΘ(z, νi)ci, ci ∈ Cp, νi ∈ Ω} (3.25.a)

HΘ = {x ∈ H2,∀y ∈ H2, 〈x | JΘy〉 = 0}. (3.25.b)

3.4.2 Basic properties

Lemma 37
If Θ is rational and J-unitary on T, then H(Θ) has finite dimension.

Proof. Since Θ is J-unitary on T we have

J −Θ(1/ω)JΘ(ω)∗ = 0 (3.26)

whenever ω is in T, but since Θ is rational, this is true almost everywhere, and we get

Θ(ω)−1 = JΘ(1/ω)∗J. (3.27)

From this, we deduce

KΘ(z, ω)JΘ(µ)/µ =
Θ(z)−Θ(µ)

z − µ
µ = 1/ω. (3.28)

Write Θ = N/q, where q is a polynomial of degree ≤ n, N a matrix of polynomials of degree ≤ n. Let

P (z, µ) =
N(z)q(µ)−N(µ)q(z)

z − µ
.

INRIA

Rational approximation of transfer functions in the hyperion software 75

This is a polynomial of degree < n, hence can be written as

P (z, µ) =
n−1∑
i=0

ziPi(µ),

hence

KΘ(z, ω)JΘ(µ)q(µ)/µ =
n−1∑
i=0

zi

q(z)
Pi(µ). (3.29)

Let Ω be an open set, and ν1, . . . , νm be the points of Ω on which Θ(1/ν) is not defined, or not
invertible. For any x in H(Θ), we can write

x =
∑
i

KΘ(z, ωi)ci +
m∑
j=1

KΘ(z, νj)dj

for some constant vectors ci, dj , and elements ωi ∈ Ω, with ωi 6= νj . Let µi = 1/ωi, ei = µiΘ(µi)−1Jci/q(µi),
so that (3.29) gives

x =
n−1∑
i=0

zi

q(z)
(
∑
j

Pi(µj)ej) +
m∑
j=1

KΘ(z, νj)dj .

This shows that H(Θ) is included in a finite dimensional space. 2

The dimension of this space is a priori (n+m)p, but we shall see later that is it is less than that. This
lemma has a converse.

Lemma 38
If the space H(Θ) is a finite dimensional vector space then Θ is rational and J-unitary on T.

Proof. Consider a set of generators of H(Θ), of the form KΘ(z, ωi)ci. Take ω in U, different from all
ωi, for which Θ is defined. There exists some matrices Mi (depending on ω alone) such that

KΘ(z, ω) =
n∑
i=1

KΘ(z, ωi)Mi. (3.30)

This is equivalent to

J

(
I

1− zω
−
∑
i

Mi

1− zωi

)
= Θ(z)J

(
Θ(ω)∗

1− zω
−
∑
i

Θ(ωi)∗Mi

1− zωi

)
. (3.31)

Write this as JA = Θ(z)JB. Note that A and B are rational, so that detA is a rational function. By
construction, it has a singularity at z = 1/ω, so that detA is not identically zero, detB is not identically
zero, hence Θ = JAB−1J is rational.

Multiply relation (3.31) by 1− zω, and take the limit z → 1/ω. If Θ is analytic at z = 1/ω we get

J −Θ(1/ω)JΘ(ω)∗ = 0 (3.32)

Since Θ is rational, this relation is true whenever it is defined, hence almost everywhere. 2

From now on, we shall assume Θ ∈ H∞. Now KΘ(z, ω) is defined for z, ω ∈ U. The set Ω that
appears in the definition of H(Θ) will be U. We also assume Θ J-unitary on T. If x and y are in H2,
then JΘx and ΘJy are in H2 and

〈JΘx |ΘJy〉 = 〈x | y〉. (3.33)

This can also be written as
〈Θx |Θy〉J = 〈x | y〉J .

RR no 0123456789

76 José Grimm

Let c be a constant vector, ω ∈ U. Applying the Cauchy formula twice gives

〈KΘ(z, ω)c | JΘx〉 = 〈 c

1− zω
|Θx〉 − 〈Θ(ω)∗c

1− zω
|x〉 = 0. (3.34)

Thus, if c1 and c2 are constant vectors, ω and µ are in U, we obtain a relation similar to (3.14):

〈KΘ(z, ω)c1 | JKΘ(z, µ)c2〉 = c∗1KΘ(ω, µ)c2. (3.35)

Lemma 39
If Θ is rational and J-inner, then H(Θ) = HΘ.

Proof. Since Θ ∈ H∞, the space HΘ is well defined. Equation (3.34) says that it contains H(Θ).
The note after theorem 23 tells us that 〈x | y〉J is a scalar product on H(Θ) (recall that KΘ is a positive
function, and H(Θ) is of finite dimension). Let (ei)i be an orthonormal basis of H(Θ) for this scalar
product. Take x ∈ HΘ and write

x =
n∑
i=1

〈ei |x〉Jei + y. (3.36)

Now ei ∈ H(Θ) implies y ∈ HΘ, hence 〈Jy |Θ(z)JΘ(ω)∗c/(1− zω)〉 = 0. Since ei is an orthonormal
basis of H(Θ), 〈ei | y〉J = 0, hence 〈t | y〉J = 0 whenever t ∈ H(Θ), hence 〈Jy |KΘ(z, ω)c〉 = 0. Thus

〈Jy |KΘ(z, ω)c− ΘJΘ(ω)c
1− zω

〉 = 0.

By definition of KΘ, this is 〈Jy | Jc/(1− zω)〉 = 0, and the Cauchy formula says that c∗y(ω) = 0. Thus
y = 0 and x ∈ H(Θ). 2

Theorem 24
If Θ is J-inner and rational, then H(Θ) is left shift invariant and finite dimensional.

Proof. Take x in H2.

〈KΘ(z, ω)−KΘ(0, ω)
z

c | JΘx〉 = 〈KΘ(z, ω)c | zJΘx〉 − 〈KΘ(0, ω)c | zJΘx〉.

Both terms are zero, so that R0(KΘ) is in HΘ, hence in H(Θ). 2

3.4.3 J-inner functions and left shift invariant spaces

Assume Θ rational and J-inner. The previous theorem says that H(Θ) is left shift invariant and finite
dimensional, and theorem 10 describes these spaces; in this section, we show that it gives a characterisation
of Θ.

We know that H(Θ) is the set of elements of the form A(I − zC)−1v, v ∈ Cn, where (A,C) is an
observable pair.

Fix ω ∈ Ω and c ∈ Cn. Chose v such that

KΘ(z, ω)c = A(I − zC)−1v.

Take w ∈ Cn and let y = A(I − zC)−1w. Now (3.35) says

〈KΘ(z, ω)c | Jy〉 = c∗y(ω). (3.37)

Define

P =
∞∑
k=0

C∗kA∗JACk. (3.38)

INRIA

Rational approximation of transfer functions in the hyperion software 77

Lemma 40
P is a positive definite matrix.

Proof. Note that elements of H(Θ) are analytic in U, and have no singularity on T. This means that
eigenvalues of C are in U, and the series that defines P is convergent. If we replace in (3.37) KΘ(z, ω)c
by A(I − zC)−1v and expand, we get v∗Pw = c∗y(ω) hence

Pv = (I − ωC∗)−1A∗c, (3.39)

and
KΘ(z, ω) = A(I − zC)−1P−1(I − ωC∗)−1A∗. (3.40)

The matrix P is invertible, because, if Pw = 0, then c∗y(ω) = 0 whatever c and ω, so that y is identically
zero, and w = 0. Now, since any vector d can be written as

∑
i(I − ωiC

∗)−1A∗ci, we get∑
ij

c∗iKΘ(ωi, ωj)cj = d∗Pd. (3.41)

Now d∗Pd ≥ 0 because KΘ is positive. 2

Lemma 41
If (A,C) is an observable pair, and eigenvalues of C are in U, then the equation

A∗JA = P − C∗PC (3.42)

has a unique solution P . If J = J∗ then P = P ∗. If J is positive definite, so is P . Moreover, P satisfies
equation (3.38).

Proof. Let P be a solution. If Tk =
∑
i≤k C

∗iA∗JACi, then Tk = P − C∗ k+1PCk+1. Hence Tk
converges to P , hence (3.38). Since (3.42) is a set of n2 linear equations in n2 variables, it has a unique
solution, provided that the associated homogeneous system has only P = 0 as solution. But, if J = 0,
we have Tk = 0, hence P = 0.

Thus, if J is positive definite, we get x∗Px ≥ 0 for each vector x. In the case where this is zero, we
get ACix = 0 for each i, so that the observability of (A,C) tells us x = 0. 2

Note: take

J =
(

1 0
0 −1

)
, A =

(
tanφ tan θ 1/ cosφ
tan θ/ cosφ tanφ

)
, C =

(
0 0

1/ cosφ 0

)
.

Then A∗JA = I − C∗C. Hence P can be positive, even though A∗JA is not positive.

From the relation

KΘ(z, a) =
J −Θ(z)JΘ(a)∗

1− za
we get

Θ(z) = [I − (1− za)KΘ(z, a)J]Θ(a)

in the case |a| = 1, because Θ(a) is J-unitary. Hence

Θ(z) = [I − (1− za)A(I − zC)−1P−1(I − aC∗)−1A∗J]Θ(a), (3.43.a)

a ∈ T,Θ(a) is J-unitary. (3.43.b)

Theorem 25
If Θ is J-inner and rational, there exists an observable pair (A,C), where the eigenvalues of C are in U.
such that the matrix P defined by (3.42) is positive definite, and Θ is defined by (3.43), KΘ by (3.40).
On the other hand, given an observable pair (A,C), if the matrix P defined by (3.42) is positive definite,
then the matrix Θ defined by (3.43) is J-inner. The McMillan degree of Θ is the dimension of H(Θ), the
size of the matrix C.

RR no 0123456789

78 José Grimm

Note that this completes the proof of theorem 22
Proof. 1. Note that the condition a ∈ T implies that both members of (3.43.a) evaluate to Θ(a) in
case z = a. The non-trivial part of the theorem is to prove that Θ satisfies (3.43). Everything else is a
straightforward computation.

2. Assume that (3.43) is satisfied. Let’s compute KΘ. Write

X(z) = (1− za)A(I − zC)−1P−1(I − aC∗)−1A∗.

Then

KΘ(z, ω) =
X(z) +X(ω)∗ −X(z)JX(ω)∗

1− zω
.

Write Y (z) = (I − zC)−1P−1(I − aC∗)−1. Then

KΘ(z, ω) =
(1− za)(1− ωa)

1− zω
A∗Y (z)

[
Y −1(z)
1− ωa

+
Y −1(ω)∗

1− za
−A∗JA

]
Y (ω)∗A∗.

If we use equation (3.42), the term in brackets becomes λ(I − aC∗)P (I − aC), where λ = (1− zω)/(1−
za)(1− ωa) is the inverse of the factor that appears in KΘ. Thus, KΘ has the form (3.40).

3. Since P is positive definite, KΘ is a positive function. Since the eigenvalues of C are in U, the
function Θ is analytic in U. Since KΘ is defined on T, the definition (3.21) of KΘ says that Θ is J-unitary
on T. Hence Θ is J-inner.

4. Let’s now compute the McMillan degree of Θ. We may assume a = 1, and ignore the factor Θ(a).
Applying (3.27) gives

Θ(z)−1 = I − (z − 1)A(I − C)−1P−1(zI − C∗)−1A∗J. (3.44)

Write B = P−1(I − C∗)−1A∗. Using the relation (z − 1)(zI − F)−1 = I + (F − I)(zI − F)−1 gives

Θ(z)−1 = I −B∗A∗J −B∗(C∗ − I)(zI − C∗)−1A∗J. (3.45)

This equation has the form Θ−1 = H(zI − F)−1G+K, it is a proper, stable, rational transfer function.
We know that, if the realization is minimal, the McMillan degree of Θ−1, which is the same as the
McMillan degree of Θ, is the dimension of the matrix F , which is C∗ in the equation above, and the
dimension of the matrix is, because of the observability of (A,C), the dimension of H(Θ).

5. Let’s show that the realization (3.45) is minimal. Since (A,C) is observable, it is clearly reachable.
Let’s show that it is observable. We consider x such that C∗x = λx and B∗(C∗ − I)x = 0, and we
want to show that x is zero. Notice first that these equations give B∗(1 − λ)x = 0, and, since λ 6= 1,
B∗x = 0. Let y = (I − C)−1P−1x. Then x = P (I − C)y, Ay = 0, and C∗x = λx. Now, equation (3.42)
says Py = C∗PCy. Applying this relation twice gives x = (C∗ − I)PCy and C∗x = (C∗ − I)Py. Now
C∗x = λx and the invertibility of (C∗ − I)P gives y = λCy. Hence, if λ = 0, we have y = 0; otherwise y
is an eigenvector of C, but Ay = 0 and the observability of (A,C) says now y = 0. Thus x = 0. 2

The next lemma will play a role in the proof of the Potapov theorem.

Lemma 42
If u is a non-zero vector such that u∗Θ(ω) = 0 for some ω ∈ U, then u∗Ju > 0.

Proof. The assumption on u implies u∗KΘ(ω, ω)u = u∗Ju/(1 − |ω|2) ≥ 0. If u∗KΘ(ω, ω)u = 0, then
(I − ωC∗)−1A∗u = 0, because P is positive definite. This implies A∗u = 0, and u∗Θ(z) = u∗Θ(ω) = 0.
Since this is true for every z, taking z = 1 gives u = 0, because Θ(1) is invertible. 2

INRIA

Rational approximation of transfer functions in the hyperion software 79

3.4.4 The theorem of Potapov

What we are trying to show here is that every J-inner rational function is the product of J-inner functions
of degree one. The next lemma says that the product of two J-inner matrices is J-inner, and gives a
converse.

Lemma 43
If Θ1 and Θ2 are two J-inner matrices, then the product Θ1Θ2 is J-inner, and the McMillan degree is
the sum of the McMillan degrees of Θ1 and Θ2. On the other hand, if Θ and Θ1 are J-inner and rational,
then Θ−1

1 Θ is J-inner if it is analytic in U.

Proof. 1. If Θ = Θ1Θ2 we have

KΘ(z, ω) = KΘ1(z, ω) + Θ1(z)KΘ2(z, ω)Θ1(ω)∗. (3.46)

If each Θi is J-unitary on T, so is the product. Moreover, if KΘi are positive functions, then KΘ is a
positive function. This shows the first claim.

2. We assume now that Θ and Θ1 are J-inner, and Θ2 is analytic in U. Then Θ2 is J-unitary on T.
We have to show that KΘ2 is a positive function.

3. We have H(Θ1) ⊂ H(Θ). This is because, if y ∈ H(Θ1), Jy is orthogonal to every Θ1t (t ∈ H2),
hence to every Θ1Θ2t. Thus y ∈ HΘ, and y ∈ H(Θ).

4. Let xωc = Θ1(z)KΘ2(z, ω)Θ1(ω)∗c. Let x1 = KΘ(z, ω)c and x2 = KΘ1(z, ω)c. Then x1 ∈ H(Θ)
and x2 ∈ H(Θ) so that xωc = x1 − x2 ∈ H(Θ). Let t = JKΘ(z, ω′)c′. Then 〈Jt |xωc〉 = 〈Jt |x1 − x2〉 =
c′∗xωc(ω′).

Now, xωc ∈ Θ1H
2, hence is orthogonal to JKΘ1(z, ω

′)c′. Thus

〈xωc |xω′c′〉J = c∗xω′c′(ω).

Hence, if y =
∑

Θ1(z)KΘ2(z, ωi)Θ1(ωi)∗ci we have

〈y | Jy〉 =
∑
ij

c∗iΘ1(ωi)KΘ2(ωi, ωj)Θ1(ωj)∗cj . (3.47)

5. Since y ∈ H(Θ), we have 〈y | y〉J ≥ 0. Take some numbers ωi such that Θ1(ωi) is invertible, and
di = Θ1(ωi)∗ci. Now (3.47) says ∑

d∗iKΘ2(ωi, ωj)di ≥ 0.

This is true, by continuity, even if Θ(ωi) is not invertible.
6. Every element of H(Θ) can be written as x + Θ1y, where x ∈ H(Θ1) and y ∈ H(Θ2). Such a

decomposition is obviously unique (if x is in H(Θ1) and Θ1H
2, then x is zero). We showed that x and

Jy are orthogonal. Thus the dimension of H(Θ) is the sum of the dimensions of H(Θ1) and H(Θ2). 2

The question is now: what are the J-inner matrices of degree one? In equation (3.43), C is a 1 × 1
matrix, hence a scalar. Write C = γ. Equation (3.42) says now

P =
A∗JA

1− |γ|2
.

Equation (3.43), with a = 1 and Θ(1) = I, gives now

Θ = I +
(z − 1)(1− |γ|2)
(1− zγ)(1− γ)

AA∗J

A∗JA
.

This can be written as
Θ = I − (1− βγ)

AA∗J

A∗JA
. (3.48)

RR no 0123456789

80 José Grimm

Recall that βγ is the normalised Blaschke product of degree one with root γ. We have two equivalent
formulas for KΘ.

KΘ(z, ω) =
1− |γ|2

(1− zγ)(1− ωγ)
AA∗

A∗JA
. (3.49.a)

KΘ(z, ω) =
1− βγ(z)βγ(ω)

1− zω

AA∗

A∗JA
. (3.49.b)

In the case where J =
(
I 0
0 −I

)
, we can write A =

(
u
v

)
, and the condition A∗JA > 0 (which is

equivalent to P > 0) is ‖y‖ < ‖u‖. Multiplying A by a scalar constant does not change Θ, so that we
can always assume ‖u‖ = 1. Thus, Θ has the form (3.5).

Assume now
Θ1 = I − (1− βω)uu∗J/(u∗Ju), (3.50.1)

Θ2 = I − (1− βω′)vv∗J/(v∗Jv). (3.50.2)

Lemma 44
If Θ is J-inner, u∗JΘ(ω) = 0, then Θ−1

1 Θ is J-inner.

Proof. Apply the previous two lemmas. The first one says that u∗Ju > 0, so that Θ1 is J-inner. Since
Θ−1

1 = I − (1− 1/βω)uu∗J/(u∗Ju), the matrix Θ−1
1 Θ is analytic in U. The second lemma says that it is

J-inner. 2

Now, the hard point is the following: under which condition is the product Θ1Θ2 real. Introduce the
following quantities

U =
uu∗J

u∗Ju
, V =

vv∗J

v∗Jv
, ω = a+ ib, c =

2b
1− a2 − b2

. (3.51)

Lemma 45
In the case ω is not real, the product Θ1Θ2 is real if and only if ω′ = ω, and

=[U + V] = 0 (3.52.a)

=[ic(U − V)− 2UV] = 0. (3.52.b)

Proof. Since the determinant of Θ1Θ2 is βωβω′ , the condition ω′ = ω is necessary. We have a second
condition, which is now

=[
−U

1− βω
+

−V
1− βω

+ UV] = 0.

We have
1

1− βω
= 1− ic

2
+

|1− ω|2

(1− z)(1− |ω|2)
− 2− ω − ω

2(1− |ω|2)
, (3.53)

from which we deduce (3.52.a), then (3.52.b). 2

Lemma 46
If ω′ = ω, the two conditions v proportional to JΘ1(ω)∗Ju and u proportional to Θ2(ω)v are equivalent.

Proof. Note that 1/(1− βω(ω)) = 1− ic. The first condition is now

v = λv(1 + ic− uu∗J

u∗Ju
)u.

INRIA

Rational approximation of transfer functions in the hyperion software 81

Define
λ =

u∗Ju

u∗Ju
. (3.54)

We have now
v = λv[(1 + ic)u− λu]. (3.55.a)

This gives
v∗Jv = |λv|2(1 + c2 − |λ|2)u∗Ju,

and

µ =
v∗Jv

v∗Jv
= −λλv

λv
.

Now, we can deduce u from (3.55.a) and get

u = λu[(1 + ic)v − µv] (3.55.b)

with 1/λu = λv(1+ c2− |λ|2). If u has this form, it is now obvious that u is proportional to Θ2(ω)v. 2

Note: Assume that Θ is real and u∗JΘ(ω) = 0. Then u∗JΘ(ω) = 0. Let Θ = Θ1Θ′. We know that Θ′

is J-inner. The condition of the lemma is v∗JΘ′(ω) = 0. We know that this condition implies v∗Jv > 0.
It says that Θ−1

2 Θ′ is J-inner. In the case where J is the identity matrix, the equation v∗Jv > 0 holds
in any case, because |λ| ≤ 1, c > 0 (because ω is not real), hence 1 + c2 − |λ|2 > 0.

Lemma 47
Conditions (3.52) and (3.55) are equivalent.

Proof. 0. If (3.55) is true, then an easy check gives (3.52). Hence we shall assume that (3.52) is true.
1. Assume that w is real and orthogonal to u. Then w∗U = 0, and (3.52) implies w∗V = 0, hence

w∗v = 0 (recall that c is non-zero). Assume now that w is orthogonal to u and u. Then w + w and
i(w − w) are real and orthogonal to u, hence to v. In other words, v is a linear combination of u and u.

2. Introduce U0 = uu∗J/u∗Ju. If
v = αu+ βu (3.56)

we get

V =
|α|2U + αβU0 + βαU0 + |β|2U
|α|2 + |β|2 + αβλ+ αβλ

, (3.57)

so that (3.52.a) becomes
(2|α|2 + αβλ+ αβλ)(U − U) = 0. (3.58)

3. Assume that u and u are linearly dependent. Then u = γu for some γ. Since |γ| = 1, we can write
γ = e2iφ and ue−iφ is real. Hence U is real. But v is proportional to u, so that V = U . Now equations
(3.52) are satisfied. From now on, we shall assume that u and u are linearly independent. Then U 6= U .
Now, if α = 0, v is proportional to u so that V = U , U + V and ic(U − V) are real. Hence (3.52) is
equivalent to =UV = 0. But

UU = λ
uu∗J

u∗Ju
.

If λ 6= 0, this cannot be real (it would give a linear dependency relation). Note that λ = 0 implies α = 0.
4. From now on, we assume U 6= U , α 6= 0 and λ 6= 0. Write t = −λ/α, γ = βt. Now (3.58) says

γ + γ = 2, so that γ = 1 + id for some real d. We have now

V =
|λ|2U + (1 + d2)U − 2<[λ(1− id)U0]

1 + d2 − |λ|2
, (3.59.a)

UV =
id

1 + d2 − |λ|2
[−|λ|2U + λ(1− id)U0]. (3.59.b)

RR no 0123456789

82 José Grimm

Now (3.52.b) says
2(c− d)

1 + d2 − |λ|2
<[λ(1− id)U0 − |λ|2U] = 0.

If we multiply this equation by u∗J we get c = d or

λ(1− id− |λ|2)u∗ + |λ|2idu∗ = 0.

Now, since λ 6= 0, this gives a linear relation between u and u (unless d = 0, λ = 1, case where V is
undefined). Hence c = d. 2

Corollary 8
Assume that Θ is a J-inner rational matrix. Then detΘ = εq/q̃ for some stable polynomial q. If Θ is not
constant, then q is not constant. Assume that q(ω) = 0.

There exists a matrix Θ1 such that Θ1 and Θ−1
1 Θ are J-inner, Θ1 has McMillan degree one, and

detΘ1 = βω. Assume that Θ and J are real. The same result is true, for some real Θ1 if ω is real; if ω is
not real, we can find Θ1 real, of McMillan degree two, and det Θ1 = βωβω, with Θ−1

1 Θ J-inner.

Proof. Equation (3.27) says that detΘ(z) is in T if z ∈ T, so that it is inner, and has the form εq̃/q
for some stable q. If the determinant is constant, equation (3.45) says that Θ is constant.

Assume now that q(ω) = 0. Then Θ(ω) is not invertible. There exists u such that u∗Θ(ω) = 0. The
result is now obvious from lemma 44. Note that if Θ and J are real, if ω is also real, we can chose u real,
so that Θ1 will be real. Assume ω not real. Then if v is defined by (3.55.a), the matrix Θ1Θ2 (defined
by (3.50)) is real, and (Θ1Θ2)−1Θ is J-unitary. 2

Theorem 26 (Potapov)
Let Θ be a J-inner rational matrix. Its determinant has the form εq/q̃, where q is stable and monic.
Write it as q(Θ).

If q = q1q2 · · · qn, αi ∈ T, Ai is J-unitary and constant (0 ≤ i ≤ n+1), there exits n J-inner matrices
Θi such that

Θ = A0Θ1Θ2 · · ·ΘnAn+1 (3.60)

and Θi(αi) = Ai, q(Θi) = qi. Among the n+ 2 matrices Ai, n+ 1 can be chosen arbitrary, the last one
is defined by the previous equation.

If qi, Ai, αi, Θ and J are real, then Θi can be chosen real.

Proof. 1. Assume first that qi is irreducible (in the complex case, it is of degree one, in the real case,
it is of degree one or two). Assume that

Θ = Θ1Θ2 · · ·ΘkX, (3.61.a)

where Θi is J-inner, q(Θi) = qi, and X is J-inner. Then q(X) = qk+1 · · · qn. The corollary says that we
can obtain a similar formula with k + 1 instead of k provided that k < n. It says that X is constant if
k = n. Thus, by induction, we obtain (3.60).

2. Assume that qi is any polynomial. Let’s factor it. Since the product AB of two J inner matrices
is J-inner and q(AB) = q(A)q(B), we obtain (3.60) in this case also. Note that, if qi is constant, its
associated matrix is the identity matrix.

3. We have
Θ = B−1

1 (B1Θ1B
−1
2)(B2Θ2B

−1
3) · · · (BnΘnB

−1
n+1)(Bn+1X). (3.61.b)

If we want BiΘi(αi)B−1
i+1 = Ai, we can write

Bi+1 = A−1
i BiΘi(αi) or Bi = AiBi+1Θi(αi)−1.

Assume that A0, A1, . . . , Ak−1, Ak+1, . . . , An+1 are fixed. Then we take B1 = A−1
0 , and use the first

relation to determine B2, B3, up to Bk. After that, we determine Bn+1 = An+1X
−1, and use the second

relation to get Bn, Bn−1, down to Bk+1. All these matrices are obviously J-unitary. 2

INRIA

Rational approximation of transfer functions in the hyperion software 83

3.5 The Schur algorithm

In this section, unless stated otherwise, are matrices will be rational, A and B will be of size p× p, while
Θ has size 2p× 2p and partitioned as

Θ =
(

Θ11 Θ12

Θ21 Θ22

)
. (3.62)

The matrix J will be of size 2p× 2p, J =
(
I 0
0 −I

)
.

The Schur formulas (3.3)

B = TΘ(A) = (Θ11A+ Θ12)(Θ21A+ Θ22)−1

are written as

V = Θ11A+ Θ12, U = Θ21A+ Θ22, U ′ = Θ11 −BΘ21, V ′ = BΘ22 −Θ12, (3.63)

TΘ(A) = V U−1 T−1
Θ (B) = U ′−1V ′. (3.64)

Let τB = (I −B). If DB(Θ) is the matrix U ′ above, then the previous formulas can be written as

τBΘ = DB(Θ)τA ⇔ B = TΘ(A). (3.65)

Introduce the following kernels:

KB(z, ν) =
I −B(z)B(ν)∗

1− zν
, KΘ(z, ν) =

J −Θ(z)JΘ(ν)∗

1− zν
. (3.66)

If KA is defined like KB , then (3.63) and (3.64) say

U ′KAU
′∗ = KB − τBKΘτ

∗
B . (3.67)

Introduce also

K∗
A(z, ν) =

I −A(z)∗A(ν)
1− zν

, K∗
Θ(z, ν) =

J −Θ(z)∗JΘ(ν)
1− zν

. (3.68)

An easy computation says that B = TΘ(A) is equivalent to

X(µ, ν) =
U(µ)∗U(ν)− V (µ)∗V (ν)

1− µν
= (A(µ)∗ I)K∗

Θ(µ, ν)
(
A(ν)
I

)
+K∗

A(µ, ν). (3.69.a)

Y (µ, ν) =
U ′(µ)U ′(ν)∗ − V ′(µ)V ′(ν)∗

1− µν
= KB(µ, ν)− (I −B(µ))KΘ(µ, ν)

(
I

−B(ν)∗

)
. (3.69.b)

Note that (3.69.b) is nothing else than (3.67).

Lemma 48
Assume that Θ is J-inner. If A is inner, X is positive, then V U−1 is inner. If B is inner, Y is positive,
then U ′−1V ′ is inner.

Proof. The proof is the same for both claims. Consider the quantity

c∗[U(µ)∗U(ν)− V (µ)∗V (ν)]c. (∗)

If Θ is J-inner and A is inner, this quantity is zero if µ = ν ∈ T.
We assume now that this quantity is ≥ 0 whenever µ = ν ∈ U. This is weaker than just saying that

X is positive. Hence
‖U(µ)c‖ ≥ ‖V (µ)c‖. (3.70)

RR no 0123456789

84 José Grimm

Recall that

Θ(µ)
(
A(µ)c
c

)
=
(
U(µ)c
V (µ)c

)
.

If U(µ)c = 0, then V (µ)c = 0 by (3.70). The previous equation then says that Θ(µ) is not invertible. Since
Θ(µ) has not a constant zero determinant (it is invertible for µ ∈ T), we deduce that the determinant of
U is not identically zero, so that B = TΘ(A) is defined for almost every µ. But equation (3.70) can be
written as

‖B(µ)c‖ ≤ ‖c‖.

This says that B is bounded. Since B is rational, it cannot have a pole in U (nor can it have a pole on
T). Hence B is in H2. 2

If we assume that Θ is J-inner, then the conditions AA∗ = I and BB∗ = I are equivalent. What this
lemma says is just that, if some kernels are positive, then matrices A or B are analytic in U. The easy
case is to show that if A is inner then B is inner. We already know this, and X is positive. The non
trivial point is the reverse: under which condition is T−1

Θ inner.

Theorem 27
Assume Θ J-inner, B = TΘ(A). The following conditions are equivalent

• A is inner

• B is inner and τBx ∈ H(B) whenever x ∈ H(Θ).

Moreover, the McMillan degree of B is the sum of the McMillan degrees of A and Θ.

Proof. 1. Assume first that B is inner, and τBx ∈ H(B) whenever x ∈ H(Θ). Note that, if x =
(
x1

x2

)
,

then τBx = x1 − Bx2. This is orthogonal to Bx2, since it is in H(B). But 〈Bx2 |Bx2〉 = 〈x2 |x2〉, so
that

‖τBx‖2 = ‖x1‖2 − ‖x2‖2 = ‖x‖2J . (3.71)

Remember that ‖x‖J is the norm in H(Θ).
2. Let τ be the mapping fromH(Θ) intoH(B) that associates τBx to x. This is an isometry, according

to (3.71). Let τ∗ be its dual map. If x and y are in H(B) we have

〈ττ∗x | ττ∗y〉 = 〈τ∗x | τ∗y〉J = 〈ττ∗x | y〉. (2.72.a)

Hence
〈ττ∗x | (I − ττ∗)y〉 = 0, (3.72.b)

and
〈x | (I − ττ∗)x〉 = ‖(I − ττ∗x)‖2 ≥ 0. (3.72.c)

Equation (3.72.b) says that the images of ττ∗ and I − ττ∗ are direct and orthogonal. In particular

H(B) = Imττ∗ ⊕ Im(I − ττ∗). (3.73)

Since all our spaces are finite dimensional, the injectivity of τ implies that τ∗ is surjective, so that τ and
ττ∗ have the same image. We pretend that

H(B) = τBH(Θ)⊕DB(Θ).H(A). (3.74)

3. Take now x = KB(·, ν)c1 and y ∈ H(Θ). The properties of KB and KΘ say

〈x | τy〉 = 〈KB(·, ν)c1 | τBy〉 = c∗1τB(ν)y(ν) = 〈KΘ(·, ν)τB(ν)∗c1 | y〉J ,

INRIA

Rational approximation of transfer functions in the hyperion software 85

hence
τ∗KB(·, ν)c1 = KΘ(·, ν)τB(ν)∗c1.

Now equation (3.67) gives
(I − ττ∗)x = U ′(z)KA(z, ν)U ′(ν)∗c1. (3.75)

Let y be this quantity. It is in H(Θ), so that 〈x | y〉 = c∗1y(ν). Now (3.72.c) gives

c∗1U
′(ν)KA(ν, ν)U ′(ν)∗c1 ≥ 0.

4. This condition says that A is inner. Since U ′ is almost everywhere invertible, equation (3.75) says
that Im(I − ττ∗) = U ′H(A), hence (3.74).

From (3.74), we get: the dimension of H(B) is the sum of the dimensions of H(Θ) and H(A), thus
the McMillan degree of B is the sum of the McMillan degrees of A and Θ.

5. We use induction to show the converse, namely that if A is inner, then B = TΘ(A) is inner (we
already know this) and τ maps H(Θ) into H(B). There is nothing to show if Θ has McMillan degree
zero, because KΘ is zero, and H(Θ) has dimension zero.

Otherwise, we can always write Θ = Θ1Θ2, where Θ1 has the form (3.5) and Θ2 has smaller degree
than Θ. Let C = TΘ2(A) and B = TΘ1(C). An easy computation says that B = TΘ(A).

According to (3.46) we have

KΘ(z, ω) = KΘ1(z, ω) + Θ1(z)KΘ2(z, ω)Θ1(ω)∗.

Now (3.65) gives

τB(z)KΘ(z, ω) = τB(z)KΘ1(z, ω) +DB(Θ1)τC(z)KΘ2(z, ω)Θ1(ω)∗. (3.76)

By induction
τCKΘ2Θ1(ω)∗ ∈ H(C).

The proof is complete if we show

H(B) = τBH(Θ1)⊕DB(Θ1)H(C). (3.77)

If we compare with (3.74), it is enough to show that τBx ∈ H(B), whenever x ∈ H(Θ1) (i.e. prove the
claim in the case of dimension one). But H(Θ1) has dimension one, and τBx is

λ
u−B(z)y

1− zω

for some complex λ, and

〈u−B(z)y
1− zω

|Bf〉 = (u∗B(ω)− y∗)f(ω).

Now, this is zero, according to Theorem 20. 2

We shall demonstrate three lemmas, in order to prove the next theorem, that was used in the previous
chapter.

Lemma 49
Assume |α| < 1. The mapping ω → βω(α) is a bijection from U to itself, and its inverse is a C∞ function.

Proof. We have x = βω(α) if and only if

1− xα

1− x
|ω|2 − ω − αω +

α− x

1− x
= 0, ω 6= 1. (3.78)

RR no 0123456789

86 José Grimm

Introduce γ = (x− α)/(1− x) and X = (1 + α+ γ)|ω|2 − ω − αω − γ. The previous equation is X = 0.
Note that x ∈ U if and only if <(1 + x)/(1− x) > 0. Let A = (γ − γα)/(1− |α|2). Then

A =
x− |x|2 − α+ α|x|2 + |α|2 − |α|2x

(1− x)(1− x)(1− |α|2)
. (3.79)

Hence

<(A+ 1/2) =
(1− |x|2)(1− α)(1− α)
2(1− x)(1− x)(1− |α|2)

=
1
2
<1 + x

1− x
/<1 + α

1− α
. (3.80)

Since |α| < 1, we have x ∈ U if and only if <(A+ 1/2) > 0. Now

X − αX = (1− |α|2)[(A+ 1)|ω|2 −A− ω]. (3.81)

Since |α| 6= 1, we have X = 0 if and only if X − αX = 0, hence x = βω(α) is equivalent to

(A+ 1)|ω|2 = A+ ω ω 6= 1. (3.82)

If we write ω = u+ iv, it is easy to check that the previous equation has two solutions in ω, namely ω = 1
and ω = −A/(A+ 1). Moreover, for the second solution, we have ω ∈ U if and only if <A > −1/2. 2

Lemma 50
If Q0 is inner, of McMillan degree n > 0, there exists Q near Q0, Θ and A such that Q = TΘ(A). We
can chose A such that there exists α ∈ U, such that A(α) is invertible, Q(α) is not invertible.

Proof. We can write Q0 = TΘ0(A), where Θ0 is defined by u, ω0, and y, and ω0 is real. Let Q be
defined as TΘ(A), where Θ is defined by y, ω and u. If ω is near ω0, then Q is near Q0.

Take ω real. The Schur formulas give

q = (1− ω)[qA(z − ω − (1− zω)‖y‖2) + y∗D̃Au(1− zω − z + ω)]. (3.83)

We want to find α such that qA(α) is not zero, and q(α) is zero. Since q is of degree n and qA of degree
n − 1, this is possible, unless every root of qA is a root of q, said otherwise, q divides qnA. Now, the
remainder R of the division of qnA by q is a rational function of ω, because of equation (3.83). If this is
not identically zero, we can chose ω arbitrarily near to ω0 for which this condition is true.

Finally, q/(1−ω) has a limit as ω → 1, and this limit has 1 as a root, which is not a root of qA. Hence
R is not identically zero. 2

Lemma 51
If Q = TΘ(A), V0 ∈ H2, V0Q

−1 ∈ H2, v = A−1(α)u − y, then V0(α)v = 0, provided that A(α) is
invertible, and Q(α) is not invertible.

Proof. If V0 = V Q, the Schur formulas say

(b̃− b)
qA
q̃A
V0(A−1u− y)(u∗ − y∗A−1)DA = (V A− V0)q. (3.84)

Evaluate this at z = α. One assumption is q(α) = 0, so that this is zero. We also assume that α ∈ U,
so that q̃A is not zero at z = α. The second assumption is that qA(α) 6= 0. Hence DA is invertible,
because DAD̃A = qAq̃A. We get (b̃− b)V0(A−1u− y)(u∗ − y∗A−1) = 0. It is easy to check that b̃− b and
u∗ − y∗A−1 cannot be zero when evaluated at z = α. 2

Theorem 28
Let Q0 be an inner matrix of McMillan degree n > 0 and V0 a matrix with entries in H2 such that,
whenever Q is near Q0, then V0Q

−1 has entries in H2. Then V0 = 0.

INRIA

Rational approximation of transfer functions in the hyperion software 87

Proof. Chose Q1 near Q0, u0, y0, ω0 such that Q1 = TΘ0(A), where Θ0 is defined by (u0, y0, ω0), and
α0 such that A is invertible at α0 and Q1 is not. Let v0 = A−1(α0)u0 − y0.

Chose v near v0, and α near α0, and qA(α) 6= 0. Let y = A−1(α)u0 − v. Consider Q = TΘ(A), where
Θ is defined by u0, y and ω. Now α is a root of q provided that

βω(α) =
‖y‖2 − y∗A−1(α)u0

1− y∗A−1(α)u0
. (3.85)

We know that the right hand side of this is near the same quantity with indices 0 on y and α, which is
zero, because Q1(α0) is not invertible. One of the previous lemmas says now that there exists ω near ω0

for which this equation is true.
Finally, we know that Q is near Q1, hence near Q0, and we can apply the last lemma, which says

V0(α)v = 0. Since this is true for almost all α near α0, and all v near v0, it follows that V0 is identically
zero. 2

3.6 The manifold of inner functions

Let Ipn be the set of rational inner matrices of degree n and size p. This is a C∞ manifold, see for
instance [1]. We consider also the set Ipn(1) formed of matrices Q such that Q(1) = I.

3.6.1 Case of dimension one

Let Sn be the set of monic stable polynomials. Any inner function is of the form cq/q̃, where q ∈ Sn and
c ∈ U . This gives us three ways to parameterise inner functions, namely, by c and the coefficients of q,
or by the Schur parameters (see introduction of this Chapter), or by specialising the algorithm described
below to the case n = 1.

Let In0 be the set of inner functions of the form q/q̃. Topologically, Sn and In0 are equivalent. Let’s
first state the following lemma:

Lemma 52
Sn is an open subset of Cn, its closure is the (compact) set of polynomials with roots in U.

Note that, if q =
∑
qiz

i, and qn = 1 we can consider q as an element of Cn, namely the vector with

coordinates (q0, q1, . . . , qn−1), which has norm ‖q‖1 =
√∑n−1

i=0 |qi|2. Since ‖q − q′‖1 = ‖q − q′‖, the
topology of Sn is the same, whether we consider Sn as a subset of Cn or a subset of H2 (of course, Sn is
not open in H2). The lemma is just an application of a more general result that says that the roots of q
are continuous functions of the coefficients of q.

Theorem 29
The mapping q → q/q̃ is continuous, with continuous inverse, from Sn onto In0.

Proof. A little computation show that, if p and q are in Sn, we have

‖p
p̃
− q

q̃
‖2 = 2<〈p

p̃
| (p− q)(p̃− q̃)

p̃q̃
〉.

This is essentially because
〈p
p̃
| p
q̃
〉 = 〈p

p̃
| q
p̃
〉 = 1.

There exists a polynomial Xp, such that, for every polynomial A of degree at most 2n we have

〈p
p̃
| A
p̃2
〉 = 〈Xp |A〉.

RR no 0123456789

88 José Grimm

Moreover, there exists Xpq such that

〈p
p̃
| A
p̃2
〉 − 〈p

p̃
| A
p̃q̃
〉 = 〈Xpq |A〉

and this is bounded by ‖Xpq‖‖A‖. Since Xpq is a continuous function of q at q = p, and vanishes for
q = p, it is small for q near p. Take now A = (p− q)(p̃− q̃). We have ‖A‖ = ‖p− q‖2. Hence

‖p
p̃
− q

q̃
‖2 ≤ 2‖Xp‖‖p− q‖2 + o(‖p− q‖2).

This shows that the mapping p→ p/p̃ is continuous.
The converse is not so easy. Assume that qk is a sequence of elements of Sn such that qk/q̃k converges

to p/p̃. We want to show that qk converges to p. Since qk is the closure of Sn which is compact, it is
enough to show that, if qk converges, the limit is p. However, if the limit is q, and q is stable, we know
that qk/q̃k converges to q/q̃, hence p = q. But if q is not stable, we do know nothing. Hence the following
argument.

Let α be a root of p, of multiplicity nα. Let

gi =
i!zi

(1− zα)i+1
.

The Cauchy formula says that 〈gi | f〉 is the i-th derivative of f at α. This is a continuous function of f .
Assume f = s/s̃. It is easy to show by induction on i that we have

f (i) =
i∑

j=0

aj
s(j)

s̃i+1−j

for some quantities ai, which are polynomial functions of s and s̃, and the derivatives of s̃. Moreover
ai = 1. If we take s = p, and evaluate at α, we get zero if i < nα. Hence

lim
k→∞

i∑
j=0

ajk(α)
q
(j)
k (α)

q̃i+1−j
k (α)

= 0.

By induction, limk q
(i)
k (α) = 0. This is true because quantities ajk(α) have a limit, q̃k(α) has a non-zero

limit, and ai = 1.
Now limk q

(i)
k (α) = q(i)(α) = 0, so that (z−α)nα divides q. Hence p divides q. Since p and q have the

same degree we get p = q. 2

It is now interesting to analyse the boundary of Sn. Obviously, q is in the boundary of Sn if q is the
product of q1 ∈ Sk and q2, where the roots of q2 are in T. Hence, this boundary is the union of objects
homeomorphic to Cn−k × Tk, 1 ≤ k ≤ n. If we consider only real polynomials, the situation is a bit
more complex: we may have two roots, which are complex conjugate. Hence the boundary is the union
of quantities homeomorphic to Sn−k−2p × Ik × Ip. Here Ik is the set of polynomials of degree k with
roots in U, this is ±1, so that it is a finite set of k + 1 elements. Moreover I is the set of polynomials
with two complex conjugate roots of modulus one, hence the set of polynomials of the form z2 − az + 1,
|a| < 2. It is homeomorphic to R. Thus, the boundary of Sn is the union of copies of Rk 0 ≤ k < n.

For instance, if n = 2, the boundary is 3R0 + 3R1 (recall that S2 is the triangle defined by u < 1,
v < u+ 1 and −v < u+ 1). If n = 3, the boundary is 4R0 + 5R1 + 3R2. In fact, if q = z3 + az2 + bz+ c,
then q is stable if

S1(a, b, c) = 1 + a+ b+ c > 0

S2(a, b, c) = 1− a+ b− c > 0

S3(a, b, c) = 1 + ac− b− c2 > 0.

INRIA

Rational approximation of transfer functions in the hyperion software 89

Note that S1 = 0 and S2 = 0 are planes. In the decomposition ∂S3 = 4R0 + 5R1 + 3R2, the three
quantities R2 are parts of the surfaces Si = 0, the four quantities 4R0 are the polynomials z3 ± 1,
(z ± 1)3, and the fives quantities R1 are the intersections Si ∪ Sj . These are pieces of straight lines. In
fact, the intersection of S1 and S2 is the set of polynomials of the form (z2−1)(z+a), while the intersection
of S1 and S3 is the set of polynomials of the form (z− c)(z− 1)2 or of the form (z− 1)(z2 +(1− a)z+1).

The non trivial point in this decomposition is how these piece are glued together (recall that the
boundary of Sn is compact).

3.6.2 The case of dimension 2

Let Q be a 2× 2 inner matrix. It can be written as Q = D/q̃, where D is a matrix of polynomials, and
q is a stable polynomial. Consider

D =
(
a b
c d

)
(3.86)

Since DD̃ = qq̃, we get
aã+ bb̃ = qq̃. (3.87.a)

ac̃+ bd̃ = 0. (3.87.b)

cã+ db̃ = 0. (3.87.c)

cc̃+ dd̃ = qq̃. (3.87.d)

If we merge these equations, we get aã = dd̃ and bb̃ = cc̃. Let µ be a root of a. Write

a = a1(z − µ)n(1− zµ)m,

b = b1(z − µ)α(1− zµ)β ,

c = c1(z − µ)γ(1− zµ)δ,

d = d1(z − µ)p(1− zµ)s,

where a1, b1, c1 and d1 are coprime to (z − µ)(1 − zµ). We get a1ã1 = d1d̃1, and b1b̃1 = c1c̃1. Now,
equation (3.87.c) says c1ã1 + d1b̃1 = 0. We have also (comparing multiplicities of µ and µ)

n+m = p+ s, α+ β = γ + δ, m+ γ = β + p, n+ δ = α+ s. (3.88)

Write A = min(n, s), B = min(n, p), C = min(α, δ), D = min(β, γ). Let n = A + n1, s = A + s1, and
define n1, p1, α1, β1, γ1, δ1 accordingly. Now, equation (3.88) holds with indices 1 everywhere.

Now, n1s1 = 0 and m1p1 = 0. From n1 + m1 = p1 + s1, we get: n1 = p1 = 0 and m1 = s1, or
m1 = s1 = 0, p1 = n1. The relation α1 + β1 = γ1 + δ1 gives a similar condition. If we add the other
conditions of (3.88), we get

n1 = p1 = α1 = γ1 m1 = s1 = β1 = δ1.

Moreover, one of these quantities is zero. Thus, if

X = (z − µ)A(1− zµ)B , Y = (z − µ)C(1− zµ)D, Z = (z − µ)n1(1− zµ)m1 (3.89)

we have

D =
(
a1XZ b1Y Z
c1Ỹ Z d1X̃Z

)
.

If we do this for all roots, we get a similar relation, where a1, b1, c1 and d1 are constant. We can put a1

in X and b1 in Y . Now a1ã1 = d1d̃1 says |d1| = 1, and (3.87.c) says c1 = −d1. Hence

Q =
Z

q̃

(
X Y
−λỸ λX̃

)
.

RR no 0123456789

90 José Grimm

Write Z = AB, where A is stable, and the roots of B are not in U. Since we have ZZ̃(XX̃ + Y Ỹ) = qq̃,
the roots of B̃ are in fact in U (i.e. Z has no roots on T). Moreover A divides q and B divides q̃. Write
q̃ = q̃1B, q2 = q1A. If X1 = XAÃ and Y1 = Y AÃ, we get

Q =
1
q̃2

(
X1 Y1

−λỸ1 λX̃1

)
. (3.90)

Note: if Q has McMillan degree n, we can write (3.86), (3.87) with polynomials of degree n (without
the implicit condition that q̃ is coprime to the elements in D). We know that detQ = εq/q̃. This gives
ad−bc = εqq̃, hence aãd− ãbc = ãεqq̃. From (3.87.c) we get (aã+bb̃)d = ãεqq̃. Now (3.87.a) gives d = εã.

Let’s write (3.90) as

Q =
1
q̃

(
p1 p2

−λp̃2 λp̃1

)
. (3.91.a)

We have
p̃1p1 + p̃2p2 = q̃q. (3.91.b)

This gives another way of parameterising inner matrices of size 2. The first implementation of the
algorithm was done by M. Cardelli in the scalar case and in the case p = 2 using this parameterisation
(cf. [4]), but the the algorithm did not work well in the matrix case, because it is uneasy and numerically
unstable to find q and its derivative as a function from p1 and p2 as defined by (3.91.b). The Schur
algorithm was implemented using Ψlab by P. Fulcheri [8] in the real case. A complete study in the
general case can be found in [9].

Let µ be such that µq̃(1) = 1. If q′ = µq, p′1 = µp1, p′2 = µp2 and λ′ = λµ/µ, then equations (3.91)
hold with primes everywhere. This means that we can assume q(1) = q̃(1) = 1. Assume now that Q(1)
is the identity matrix. Then p1(1) = 1 and p2(1) = 0, so that

p1 = (1− z)p4 + 1, p2 = (1− z)p3 (3.91.c)

for some polynomials p2 and p4 of degree < n. Note that (3.91.b) implies, for |z| = 1,

|p1(z)|2 + |p2(z)|2 = |q(z)|2.

Since q has no roots on T, this means that p1 and p2 cannot have a common root on T. If this condition
is satisfied, then X = p1p̃1 + p2p̃2 can be factored as

X =
∏ (z − αi)(1− αiz)

(1− αi)(1− αi)
, |αi| < 1.

If q =
∏

(z − αi)/(1− αi), then q is stable and (3.91.b) holds.

Theorem 30
The set I2

n(1) of inner matrices Q of size 2 × 2, of McMillan degree n with Q(1) = I is topologically
equivalent to the set of polynomials (p3, p4) of degree < n, such that p1 and p2 have no common root on
T.

Let’s study in details the case n = 1. Define I ′pn to be the set of all inner matrices of McMillan degree
of size p, having degree at most n, and I ′pn (1) be the quotient of this set by the equivalence relation: Q
and Q′ are equivalent if their quotient is a constant matrix. We have to minimise ψ over this set.

In the case p = 2, and n = 1, the polynomials p3 and p4 are constant. In the case where p3 is not
zero, then p3 and p4 are coprime. Otherwise, p2 is zero, and the condition becomes <p4 6= −1/2. Thus,
in the real case, I2

1 (1) is equivalent to the plane minus a point, i.e. T×R. In the complex case, we have
to remove a real line, so that the manifold is T2×R2 (T2 is the sphere in R3). Let’s study the boundary
of this manifold.

INRIA

Rational approximation of transfer functions in the hyperion software 91

For simplicity, introduce p5 = p4 + 1/2. Then equation (3.91) becomes

D = I + (1− z)
(
p5 − 1/2 p3

p3 −p5 − 1/2

)
. (3.92)

Let p5 = u+ iv, α = 1/4− u2 − v2 − iv − |p3|2. Then (3.91.b) says

qq̃ = αz2 + (1− α− α)z + α. (3.93)

The roots of qq̃ are

z =
−1 + 2u′ ±

√
1− 4u′ − 4v′2

2α
(3.94)

if α = u′ + iv′. Note that if 1− 4u′ − 4v′2 ≤ 0, both roots are in T. Otherwise, 2u′ − 1 < 0, and the root
with a plus sign is in U. Thus, the root of q is

µ =
−1/4− |p5|2 − |p3|2 +

√
(<p5)2 + |p3|2

1/4− |p5|2 − |p3|2 − i=p5
. (3.95.a)

We can also write this as
1

1− µ
=

1
2

+
√

(<p5)2 + |p3|2 − i=p5. (3.95.b)

If the square root is zero, then the real part of this expression is 1/2, so that |µ| = 1; otherwise it is
> 1/2, hence |µ| < 1.

Let v be a real number. Define θ by 2v = tan(θ/2). Then, if p5 is near iv, and p3 is near zero, the
root of (3.95) is near −eiθ. This gives q = (z + eiθ)/(1 + eiθ). An easy computation says that Q is now
near the identity matrix.

Note: Assume p3 = 0. Equation (3.91) says that q = p1 or q = p̃1. Which one depends on the sign of
the real part of p5. We have

Q =
(
βµ 0
0 1

)
,<p5 > 0, Q =

(
1 0
0 βµ

)
,<p5 < 0. (3.96)

Consider now what happens at infinity. We fix (p3, p5), and consider p′3 = λp3, p′5 = λp5, where
λ→∞. Let µ′ be the solution of (3.95.b) for these values, and define µ by

1
1− µ

=
√

(<p5)2 + |p3|2 − i=p5. (3.97)

Then 1/(1− µ′)− 1/2 = λ/(1− µ), so that the limit of µ′ is 1. We have

Q =
1− µ′

1− zµ′
+

1− z

1− zµ′

(
(1− µ′)(p′5 − 1/2) (1− µ′)p′3

(1− µ′)p′3 (1− µ′)(−1/2− p′5)

)
.

This has a limit

Q0 =
(

(1− µ)p5 (1− µ)p3

(1− µ)p3 −(1− µ)p5

)
. (3.98)

This is an unitary matrix. In fact, we can always normalise p3 and p5 as

p5 = cos θeiφ p3 = sin θeiψ.

Now, µ is in T, hence is eit, and (3.96) says

cos t =
√

cos2 θ cos2 φ+ sin2 θ, sin t = cos θ sinφ, (3.99.a)

RR no 0123456789

92 José Grimm

and we get

Q0 =
(

cos θei(ψ−t) sin θei(ψ−t)

sin θei(−ψ−t) − cos θei(−φ−t)

)
. (3.99.b)

Note that Q0 is not an arbitrary unitary matrix. In the real case, have sinφ = 0, hence sin t = 0. Since
cos t > 0, we get t = 0. This implies that the determinant of Q0 is −1. The converse is obvious: any
orthogonal matrix of determinant −1, can be written in the form (3.99.b) with φ = ψ = t = 0, and
(3.99.a) holds.

In the complex case, the situation is a bit different: the set of unitary matrices is of dimension 4, and
we have only three parameters. Note the special case where sin θ = 0. We can assume θ = 0, so that we
get t = φ if cosφ > 0, t = π − φ otherwise, hence one of

Q0 =
(

1 0
0 −e−2iφ

)
, Q0 =

(
−e2iφ 0

0 1

)
.

Note that the case cosφ = 0 is excluded. If we take the limit, we get the identity matrix in every case.
Now the structure of the manifold is a follows: in the real case, I2

1 (1) with its boundary is just a
plane. However I ′pn is this manifold where all unitary matrices are identified. Thus, ∞ and the point
p3 = 0, p5 = 0, have to be identified. In the complex case, we have to identify ∞ and the real line p3 = 0,
<p5 = 0 (by construction, I2

1 (1) is just a part of I ′pn).
One can wonder how this parameterisation is connected to the Schur algorithm. Equations (3.10) are

q̃ = b̃− b‖y‖2 − (b̃− b)u∗y. (3.100.a)

D = b̃− b‖y‖2 + (b̃− b)[yu∗ − u∗y + uy∗ − yy∗ − uu∗]. (3.100.b)

Divide everything by (1− ω)(1− ω)(1− ‖y‖2) so as to obtain q(1) = 1. Introduce

β =
1− |ω|2

(1− ω)(1− ω)
, γ =

ω

1− ω
, T = ‖y‖2 + yu∗ − u∗y + uy∗ − yy∗ − uu∗. (3.101)

Then
D = I + (1− z)(γ + β

T

1− ‖y‖2
).

Write now y =
(
a
b

)
, u =

(
c
d

)
. Then

T

1− ‖y‖2
=
(
p4 p3

p3 1− p4

)
, p3 =

(a− c)(d− b)
1− |a|2 − |b|2

p4 =
c(a− c) + b(b− d)

1− |a|2 − |b|2
. (3.102)

Define p′3 = βp3, p′4 = βp4 + γ. The relation γ + γ = β − 1 says

D = I + (1− z)

(
p′4 p′3

p′3 1− p′4

)
. (3.103)

We have shown on figure 3.1 this mapping. We have chosen ω = 0, c = 1, and d = 0, so that

p3 =
(1− a)b

1− |a|2 − |b|2
p4 =

a− 1 + |b|2

1− |a|2 − |b|2
. (3.104)

Getting the inverse mapping is not trivial. Consider first

a′ = ca+ db b′ = −da+ bc

p′′3 = −cd(p4 + p4 + 1)− d
2
p3 + c2p3

INRIA

Rational approximation of transfer functions in the hyperion software 93

-10

-8

-6

-4

-2

0

2

-6 -4 -2 0 2 4 6

"xx1"

Figure 3.1: Expression of Q as a function of the Schur parameters. If Q is defined by equation (3.100),
(3.101) and (3.102), we plotted the values of p3 and p4, for ω = 0, u = (1, 0)t; on each curve ‖y‖ is
constant, and is i/10 for 1 ≤ i ≤ 9. The point (0, 0) is unreachable; the line (0, y) for y > 0 is unreachable
in this chart.

p′′4 = ccp4 + cdp3 + cp3 − dd− ddp4.

In fact, since ‖u‖ = 1, there exists a unitary matrix A such that Au =
(

1
0

)
. What we do is multiply y

by A, and replace Q by AQA∗. This gives (compare with (3.104)):

p′′3 =
(1− a′)b

′

1− |a′|2 − |b′|2
p′′4 =

a′ − 1 + |b′|2

1− |a′|2 − |b′|2
.

Now the inverse mapping is defined as follows: we have p′2 and p′4. We deduce p3 and p4 from p′3 = βp3,
p′4 = βp4 + γ. We compute p′′3 and p′′4 , thus a′ and b′, and then get a and b.

All we have to do now is express (a, b) as a function of (p3, p4) in case (3.104) is true. Let x = p3 and
y = p4 + 1/2, a′ = a/(1 − 2y), b′ = b/(2x). The magic is that a′ = b′. If T = 1/a′, we have a second
relation

|T |2 = 2T − 1 + 2y + 2y + 4|x|2 + 4|y|2. (3.105)

The solutions are
T = 1− 2iv ±

√
|x|2 + u2, y = u+ iv.

We deduce
1

|a|2 + |b|2
= 1 + 4

±
√
|x|2 + u2 − u

(1 + 2u)2 + 4v2 + 4|x|2
. (3.106)

In order for |a|2 + |b|2 < 1, we have to chose the plus sign.

a =
2(p4 + 1)

T
, b =

2p3

T
, T = 1− 2i=p4 +

√
|p3|2 + <(p4 + 1/2)2.

RR no 0123456789

94 José Grimm

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

"xx3"

Figure 3.2: Inverse mapping of the previous figure. We use the same chart and show the value of y, which
is in the unit circle. On each curve, p4 is constant, and p3 varies.

We shown the result on figure 3.2. Note the dissymmetry between the curves on the left and the
curves on the right. On each curve, p4 is fixed. For (3.106), if y is large, we have

1
|a|2 + |b|2

− 1 =
2
|u|
, u < 0,

1
|a|2 + |b|2

− 1 =
x2

u3
, u > 0.

Note also that if x = 0, u > 0, we have |a|2 + |b|2 = 1. This means that our application is not a bijection:
With a and b we obtain every (p3, p5), except those for which p3 = 0, and <p5 > 0. The matrix Q we
cannot obtain are those defined by (3.96). In fact, since Q(ω)∗u = y, we cannot obtain the matrices Q
such that Q(ω)∗u have unit norm.

3.6.3 General case

Let’s introduce some notations. The set Bp denotes the set of vectors y of size p with ‖y‖ < 1. Given Q,
ui and ωi, we can define Q(n) = Q, and Q(k) = TΘk

(Q(k−1)), provided that yk = Q(k)(ωk)∗uk, ‖yk‖ < 1,
and Θk is defined by ωk, uk and yk.

Let V(w,u) be the set of all inner matrices Q for which this is possible (u = (u1, u2, . . . , up), and
w = (ω1, . . . , ωn)), and ϕ(w,u) be the list (y1, . . . , yn). This is an element of Bnp . If Θi is defined by
(ωi, ui, yi) and Θ = Θ1Θ2 . . .Θn, then

y = ϕ(w,u)(Q) ⇐⇒ TΘ(I) = Q.

Lemma 53
The family (V, ϕ) defines a C∞ atlas on Ipn(1) which is compatible with its natural structure of embedded

submanifold of Hp×p
2 .

For the proof of this lemma, see [9].

INRIA

Rational approximation of transfer functions in the hyperion software 95

Theorem 31
Assume |ωi| < 1, ‖ui‖ = 1 and ‖yi‖ ≤ 1. Define q(i) and D(i) via formulas (3.10). This is possible

under the assumption that no q̃(i) is identically zero. This condition is the same as u∗kQ
(k−1)yk − 1 not

identically zero.
Then q(i) and D(i) are polynomials of degree ≤ i, q(i) has degree i. The matrix Q = D(n)/q̃(n) is

inner, its McMillan degree is n, minus the number of k such that ‖yk‖ = 1, minus the number of points
ξ ∈ T such that yk = Q(k−1)(ξ)∗uk. There exists a neighbourhood W of y such that ϕ−1

(w,u) extents

smoothly to W.

Proof. The important point here is that the coefficients of D(k) and q(k) are polynomial functions of
yi. This explains that ϕ−1 can be computed for every y. Moreover, D(k)D̃(k) = q(k)q̃(k), and the roots of
q(k) are in U. Thus Q(k) is inner, provided that it is defined, i.e. that q̃(k) is not identically zero.

The proof is by induction on k. Assume first that ‖yk‖ < 1. Then we are in the case studied above,
and Q(k) is inner, its McMillan degree is one more than the McMillan degree of Q(k−1). Note that the
equation yk = Q(k−1)(ξ)∗uk has no solution ξ ∈ T, since Q(k−1)(ξ)∗ is unitary, ‖uk‖ = 1, ‖yk‖ < 1.

Assume now ‖yk‖ = 1. Then

q̃B = (1− z)(1− |ω|2)(q̃A − u∗DAy).

q̃B = (1− z)(1− |ω|2)q̃A(1− u∗Ay). (3.107.a)

Let’s now compute the roots of q̃B/(z − 1) in U. If ξ is such a root, then u∗A(ξ)y = 1. Write
u∗A(ξ) = λy∗ + w∗, where w is orthogonal to y. Then λ = 1, because ‖y‖ = 1. But ‖u∗A(ξ)‖ ≤ 1, so
that w = 0, and y∗ = u∗A(ξ). This is A(ξ)∗u = y, and implies u∗A(ξ)y = 1. Since |u∗A(ξ)y| ≤ 1 on U,
if equality holds on a point of U, then equality holds everywhere (maximum modulus principle).

This means that either q̃B is identically zero, or does not vanish on U. We exclude the first case.
Thus, q̃B(0) 6= 0, and this says that qB has degree n.

Now,

DB = (1− z)(1− |ω|2)[DA +
DAyu

∗DA − u∗DAyDA

q̃A
+ q̃Auy

∗ −DAyy
∗ − uu∗DA].

DB = (1− z)(1− |ω|2)qA[A+Ayu∗A− u∗AyA+ uy∗ −Ayy∗ − uu∗A]. (3.107.b)

This is zero if z = 1, or if y∗ = u∗A(ξ). Thus in the quotient DB/q̃B , we can simplify by a factor T ,
which is (z − 1)

∏
(z − ξi), where ξi is defined by u∗A(ξi)y = 1. Then we obtain a stable polynomial q.

2

Lemma 54
Assume that Q is inner, of McMillan degree d < n. There exists a unitary matrix U , and quantities
(w,u,y), such that UQ has the form of the previous theorem.

Proof. Consider n− d elements ui, yi and ωi. Let’s assume that ‖yi‖ = 1, and yi 6= ui. Let’s apply the
Schur algorithm, at order n. Equations (3.107) say that the first matrix we obtain is constant, and is

U1 = I − (y1 − u1)(y∗1 − u∗1)
1− u∗1y1

. (3.108)

The d-th matrix is also constant and unitary. Let U be this matrix. Assume that Q is obtained via the
Schur algorithm with parameters ωi+n−d, u′i+n−d and yi+n−d. Define ui+n−d = Uu′i+n−d. Since Q is of
degree d, we have ‖yi‖ < 1 for i > n− d. The key relation is that the Schur algorithm satisfies

S(ω,Uu)(UA, y) = US(ω,u)(A, y), (3.109)

provided that U is unitary and constant. This relation shows that the n-matrix we obtain is UQ. 2

RR no 0123456789

96 José Grimm

Lemma 55
Assume that yi(t) are C∞ functions of t, 0 ≤ t ≤ 1. Assume that for t > 0, ‖yi‖ < 1, and for t = 1,
‖yi‖ ≤ 1. The Schur algorithm applied to (ωi, ui, yi(t)) gives an inner matrix Q(t). This matrix is of
degree n in case ‖yi(0)‖ < 1, of degree < n, if q̃(n)(0) is not identically zero, and anything can happen
otherwise.

The only thing we have to show is the behaviour when q̃ vanishes identically. Consider the scalar case
first. Here we have

q̃B = (b̃− b‖y‖2)q̃A − (b̃− b)u∗DAy

DB = (b− b̃‖y‖2)DA + (b̃− b)q̃Auy∗.

A little computation shows that

β

Bu∗ − y∗
=

1
Au∗ − y∗

− (1− β)y
1− ‖y‖2

. (3.110)

Now if lim ‖y‖ = 1, the limit of the last term is ∞, so that the limit of B∗u− y∗ is zero. Note that the
condition q̃B is identically zero at t = 0 says that uy∗ −A = 0, so that A must be constant. In this case
the limit of 1/(Au∗ − y∗) is also infinity. Since 1 − β takes an infinite number of values, the quantity
β/(Bu∗ − y∗) is infinite for almost every value of z, so that B is still constant.

Now, in the case p ≥ 2, anything can happen: Q has no limit, Q has a limit of degree n, Q has a limit
of degree < n. It suffices in fact to consider the case p = 2. We can assume n = 1, and everything real.

Consider the case u =
(

1
0

)
, y =

(
y1
y2

)
and ω = 0. Then

q̃B = 1− z(y2
1 + y2

2)− (1− z)y1. (3.111)

Let z0 be the root of q̃. Let

U =
(
y1 y2
y2 1− y1 − 1/z0

)
.

Then

B =
(1− y1)(1− z)U + z(1− y2

1 − y2
2)I

(1− y1)(1− z) + z(1− y2
1 − y2

2)
. (3.112.a)

This can be written as

B =
z0(1− z)U + z(z0 − 1)

z0 − z
. (3.112.b)

Assume now that the limit of y1 is not one. Then (3.112.a) says that the limit of B is the identity matrix.
Assume now that the limit of y1 is one. We have shown on figure 3.3 the sets (y1, y2) that give z0 as a
root of qB . On can see that, if y has u as limit, but if this limit is not tangential, then the limit of the
root is z0 = 1. Otherwise, any value value outside [−1, 1] can be the limit.

In fact, if z0 has a limit, then U has a limit, and B has a limit. If z0 6= 1, this limit has McMillan
degree n, otherwise, it is constant (note that z0 = ∞ is valid, this gives q = 0). We have

1− 1/z0 =
1− y2

1 − y2
2

1− y1
.

Assume that y2(t) ∼ αtn, and y1(t) ∼ 1− βtm. The previous quantity is approximatively

2βtm − β2t2m − α2t2n

βtm

We must have 2n ≥ m, so that we get the asymptotic result:

2− βtm − α2t2n−m/β.

INRIA

Rational approximation of transfer functions in the hyperion software 97

Figure 3.3: Roots of (3.111). To each (y1, y2) we can associate a root z. If z is fixed, we get this root if
(y1, y2) is on a circle, symmetric w.r.t. the x-axis, and that passes through (1, 0). We have shown these
circle for z = −2, z = ∞ and z = −2. The outer circle is the unit circle (z = 1).

Now the case that causes trouble is when all derivatives of y1 and y2 are zero. An example is given by

y1(t) = 1− sin(1/t)2 + 1
2

e−1/t2 . y2(t) = e−1/t2 .

Here
1− y2

1 − y2
2

1− y1
=

2 sin(1/t)2

1 + 2 sin(1/t)2

and this has no limit.

3.6.4 Minimisation of ψ

Let ψnF (Q) be the function defined in the previous chapter. It is the minimum of ‖F −Q−1C‖2, where
Q−1C is rational, strictly, proper, stable, of McMillan degree n. For simplicity, we shall omit the subscript
F . Define

ψn(w,u)(y) = ψn(ϕ−1
(w,u)(y)). (3.113)

In fact, if y is as above, we let y be the vector with same components as y. This is an element of
Cnp. What ϕ−1 computes is not Q, but the numerator and denominator. Let x be the vector whose
entries are the coefficients of D̃ and q. Then x ∈ Ck, with k = (n + 1)(p2 + 1). Write x = X(y), and
ψn(Q) = Ψ(x). Hence

ψn(w,u)(y) = ψ(X(y)). (3.114)

What we do is integrate the differential equation

dy

dt
= −∇ψn(w,u)(y). (3.115)

In fact, if A is a function of (a1, . . . , am) with components (A1, . . . , Ap), then ∇A is the matrix whose
(i, j) component is ∂Ai/∂aj . The chain rule says ∇(A ◦ B) = ∇A∇B. Note that ∇Ψ is a 1× np vector
while dy/dt in (3.115) is a np× 1 vector. It is of course possible to identify these vectors. The important
point is that ∇ψ is not a tangent vector on the manifold: it is just a linear form. If we use a chart, then
we can define ∇Ψ, and identify this to a tangent vector. In any case, we get

dx

dt
= −∇X∇Xt∇Ψ, (3.116.a)

dψ

dt
= −(∇Ψ∇X)(∇Ψ∇X)t. (3.116.b)

RR no 0123456789

98 José Grimm

Lemma 56
The function ψ(t) is either constant or decreasing. If it is constant, then Q is a critical point of ψn, and
y is a critical point of ψn(w,u). Otherwise, the solution of the differential equation (3.116.a) depends not
only on the initial condition Q, but also on u and ω.

Note that the equation ∇Ψ∇X = 0 does not imply ∇Ψ = 0. This is because the mapping X is not
surjective (there are much more parameters in x, i.e. in D and q then in y). What we say is just that if
x′ is near to x, and if x′ defines an inner matrix, then Ψ(x′)−Ψ(x) = o(x′ − x). This is ∇ψn = 0.

Assume now that one component of y satisfies ‖yi‖ = 1. Assume moreover that we are in a generic
case, i.e. that the matrix Q0 we obtain is of McMillan degree n− 1. Assume that this is a critical point
of ψn−1. Let h be a vector, and consider what happens if we replace y by y + th. If Q0 = Q1 . . . Qn−1A
is a Potapov factorisation of Q0, and if Q0 has only simple roots, then any matrix Q′0 near Q0 can be
factored as as Q′0 = Q′1 . . . Q

′
n−1A

′, where Q′i is near Qi. This is because the interpolation condition
u∗1Q0(ω1) = 0, gives u′∗1 Q

′
0(ω

′
1) = 0. There exists, for small t, a unique pole ω′1 of Q′0 near ω1, and since

this pole is simple, the set of vectors u with u′∗1 Q
′
0(ω

′
1) = 0 has dimension one. If we chose in this space

a vector with unit norm, such that the phase of the k-th component is the same as the phase of the
k-component of u1 (for some k), then u′1 is near u1.

Now, if Qt is the result of the Schur algorithm for y + th, what we get is a matrix A′ near A, and if
we chose h such that ‖y + th‖ < 1, the matrix A′ will be of McMillan degree one.

Consider now equations (2.23) and (2.24). If Q(t) = Q0(t)Q1(t), where Q0(0) = 0, and Q1(0) = A is
constant, these equations say ψ(t) = ψ(Q0)−‖R2/q2‖2+o(t). Recall that Q0 is a critical point of ψ. Note
that R2(0) = 0. Assume that yk is of norm one. In the case where hk = 0, then ψ(Q(t))−ψ(Q(0)) = o(t),
because Q1(t) is very near to a constant. The same is true if we chose h such that hi = 0 for i 6= k, and
hk orthogonal to yk. If however hk is proportional to yk, say hk = −yk, then generically, the derivative of
‖R2/q2‖ is not zero (compare with (2.40): the condition is V1(α) 6= 0, here it is a bit more complicated).
As a conclusion, ∇ψ is parallel to yk. We can compare this with the scalar case.

Theorem 32
Assume that the solution of (3.115) is such that r(t) = max ‖yi(t)‖ satisfies r(t) < 1 for t < t0 and
r(t0) = 1. Then Q = ϕ−1(y) is not a local minimum of ψ.

Assume that, for t = 0, r(0) = 1, but only one vector yi is of norm one. Then generically, r(t) < 1 for
t positive and small.

Of course, all problems that happen in the scalar case can happen in the matrix case. We are
interested in the second claim of the theorem. We assume that Q is inner, of McMillan degree n− 1 with
Schur parameters (ωi, ui, yi), i = 2, . . . , n. We consider y1 and u1 be two vectors of norm one, y1 6= u1,
ω1 ∈ U. Let U be the matrix defined by (3.108). Let y′ = (y1, . . . , yn), u = (u1,Uu2, . . . ,Uun) and
w′ = (ω1, ω2, . . . , ωn). This gives us a starting condition. What we need is u∗1y1 6= 1. In the complex
case, we can chose u1 such that all components but the first one is zero, the first one being 1, and y1 such
that all components are zero, the first one being e2imπ/k, for 0 < k < m. In the real case, the same can
be done if p > 1: we put the sine and cosine of 2mπ/k into the first two components of y. But if p = 1,
we have no choice: we must have u = ±1 and y = −u. According to (3.5), multiplying u and y by an
element of T does not change anything: in other words, there is only one possible initial condition.

We do not know the exact conditions on which r′(0) < 0. Because the equations are badly conditioned
if ‖y‖ = 1, we do not use the quantities defined above, but change them a little bit. In some cases, we
have r′(0) > 0. This worries us a little bit, but in all our test cases r remains less than one.

We explained above that ‖y‖ should be small. This means that, from time to time we chose a better
chart. This is impossible for t = 0 (of course, we assume that we have a good chart for the matrix that
is of degree n − 1, but the chart for the degree n is never good in the sense given above). The reason
why we want y to be small is the following: assume that n = 1. Then on the boundary Q is constant and
ψ = 1. If we are near a minimum, then ψ′ is small. If we are near a minimum and near the boundary,
then ψ′′ has to be huge somewhere.

Assume that ω is fixed. We are interested in finding y with smallest norm, with y = Q(ω)∗u.

INRIA

Rational approximation of transfer functions in the hyperion software 99

Consider first the case p = 2. Assume that Q(ω)∗ =
(
a b
c d

)
. We may consider u =

(
cos θ

sin θeiφ

)
,

since multiplying u by a constant number of modulus one does not change the norm of y. The square of
the norm of y is now A sin2 θ +B sin θ cos θ + C cos2 θ where

A = |a|2 + |c|2, C = |b|2 + |d|2, B = 2<(abeiφ + cdeiφ).

We have

‖y‖2 =
A+ C + (C −A) cos 2θ +B sin 2θ

2
.

This expression is minimal or maximal if tan 2θ = B/(C − A). Define ∆ =
√

(A− C)2 +B2. Then
cos 2θ = (C − A)/∆. Then ‖y‖2 = (A + C)/2 ± ∆/2. The minimum is found if we take a minus sign,
and if we maximise B. In fact, we chose eiφ in such a way that abeiφ + cdeiφ is real: if w = ab + cd,
we take eiφ = −w/|w|. This gives B < 0, so that we have sin θ =

√
(1− (C −A)/∆)/2 and cos θ =√

(1 + (C −A)/∆)/2, where both square roots are positive.
In the general case, we are looking for u such that Q(ω)∗u is small. Let B = Q(ω)∗, and C = B∗B.

If y = Q(ω)∗u, then u∗Cu = ‖y‖2. There exists an orthonormal basis ei such that Cei = λiei. If
λ1 ≤ λ2 ≤ . . . ≤ λn, then ‖y‖2 ≥ λ1, and equality holds if u = e1. Thus, we have to find the eigenvector
of C with smallest eigenvalue. Since λn ≤ 1, if D = I −B∗B, we have to find the eigenvector of D with
largest eigenvalue. This can be found via following iteration uk+1 = Duk/‖Duk‖. Unless we start with
an eigenvector, this will converge to the desired result. If εi is the i-th base vector, we start with εi,
unless this is an eigenvector of D. In case every base vector is an eigenvector of D, then D is diagonal,
and it is obvious to find u.

Note that if ω is not well chosen, this may produce bad values for y. In the complex case, we can
chose for ω a pole of Q, i.e. a zero of q. The same can be done in the real case, provided that q has a real
zero. If this is not the case, we chose a lot of values of ω (in fact, we chose ω = i/8, where −8 < i < 8).

RR no 0123456789

100 José Grimm

INRIA

Rational approximation of transfer functions in the hyperion software 101

Chapter 4

Automatic differentiation

In this chapter we give the C++ code that is used to implement the formulas defined in the previous
chapter. In the scalar case the code is rather easy, but we have different equivalent formulas. Only one
implementation will be given. Others are studied in the next chapter, where we give the complexity of
different variants. In the matrix case, the situation is quite more complicated. We shall discuss here what
is automatic differentiation, why we use it, how we use it, and why we do not use generic software.

4.1 Introduction

In the multivariate case, the big problem is to implement the Schur formulas, and the derivatives of them.
A general problem, when optimising a function f , is to compute the derivatives of f , and, maybe, the
second derivatives. A good approximation of the derivative of f , in the direction d, is obtained by finite
differences, namely [f(x+hd)−f(x)]/h. We have to chose h small, so that this is a good approximation of
f ′, but not too small, otherwise we have too many rounding errors. In general, using divided differences
again for the Hessian gives very bad results.

In the case where f is defined by simple formulas, the best thing to do is implement the equations that
give f ′. In general, this is slower than finite differences, but gives f ′ with a good precision. Obtaining the
exact code of f ′ can be done by hand, using a computer algebra system like Maple, or using an automatic
differentiator. In general, the hand-written code is more efficient, but could be wrong (there could be an
error in the formula that gives f ′, or an error in the translation of the formula into a C program). Since
a good optimiser manages to minimise f , even if f ′ is not precise, such errors may remain undetected
for a long time (we once found that the sign of the Hessian was wrong; after correction, the program run
much faster). Both computer algebra systems and automatic differentiators can compute the derivative
of simple expressions, they have both their advantages and their limits.

In our case, we have to implement the Schur formulas. A first attempt was done by P. Fulcheri, using
the Scilab program (see [8]). What we have to compute is a function that depends on (ui, ωi, yi), and
find the derivatives with respect to yi. In the case n = 3, the code has the following structure

Q1 = f(y1, I, p1), (4.1.1)

Q2 = f(y2, Q1, p2), (4.1.2)

Q3 = f(y3, Q2, p3), (4.1.3)

where pi = (ui, ωi), and I is the identity matrix. If we differentiate these functions, and denote by fi the
derivative of f with respect to the i-th argument, we get

∂Qi
∂yj

= 0 (j > i) (4.2.1)

RR no 0123456789

102 José Grimm

∂Qi
∂yj

= f1(yi, Qi−1, pi) (j = i) (4.2.2)

∂Qi
∂yj

= f2(yi, Qi−1, pi)
∂Qi−1

∂yj
(j < i). (4.2.3)

If we differentiate again, we get

∂2Qi
∂yj∂yk

= f22(yi, Qi−1, pi)
∂Qi−1

∂yj

∂Qi−1

∂yj
+ f2(yi, Qi−1, pi)

∂2Qi−1

∂yj∂yk
(4.3)

in the case k < i and j < i, zero in the case j > i or k > i, and a different formula otherwise. Note
that yi is a vector, so that the formula for j = i is a bit more complicated than given above. This is in
particular the case for the second derivative (this explains why we did not give here the formula).

In the first implementation, the objective was to show that the Schur algorithm can be applied to real
cases. No attempt was made to get an efficient code. In particular, some subexpressions where computed
more than once. In the case of the Hessian, all first derivatives were recomputed wherever needed. If we
look closely at the Schur formulas,

qB = (b− b̃‖y‖2)qA + (b̃− b)y∗D̃Au, (4.4.1)

D̃B = (b− b̃‖y‖2)D̃A + (b̃− b)[D̃Auu
∗ + yy∗D̃A − y∗uqA] +

b− b̃

qA
[D̃Auy

∗D̃A − y∗D̃AuD̃A], (4.4.2)

we see that y∗D̃Au is shared. Now, x1 = y∗D̃A and x2 = D̃Au appear also in the formulas, as sub-
expressions. We can compute x1 and x2, and deduce y∗D̃Au from one of them. Using one or the other
is irrelevant. What we do is use x1, and compute D̃Auu

∗ by multiplying D̃A by uu∗; we do this because
the second factor is constant. Note that constant means that it has zero as derivative; but, since it is
independent of y, it can be precomputed (note however that the cost of uu∗ is small compared to the
other formulas, so that this is a small optimisation).

As a conclusion, it appears that we have to split our big formulas into a set of smaller ones, and
store in memory every result, and never compute twice the same quantity. The main objection against
differentiation in reverse mode is memory usage. It happens that, in this case, even in direct mode, we
have to store a lot of things: memory usage is the same in reverse mode, and in optimised direct mode.
The main advantage of reverse mode is its speed: this is why we adopted it. In the next chapter, we give
the complexity in both direct and reverse mode.

There are systems like Odyssée (see [16, 6]) that take as input a Fortran program, and return another
Fortran program that computes the derivative of the code. The list of all these systems can be found
on Internet1. Other systems, like Adolc, do the same with C programs. There are also some computer
algebra systems that offer automatic differentiation modules, but none of these systems is really adapted
to our needs. This is the main reason why we wrote a small automatic differentiator.

4.2 Straight line programs

A straight line program is a basic and simplified model of a computer program. What we exclude explicitly
is input/output routines, transfer of control, and calls to other programs. Given these constraints, one
gets a nice theory, that can be applied to no real program. It is always possible to relax these constraints.
The main difficulty however is that, if the code is defined by: replace x by fp(x) until x converges with
precision ε, the differentiated code computes x′ which is, in general, a very bad approximation to the
derivative of the fixed point of fp (if xp is the fixed point of fp, there are conditions under which xp is
unique and is differentiable with respect to p). In our case, we have only explicitly loops (associated to
matrix or polynomial products). For this reason, our differentiator is very small.

1http://www.mcs.anl.gov/Projects/autodiff/AD Tools/index.html

INRIA

Rational approximation of transfer functions in the hyperion software 103

4.2.1 Definition

A straight line program is the basic model for computer programs. It is given by

• n input variables x1, . . . , xn,

• m output variables y1, . . . , ym,

• p local variables z1, . . . , zp,

• q function calls F1, . . . , Fq.

Let N = n+m+p, w = (x1, . . . , xn, y1, . . . , ym, z1, . . . , zp). This is called the state vector. Each function
call has the form (f, t0, t1, . . . , tk) where f is a function from Rk to R, and each ti is the index of a
variable, an integer between 1 and N . To the function call F we associate a function

f̌ : RN → R
N

w → w′

defined by

w′i = wi (i 6= t0)
w′t0 = f(wt1 , . . . , wtk). (4.5.a)

If there is no confusion, we just write f instead of f̌ .
We consider also

f0 : Rn → R
N

(x1, . . . , xn) → (x1, . . . , xn, 0, . . . , 0) (4.5.b)

and

fq+1 : RN → R
m

(x1, . . . , xn, y1, . . . , ym, z1, . . . , zp) → (y1, . . . , ym). (4.5.c)

The function computed by the SLP is

R
n → R

m

f = fq+1 ◦ fq ◦ · · · ◦ f1 ◦ f0. (4.6)

4.2.2 Rational SLP

An SLP is called rational if it computes a rational function. In fact, we may assume that each fi is
a rational function. We can decompose fi into elementary (binary) operations, hence get one of the
following forms: y = a, y = −a, y = 1/a, y = −1/a, y = a + b, y = a − b, y = ab, y = −ab, y = a/b,
y = −a/b. We allow also ternary operations of the form y = a+ bc. Hence the general form is

y = a± bc, y = ±a/b, (4.7)

where a, b, c are variables or constants. In fact, the case y = a+ bc will only be used in the case where
a is y. Moreover, y = y + x will be written as y += x (in the same fashion, y = y − x will be written as
y −= x). This is standard C notation, and is very useful for differentiation in reverse mode.

Example: If A, B and C are n× n matrices, the SLP formed by the n2 instructions Cij = 0 and the
n3 instructions Cij += AikBkj computes the matrix product C = AB.

RR no 0123456789

104 José Grimm

4.2.3 Differentiation in direct mode

Let ∇g be the gradient of g, the matrix with entries ∂gi/∂xj if g is a function of (x1, . . . , xn) with
components (g1, . . . , gp). The chain rule says

∇f = ∇fq+1∇fq · · ·∇f1∇f0. (4.8)

Differentiating equations (4.5) gives a new set of function calls, hence a new SLP. It has 2n inputs variables
(x1, . . . , xn, x

′
1, . . . , x

′
n), 2m output variables (y1, . . . , ym, y′1, . . . , y

′
m), 2p local variables (z1, . . . , zp, z′1, . . . , z

′
p)

and 2q function calls G1, . . . , G2q, described below.
According to the previous definition, the state vector of the new SLP is (x, x′, y, y′, z, z′). We prefer

changing the order of variables and use W = (x, y, z, x′, y′, z′) instead. In particular we have G2i = Fi.
Moreover, the equivalent of (4.5.b) and (4.5.c) is now

g0 : R2n → R
2N

(x, x′) → (x, 0, 0, x′, 0, 0) (4.9.b)

and

g2q+1 : R2N → R
2m

(x, y, z, x′, y′, z′) → (y, y′) (4.9.c)

Finally, G2i−1 is the derivative of fi. The equivalent of (4.5.a) is

w′i = wi (i 6= t0 +N)

w′t0+N =
∑
i

∂f

∂xi
(wt1 , . . . , wtk)wti+N . (4.9.a)

Theorem 33
The SLP defined by equations (4.9) computes a function (x, x′) → (y, y′), where y = f(x) and y′ =
∇f(x).x′ (the derivative of f at x in the direction x′). If T multiplications are required for computing f ,
then at most 3T multiplications are required for this SLP.

Note: In the case of division, y = a/b, the derivative is y′ = a′/b− ab′/b2. Instead of computing y′, then
y, we compute y, and then y′ with the formula y′ = (a′ − b′y)/b. This needs one less division.

4.2.4 Reverse mode

Transposing Equation (4.8) gives

∇f t = ∇f t0∇f t1 · · ·∇f tq ∇f tq+1. (4.10)

Hence, we get a new SLP, that takes x and y′ as input, and computes y = f(x) and x′ = ∇f t(x).y′. In
the special case where f is a scalar function (one output), we can take y′ = 1, and this gives the derivative
of f at x.

The important point to notice is that the product in (4.10) is done from right to left, i.e. in the reverse
order of original computation. Assume that i < j, fi and fj depend on a, but a is modified by some call
fk (i < k < j). In direct mode, nothing special happens, but in reverse mode, we call fi, then fk, then
fj . We compute derivatives of fj , then fk, and finally fi. At this moment, the value of a is wrong. We
have to reset the old value. A good moment is when we compute the derivative of fk. The old value
can be found on the stack, if we push it before evaluating fk. In some cases, it is possible to get the
old value from the new one. The typical case is when we compute a sum

∑
i f(xi). In the code of the

loop, we increment i. In reverse mode we decrement i; note that, in this case, the order of evaluation is
irrelevant (in the case gq̃ = V q + R, the order of the loop in the product gq̃ is irrelevant, the order in

INRIA

Rational approximation of transfer functions in the hyperion software 105

the division loop is imposed). In general, the total memory used in reverse mode can be large, because
of this. There are techniques that reduce memory usage, trading time against space, in other words, we
recompute some quantities instead of saving them. In hyperion, this is not needed.

We assume here that the code has been modified in such a way as no variable is set more than once.
We construct here an SLP that computes the derivative. As in the direct case, we consider variables x′,
y′ and z′ with the same size as x, y and z, and we still define W = (x, y, z, x′, y′, z′). The SLP will have
n + m input variables x, y′, n + m output variables y, x′ and 2p local variables (z, z′). It has a certain
number of function calls.

By definition of the input and output variables, the equivalent of (4.5.b) and (4.5.c) is

g0 : Rn+m → R
2N

(x, y′) → (x, 0, 0, 0, y′, 0) (4.11.1)

and

gl : R2N → R
n+m

(x, y, z, x′, y′, z′) → (y, x′). (4.11.2)

The first q function calls are
Gi = Fi (1 ≤ i ≤ q). (4.11.3)

There are some additional function calls. For each i, for q, q − 1, down to 1, if the function f associated
to fi has k input variables, we have k + 1 function calls Gij . Each function call has the form

W ′
tj+N = (1− δt0tj)Wtj+N +

∂f

∂xj
(W).Wt0+N . (4.11.4)

W ′
i = Wi if i 6∈ {t0 +N, t1 +N, . . . , tk +N}. (4.11.5)

If we compose, we get
W ′ = Gi,0Gi,1Gi,2 · · ·Gi,k(W). (4.11.6)

We added a function call Gi0 that corresponds to j = 0, the output of f . The partial derivative of f
with respect to this variable is zero, so that (4.11.4) gives W ′

t0+N
= 0. Note: in most of the cases, this

equation is useless, and will be omitted (it is useless in case W ′
t0+N

= 0 is not used).
Assume first that t0 is not an input variable. Then δt0tj is zero, so that (4.11.4) just increments

W ′
tj+N

by the partial derivative of f , with respect to xj , multiplied by Wt0+N . On the other hand, in
the case where t0 is an input variable, if t0 = tj , equation (4.11.4) just means: replace W ′

t0+N
by the

partial derivative of f , multiplied by Wt0+N . It can happen that t0 is used more than once as an input
variable. Then we replace Wt0+N by the sum of all partial derivatives, multiplied by Wt0+N . In these
cases, we do not replace Wt0+N by zero at the end. Note: one difficulty when trying to differentiate a
function call, like call f(x,y,z) in Fortran, is that we do not know which variables are input variables,
and in the case of arrays, which part of the array is an input.

Example: the derivative, in reverse mode of y = ab is a′ += by′, b′ += ay′ and y′ = 0. The derivative
of y += ab is a′ += by′, b′ += ay′. (We assume here that a, b and y are three different variables).

Note: the derivative of y = a/b is a priori a′ += y′/b, b′ −= ay′/b2, y′ = 0. We can write this as
t = y′/b, a′ += t, b′ −= yt. Hence one additional multiplication and one additional division are required.
An additional variable t is used. In the code, it will be tmp.

Theorem 34
The SLP defined by equations (4.11) takes as input (x, y′) and computes y = f(x) and x′ = ∇f t(x).y′.
If T multiplications are required for computing f , then this SLP uses 3T multiplications.

RR no 0123456789

106 José Grimm

This theorem was first stated in [14] as: if f(x1, . . . , xn) is a polynomial function of n variables, and
can be computed in time T , then f and all its partial derivatives can be computed in times less than 3T .
This remains true in the case of division (see results at the end of the next chapter; the ratio is bit larger
than 3, because we recompute some quantities, instead of saving them).

Caveat: In the case where a variable is modified more than once in the original code, you can either
use the same technique, storing what is necessary (this costs memory) or recomputing it (this costs time).
Note that, in the code of the matrix multiplication C = AB given above, we can pretend that Cij is only
modified once.

4.2.5 Complex numbers

Nothing special happens in direct mode if we replace real numbers by complex numbers. However, in
reverse mode, if y = ab, b is constant, then the mapping a → y is linear. Its matrix is the matrix(
u −v
v u

)
, in case b = u + iv. If we transpose this matrix, we obtain the matrix of the multiplication

by the complex conjugate of b. This means that the code of the derivative contains functions calls that
do not appear in the initial code. There is another technique, in which the derivative of the product
ab does not involve complex conjugates. These appear nevertheless, when a couple of real numbers is
transformed into a complex number.

In the following table we give the derivatives in reverse mode of some usual cases. Here R(z) and I(z)
are the real and imaginary parts of z, while C(a, b) is the function that computes a+ ib.

y = C(a, b) a′ += R(y′), b′ += I(y′), y′ = 0 (4.12.1)
a = R(y) y′ += C(a′, 0), a′ = 0 (4.12.2)
b = I(y) y′ += C(0, b′), b′ = 0 (4.12.3)
y = z z′ += y′, y′ = 0 (4.12.4)

y = a+ b a′ += y′, b′ += y, y′ = 0 (4.12.5)
y = ab a′ += by′, b′ += ay′, y′ = 0 (4.12.6)
y = ab a′ += by′, b′ += ay′, y′ = 0 (4.12.7)

y += |a|2 a′ += 2a<(y′) (4.12.9)
y = a/b t = a/b, t′ = y′/b, a′ += t′, b′ −= tt′, y′ = 0 (4.12.10)

4.2.6 Matrices

Nothing special happens here, essentially because we shall replace operations on matrices by operations
on the entries of the matrices. It is however noteworthy to see that, in reverse mode, the derivative of
the matrix product Y += AB is

A′ += Y ′B∗ B′ += A∗Y ′. (4.13)

Recall that A∗ is the transpose conjugate of A.

4.2.7 The case of polynomials

One can notice that, if tnm(X) is the remainder by zn+1 of the quotient of X by zm, then the derivative
in reverse mode of the polynomial product Y += AB, where A has degree n and B has degree m, is

A′ += tnm(B̃Y ′) B′ += tmn(ÃY ′). (4.14)

This relation is not used (essentially because B̃Y ′ contains useless terms).
The case of division of polynomials is interesting. We leave it as an exercise to the reader to show

that the following pseudo C code

INRIA

Rational approximation of transfer functions in the hyperion software 107

void division(A,q,B,R)
{

for(i=0;i<=n+m;i++)
R[i] = A[i];

for(i=0;i<=m;i++) {
t = R[n+m-i] / q[n];
B[m-i] = t;
for(j=0;j<n;j++)

R[m-i+j] -= t*q[j];
}

}

computes in B and R the quotient and the remainder of the division of A by q, assuming that q is of degree
n, and B of degree m (i.e. A is of degree n+m). The exact C code can be found later, by instantiation
of the algorithm shown later in this chapter. Differentiating in reverse mode gives something like

void division_prime(...)
{

for(i=m;i>=0;i--) {
t = B[m-i];
t’ = B’[m-i];
for(j=0;j<n;j++) {

t’ = q[j]+ R’[m-i+j]; /* H */
q’[j] -= t*R’[m-i+j]; /* H */

}
B’[m-i] = t’;
t’ = t’/q[n]; /* H */
R’[n+m-i] -= t’;
q’[n] -= t*t’; /* H */

}
}

In the complex case, we have to replace the factors of t’ and R’[m-i+j] by their complex conjugates in
the lines with the comment ‘H’. For the exact code, see table 4.12.

If we differentiate A = Bq +R in direct mode, we get

δA−Bδq = qδB + δR.

This means that δB and δR are the quotients and remainder in the division by q of δA−Bδq.
If we differentiate in reverse mode, strange things happen. Assume A =

∑
akz

k B =
∑
bkz

k and
q = z − β. Define ci by c0 = and ci+1 = bi. Then

ci =
∑
k

ai+kβ
k.

If we differentiate, we obtain

dai+k = βkdci, dβ =
∑

kai+kβ
k−1dci.

The first equation can be written as

dA =
dR+ zdB

1− zβ
+ o(zn),

where the notation o(zn) means that dA is the truncation to n terms of the long division of the numerator
by the denominator.

RR no 0123456789

108 José Grimm

If we denote by A(k)(β) the derivative, evaluated at β of the quotient of A by zk, then

dβ =
∑

A(k)(β)dck.

There is no general and simple formula for dq. However dA is defined by

q̃dA mod dA = q̃dR mod dA + zndB.

In this expression, q̃dA mod dA is the truncation of the product d̃A with as many terms as A.
Note that the situation is easier in the case of matrix inversion: the derivative in direct mode of

Y = X−1 is δY = −Y δXY , and the derivative in reverse mode is dX = −Y ∗dY Y ∗.

4.3 The WEB system

Assume that we have a function f . For instance y = f(x), where z = (x + 1)2 and y = (z + 2)2. Our
differentiator generates the code of the function and its derivative. In the reverse mode of differentiation,
we have to generate the following

z = (x+1)*(x+1); /* (E1) */
y = (z+2)*(z+2); /* (E2) */
dz = 2*(z+2)*dy; /* (E3) */
dx = 2*(x+1)*dz; /* (E4) */

The differentiator handles the first assignment z = (x+ 1)2, then the second y = (z + 2)2, and generates
the four lines (Ei) in the order (E1), (E4), (E2) and (E3), and we have to put them in the right order.
There are three possible strategies:

• reordering done by the differentiator,

• reordering done by the C code,

• reordering done by an external program.

In general, automatic differentiators do the re-ordering. This means that they have to memorise the
whole code. Reordering can also be done by the C program, as shown here (push and pop are macros
that push and pop a value on a stack).

push(0);
z = (x+1)*(x+1); /* (E1) */
push(1);
y = (z+2)*(z+2); /* (E2) */
push(2);
for(;;) {

switch(pop()) {
case 1:

dx = 2*(x+1)*dz; /* (E4) */
break;
case 2:

dz = 2*(z+2)*dy; /* (E3) */
break;

default:
goto done;

}
}
done:;

INRIA

Rational approximation of transfer functions in the hyperion software 109

Note that in this example, the differentiator still has to memorise the whole code. However, this is the
easiest way to handle the case of wild transfer of control. We do not know the loss of performance of such
a scheme for a real program. See for instance [7]; in this test case the overhead of memory management
(execution stack and data stack) is so great that comparison with other methods is uneasy.

We have chosen the last solution. The external program is called ctangle, which is a part of the CWEB
system. The description of cweb can be found for instance in [12, 15]. Note that the WEB system was
designed by Knuth for TEX, and the hyperion software is entirely written in WEB. The only feature we
use here is the macro expansion system: the differentiator generates some macros (called sections), and
tangle re-arranges the code. An associated program, weave, pretty prints the source code, expanding
all LATEX macros.

This is the code of our function, in WEB format.

@ This is the code of the function f, defined by equation \ref{the-equation}.
@u double f (double x)
{

double y,z;
@<First part of f@>
@<Second part of f@>
return y;

}

And this is now the code of the derivative.

@ This is the code of the derivative of f in reverse mode.
@u double fprime (double x,double dy)
{

double y,dx,z,dz;
@<First part of f@>
@<Second part of f@>
@<Second part of derivative of f@>
@<First part of derivative of f@>
return y;

}

Our differentiator generates now, for the part z = (x+ 1)2:

@ @<First part of f@>=
z = (x+1)*(x+1);

@ @<First part of derivative of f@>=
dx = 2*(x+1)*dz;
dz = 0;

and for the part y = (z + 2)2:

@ @<Second part of f@>=
y = (z+2)*(z+2);

@ @<Second part of derivative of f@>=
dz = 2*(z+2)*dy;
dy = 0;

If we put these sections together, tangle gives us the following C code. (note the #line commands
and the //:N comments: they are very useful for debugging; we removed them in the code of fprime).

//1:

RR no 0123456789

110 José Grimm

#line 2 "toto.web"
double f(double x)
{
double y,z;
//3:

#line 18 "toto.web"

#line 19 "toto.web"
z= (x+1)*(x+1);
//:3

#line 5 "toto.web"

//5:

#line 23 "toto.web"

#line 24 "toto.web"
y= (z+2)*(z+2);
//:5

#line 6 "toto.web"

return y;
}
//:1
//2:

double fprime(double x,double dy)
{
double y,dx,z,dz;
z= (x+1)*(x+1);
y= (z+2)*(z+2);
dz= 2*(z+2)*dy;
dy= 0;//:6
dx= 2*(x+1)*dz;
dz= 0;
return y;
}

4.4 Naming scheme

A very important point in automatic differentiation is the naming scheme that will be used. We have to
give a name to functions, variables, and sections. If the name of the section that computes z = (x+1)2 is
‘First part of f’, then we must generate automatically the name associated to the derivative of the section.
Getting ‘First part of derivative of f’ is not trivial. For this reason, we shall use ‘First part of f, diff’ instead,
i.e. we add the mode name, as defined in table 4.1. We have four modes, because we compute ψ, ψ′ and
ψ′′, and the derivative of ψ has to be computed twice (see later). The name ‘diff’ is for differentiation in
reverse mode, the name ‘delta’ for differentiation in direct mode.

INRIA

Rational approximation of transfer functions in the hyperion software 111

Table 4.1: Table of modes

mode name variable prefix name
0 direct (no prefix) x
1 diff d dx
2 delta delta_ δx
3 delta diff delta_d δdx

Table 4.2: Table of precisions

C type precision name precision suffix
double double 8 bytes D
SLD SLD 20 bytes S

complex complex 16 bytes C
SLD_complex SLD complex 40 bytes SC

The derivative of a variable x cannot be called x′, because this is an illegal name in C. For this reason,
we add a prefix, and use dx. When we differentiate in direct mode, we add another prefix, and use δx.
Finally, if we differentiate twice, we add a double prefix δdx. Of course, δ is not a valid letter in C, so
that the real name will be delta_dx.

Consider the simple equation:
c += ab. (4.15.a)

The derivative in reverse mode is
a′ += bc′, b′ += ac′. (4.15.b)

Differentiating again gives

c′′ += ba′′, a′ += c′b′′, b′ += c′a′′, c′′ += ab′′. (4.15.c)

No naming scheme is applied here, so that we have two different variables with the same name a′ (and
the same for b′). In fact, one a′ is ∂a/∂xi, and the other is ∂a/∂xj if we compute row i, column j of the
Hessian. Note that the Hessian is computed by differentiating in direct mode the code of ψ′, which is
computed by differentiating in reverse mode the code of ψ. Differentiating (4.15.b) in direct mode gives

a′′ += b′c′ + bc′′, b′′ += a′c′ + ac′′. (4.15.d)

If we use the naming scheme shown above, we get

da += b dc, db += a dc (4.15.e)

δda += δb dc+ b δdc, δdb += δa dc+ a δdc. (4.15.f)

δc += δa b+ a δb. (4.15.g)

There is no more ambiguity in these equations.
For some reasons, computation in double precision is not precise enough. This means that we need

quadruple precision. Moreover, we want our algorithms to work in the real and complex case. This means
that each formula is implemented four times. In table 4.2, we give for each precision its name (this name
will be added to section names), the suffix to add to the functions we generate or call, and also to the
name of some global variables, and the the number of bytes of memory used by each type. Each entry in
this table is in one of the Lisp arrays precision_names, prec_types, types-vector.

RR no 0123456789

112 José Grimm

4.5 Web interface

From now on, we shall give the source of the code of the differentiator, and everything else that is needed.
The code uses a number of global variables that are not shown here (for instance the tables shown before
are implemented as some vectors). We have also some variables, at-start, at-equal and at-semi that
contain the quantities @<, @>= and @>@;.

Each piece of code we generate exists for each mode, each precision. In general, each section has the
form: @<some title, current mode, current precision @>. The next function generates a section definition,
it takes the current mode and precision from global variables. The show-usage function prints a dot on
the terminal after every ten calls.

1 (defun :decl-sec (T comm)

2 (show-usage)

3 (print "@ " comm)

4 (print at-start T (vref mode_names mode) (vref precision_names prec) at-equal)

The same, without comments.

5 (defun decl-sec (T)

6 (show-usage)

7 (print "@ @<" T (vref mode_names mode) (vref precision_names prec)

8 at-equal))

This one is when we use a section.

9 (defun use-sec (T)

10 (print at-start T (vref mode_names mode) (vref precision_names prec)

11 at-semi))

These two functions are used in case the section is mode-independent (depend only on the current
precision).

12 (defun decl-sec0 (T prec)

13 (show-usage)

14 (print "@ @<" T (vref precision_names prec) at-equal))

15
16 (defun use-sec0 (T prec)

17 (print at-start T (vref precision_names prec) at-semi))

Case where the name is independent of the precision. We add a dot at the end of the name, because
it is not possible to have two sections A and B such that A is a prefix of B.

18 (defun decl-sec1 (T mode)

19 (show-usage)

20 (print "@ @<" T (vref mode_names mode) "." at-equal))

21
22 (defun use-sec1 (T mode)

23 (print at-start T (vref mode_names mode) "." at-semi))

According to (4.12.6), in the complex case, the first equation of (4.15.f) is

δda += δb dc+ b δdc. (4.16.a)

We replace this by
δda += δb dc, δda += b δdc. (4.16.b)

Let f(x, y, z) be the function (or macro) that replaces z by z + xy. Then we have

f(δb, dc, δda), f(b, δdc, δda). (4.16.c)

The C code we generate is:

INRIA

Rational approximation of transfer functions in the hyperion software 113

Table 4.3: Operator table

opcode arguments meaning num db
+ (a, b, c) c += ab 0, 1 15
- (a, b, c) c −= ab 1, 0 15
_+ (a, b, c) c += ab 2, 3 15
_- (a, b, c) c −= ab 3, 2 15
/ (a, b, c) c = a/b 4 15
_/ (a, b, c) c = a/b 5 15
= (a, b) b = a 6
1* (a, b) b += |a|2 7, 12 16
2* (a, b, c) c += 2<(ab), c real 8, 13 17
3* (a, b, c) c += 2ab, b real 9, 14 18
++ (a, b, c) c = a+ b 10
-- (a, b, c) c = a− b 11

c_add_mult_conj_mac(delta_b,dc,delta_da);
c_add_mult_conj_mac(b,delta_dc,delta_da);

In C++, this becomes

delta_da.add_mul_conj(delta_b,dc);
delta_da.add_mul_conj(b,delta_dc);

Instead of using a C macro, we can use a Lisp macro, or a Web macro. It happens that every function
call generated by the differentiator has this form (maybe with two arguments). The complete list (using
the C names) is given in table 4.4. As seen in the previous case, we can use a C++ method, instead of a
function call.

Each function in this table is identified by its row and column index. The column index is the current
precision. The row index is specified by Table 4.3. In this one, ‘opcode’ is a 1 or 2 character opcode
that identifies the function. We show the arguments of the function, the meaning, and a number. For
instance, the function f above has opcode _+. Its number is two. There is a second number, 3, that
corresponds to the same operation, with += and −= exchanged (this is needed in order to implement
equation (2.58)). Last column was only used for debugging.

4.6 Parsing arguments

What we have to differentiate is
GD̃ = V q +R, ψ = ‖V ‖2 (4.17)

or the modified version of it
G = V1q +R1 R1D̃ = V2q +R2, (4.18.a)

ψ = ‖F‖2 − ‖R1‖2 + ‖V2‖2, (4.18.b)

and the Schur formulas (4.4) on page 102.
The operations that are used in these formulas are addition, multiplication and division of matrices.

We also need the tilde operator. Note that an expression like x̃ appears in four cases

• In (4.4), D̃A and D̃B are just funny names, no tilde operation is required.

• We have b = (z − ω)(1− ω) and b̃ = (1− zω)(1− ω). These quantities are constant. We could just
say that b̃ is another funny name. As explained below, b̃ is not used in the code. [Note: constant
means independent of y, not of z.]

RR no 0123456789

114 José Grimm

Table 4.4: Operators

double SLD complex SLD complex
double_add_mul SLD_add_mul c_add_mult_mac SLD_add_mul_c
double_sub_mul SLD_sub_mul c_sub_mult_mac SLD_sub_mul_c
double_add_mul SLD_add_mul c_add_mult_conj_mac SLD_add_mult_conj
double_sub_mul SLD_sub_mul c_sub_mult_conj_mac SLD_sub_mult_conj
double_div SLD_div c_div_mac SLD_cmplx_div
double_div SLD_div c_div_conj_mac SLD_div_conj
double_set SLD_copy double_set SLD_cmplx_copy

double_square SLD_square cmplx_square SLD_cmplx_square
double_2times SLD_2times cmplx_2times SLD_cmplx_2times
double_2times SLD_2times cmplx_2times_r SLD_cmplx_2times_r
double_add_mac SLD_add cmplx_add_mac SLD_cmplx_add
double_sub_mac SLD_sub cmplx_sub_mac SLD_cmplx_sub

double_square_neg SLD_square_neg cmplx_square_neg SLD_cmplx_square_neg
double_2times_neg SLD_2times_neg cmplx_2times_neg SLD_cmplx_2times_neg
double_2times_neg SLD_2times_neg cmplx_2times_r_neg SLD_cmplx_2times_r_neg

• In the scalar case, we have D = q. Thus, we have to compute q̃. We do not use automatic
differentiation in the scalar case.

• Lemma 36 shows that the division in (4.4) is exact. In the case p = 2, we have Y/qA = q̃A(uy∗−y∗u).
Thus, we have to compute the product of the scalar q̃ by the matrix uy∗ − y∗u.

Since b is a polynomial of degree one, it has the form b0 + b1z, so that b̃ = b1 + b0z. Let b2 = b− b̃ and
b4 = b− b̃‖y‖2. Computing b2 and b4 is done using a special piece of code (see section 4.11.7). Note that
b and b̃ are used only through b2 and b4 (we shall see later that the array B holds b0 and b1 at locations 0
and 1, the coefficients of b2 at location 2 and 3, the coefficients of b4 at locations 4 and 5, ‖y‖2 at location
6, and y∗u at location 7; this explains the names b2 and b4).

Now, a careful examination shows that the only operations that are needed are those define in table 4.5,
namely

• c += ‖a‖2. This operation is called ψ, because it is only used to compute ψ. We take advantage of
the fact that dψ = 1 when we differentiate this in reverse mode.

• c += ab, where a is a scalar and b a matrix. This appears in y∗DuD, where the scalar is y∗Du and
the matrix is D.

• c += ãb, where a is a scalar and b a matrix (with a = q, b = uy∗ − y∗u).

• c = a/b. This operation replaces a by the remainder of the Euclidean division of a by b, and puts the
quotient in c. There are three divisions, in one case we use the remainder, otherwise the quotient.

• c += ab̃ or c += ãb. It happens that ã and b̃ are independent of z, so that only c += ab∗ and
c += a∗b are needed.

• c += ab. Here and in the previous case, a and b are matrices or vectors (we exclude the case: scalar
times matrix). Moreover, c has the same size and degree as the product ab.

• The same with −= instead of +=.

• Initialisation (in general to zero, but the initial value of ψ is ‖G‖2, i.e. one). This operation is not
in the table.

INRIA

Rational approximation of transfer functions in the hyperion software 115

Note that (4.4.1) is
qB = b4qA − b2y

∗DAu

using the notations b2 and b4 defined above. We compute first yD = y∗D, then E = yDu (we explained
in the introduction why we compute it this way, and not the other way). We initialise qB to zero, add
b4qA and subtract b2E. The first computation is done by

diff([y, T], D, yD) (4.19.a)

and the last by
diff([b2,−], E, qA). (4.19.b)

Here ‘diff’ is our differentiator. It takes four arguments, the last being the name of the section to generate
(not indicated here). The third argument is a name. The first two arguments are a bit special: they
consists of lists of 4 or more elements: name of a variable, first dimension, second dimension, degree.
We have some flags: in (4.19.a) we have a flag that says that we use y∗, and in (4.19.b) a flag that says
that subtraction should be used instead of addition. In table 4.17 on page 162, the first row is equation
(4.19.a), while equation (4.19.b) is ‘new q, 2’ (the quantity b4qA is computed by ‘new q, 1’). The parser
puts the flags into global variables. The next function clears these globals.

24 (defun :initialise-diff ()

25 (setq :transpose-a ())

26 (setq :transpose-b ())

27 (setq :neg-a ())

28 (setq :invert-b ())

29 (setq :compute-psi ())

30 (setq :constant-flag 0)

31 (setq :the-case 0))

This is the differentiator. The code is very simple, because split into two parts. The first part checks
that the operation is well-defined and finds what to do (function :check-mat-prod). The second part
(:print-code) differentiates the code, essentially by replacing in a table every name by its value.

As said above, the first arguments x and y are lists that contain at least four elements. These will
be put into two tables :param_a and :param_b, remaining stuff will be in global variables. The third
argument z is a name. We put it in :param_c. The first part will fill completely this vector and return
it as a list. Thus the result of the function is a valid argument to itself.

32 (defun differentiate (x y z title)

33 (let (res)

34 (vset :param_c 0 (catenate z))

35 (setq res (:check-mat-prod x y))

36 (print "@ Code of \\verb!" x "! and \\verb!" y "!")

37 (print "into \\verb!" res "!.")

38 (:print-code :the-case title (vref :patterns-name :the-case))

39 res))

Each element A and B is a list of 4 mandatory parameters, and some optional flags. The mandatory
parameters are: the name of the variable, put in A0, the first and second dimensions (put in A1 and A2),
and the degree put in A3.

This is the start of the function check-mat-prod: fetch mandatory parameters, and put them into
global variables. For simplicity of use, if y is a list that represents a variable, and T is the ‘transpose’
flag, we accept [y, T] (a list of two elements) as argument to the function (see equation (4.19.a)). This
explains the test if (consp (car x)).

40 (defun :check-mat-prod (x y)

41 (:initialise-diff)

42 (if (consp (car x)) (setq x (append (car x) (cdr x))))

RR no 0123456789

116 José Grimm

43 (if (consp (car y)) (setq y (append (car y) (cdr y))))

44 (vset :param_a 0 (catenate (car x)))

45 (setq x (cdr x))

46 (vset :param_a 1 (catenate (car x)))

47 (setq x (cdr x))

48 (vset :param_a 2 (catenate (car x)))

49 (setq x (cdr x))

50 (vset :param_a 3 (catenate (car x)))

51 (setq x (cdr x))

52 (vset :param_b 0 (catenate (car y)))

53 (setq y (cdr y))

54 (vset :param_b 1 (catenate (car y)))

55 (setq y (cdr y))

56 (vset :param_b 2 (catenate (car y)))

57 (setq y (cdr y))

58 (vset :param_b 3 (catenate (car y)))

59 (setq y (cdr y))

Second part of check-mat-prod: fetch optional parameters.

60 (when (and (consp x) (equal (catenate (car x)) "transpose"))

61 (setq :transpose-a true x (cdr x)))

62 (when (and (consp x) (equal (catenate (car x)) "neg"))

63 (setq :neg-a true x (cdr x)))

64 (when (and (consp x) (equal (catenate (car x)) "constant"))

65 (setq :constant-flag 1 x (cdr x)))

66 (when (and (consp y) (equal (catenate (car y)) "transpose"))

67 (setq :transpose-b true y (cdr y)))

68 (when (and (consp y) (equal (catenate (car y)) "div"))

69 (setq :invert-b true y (cdr y)))

70 (when (and (consp y) (equal (catenate (car y)) "psi"))

71 (setq :compute-psi true y (cdr y)))

72 (when (and (consp y) (equal (catenate (car y)) "constant"))

73 (setq :constant-flag (+ 2 :constant-flag) y (cdr y)))

Last part of check-mat-prod: check and construct the result.

74 (:construct-deg)

75 (:construct-result)

76 (list (vref :param_c 0)(vref :param_c 1)(vref :param_c 2)(vref :param_c 3)))

The flags are used in the following way: first, we put in constant-flag an integer: 0 means that A
and B are variable, 1 means that A is constant, 2 means that B is constant, and 3 means that A and
B are constant (this happens rarely). Other flags (transpose, div, psi) are denoted by T , D and ψ in
Table 4.5. These define the operation to be applied, which is characterised by a pattern name (and a
pattern number). If neg-a is true, then += should be replaced by −=.

In the case D, we assume that a is a matrix of polynomials or a polynomial, and b a polynomial. We
compute a = bq + r, by Euclidean division, where the quotient q is put in c, and the remainder in a.
In the case ψ, we compute ψ += ‖a‖2, where ψ is a real number. In all other cases, the operation is
c += f(a, b), or c −= f(a, b). The minus sign is chosen if the flag N appears in A. After the type of the
operation is fetched, we compute the size and dimension of the result, and check that the operation is
valid: if we multiply matrix a by matrix b, then the second dimension of a must be the first dimension
of b. Exception: we allow the product of a scalar by a square matrix. The next function computes the
size of the result (and the degree in the case ψ), and fills the variable the-case, which is the pattern to
apply. Note: we cannot compute uy∗ − y∗u (scalar plus matrix); we explain later how this can be done.

77 (defun :construct-result ()

78 (let ((dim1a (vref :param_a 1))

INRIA

Rational approximation of transfer functions in the hyperion software 117

Table 4.5: How flags determine the operation

Flags for A flags for B operation pattern comments
none ψ c += ‖a‖2 ψ name and dimensions of B ignored
none none c += ab S if a is scalar, b a square matrix
T none c += ãb ST if a is scalar, b a square matrix

none D c = a/b D b must be a scalar
none T c += ab̃ Tb a and b are vectors
T none c += ãb Ta

none none c += ab N

79 (dim2a (vref :param_a 2))

80 (dim1b (vref :param_b 1))

81 (dim2b (vref :param_b 2)))

82 (vset :param_c 1 dim1a) ; values OK for pattern N

83 (vset :param_c 2 dim2b)

84 (cond (:compute-psi

85 (vset :param_c 1 "1")

86 (vset :param_c 2 "1")

87 (vset :param_c 3 "0")

88 (setq :the-case 5))

89 ((and (equal dim1a "1") (equal dim2a "1") (equal dim1b dim2b))

90 (vset :param_c 1 dim1b)

91 (setq :the-case (if :transpose-a 4 3)))

92 (:invert-b

93 (vset :param_c 2 dim2a)

94 (setq :the-case 6))

95 (:transpose-b

96 (if (or (not (equal dim2b "1"))(not (equal dim2a "1")))

97 (error ’diff "bad transpose" ()))

98 (vset :param_c 1 dim1a)

99 (vset :param_c 2 dim1b)

100 (setq :the-case 2))

101 (:transpose-a

102 (if (not (equal dim1a dim1b))

103 (error ’diff "bad" "dim"))

104 (vset :param_c 1 dim2a)

105 (setq :the-case 1))

106 (true

107 (if (not (equal dim2a dim1b))

108 (error ’diff "bad" "dim"))

109 (setq :the-case 0)))))

The next function computes the degree of the result. It is called before the preceding function, and
does not compute the degree in the case of ψ. Moreover, in the case c = a/b (Euclidean division of a by
b), it checks that b is a scalar, of non-zero degree.

110 (defun :construct-deg ()

111 (let ((dega (vref :param_a 3)) (degb (vref :param_b 3)))

112 (if :invert-b

113 (progn

114 (when (or (not (equal (vref :param_b 1) "1"))

115 (not (equal (vref :param_b 2) "1"))

116 (equal degb "0"))

RR no 0123456789

118 José Grimm

117 (error ’diff "illegal parameters" 0))

118 (vset :param_c 3 (:deg-sub dega degb)))

119 (vset :param_c 3 (:deg-add dega degb)))))

In some cases, it is important to know that the result has zero degree. Hence the following function
thats computes the sum of two degrees.

120 (defun :deg-add (a b)

121 (cond ((equal a "0") b)

122 ((equal b "0") a)

123 (true (catenate a "+" b))))

In the case of division, the degree of the result (the quotient) is n −m, and we know that m > 0.
This function gives p in case n has the form p + m (typical use: we compute the remainder of gd by q
where d and q have the same degree).

124 (defun :deg-sub (a b)

125 (let ((test true))

126 (let ((i (strlen a)) (j (strlen b)) k)

127 (setq k (- i j))

128 (if (and (> k 0) (= (sref a (1- k)) #/+) (substring-eq a k b 0 j))

129 (substring a 0 (1- k))

130 (catenate a "-" b)))))

4.7 The patterns

The only function to explain now is print-code. This function takes a pattern, instantiates it, and prints
the result. We start with the list of patterns.

If we look at table 4.5, we see that we have three kinds of operations. The case D is a bit special,
since it takes two arguments a and b, computes the quotient and remainder of the Euclidean division of
a by b, puts the quotient in c, and the remainder in a. It is the only operation that modifies its input
parameter (thus, if we use (4.18.a), we have to copy G somewhere). Other differences with the general
case will be explained later. The case ψ is also special, because it computes ψ, the result of the function.
Since dψ = 1, we could simplify the code (this is not yet done). In fact, the main difference with the
general case is that it takes only one argument.

Consider a general pattern, for instance Tb. We compute C = AB̃, where A and B are vectors of
polynomials. Let Aij and Bij be the coefficient of zj of entry i of A or B. Let Cijk be the coefficient
of zk of entry (i, j) of C (if A has size na and B has size nb, then C is an na × nb matrix). Equation
C = AB̃ can be written as

Cklw =
∑
i+j=w

Bl,m−jAki.

We can write this as a sequence of assignments: Cklw = 0, followed by

∀i, j, k, l Ckl,i+j += Bl,m−jAki. (4.20)

This equation is translated into the first five rows of the pattern for Tb. For instance, the first line is
k<1a. This line just says that 0 ≤ k < na, where na is the number of rows of A. The third line i<=3a
says 0 ≤ i ≤ da, where da is the degree of A. Thus the first four lines of the pattern give the range of the
variables that are quantified in equation (4.20). The body of (4.20) itself is coded as _+ bt a c. This is
a short-hand for

c += bta.

Here a, bt and c are abbreviations for Aki, Bl,m−j and Ckl,i+j , see table 4.13 on page 126.
If we differentiate equation (4.20), in direct mode, reverse mode, or twice, we get something like

∀i, j, k, l, E, where E is a list of assignments, and i, j, k, and l take the same values as before. For this

INRIA

Rational approximation of transfer functions in the hyperion software 119

Table 4.6: The patterns for N

k < 1a
w < 2a
l < 2b
i <= 3a
j <= 3b
+ a b c
+ delta_a b delta_c
+ a delta_b delta_c
_+ b dc da
_+ a dc db
_+ delta_b dc delta_da
_+ b delta_dc delta_da
_+ delta_a dc delta_db
_+ a delta_dc delta_db

Table 4.7: The patterns for Ta

k < 2a
w < 1a
l < 2b
i <= 3a
j <= 3b
_+ at b ct
_+ delta_at b delta_ct
_+ at delta_b delta_ct
_+ dct b dat
+ at dct db
_+ dct delta_b delta_dat
_+ delta_dct b delta_dat
+ delta_at dct delta_db
+ at delta_dct delta_db

RR no 0123456789

120 José Grimm

Table 4.8: The patterns for Tb

k < 1a
l < 1b
i <= 3a
j <= 3b
_+ bt a c
_+ delta_bt a delta_c
_+ bt delta_a delta_c
_+ dc a dbt
+ bt dc da
_+ dc delta_a delta_dbt
_+ delta_dc a delta_dbt
+ delta_bt dc delta_da
+ bt delta_dc delta_da

Table 4.9: The patterns for S

l < 1b * 2b
i <= 3a
j <= 3b
Other lines like N .

Table 4.10: The patterns for ST

l < 1b * 2b
i <= 3a
j <= 3b
_+ at b c
_+ delta_at b delta_c
_+ at delta_b delta_c
_+ dc b dat
+ at dc db
_+ dc delta_b delta_dat
_+ delta_dc b delta_dat
+ delta_at dc delta_db
+ at delta_dc delta_db

Table 4.11: The patterns for ψ

k < 1a * 2a
i <= 3a
1* a cp
2* delta_a a delta_cp
3* a dcp da
3* delta_a dcp delta_da
3* a delta_dcp delta_da

INRIA

Rational approximation of transfer functions in the hyperion software 121

Table 4.12: The patterns for D

k < 1a * 2a
for(i=0;i<=, degc, ;i++)
/ a1 b1 tmp
= tmp c2
for(j=0;j<, degb, ;j++)
- tmp b2 a2
for(i=0;i<=, degc, ;i++)
= c2 tmp
= delta_a1 delta_tmp
- tmp delta_b1 delta_tmp
/ delta_tmp b1 delta_tmp
= delta_tmp delta_c2
for(j=0;j<, degb,;j++)
{
- delta_tmp b2 delta_a2
- tmp delta_b2 delta_a2
}
for(i=, degc, ;i>=0;i--)
= c2 tmp
= dc2 dtmp
for(j=0;j<, degb, ;j++)
{
_- b2 da2 dtmp
_- tmp da2 db2
}
= dtmp dc2
_/ dtmp b1 dtmp
++ dtmp da1 da1
_- tmp dtmp db1
for(i=, degc, ;i>=0;i--)
= c2 tmp
= dc2 dtmp
= delta_c2 delta_tmp
= delta_dc2 delta_dtmp
for(j=0;j<, degb, ;j++)
{
_- delta_b2 da2 delta_dtmp
_- b2 delta_da2 delta_dtmp
_- delta_tmp da2 delta_db2
_- tmp delta_da2 delta_db2
}
= delta_dtmp delta_dc2
_/ dtmp b1 dtmp
_- delta_b1 dtmp delta_dtmp
_/ delta_dtmp b1 delta_dtmp
++ delta_dtmp delta_da1 delta_da1
_- delta_tmp dtmp delta_db1
_- tmp delta_dtmp delta_db1

RR no 0123456789

122 José Grimm

reason, the pattern is split into five parts Ci. There is a Lisp file that contains a list of 7 patterns, one
for each row of table 4.5. These are shown in the tables 4.6 to 4.12. Each pattern is formed by 5 chunks
of lines. In the Lisp file, each chunk is a list, with a name (for instance, pat-N-head, pat-N-code, etc.)
and a pattern is a list of 5 lists. Chunk C0 is the header (describing the loops), chunk Ci is the code for
the ith mode of derivation (direct, delta, diff, delta-diff).

The next function takes as argument the content of the whole Lisp file and interprets it.

131 (defun read-patterns1 (l)

132 (let (x)

133 (setq :patterns (makevector 7 ()))

134 (setq :patterns-name (makevector 7 ()))

135 (for (i 0 1 6)

136 (setq x (car l) l (cdr l))

137 (vset :patterns i (:read-one-pattern x i)))

138 l))

If the chunk has more than one instruction, curly braces are added. In the special case of division,
the opening brace is added after the first ‘for’ instruction (braces after the second ‘for’ are explicit, see
table 4.12). The constants open-brace and close-brace contain these braces.

This is the code that adds braces around a chunk.

139 (defun :add-a-brace (l)

140 (if (not (cdr l))

141 l

142 (if (and (consp (car l)) (stringp (car (car l)))

143 (substring-eq (caar l) 0 "for" 0 3))

144 (cons (car l) (cons open-brace (append1 (cdr l) close-brace)))

145 (cons open-brace (append1 l close-brace)))))

This function converts the list of 5 lists, into a single list, and adds ‘nil’ markers between chunks. It
also adds a brace wherever needed.

146 (defun :add-braces (l)

147 (let (LL a b c d e)

148 (setq LL (list ())) ; chunk separator

149 (setq a (car l)

150 b (:add-a-brace (cadr l))

151 c (:add-a-brace (caddr l))

152 d (:add-a-brace (cadddr l))

153 e (:add-a-brace (car (cddddr l))))

154 (append a LL b LL c LL d LL e LL)))

The next function reads a single pattern. The first element is the name of the pattern, stored in the
table.

155 (defun :read-one-pattern (l i)

156 (let (res)

157 (setq l (:add-braces l))

158 (vset :patterns-name i (car l))

159 (setq l (cdr l))

160 (while (car l)

161 (setp p (makevector 5 ()))

162 (newl res p)

163 (:fetch-for-pattern (car l) p)

164 (setq l (cdr l)))

165 (while l

166 (setq p (makevector 5 ()))

167 (vset p 1 0)

INRIA

Rational approximation of transfer functions in the hyperion software 123

168 (newl res p)

169 (:fetch-normal-pattern (car l) p)

170 (setq l (cdr l)))

171 (nreverse res)))

Each line in a pattern is translated into a vector of size 5. The meaning of these fields depend on
whether this is chunk C0, or chunk Ci. The first chunk C0 encodes the ‘for’ loops. For instance, if we
compute the product C = AB, where A, B and C are matrices of polynomials, Aijk is the coefficient of
zk in row i, column j of A, we compute

Ckl,i+j =
∑
w,i,j

AkwiBwlj (4.21)

for all k and l. This gives five loops. If A has degree n, then i is between 0 and n. If the first dimension
is N , then k ranges between 0 and N − 1. On the other hand, matrices are stored as in Fortran. Hence,
if A is an n×m matrix,

∑nm−1
i=0 A2

i is the square of the norm of A (see table 4.11).
This example shows that we need up to five index variables. The variable n is reserved for the

McMillan degree of the result. The variable m is the degree of G. The variable p is the dimension of the
space (i.e. the dimension of D). For this reason, our index variables are called i, j, k, l and w. For some
strange reason, they are ordered as kwlij. This piece of code puts the value on the property list of the
symbol.

172 (putprop ’k 0 ’:idx-val)

173 (putprop ’w 1 ’:idx-val)

174 (putprop ’l 2 ’:idx-val)

175 (putprop ’i 3 ’:idx-val)

176 (putprop ’j 4 ’:idx-val)

A loop that prints as

for(i=0;i<n*m;i++)

may be input as i < 1a * 2b (note the spaces) and is internally coded as a list of five quantities pi.
Field p2 holds < or <=, and the field p0 is 16 and 17 respectively (< is used when the upper bound is a
dimension, and <= is used when the upper bound is a degree. This could be deduced automatically from
the expression). Fields p4, p3 and p1 encode the quantities i, n and m.

Quantities n, m that appear in the ‘for’ loop are dimensions and degrees. For each variable A, B, C
of (4.21), we define na, ma, da, nb, mb, etc., to be the first dimension, second dimension and degree. In
the input, we shall use 1a, 2a, 3a instead. This is because the vector :param_a contains at location i
(1 ≤ i ≤ 3) this information. To each variable, we associate a value, formed of the index of the name,
and the dimension.

177 (putprop ’1a ’(0 . 1) ’:dblx-val)

178 (putprop ’2a ’(0 . 2) ’:dblx-val)

179 (putprop ’3a ’(0 . 3) ’:dblx-val)

180 (putprop ’1b ’(1 . 1) ’:dblx-val)

181 (putprop ’2b ’(1 . 2) ’:dblx-val)

182 (putprop ’3b ’(1 . 3) ’:dblx-val)

183 (putprop ’1c ’(2 . 1) ’:dblx-val)

184 (putprop ’2c ’(2 . 2) ’:dblx-val)

185 (putprop ’3c ’(2 . 3) ’:dblx-val)

This is the magic function, it splits the string into a list of symbols.

186 (defun :str-to-list (s)

187 (read-from-string (catenate "(" s ")")))

A ‘for’ loop is given in the pattern list as i<1a*2b or j<=3c. The next function parses the given
string. In the second case, the value of m is one, it is encoded by the integer 1, instead of a dotted pair.

RR no 0123456789

124 José Grimm

188 (defun :fetch-for-pattern (s p)

189 (let ((aux (:str-to-list s)))

190 (vset p 4 (getprop (car aux) ’:idx-val))

191 (setq aux (cdr aux))

192 (vset p 2 (car aux))

193 (if (eq (car aux) ’<=)

194 (vset p 0 17)

195 (vset p 0 16))

196 (setq aux (cdr aux))

197 (vset p 3 (getprop (car aux) ’:dblx-val))

198 (setq aux (cddr aux))

199 (if aux

200 (vset p 1 (getprop (car aux) ’:dblx-val))

201 (vset p 1 1))))

Consider again the product C = AB. Assume now that A is a zero-degree matrix, while B is a vector.
Instead of

Ckl,i+j =
∑
w,i,j

AkwiBwlj

we have now
Ckj =

∑
w,j

AkwBwj (4.22)

where Akw is entry (k,w) of A, Bwj is the coefficient of zj in entry w of B. In this example, A, B and
C are objects with two indices. We get (4.22) from (4.21) by removing useless indices. Index i is useless
because A has degree zero, index l is useless because the second dimension of B is one.

In general, a loop is useless if it is executed only once. Hence for(i=0;i<=0;i++){body} can be
replaced by i=0{body}, and we can remove i from the body, if we wish so. What we have to do is find
all useless loops and their associated index (because this index is also useless). In the case of i<1a*2b
the loop is useless if A1B2 is one; in the case of j<=3c, this is true if C3 is zero. The next function checks
whether a value n or m is zero or one. Here val is an integer, str the string that represents this number,
and i the expression to test.

202 (defun :is-index01 (i val str)

203 (if (eq i 1)

204 (eq val 1)

205 (equal (:dbl-index-val i) str)))

206
207 (dmd :dbl-index-val (x)

208 ‘(vref (vref :all_param (car ,x)) (cdr ,x)))

If an index (i, j, etc.) appears in a useless loop the index is useless. On the other hand, if it appears
in a useful loop, it is useful. We explain later what we do with the useful indices. The next function takes
a ‘for’ loop, returns 5 if the loop is useless, and the index of the loop variable in case the loop is useful.

209 (defun :is-a-loop-useful (p)

210 (if (= (vref p 0) 16) ; case <

211 (if (and (:is-index01 (vref p 3) 1 "1")

212 (:is-index01 (vref p 1) 1 "1"))

213 5

214 (vref p 4))

215 (if (= (vref p 0) 17) ; case <=

216 (if (or (:is-index01 (vref p 3) 0 "0")

217 (:is-index01 (vref p 1) 0 "0"))

218 5

219 (vref p 4))

220 5)))

INRIA

Rational approximation of transfer functions in the hyperion software 125

Given a pattern name i, this returns the list of useful indices in the pattern. We look at every element
of chunk C0 (between C0 and C1, there is an element with no opcode, i.e. with null p2). The return value
is a vector, that holds true for a given slot if the variable is useless. Note that in the case i = 6 (division),
there are two loops which are not in chunk C0. For this reason we say that indices i and j are useful (in
fact, they could be useless, but only if we divide a by b, where deg a < deg b or deg b = 0, both conditions
are false in our case).

221 (defun :find-useless (i)

222 (let ((p (vref :patterns i))

223 (res (makevector 6 true))

224 k)

225 (while (vref (car p) 2)

226 (vset res (:is-a-loop-useful (car p)) false)

227 (setq p (cdr p)))

228 (when (= i 6) ; hack

229 (vset res 3 false)

230 (vset res 4 false))

231 res))

Print the loops. Useless loops are not printed. There is some indentation, defined by the indent
vector.

232 (defun :print-the-loops (p)

233 (let (aux c j s (loop-number 0))

234 (while (vref (car p) 2)

235 (setq aux (car p))

236 (setq p (cdr p))

237 (unless (= 5 (:is-a-loop-useful aux))

238 (prin1 (vref :indent loop-number))

239 (setq loop-number (1+ loop-number))

240 (setq c (vref :template (vref aux 4)))

241 (prin1 "for(") (prin1 c) (prin1 "=0;") (prin1 c)

242 (prin1 (vref aux 2))

243 (setq j (vref aux 3))

244 (setq s (:dbl-index-val j))

245 (prin1 s)

246 (setq j (vref aux 1))

247 (when (consp j)

248 (setq s (:dbl-index-val j))

249 (prin1 "*") (prin1 s))

250 (print ";" c "++)")))))

4.8 Differentiation

Consider again the simple operation C += AB. We have to generate

Ckl,i+j =
∑
w,i,j

AkwiBwlj .

If A is an n ×m matrix, we store Akw in a vector at location k + wn, like in Fortran (but 0 ≤ k < n,
0 ≤ w < m like in C), this avoids using 3 indirections for Akw,i. The C code that refers to Akw,i is hence
one of

a[k+w*n][i]
a[k][i]
a[w][i]

RR no 0123456789

126 José Grimm

a[k+w*n]
a[k]
a[w]
a[i]

(recall that some indices are useless; we assume that at least one of them is useful). Every such expression
is obtained by instantiation of the string X[k+w*Y][i], which is called an abbreviation. Table 4.13 gives,
for each abbreviation, its name, for instance ‘a’, the name of the variable (for instance ‘A’), the value of
the first index, and the value of the second index. Each index is encrypted as either a list of four items,
or as a single integer.

Table 4.13: Table of abbreviations

name index1 index2 enc1 enc2
a a k + w ∗A1 i (0 1 0 1) 4
at a w + k ∗A2 deg(a)− i (0 2 1 0) 12
b b w + l ∗B1 j (1 1 1 2) 5
bt b l + w ∗B2 deg(b)− j (1 2 2 1) 23
c c k + l ∗A1 i+ j (0 1 0 2) 9
ct c k + l ∗A2 i+ j (0 2 0 2) 9
a1 a k deg(a)− i 1 12
a2 a k deg(c)− i+ j 1 35
b1 b deg(b) 0 20
b2 b j 0 5
c2 c k deg(c)− i 1 32
cp c 0 0

The next function takes as argument a list of 4 elements, for instance (0 1 0 1) and evaluates it.
The value is k + w ∗ A1, where A is the variable number 0, the subscript 1 on A1 is the next element
of the list, and variable k, w, have index 0 and 1 in the template string (kwlij). We return k if w is
useless (or if A1 is zero), w if k is useless (since this implies A1 = 1), and nil, if both are useless.

251 (defun :instantiate-big (idx useless)

252 (let (j1 j2 i1 i2 T)

253 (setq j1 (car idx) j2 (cadr idx) i1 (caddr idx) i2 (cadddr idx))

254 (setq T (vref (vref :all_param j1) j2))

255 (if (or (= (sref T 0) #/0) (vref useless i2))

256 (if (vref useless i1)

257 ()

258 (vref :template i1))

259 (if (vref useless i1)

260 (vref :template i2)

261 (catenate (vref :template i1) "+" (vref :template i2) "*" T)))))

The next function takes as argument an integer or a list. See table 4.13 for the meaning of the different
codes. These codes are generated in the following way: the code for i, j and k is one more than the index
in the ‘kwlij’ string. The codes for −i and −j are 2 and 3. The codes for the degrees of A, B and C are
respectively 10, 20 and 30. The code of an expression is just the sum of the codes of the terms.

262 (defun :instantiate-idx1 (idx useless)

263 (cond ((eq idx 0) ())

264 ((or (eq idx 1) (eq idx 4) (eq idx 5))

265 (setq idx (- idx 1))

266 (if (vref useless idx)

INRIA

Rational approximation of transfer functions in the hyperion software 127

267 ()

268 (vref :template idx)))

269 ((or (eq idx 12) (eq idx 23) (eq idx 32))

270 (let (a b res)

271 (setq a (quomod idx 10) b #:ex:mod)

272 (setq res (catenate (vref (vref :all_param (1- a)) 3)

273 (if (eq b 3) "-j" "-i")))

274 (if (= (sref res 0) #/0)

275 () res)))

276 ((eq idx 9)

277 (if (vref useless 3)

278 (if (not (vref useless 4))

279 "j" ())

280 (if (vref useless 4)

281 "i"

282 "i+j")))

283 ((eq idx 35)

284 (catenate (vref :param_c 3) "-i+j"))

285 ((eq idx 20)

286 (vref :param_b 3))

287 (true (:instantiate-big idx useless))))

The next function does the same, but if the result is nil, it converts it to the empty string, otherwise,
it adds square brackets around the expression.

288 (defun :instantiate-index (idx useless)

289 (let ((res (:instantiate-idx1 idx useless)))

290 (if res

291 (catenate "[" res "]")

292 "")))

Finally, we instantiate each of the 12 abbreviations, and put the result in a table. The table holds
19 elements, elements 12, 13 are the degrees of b and c. These quantities are needed by the code of the
division. Element 14 holds ‘tmp’, used for the division. Remaining elements are prefixes that are added
before the variables.

293 (defun :instantiate-subst (useless)

294 (let ((res1 (makevector 19 ()))

295 slot)

296 (for (i 0 1 11)

297 (setq slot (vref :abbrevs i))

298 (vset res1 i (catenate (vref (vref :all_param (vref slot 0)) 0)

299 (:instantiate-index (vref slot 1) useless)

300 (:instantiate-index (vref slot 2) useless))))

301 (vset res1 12 (vref :param_b 3))

302 (vset res1 13 (vref :param_c 3))

303 (vset res1 14 "tmp")

304 (vset res1 15 "")

305 (vset res1 16 "delta_")

306 (vset res1 17 "d")

307 (vset res1 18 "delta_d")

308 res1))

Now, the pattern lists holds quantities like dc delta_b delta_dat. The next piece of code associates
to each variable that has this form three numbers: the first is 2 in general, it is 1 in case the variable is a
derivative of a, and 1 if it is a derivative of b. The second quantity is the index in the abbreviation table.
The last one is the prefix.

RR no 0123456789

128 José Grimm

309 (let (L1 V1 l1 v1 L2 L a b i)

310 (setq L1 ’("" "delta_" "d" "delta_d"))

311 (setq V1 ’(15 16 17 18))

312 (setq L2 ’(a 0 at 0 b 1 bt 1 c 2 ct 2 a1 0 a2 0 b1 1

313 b2 1 c2 2 cp 2 () 0 () 0 tmp 2))

314 (while (consp L1)

315 (setq l1 (car L1) v1 (car V1) L1 (cdr L1) V1 (cdr V1))

316 (setq L L2 i 0)

317 (while (consp L)

318 (setq a (car L) b (cadr L) L (cddr L))

319 (if (= v1 15) (setq b 2))

320 (if a

321 (putprop (concat l1 a) (mcons b v1 i) ’:var-val))

322 (setq i (+ i 1)))))

This reads now a prefix and a variable. If no variable is found, we hope it is OK, and act as if we
found ‘No variable found’. This will generate a syntax error when compiling.

323 (defun :split-pat-aux (str p loc)

324 (let ((a (getprop str ’:var-val)))

325 (if a

326 (progn (vset p loc (cdr a)) (car a))

327 (vset p loc "No variable found")

328 2)))

The variable mask is 1 if a derivative of the variable ‘a’ appears in the expression, 2 if a derivative of
the variable ‘b’ appears, 0 if none, and 3 if both.

We shall ignore every operation for which the logical ‘and’ between mask and :constant-flag is not
zero. It is to be noticed that the mask is zero for all special operations (‘for’ loops, braces, etc.) and for
all operations that do not have the form x += y, where y is a product of two terms. If the mask is 1,
one of the factors is a derivative of a, if the mask is 2, one of the factors is a derivative of b, and if the
mask is 3, one factor is a derivative of a and the second a derivative of b.

The expression we parse is a function call with 2 or 3 arguments. The next function updates the mask
after having examined one argument. The index returned by the previous function is the argument b, by
construction it is 0 (resp. 1) if the variable ‘a’ (resp. ‘b’) appears with a prefix in the expression, i.e. if
the derivative of the variable appears in the expression. It is 2 if no such derivative appears.

329 (defun :add-to-mask (mask b)

330 (cond ((= b 2) mask)

331 ((= b 0) (if (or (= mask 0) (= mask 2)) (+ mask 1) mask))

332 ((= b 1) (if (or (= mask 0) (= mask 1)) (+ mask 2) mask))))

This function takes as argument a string L, and a vector p, splits L into 3 arguments, puts the
arguments into p2, p3 and p4. It computes also the mask, and puts it into p1. The last field p0 of p is the
operator, it is read by another function.

333 (setq open-p #/(close-p #/)) ; for emacs

334 (defun :split-pattern (L p)

335 (let ((mask 0))

336 (setq i (:split-pat-aux (car L) p 2))

337 (setq mask (:add-to-mask mask i))

338 (setq i (:split-pat-aux (cadr L) p 3))

339 (setq mask (:add-to-mask mask i))

340 (setq i (:split-pat-aux (caddr L) p 4))

341 (setq mask (:add-to-mask mask i))

342 (vset p 1 mask)))

INRIA

Rational approximation of transfer functions in the hyperion software 129

The code of the division is a bit special: there are ‘for’ loops inside the code, for instance: for(j=0;j<,
degb, ;j++). The find-useless function knows about these loops: indices i and j are always useful in
the case of division, even if the loop in which they appear is not in the C0 chunk. The number of times
the loop is executed has abbreviation number 12 and 13. Recall that instantiate-subst instantiates
these quantities to the degree of B and C. The special ‘for’ loops are parsed via the next function. It
fills the fields p2, p3 and p4 (the field p1 is left null).

343 (defun :special-pattern (L p)

344 (vset p 2 (car L))

345 (vset p 4 (caddr L))

346 (cond ((eq (cadr L) ’degb) (vset p 3 12))

347 ((eq (cadr L) ’degc) (vset p 3 13))

348 (true (error "diff" "Bad pattern" L))))

Finally, a pattern line is converted using the following function. The argument may be nil (end-of-
chunk marker), a string (uninterpreted), or a list. The first element of the list, if it is a symbol, is an
operator, which is converted to some numbers, using convert-to-nb, and put in p0, otherwise, there is
no operator. After that, we should have an argument list, (a string that starts with an left parenthesis)
or a special pattern, namely 3 strings.

349 (defun :fetch-normal-pattern (L p)

350 (if (eq L ())

351 (vset p 2 ())

352 (if (consp L)

353 (:special-pattern L p)

354 (if (= (strlen L) 1)

355 (vset p 2 L)

356 (setq L (:str-to-list L))

357 (vset p 0 (getprop (car L) ’:op-val))

358 (:split-pattern (cdr L) p)))))

This converts an operator, defined by the first two letters into a list of 3 items (see table 4.3).

359 (putprop ’++ ’(10 10)’:op-val)

360 (putprop ’+ ’(0 1 15) ’:op-val)

361 (putprop ’-- ’(11 11) ’:op-val)

362 (putprop ’- ’(1 0 15) ’:op-val)

363 (putprop ’/ ’(4 4 15) ’:op-val)

364 (putprop ’= ’(6 6) ’:op-val)

365 (putprop ’1* ’(7 12 16) ’:op-val)

366 (putprop ’2* ’(8 13 17) ’:op-val)

367 (putprop ’3* ’(9 14 18) ’:op-val)

368 (putprop ’_+ ’(2 3 15) ’:op-val)

369 (putprop ’_- ’(3 2 15) ’:op-val)

370 (putprop ’_/ ’(5 5 15) ’:op-val)

This is the code of the differentiator: it just replaces each abbreviation by its value. Recall that an
abbreviation is a number, or a cons of two numbers, and we take the value from the subst vector.

371 (defun :instantiate-string (L subst)

372 (cond ((stringp L) L)

373 ((integerp L) (vref subst L))

374 ((not L) "")

375 ((consp L) (catenate (vref subst (car L)) (vref subst (cdr L))))

376 (true "Bad string in instantiate")))

It’s now time to print the result of the differentiator. We do not show the piece of code that prints
debugging information. The ‘funcall’ that’s here may print the name of the operator followed by the
arguments, or expand it.

RR no 0123456789

130 José Grimm

377 (defun :print-an-instruction (p subst prec)

378 (when (= 0 (land (vref p 1) :constant-flag))

379 (let ((s1 (vref p 2))(s2 (vref p 3))(s3 (vref p 4))

380 args res db db-op need-debug (slot (vref p 0)))

381 (if :neg-a (setq op (cadr slot)) (setq op (car slot)))

382 (setq s1 (:instantiate-string s1 subst))

383 (setq s2 (:instantiate-string s2 subst))

384 (setq s3 (:instantiate-string s3 subst))

385 (prin1 " ")

386 (when op

387 (if (= 15 op)

388 (setq op ())

389 (setq op (vref :the-operators op))))

390 (if (not op)

391 (print s1 s2 s3)

392 (setq args (list s1 s2 s3))

393 (funcall op prec args)))))

Prints the whole code. For each mode i, each precision in the list of precisions, we print a section,
that is formed of chunks C0 and Ci.

394 (defun :print-code (i title name)

395 (let (useless subst p p1 p2)

396 (setq useless (:find-useless i))

397 (setq subst (:instantiate-subst useless))

398 (setq p (vref :patterns i))

399 (setq p1 p)

400 (while (vref (car p1) 2)

401 (setq p1 (cdr p1)))

402 (for (prec 0 1 3)

403 (setq p2 p1)

404 (for (mode 0 1 3)

405 (:decl-sec title name)

406 (:print-the-loops p)

407 (setq p2 (cdr p2))

408 (while (vref (car p2) 2)

409 (:print-an-instruction (car p2) subst prec)

410 (setq p2 (cdr p2)))))))

4.9 Merging code

The next function takes as argument a list, with at least 3 elements. It calls the differentiate function
with the first 4 arguments, and returns the fourth. This is the section title, one is invented if none is
given. If more than four arguments are given, remaining arguments are printed as WEB comments.

411 (defun :call-diff (y)

412 (let (z (temp (cdddr y)))

413 (if (not temp)

414 (setq z (catenate "Untitled section " (gensym) "."))

415 (setq z (car temp)))

416 (setq temp (cdr temp))

417 (when temp

418 (print "@")

419 (show-usage)

420 (while temp

421 (print (car temp))

INRIA

Rational approximation of transfer functions in the hyperion software 131

422 (setq temp (cdr temp))))

423 (differentiate (car y) (cadr y) (caddr y) z)

424 z))

The next function takes as argument a list like (if test y). If y is a list, it calls call-diff on
it. If this gives Y , we return the list with three items, the first is iftest{, the second is Y , the last is
}. Note that the first argument must be the Lisp symbol if, and the second argument (called ‘test’ in
the example), should be a valid C test, hence a parenthesised expression. We allow also the case of two
arguments, (ifsomething y), where the first argument is a string that starts with the two letters ‘i’ and
‘f’. In the case where y is not a list, there is no call to call-diff, and Y is replaced by y.

Finally, the user may give y alone. The function returns y if it is not a list, the result Y of call-diff
otherwise.

425 (defun :handle-if (x)

426 (if (not (consp x))

427 x

428 (let ((test ()) y)

429 (cond ((eq (car x) ’if)

430 (setq test (catenate "if" (cadr x) open-brace) y (caddr x)))

431 ((and (not (cddr x)) (substring-eq (car x) 0 "if" 0 2))

432 (setq test (catenate (car x) open-brace) y (cadr x)))

433 (true (setq y x)))

434 (if (consp y) (setq y (:call-diff y)))

435 (if test (list test y close-brace) y))))

This calls the previous function on each elements of the argument list. It calls merge-code on the
result.

436 (defun differentiate1 (L)

437 (let (res x)

438 (newl res (car L))

439 (setq L (cdr L))

440 (while (consp L)

441 (setq x (car L) L (cdr L))

442 (newl res (:handle-if x)))

443 (merge-code (nreverse res))))

For each mode, each precision in the precision list, the next function prints a section whose name
is the first element of L. The list L is printed in reverse order in reverse mode. If an element Li of L
is a list, it has 3 elements, a string, a section title, and another string. Otherwise Li is a section title.
Typically, each Li is the result of a call to handle-if (see example below). Each section title is printed
via use-sec, that appends the mode and precision to it.

444 (defun merge-code (L)

445 (for (prec 0 1 3)

446 (for (mode 0 1 3)

447 (let ((aux L) x)

448 (decl-sec (car aux))

449 (setq aux (cdr aux))

450 (if (or (= mode 1) (= mode 3))

451 (setq aux (reverse aux)))

452 (while aux

453 (setq x (car aux) aux (cdr aux))

454 (if (consp x)

455 (progn (print (car x)) (use-sec (cadr x)) (print (caddr x)))

456 (use-sec x)))))))

457

RR no 0123456789

132 José Grimm

4.9.1 Example

We consider the case of where a is (y p 1 0), b is (y p 1 0 transpose), and c is z.
If we run the differentiate function, we get (z p p 0) as a result, and hyperion prints, among

other things:

@ Patterns for T_b
@<Title, delta diff, complex case@>=
for(k=0;k<p;k++)

for(l=0;l<p;l++)
{
c_add_mult_conj_mac(dz[k+l*p],delta_y[k],delta_dy[l]);
c_add_mult_conj_mac(delta_dz[k+l*p],y[k],delta_dy[l]);
c_add_mult_mac(delta_y[l],dz[k+l*p],delta_dy[k]);
c_add_mult_mac(y[l],delta_dz[k+l*p],delta_dy[k]);
}

In the case where we want macros to be expanded, the start of the previous code may be the fol-
lowing (complex multiplication may use Karatsuba or the usual algorithm). We show here only the first
multiplication.

@<Title, delta diff, complex case@>=
for(k=0;k<p;k++)

for(l=0;l<p;l++)
{
{

double Ctemp1,Ctemp2;
Ctemp1 = dz[k+l*p].r*delta_y[k].r;
Ctemp2 = -dz[k+l*p].i*delta_y[k].i;
delta_dy[l].i += (dz[k+l*p].r-dz[k+l*p].i)*(delta_y[k].r+delta_y[k].i)
- Ctemp1 - Ctemp2;
delta_dy[l].r += Ctemp1 - Ctemp2;
}

Example of merge-code. Consider the following input to hyperion:

(differentiate1 ’(
"Prepare X and Y"
"Complete code of B"
"Code of |yD|"
"Code of E"
"Code of N"
"Code of X, 1"
"Code of X, 2"
"Code of X, 3"
("if(p==2)" "Complete code of Z")
(if "(p>2)" "Code of Y")))

In this piece of code, handle-if does not call call-diff. We could change the handle-if function
in such a way the the last two lines could be merged in a single one, namely ("if(p==2)" "Complete
code of Z" "elseif(p>2)" "Code of Y"), but we think this is not really needed (if the compiler
is smart enough, it will compare p against 2 only once, but even if the test is done twice, this will not
really slow down the algorithm).

One of the 16 sections printed is:

INRIA

Rational approximation of transfer functions in the hyperion software 133

@ @<Prepare X and Y, direct, complex case@>=
@<Complete code of B, direct, complex case@>@;
@<Code of |yD|, direct, complex case@>@;
@<Code of E, direct, complex case@>@;
@<Code of N, direct, complex case@>@;
@<Code of X, 1, direct, complex case@>@;
@<Code of X, 2, direct, complex case@>@;
@<Code of X, 3, direct, complex case@>@;
if(p==2){
@<Complete code of Z, direct, complex case@>@;
}
if(p>2){
@<Code of Y, direct, complex case@>@;
}

And this is another section.

@ @<Prepare X and Y, delta diff, complex case@>=
if(p>2){
@<Code of Y, delta diff, complex case@>@;
}
if(p==2){
@<Complete code of Z, delta diff, complex case@>@;
}
@<Code of X, 3, delta diff, complex case@>@;
@<Code of X, 2, delta diff, complex case@>@;
@<Code of X, 1, delta diff, complex case@>@;
@<Code of N, delta diff, complex case@>@;
@<Code of E, delta diff, complex case@>@;
@<Code of |yD|, delta diff, complex case@>@;
@<Complete code of B, delta diff, complex case@>@;

4.10 Operators

In this section, we implement some functions that print something like a += bc. Recall that we have a
C macro double_add_mac, that is not shown here, and that could be used. We find it more readable to
just print a += b*c. On the other hand, in the complex case, we have a macro c_add_mult_mac, and
using the function below makes the code unreadable. In fact, the main reason for doing so, is that we
can switch between the standard macro, or the macro that uses Karatsuba, without changing the header
files (recall the funcall in print-an-instruction).

The next function takes 2 arguments, a string s, and a list (x, y, z, t) or five arguments, s, x, y, z and
t. It prints the string s, but ‘X’, ‘Y’, ‘Z’ and ‘T’ are replaced by x, y, z or t. Moreover, ‘#’ is replaced
by a newline character.

458 (defun :print-subst (str . l)

459 (when (and (consp (car l)) (not (cdr l))) (setq l (car l)))

460 (let ((X (car l)) (Y (cadr l)) (Z (caddr l)) (T (cadddr l)))

461 (let ((i (strlen str)) (j 0) c)

462 (while (< j i)

463 (setq c (sref str j) j (+ j 1))

464 (cond ((eq c #/X) (prin1 X))

465 ((eq c #/Y) (prin1 Y))

466 ((eq c #/Z) (prin1 Z))

467 ((eq c #/T) (prin1 T))

RR no 0123456789

134 José Grimm

468 ((eq c #/#) (terpri))

469 (true (princn c))))

470 (terpri))))

This is the table of operators (cf table 4.4 on page 114).
We give here only the code of one function per slot in the table. (For instance, there is a function

equivalent to :op-add-mul-K that does not use Karatsuba, and another one that calls a C macro instead
of expanding the call). Switching between equivalent function is trivially done by changing the name in
the next table.

471 (setq :the-operators #[:op-add-mul-K :op-sub-mul-K :op-add-mul-conj-K

472 :op-sub-mul-conj-K :op-div :op-div-conj :op-set :op-plus-norm

473 :op-2times :op-2timesr :op-add :op-sub :op-minus-norm

474 :op-2times-neg :op-2timesr-neg])

This is used for C++. Instead of f(a,b,c), we print c.f(a,b).

475 (defun :pc++2 (op argl)

476 (:print-subst "Z.X(Y);" (cons op args)))

477 (defun :pc++3 (op argl)

478 (:print-subst "T.X(Y,Z);" (cons op args)))

479 (defun :pc++4 (op argl)

480 (let (((x y z t) argl))

481 (print t z "." op "(" x "," t y ");")))

This function computes z = z+xy. As will be the case for the following functions, the first argument
prec is the precision, and the second argument is the list (x y z). Some operators take only two
arguments. We call them x and y. Note that print-subst uses X, Y and Z.

482 (defun :op-add-mul-K (prec args)

483 (cond ((eq prec 0) (:print-subst "Z += X*Y;" args))

484 ((eq prec 2)(:pc++3 "add_mul_K" args))

485 (true (:pc++3 "add_mul" args))))

This function computes z = z − xy.

486 (defun :op-sub-mul-K (prec args)

487 (cond ((eq prec 0) (:print-subst "Z -= X*Y;" args))

488 ((eq prec 2)(:pc++3 "sub_mul_K" args))

489 (true (:pc++3 "sub_mul" args))))

This function computes z = z + xy.

490 (defun :op-add-mul-conj-K (prec args)

491 (cond ((eq prec 0) (:print-subst "Z += X*Y;" args))

492 ((eq prec 1) (:pc++3 "add_mul" args))

493 ((eq prec 2) (:pc++3 "add_mul_conj_K" args))))

494 ((eq prec 3) (:pc++3 "add_mul_conj" args))))

This function computes z = z − xy.

495 (defun :op-sub-mul-conj-K (prec args)

496 (cond ((eq prec 0) (:print-subst "Z -= X*Y;" args))

497 ((eq prec 1) (:pc++3 "sub_mul" args))

498 ((eq prec 2)(:pc++3 "sub_mul_conj_K" args))

499 ((eq prec 3) (:pc++3 "sub_mul_conj" args))))

This function computes z = x/y.

500 (defun :op-div (prec args)

501 (cond ((eq prec 0) (:print-subst "Z = X/Y;" args))

502 (true (:pc++3 "div" args))))

INRIA

Rational approximation of transfer functions in the hyperion software 135

This function computes z = x/y.

503 (defun :op-div-conj (prec args)

504 (cond ((eq prec 0) (:print-subst "Z = X/Y;" args))

505 ((eq prec 1) (:pc++3 "div" args))

506 (true (:pc++3 "div_conj" args))))

This function computes y = x.

507 (defun :op-set (prec args)

508 (:print-subst "Y = X;" args))

This function computes y = y + |x|2.

509 (defun :op-plus-norm (prec args)

510 (cond ((eq prec 0) (:print-subst "Y += X*X;" args))

511 ((eq prec 2)

512 (:print-subst "{#Complex cmt = X; Y += cmt.r*cmt.r+cmt.i*cmt.i;#}" args))

513 (true (:pc++2 "square" args))))

This function computes y = y − |x|2.

514 (defun :op-minus-norm (prec args)

515 (cond ((eq prec 0) (:print-subst "Y -= X*X;" args))

516 ((eq prec 2)

517 (:print-subst "{#Complex cmt = X; Y -= cmt.r*cmt.r+cmt.i*cmt.i;#}" args))

518 (true (:pc++2 "square_neg" args))))

The function computes z = z + 2<(xy). Note that z is real.

519 (defun :op-2times (prec args)

520 (cond ((eq prec 0) (:print-subst "Z += 2*X*Y;" args))

521 ((eq prec 2) (:print-subst "Z += 2*(X.r*Y.r +X.i*Y.i);" args))

522 (true (:pc++3 "two_times" args))))

The function computes z = z − 2<(xy). Note that z is real.

523 (defun :op-2times-neg (prec args)

524 (cond ((eq prec 0) (:print-subst "Z -= 2*X*Y;" args))

525 ((eq prec 2) (:print-subst "Z -= 2*(X.r*Y.r +X.i*Y.i);" args))

526 (true (:pc++3 "two_times_neg" args))))

This function computes z = z + 2xy. Here y is real, z and x may be complex.

527 (defun :op-2timesr (prec args)

528 (cond ((eq prec 0) (:print-subst "Z += 2*X*Y;" args))

529 ((eq prec 1) (:pc++3 "two_times" args))

530 (true (:pc++3 "two_times_r" args))))

This function computes z = z − 2xy. Here y is real, z and x may be complex.

531 (defun :op-2timesr-neg (prec args)

532 (cond ((eq prec 0) (:print-subst "Z -= 2*X*Y;" args))

533 ((eq prec 1) (:pc++3 "two_times_neg" args))

534 (true (:pc++3 "two_times_r_neg" args))))

This function computes z = x+ y.

535 (defun :op-add (prec args)

536 (cond ((eq prec 0) (:print-subst "Z = X+Y;" args))

537 (true (:pc++3 "add" args))))

This function computes z = x− y.

RR no 0123456789

136 José Grimm

538 (defun :op-sub (prec args)

539 (cond ((eq prec 0) (:print-subst "Z = X-Y;" args))

540 (true (:pc++3 "sub" args))))

This prints the code associated to b += |a|2.
541 (defun :print-add-norm (a b prec)

542 (let ((s1 "Y += XT*XT;") (s2 "Y.add_mul(XT,XT);"))

543 (cond ((= prec 0) (:print-subst s1 a b () ""))

544 ((= prec 1) (:print-subst s2 a b () ""))

545 ((= prec 2)

546 (:print-subst s1 a b () ".r")

547 (:print-subst s1 a b () ".i"))

548 ((= prec 3)

549 (:print-subst s2 a b () ".r")

550 (:print-subst s2 a b () ".i")))))

This prints the code associated to b = |a|2, given real and imaginary part of a.

551 (defun :print-add-norm1 (a1 a2 b prec)

552 (cond ((= prec 0)

553 (:print-subst "Z = X*X;" a1 a2 b))

554 ((= prec 2)

555 (:print-subst "Z = X*X+Y*Y;" a1 a2 b))

556 ((= prec 1)

557 (:print-subst "Z.mul(X,X);" a1 a2 b))

558 ((= prec 3)

559 (:print-subst "Z.mul(X,X);#Z.add_mul(Y,Y);" a1 a2 b))))

This prints the code associated to b = −a.
560 (defun :print-neg (a b prec)

561 (cond ((= prec 0)

562 (:print-subst "Y = -X;" a b))

563 (true

564 (:print-subst "Y.neg(X);" a b))))

This prints the code associated to x = x− y.

565 (defun :print-neg-equal (x y p)

566 (print p x " -= " p y ";"))

This function sets a variable to zero.

567 (defun :call_clear_op (prec)

568 (if (eq prec 0)

569 (print " = 0;")

570 (print ".kill();")))

4.11 Other functions

From now on, the code is specific to our application. We first define two functions :real and :imag that
return the real and imaginary part of a complex number. Since a complex number x is represented as a
structure with two fields, this is x.r and x.i.

571 (dmd :spec-imag (prec) ‘(= ,prec 2))

572 (defun :imag (x prec)

573 (catenate x ".i"))

574 (defun :real (x prec)

575 (if (:prec-real prec) x

576 (catenate x ".r")))

INRIA

Rational approximation of transfer functions in the hyperion software 137

This returns true if precision is real or not. We have a function that returns the extension to use if
we must take the real part of a complex number.

577 (dmd :prec-real (prec) ‘(< ,prec 2))

578 (dmd :prec-imag (prec) ‘(>= ,prec 2))

579 (defun :real-ext (prec) (if (:prec-real prec) "" ".r"))

What we have to differentiate is a function ψ that depends on Q, which is a function of n vectors yi
of size p. Note that yi and Q can be complex. Thus the derivative is a set of n vectors y′i of size p. Since
our function is used by a generic optimiser, its input and output must be a single real vector Y and Y ′.
Thus we have to copy Y into yi at the beginning, and y′i to Y ′ at the end.

We shall explain later exactly how and where yi and Y are stored. The next function converts a single
element of Y into a single element of yi (a single element of Y can be formed of two real numbers). It is
assumed that s has the form x[k] and the destination d has the form y[j]. This piece of code modifies
the index k, but not the index j. The argument aux must have the form k++.

580 (defun :gen-copy-cmplx2real (s d aux prec)

581 (if (:prec-real prec)

582 (:print-subst "Y = X;Z" s d aux)

583 (:print-subst "Y = X.r;Z#Y = X.i;Z" s d aux)))

This does the copy the other way.

584 (defun :gen-copy-real2cmplx (s d aux prec)

585 (if (:prec-real prec)

586 (:print-subst "Y = X;Z" s d aux)

587 (:print-subst "Y.r = X;Z#Y.i = X;Z" s d aux)))

This piece of code declares a real variable (even in the complex case) and initialises the variable
to 1. Note that this must be after every other declaration and before any other executable C code (this
restriction does not apply to C++).

588 (defun :initialise-psi (var prec)

589 (if (or (= prec 0) (= prec 2))

590 (print " double " var " = 1;")

591 (print " SLD " var "; " var ".get_one();")))

Same code, but the variable is set to one for a different reason (in the previous code, we have ‖G‖ = 1,
here we have dψ = 1).

592 (defun :clear-a-div (var prec)

593 (:initialise-psi var prec))

Sets a variable to one. If the mode is complex, the variable is still real (this can be used for instance
to compute 1− |ω|2).

594 (defun :print-set-one-only (prec var)

595 (if (or (= prec 1) (= prec 3))

596 (print var ".get_one();")

597 (print var " = 1;")))

Set the real part of the variable to 1, where the variable is defined by the concatenation of var1, extp
and var2. This will be used for instance to initialise Q0 to the identity matrix.

598 (defun set-cr-one (var1 var2 prec extp)

599 (cond ((= prec 0) (print var1 extp var2 " = 1;"))

600 ((= prec 1) (print var1 extp var2 ".get_one();"))

601 ((= prec 2) (print var1 extp var2 ".r = 1;"))

602 ((= prec 3) (print var1 extp var2 ".get_one();"))))

RR no 0123456789

138 José Grimm

4.11.1 Main function

Recall the example given at the start of this chapter.

@u double f (double x)
{

double y,z;
@<First part of f@>
@<Second part of f@>
return y;

}

We explained how to construct the sections ‘First part of f’ and ‘Second part of f’, and now we have to
explain everything else. For simplicity, the functions we construct are members of a class T , which is a
huge data structure that contains everything (including the result of the function). There are objects
in T which are not needed here (for instance, we always assume ‖G‖ = 1, by dividing G by its norm.
The norm of G has to be kept somewhere, because we need it when computing the numerator LF (Q)).
Whenever a field of T is first used, we shall explain where it is stored.

The first implementation choice we do concerns the naming of the external functions. The main
function matrix_psi_fct computes ψ. It just calls another function, that is precision dependent. Thus
we have four medium size functions, instead of one big function (compilers prefer small functions, they
are easier to optimise). The quantity prec_type is an integer that gives the current precision of T . In
the Lisp code, the precision is an integer between 0 and 3. In the C code, it is an integer, for instance
ll_type_scpolynom (the ‘sc’ part is variable). The next function prints a case statement. It is followed
by some trivial functions.

603 (defun :print-switch-case (prec)

604 (print "case ll_type_" (vref prefix_types prec) "polynom:"))

605
606 (defun :print-open-brace () (print "{"))

607 (defun :print-close-brace () (print "}"))

608 (defun :print-double-close-brace () (print "}}"))

In the case of ψ and ψ′, we just call the function that is in T . In the case of ψ′′, the function in T
compute the second derivative in one direction. Thus we have to define two functions : one that takes
−1 as argument, and computes the Hessian in one direction (found in T), and puts the result somewhere
in T , and a function without arguments, that computes the derivative in every direction. The variable
mode is 3 or 4. Note that n and p are represented by a_n and a_p in the data structure T .

609 (defun print_a_switch_call1 (title mode)

610 (let ((args "(I);"))

611 (show-usage)

612 (print "@")

613 (print "@u void " title "()")

614 (:print-open-brace)

615 (if (= mode 4)

616 (setq args "(-1);")

617 (print "int I, N=a_n*a_p;")

618 (print "if(real_flag==0) N = 2*N;")

619 (print "for(I=0;I<N;I++)"))

620 (print "matrix_psi_delta_d" args)

621 (:print-close-brace)))

Equations (4.17) or (4.18) have the form Y = g1(Q), ψ = g2(Y). In writing this, we just mean that
we take Q (which is a pair (D, q)), compute some quantities, and use these to compute ψ. In the same
fashion, equations (4.4) have the form X = f1(A) and B = f2(X). Now the code of ψ can be written as

INRIA

Rational approximation of transfer functions in the hyperion software 139

B = I
for i = 0 to n− 1 do

A = B
X = f1(A), B = f2(X)

Q = B
Y = g1(Q), ψ = g2(Y)
store ψ in T .

or more generally as
Get variables, 1
for i = 0 to n− 1 do

Get variables, 2
The main loop

Get variables, 3
Remaining of the code
Code before returning.

The parts ‘The main loop’ and ‘Remaining of the code’ are obtained from the differentiator. The other
parts are explained below.

The next function prints the code of ψ, ψ′ and ψ′′. There is one C function per precision, hence 12
functions at all.

622 (defun print-fct-00 ()

623 (for (prec 0 1 3)

624 (let (

625 (extp (vref prec_types prec))

626 (casep (vref precision_names prec)))

This is the first part of the Lisp function. It defines the function ψ as explained above. We shall see
that ‘Get variables, 3’ is independent of the precision. We add a dot at the end of the section name so as
to make web happy. Note that this piece of code is a member function of a sub-object of T , whose type
gives the precision.

627 (show-usage)

628 (print "@")

629 (print "@u double data2p" extp "::matrix_psi_fct()")

630 (:print-open-brace)

631 (print "@<Get variables, 1" case-direct casep at-semi)

632 (print "@<Special initialisation, direct@>@;")

633 (print " for(it=0;it<n;it++){")

634 (print " @<Get variables, 2" case-direct casep at-semi)

635 (print " @<The main loop" case-direct casep at-semi)

636 (print " }")

637 (print "@<Get variables, 3" case-direct "." at-semi)

638 (print " @<Remaining of the code" case-direct casep at-semi)

639 (print " @<Code before returning" case-direct casep at-semi)

640 (:print-close-brace)

641 (terpri)

This is the second part of the Lisp function. It defines the function ψ′ which computes the derivative
of ψ in reverse mode. The order of the sections is reversed, as is the main loop. The section ‘Code before
returning’ stores the derivative somewhere. Recall that, in reverse mode, since ψ is a function of yi, the
derivative will be in y′i, we copy this into a single vector.

642 (show-usage)

643 (print "@ @u void data2p" extp "::matrix_psi_grad()")

644 (:print-open-brace)

645 (print "@<Get variables, 1" case-diff casep at-semi)

RR no 0123456789

140 José Grimm

646 (print "@<Get variables, 3" case-diff "." at-semi)

647 (print "@<Remaining of the code" case-diff casep at-semi)

648 (print " for(it=n-1;it>=0;it--){")

649 (print " @<Get variables, 2" case-diff casep at-semi)

650 (print " @<The main loop" case-diff casep at-semi)

651 (print " }")

652 (print "@<Code before returning" case-diff casep at-semi)

653 (:print-close-brace)

654 (terpri)

Last part. We compute ψ′′ by differentiating, in direct mode, the code of ψ and ψ′, applied to a vector
v, which depends on the argument I. If I is not −1, the section ‘Code before returning’ copies column I
of the Hessian (which is somewhere in the data structure) into the desired place.

655 (show-usage)

656 (print "@ @u void data2p" extp "::matrix_psi_delta_d(int I)")

657 (:print-open-brace)

658 (print "@<Get variables, 1" case-delta casep at-semi)

659 (print "@<Special initialisation, delta@>@;")

660 (print " for(it=0;it<n;it++){")

661 (print " @<Get variables, 2" case-delta casep at-semi)

662 (print " @<The main loop" case-delta casep at-semi)

663 (:print-close-brace)

664 (print "@<Get variables, 3" case-delta "." at-semi)

665 (print "@<Remaining of the code" case-delta casep at-semi)

666 (print "@<Get variables, 3" case-deltadiff "." at-semi)

667 (print "@<Get variables, 1" case-deltadiff casep at-semi)

668 (print "@<Remaining of the code" case-deltadiff casep at-semi)

669 (print " for(it=n-1;it>=0;it--){")

670 (print "@<Get variables, 2" case-deltadiff casep at-semi)

671 (print " @<The main loop" case-deltadiff casep at-semi)

672 (:print-close-brace)

673 (print "@<Code before returning" case-deltadiff casep at-semi)

674 (:print-close-brace)

675)))

Let’s go back to our program scheme. Instead of X = f1(A), we shall write f1(A,X). This means that f1
takes as arguments two pointers. It modifies the value pointed to by the second argument. The notation
A⇒ B means that A points to the memory location B. In the case n = 3, our program becomes

A⇒ Q−1, B ⇒ Q0, X ⇒ X0

B = 0, X = 0
f1(A,X), f2(X,B)
A⇒ Q0, B ⇒ Q1, X ⇒ X1

B = 0, X = 0
f1(A,X), f2(X,B)
A⇒ Q1, B ⇒ Q2, X ⇒ X2

B = 0, X = 0
f1(A,X), f2(X,B)
Q⇒ Q2, Y ⇒ Y0, ψ ⇒ ψ0

Y = 0, ψ = 0
g1(Q,Y), g2(Y, ψ)

If for instance X = f1(A) has the form X = A2
1 +A2

2, the code f1(A,X) is now X += A2
1, X += A2

2,
since it is preceded by the assignment X = 0. If we differentiate this in reverse mode, we get dA1 +=
2A1dX, dA2 += 2A2dX, dX = 0. In fact, we replace this by dA1 = 0, dA2 = 0, dA1 += 2A1dX,
dA2 += 2A2dX (there is no need to reset a variable to zero at the end of the code, but we have to clear

INRIA

Rational approximation of transfer functions in the hyperion software 141

it at the start. The only variable for which dX should not be zero initially is dψ and δy. The case of dψ
is handled by :clear-a-div, the case of δy is a bit more complicated, and will be explained later).

Essentially, this means that the code of the derivative has the same structure than the code of the
function: we have first to define k + 1 pointers, and clear k of them, before computing something really
useful. We make now the difference between ‘local’ and ‘global’ variables. A better name would perhaps
be ‘inner’ and ‘outer’, because, as explained, everything is in the data structure T . A local variable is
one that depends on i (it’s it in the C code). They are used in the main loop. Global variables are
used in the remaining of the code. Hence, with the notations above (see page 139), X is local, and Y
is global. Variables A, and Q have a special status (they are not cleared). Variable i, together with all
other indices have also a special status (for instance, there is no need to differentiate them).

In the case of a local variable, we have an assignment of the form Z ⇒ Xi. This means that, in T
there is a table X, of size n. There is also a table Q of size n. In fact, we have a big table of size n, that
holds X and Q, it is called T->temp. We have another table for the derivative. It is called T->dtemp.
Note that Q−1 is not in this table. For the case of global variables, we have an assignment Y ⇒ Y0.
There is no table here, we used the index zero, because Y ⇒ Y is a bit strange (the C code is in fact
Y=T->Y, and this is unambiguous). We changed this: In C++, there is no variable T , so that we add a
prefix before every variable.

If we differentiate, in direct mode, the start of the code above, we get

A⇒ Q−1, B ⇒ Q0, X ⇒ X0

δA⇒ δQ−1, δB ⇒ δQ0, δX ⇒ δX0

δB = 0, δX = 0.

In other words, we have to declare X and δX, but to kill only δX. For this reason, the code is split into
two parts: ‘Get local variables’ and ‘Kill local variables’.

676 (defun :get-and-kill-vars (mode extp sw)

677 (let (L x name)

678 (setq L (prev-modes mode))

679 (unless sw ; special hack for globals / hessian.

680 (if (= mode 2)

681 (setq L ’(0 1 2 3))

682 (if (= mode 3)

683 (setq L ()))))

684 (if sw (setq name "local") (setq name "global"))

685 (while (consp L)

686 (setq x (car L) L (cdr L))

687 (print "@<Get " name " variables" (vref mode_names x) "." at-semi))

688 (print "@<Kill " name " variables" (vref mode_names mode) extp at-semi)))

For each local or global variable v, we initialise it in the following way

delta_v = a_delta_v;
delta_v = delta_temp[it].v;

depending on whether v is local or global.
The important point here is that the name in the structure is the same as the local variable associated

to it in case it is in temp, and it has a prefix a_ before it otherwise. If the variable is Q in the previous
notations, since Q is an inner matrix, we represent it by its numerator D (a matrix of polynomials) and
its denominator q (a polynomial). The Schur algorithm computes QB as a function of QA. We write q
instead of qA and nq instead of qB . This means that the data structure T contains nq and nD. This piece
of code sets D and q to nD[i] and nq[i] for some i. This is the assignment A ⇒ Qi−1 in the program
scheme above.

RR no 0123456789

142 José Grimm

689 (defun :access-Dq (loc extp mode)

690 (let (L x e)

691 (setq L (prev-modes mode))

692 (while (consp L)

693 (setq x (car L) L (cdr L))

694 (setq e (vref prefixes x))

695 (:print-subst "XD = Xtemp[Y].nD;" e loc)

696 (:print-subst "Xq = Xtemp[Y].nq;" e loc))))

This generates the section ‘Get variables, 3’, that defines the last D and q (i.e. at location n− 1) that
is used to compute ψ(Q), where Q = D/q.

697 (defun initialise-last-Dq ()

698 (for (prec 0 1 3)

699 (let ((extp (vref prec_types prec))

700 (casep (vref precision_names prec)))

701 (for (mode 0 1 3)

702 (decl-sec "Get variables, 3")

703 (:access-Dq "n-1" extp mode)))))

If we come back to our simplified program, we see that the assignments to A and B are: A ⇒ Q−1,
B ⇒ Q0, A ⇒ Q0, B ⇒ Q1, A ⇒ Q1, B ⇒ Q2, etc. Except for the first one, we write A = B (pointer
assignment). In the next function sw is true if it is the first assignment. Note that A = B is just q=nq.
For the case of the first assignment, we assume that Q−1 is in the variable n_Q. Of course, the previous
hack does not work if we differentiate the code in reverse mode, hence the test on mode.

704 (defun :access-mid-Dq0 (extp mode sw)

705 (if (and sw (or (= mode 1) (= mode 3)))

706 (:access-Dq "it-1" extp mode)

707 (let (L x e name)

708 (if sw (setq name "n") (setq name "g_"))

709 (setq L (prev-modes mode))

710 (while (consp L)

711 (setq x (car L) L (cdr L))

712 (setq e (vref prefixes x))

713 (:print-subst "TY = TXY;" name "D" () e)

714 (:print-subst "TY = TXY;" name "q" () e)))))

This generates the code in the any case. It prints ‘if i = 0 then some code else some other code’.

715 (defun :access-mid-Dq (extp mode)

716 (print "if(it==0) {")

717 (:access-mid-Dq0 extp mode false)

718 (print "} else { ")

719 (:access-mid-Dq0 extp mode true)

720 (print "}"))

Now the compiler warns about possible un-initialisation of nD and nq, because of the code A = B,B =
. . ., which may use B before it is set (the compiler does not understand the if test).

721 (defun make-compiler-happy ()

722 (print "@ @<Special initialisation, direct@>=")

723 (print "nD=NULL; nq= NULL;")

724 (print "@ @<Special initialisation, delta@>=")

725 (print "delta_nD=nD=NULL; delta_nq=nq= NULL;"))

This generates the section ‘Get variables, 2’, which is the section that is used in the inner loop, which
is the header of the computation B = TΘ(A). The variable A is defined by the first function call defined
above, the variable B and the other variables that are needed are defined and killed by the second function
call.

INRIA

Rational approximation of transfer functions in the hyperion software 143

726 (defun initialise-midloop-vars ()

727 (for (prec 0 1 3)

728 (let ((extp (vref prec_types prec))

729 (casep (vref precision_names prec)))

730 (for (mode 0 1 3)

731 (decl-sec "Get variables, 2")

732 (:access-mid-Dq extp mode)

733 (:get-and-kill-vars mode casep true)))))

This generates now the section ‘Get variables, 1’, which is the start of the C function. There are four
section, one per differentiation mode, and these are all different.

734 (defun print-initialisation ()

735 (for (prec 0 1 3)

736 (let ((extp (vref prec_types prec))

737 (prec1 (:prev-prec prec))

738 (casep (vref precision_names prec)))

First part, computation of ψ. The function sets ψ to 1. It calls an initialisation function that sets Qi
(i.e. Di and qi) to zero, for each i ≥ 0, andQ−1 to the identity (which is not done by get-and-kill-vars).
It sets also the derivatives (for the reverse mode) of these quantities to zero.

739 (show-usage)

740 (print "@ @<Get variables, 1" case-direct casep at-equal)

741 (print " @<Indices@>@;")

742 (print " @<Local variables" case-direct casep at-semi)

743 (:initialise-psi "psi" prec)

744 (print " init_Dq();")

745 (:get-and-kill-vars 0 casep false)

746 (terpri)

Second part, computation of ψ′, in reverse mode. It sets dψ to 1. It does not set the derivatives of
Qi (already done).

747 (show-usage)

748 (print "@ @<Get variables, 1" case-diff casep at-equal)

749 (print " @<Indices@>@;")

750 (print " @<Local variables" case-diff casep at-semi)

751 (:clear-a-div "dpsi" prec)

752 (:get-and-kill-vars 1 casep false)

753 (terpri)

Third part, computation of the Hessian. We compute the Hessian applied to a vector vI . We define and
kill global variables, set δψ and δdψ to zero, dψ to one, and after that, call the function arl2mat_set_hess
that takes I as argument. It computes the vector v (which is somewhere in the data structure if I = −1,
and is the Ith base vector otherwise), puts this vector into δy (recall that ψ is a function of y). This
function sets also δQ and δdQ to zero.

754 (show-usage)

755 (print "@ @<Get variables, 1" case-delta casep at-equal)

756 (print " @<Indices@>@;")

757 (print " @<Local variables" case-deltadiff casep at-semi)

758 (print (vref types-vector prec1) " delta_psi, delta_dpsi, dpsi;")

759 (:get-and-kill-vars 2 casep false)

760 (print "set_hess(I);")

761 (prin1 "delta_psi") (:call_clear_op prec1)

762 (prin1 "delta_dpsi")(:call_clear_op prec1)

763 (:print-set-one-only prec "dpsi")

764 (terpri)

RR no 0123456789

144 José Grimm

Last part. This declares and kills all variables δdY .

765 (show-usage)

766 (print "@ @<Get variables, 1" case-deltadiff casep at-equal)

767 (:get-and-kill-vars 3 casep false))))

4.11.2 Managing results

This is needed to copy ψ and δψ. Recall that ψ is, in the complex case, the only variable of real type in
the program. However, the target may be complex.

768 (defun :copy-psi (src dest idx)

769 (print dest "[" idx "]" (:real-ext prec) " = " src ";"))

When we differentiate in reverse mode ψ = ψ(y), the derivative is in y′, and y′ is a set of com-
plex vectors. We want to put the result in one real vector. This function is just a wrapper around
:gen-copy-cmplx2real.

770 (defun :print-affect (dstart dend src prec)

771 (let (ext)

772 (setq ext (:real-ext prec))

773 (:gen-copy-cmplx2real (catenate src "[j]") (catenate dstart dend ext)

774 "k++;" prec)))

This prints the sections ‘Code before returning’. Here sw is 2 when we compute ψ, 0 when we compute
the gradient, and 1 when we compute the Hessian.

775 (defun print-code-before-returning (prec sw)

776 (let ((extp (vref prec_types prec))

777 (casep (vref precision_names prec)))

778 (show-usage)

779 (print "@ @<Code before returning, "

780 (if (= sw 2) "direct" (if (= sw 0) "diff" "delta diff"))

781 casep at-equal)

This is not really needed: we store δψ somewhere. This should be the same as dψ.

782 (when (= sw 1)

783 (prin1 "if(I>=0) ") (:copy-psi "delta_psi" "a_dgrad" "I"))

If sw is 2, we copy ψ into the data structure. We return the value of ψ, converted to double precision,
if required. Otherwise for each i and j, we copy si,j into dk. The source s is dy (case of gradient), and
δdy (case of Hessian). The destination is the field grad or hess in the data structure. In the case of
the gradient, or Hessian applied to a vector, the starting index k is zero. In the case of full Hessian, the
starting index is IN , where N is the size of one row of the Hessian, and I is the index of the component
we compute.

784 (if (= sw 2)

785 (progn

786 (:copy-psi "psi" "a_psi" 0)

787 (if (or (= prec 0) (= prec 2))

788 (print "return psi;")

789 (print "return psi.to_double();")))

790 (print "k=0;")

791 (if (= sw 1)

792 (print "if(I<0) w=0; else w="

793 (if (:prec-real prec) "" "2*") "I*n*p;"))

794 (print "for(i=0;i<n;i++)")

795 (print "for(j=0;j<p;j++){")

INRIA

Rational approximation of transfer functions in the hyperion software 145

Table 4.14: Flags for memory allocation

flag islocal decl init kill alloc
1 T T T T T
2 T T T F T
3 T T T F T
4 T T T F F
5 T F F T F
6 F T T T T
7 F T T F T
8 F T F F F
9 F T T F F

796 (:print-affect

797 (if (= sw 0) "a_grad" "a_hess")

798 (if (= sw 1) "[w+k]" "[k]")

799 (if (= sw 0) "dtemp[i].y" "delta_dtemp[i].y")

800 prec)

801 (print "}"))

802))

4.11.3 Memory management

To each variable variable we associate a flag, an integer between 1 and 9, that has the meaning defined
in table 4.14. This flag is formed of five bits, and explains how the variable is managed, as follows

1. In this case, the variable is a normal local variable. We have to declare it, kill it, initialise it, and
allocate memory for it.

2. Same as 1, but the variable is not killed. There are three such variables: nD, nq and B. A
special piece of code is used to kill nD and nq. The variable B has a special status: it contains β
(independent of y) and some scalars, like ‖y‖2.

3. As above. There is only one variable of this type, namely y. Note that y is the input of the program,
and it is initialised via a function copy_y not explained here. On the other hand, we shall give later
on the code that initialises the derivatives of y. Note also that the memory for y is allocated in a
special way.

4. The variables having this flag are u and uu∗. Since u is constant, there is no memory allocated for
the derivative of it, and of course, we never put u to zero.

5. The variables having this flag are the scalars that appear in B. Since B is declared, initialised and
allocated, we just have to kill these variables.

6. Like 1, but the variable is global.

7. Like 2, but the variable is global. The variables having this flag are g_q and g_D. They hold the
identity matrix (Q−1 in the notations above).

8. This variable is to be declared only. It is D or q. When we compute Xi = f(Xi−1), we write it as
Y = f(X). We have to declare kill initialise and allocate memory for Xi (included the case i = −1),
but Xi−1 is to be declared only.

9. This is like 4, but the variable is global. The only variable of this type is G.

RR no 0123456789

146 José Grimm

Table 4.15: Variables, size and flags

name dim1 dim2 flag
yD p I + 1 1
E I + 1 () 1
M 4 () 1
N p ∗ p () 1
X p ∗ p I + 1 1
Z p ∗ p I + 2 1
Y1 p I + 1 1
Y2 p ∗ p I + I + 1 1
B 8 () 2
nq I + 2 () 2
nD p ∗ p I + 2 2
y p () 3
B4 4 () 5
(u) * () 4
(uu) * () 4
Gquo λ ∗ p m+ 1 6
Grem λ ∗ p m+ 1 6
P λ ∗ p 2 ∗ n 6
V λ ∗ p n 6

g_q n+ 1 () 7
g_D p ∗ p n+ 1 7
G * * 9
q * () 8
D * * 8

tmp () () 8

INRIA

Rational approximation of transfer functions in the hyperion software 147

In the table 4.15, we give the list of all variables, with their flags. We give also two dimensions.
These dimensions are needed for memory allocation. In this table p is the dimension of Q, λ is the first
dimension of G, m is the degree of G, and n is the McMillan degree of the result. The quantity I is in
fact it. It is the current index when we allocate memory for Xi. In the case where a variable has only
one dimension, the second one is indicated by (). In the case where no memory is allocated, we use ‘*’
to represent any size.

The next macro takes the next element in the list L. It sets some variables.

803 (dmd advance-L ()

804 ’(setq x (car L) L (cdr L)

805 dim1 (vref x 1)

806 dim2 (vref x 2)

807 flag (vref x 3)

808 x (vref x 0)

809 info (vref info-array flag)))

The next function prints the declarations for a given mode and a given precision. We print a dec-
laration unless flag is 5. If the variable is (u) or (uu), it is constant, so that the derivatives are not
declared. We have to print something like double**X,**dX,**delta_X,**delta_dX; for each variable.

810 (defun :generate-decl-aux (L)

811 (let (x dim1 dim2 flag aux type stars nbdim y)

812 (setq aux (prev-modes mode) type (vref types-vector prec))

813 (while L

814 (advance-L)

815 (if dim2 (setq nbdim 2) (if dim1 (setq nbdim 1) (setq nbdim 0)))

816 (setq stars (vref stars-vect nbdim))

817 (if (consp x)

818 (setq x (car x) y ’(0))

819 (setq y aux))

820 (unless (= flag 5)

821 (prin1 type)

822 (while y

823 (prin1 stars) (prin1 (vref prefixes (car y)))

824 (prin1 x)

825 (setq y (cdr y))

826 (if y (prin1 ",")))

827 (print ";")))))

The next function loops over all modes and precision.

828 (defun generate-decl (L)

829 (for (prec 0 1 3)

830 (for (mode 0 1 3)

831 (unless (= mode 2)

832 (decl-sec "Local variables")

833 (:generate-decl-aux L)))))

The next function generates the sections ‘Get local variables’ and ‘Get global variables’, depending on
the value of sw.

834 (defun compute-lp (varlist sw)

835 (let (p pp L x dim1 dim2 flag info name loc)

836 (if sw

837 (setq name "Get local variables" loc "temp[it]." pp "")

838 (setq name "Get global variables" loc "" pp "a_"))

839 (for (prec 0 1 3)

RR no 0123456789

148 José Grimm

840 (for (mode 0 1 3)

841 (setq p (vref prefixes mode)

842 L varlist)

843 (decl-sec1 name mode)

844 (while L

845 (advance-L)

846 (if (consp x)

847 (if (= mode 0)

848 (setq x (car x)) (setq x ())))

849 (if (and x (eq sw (vref info 0)) (vref info 2))

850 (print p x " = " pp p loc x ";")))))))

4.11.4 Hand-written code

We consider here code that is not generated by the automatic differentiator.
We define a table B of size 8, that holds 3 polynomials of degree 1, B, B2, B4, and 2 numbers s and

F . In the C code, s and F are called ss and FF. The constant term of B is at location 0, the coefficient
of z at location 1. The constant term of B2 is at location 2, the coefficient of z at location 3. Finally, the
constant term of B4 is at location 4, the coefficient of z at location 5.

851 (defun print-aliases ()

852 (let (e (s "@d TX=(TY)"))

853 (show-usage)

854 (print "@ Rename some variables.")

855 (for (i 0 1 3)

856 (setq e (vref prefixes i))

857 (:print-subst s "B2" "B+2" () e)

858 (:print-subst s "B4" "B+4" () e)

859 (:print-subst s "ss" "B[6]" () e)

860 (:print-subst s "FF" "B[7]" () e))))

We have to compute uy∗ − y∗u in the case n = 2. If M contains uy∗, this is a 2 × 2 matrix. If F
contains y∗u, this is a scalar. Because of our representation of matrices, the code is just M0 −= F , and
M3 −= F .

861 (defun print-M-minus-F ()

862 (for (prec 0 1 3)

863 (for (mode 0 1 3)

864 (decl-sec "Compute $M-F$")

865 (if (or (= mode 0) (= mode 2))

866 (progn

867 (:print-neg-equal "M[0]" "FF" (vref prefixes mode))

868 (:print-neg-equal "M[3]" "FF" (vref prefixes mode)))

869 (progn

870 (:print-neg-equal "FF" "M[0]" (vref prefixes mode))

871 (:print-neg-equal "FF" "M[3]" (vref prefixes mode)))))))

The five next sections compute s = ‖y‖2 and its derivatives. Note that s is real, but declared complex,
the imaginary part is always zero. We replace s by 1, if it is very near to it. (I don’t know if this is very
interesting. In theory, we should have s ≤ 1).

872 (defun :s-code-mode0 (prec)

873 (cond ((= prec 0)

874 (print "ss += y[w]*y[w];"))

875 ((= prec 1) (print "ss.add_mul(y[w],y[w]);"))

876 ((= prec 2)

877 (print "ss.r += y[w].r * y[w].r + y[w].i * y[w].i;")

878 (print "if(fabs(ss.r-1.0)<1.e-15) ss.r = 1.0;"))

INRIA

Rational approximation of transfer functions in the hyperion software 149

879 ((= prec 3)

880 (print "ss.r.square(y[w]);")

881 (print "if(fabs(ss.r.to_double()-1.0)<1.e-15)")

882 (print " ss.r.get_one();"))))

This computes the derivative, in reverse mode, of s = ‖y‖2. This is just dy += 2y ds.

883 (defun :s-code-mode1 (prec)

884 (cond ((= prec 0)

885 (print "dy[w] += 2*y[w]*dss;"))

886 ((= prec 1) (print "dy[w].two_times(y[w],dss);"))

887 (true (print "dy[w].two_times_r(y[w],dss.r);"))))

This computes the derivative, in direct mode. The code is δs += 2y δy.

888 (defun :s-code-mode2 (prec)

889 (cond ((= prec 0)

890 (print "delta_ss += 2*delta_y[w]*y[w];"))

891 ((= prec 1) (print "delta_ss.two_times(delta_y[w],y[w]);"))

892 ((= prec 2)

893 (print "delta_ss.r += 2*(delta_y[w].r*y[w].r+ delta_y[w].i*y[w].i);"))

894 ((= prec 3)

895 (print "delta_ss.r.two_times(delta_y[w],y[w]);"))))

And now the code for the Hessian δdy += 2y δds+ 2δy ds.

896 (defun :s-code-mode3 (prec)

897 (print "{")

898 (cond ((= prec 0)

899 (print "delta_dy[w] += 2*delta_y[w]*dss;")

900 (print "delta_dy[w] += 2*y[w]*delta_dss;"))

901 ((= prec 1)

902 (print "delta_dy[w].two_times(delta_y[w],dss);")

903 (print "delta_dy[w].two_times(y[w],delta_dss);"))

904 (true

905 (print "delta_dy[w].two_times_r(delta_y[w],dss.r);")

906 (print "delta_dy[w].two_times_r(y[w],delta_dss.r);")))

907 (print "}"))

This calls one of the four previously defined functions.

908 (defun print-s-code (mode prec)

909 (let ((extm (vref prefixes mode))

910 (casem (vref mode_names mode))

911 (extp (vref prec_types prec))

912 (casep (vref precision_names prec))

913)

914 (show-usage)

915 (print "@ @<Code of s" casem casep at-equal)

916 (print " for(w=0;w<p;w++)")

917 (cond ((eq mode 0) (:s-code-mode0 prec))

918 ((eq mode 1) (:s-code-mode1 prec))

919 ((eq mode 2) (:s-code-mode2 prec))

920 ((eq mode 3) (:s-code-mode3 prec)))))

Big hack for computing B. More will come later. We assume that B0 and B1 hold the coefficients of
b = (z − ω)(1− ω). We compute in B4 and B5 the coefficients of b4 = b− ‖y‖2b̃. What we have to do is
compute B4 = B0− sB1, B5 = B1− sB0, where s = ‖y‖2. If prec is zero (real, double case) we compute
everything, otherwise just B4 = B0 and B5 = B1.

This computes B4 if prec is zero, sets B4 to b otherwise.

RR no 0123456789

150 José Grimm

921 (defun :print-B-code-direct (mode prec)

922 (if (= prec 0)

923 (progn

924 (print " B[4] = B[0] - ss * B[1];")

925 (print " B[5] = B[1] - ss * B[0];"))

926 (print "B[4] = B[0];")

927 (print "B[5] = B[1];")))

This is the derivative in direct mode of the previous code. We have to compute δB4 = −δsB1 and
δB5 = −δsB0.

928 (defun :print-B-code-delta (mode prec)

929 (if (= prec 0)

930 (progn

931 (print " delta_B[4] = -B[1] * delta_ss;")

932 (print " delta_B[5] = -B[0] * delta_ss;"))

933 (prin1 "delta_B[4]") (:call_clear_op prec)

934 (prin1 "delta_B[5]") (:call_clear_op prec)))

In case the mode is 0 or 2, there is nothing to do if the precision is zero. Otherwise, we have to execute
B4 −= B1s, B5 −= B0s or δB4 −= B1 δs, δB5 −= B0 δs. If the mode is 1, we differentiate in reverse
mode, hence write ds −= B1 dB4, ds −= B0 dB5. Finally, if the mode is 3, we generate δds −= B1 δdB4,
δds −= B0 δdB5.

935 (defun :B-code-hack (mode prec)

936 (let ((extm (vref prefixes mode))

937 (casem (vref mode_names mode))

938 (extp (vref prec_types prec))

939 (casep (vref precision_names prec))

940 (sub-mul-mac ’:op-sub-mul-K1)

941 (sub-mul-conj-mac ’:op-sub-mul-conj-K1)

942 op

943)

944 (if (or (= mode 1) (= mode 3))

945 (setq op sub-mul-mac)

946 (setq op sub-mul-conj-mac))

947 (when (or (= mode 1) (= mode 3) (> prec 0))

948 (if (or (= mode 0) (= mode 2))

949 (progn

950 (funcall op prec ’("B[1]" "ss" "B[4]") extm)

951 (funcall op prec ’("B[0]" "ss" "B[5]") extm))

952 (progn

953 (funcall op prec ’("B[1]" "B[4]" "ss") extm)

954 (funcall op prec ’("B[0]" "B[5]" "ss") extm))))))

This is the code that computes s and B4. Note the order of instructions.

955 (defun print-B-code (mode prec)

956 (decl-sec "Complete code of B")

957 (if (or (= mode 0) (= mode 2))

958 (use-sec "Code of s"))

959 (cond ((eq mode 0) (:print-B-code-direct mode prec))

960 ((eq mode 2) (:print-B-code-delta mode prec)))

961 (:print-B-code-hack mode prec)

962 (if (or (= mode 1) (= mode 3))

963 (use-sec "Code of s"))))

This copies G into Grem. Remember: a copy of G is needed for the division in the first equation of
(4.18.a).

INRIA

Rational approximation of transfer functions in the hyperion software 151

964 (defun print-copy ()

965 (for (mode 0 1 3)

966 (for (prec 0 1 3)

967 (let ((casem (vref mode_names mode))

968 (casep (vref precision_names prec)))

969 (show-usage)

970 (print "@ @<Copy G into |Grem|" casem casep "@>=")

971 (when (= mode 0)

972 (print "for(k=0;k<gdim1*p;k++)")

973 (print "for(i=0;i<=m;i++)")

974 (print "Grem[k][i] = G[k][i];"))))))

4.11.5 Memory management

This piece of code generates the code that clears all variables; depending of the value sw, we kill local or
global variables.

975 (defun generate-clear (l sw)

976 (let (x dim1 dim2 flag info L prefix idx)

977 (for (prec 0 1 3)

978 (for (mode 0 1 3)

979 (decl-sec (if sw "Kill local variables" "Kill global variables"))

980 (setq prefix (vref prefixes mode))

981 (setq L l)

982 (while (consp L)

983 (advance-L)

984 (when (and (vref info 3) (eq sw (vref info 0)))

985 (print "for(i=0;i<" dim1 ";i++)")

986 (setq idx "[i]);")

987 (when dim2

988 (setq idx "[i][j]);")

989 (print "for(j=0;j<" dim2 ";j++)"))

990 (prin prefix x idx) (:call_clear_op prec)))))))

This generates all declarations, initialisations, etc.

991 (defun declarations ()

992 (generate-clear big-varlist true)

993 (generate-clear big-varlist false)

994 (compute-lp big-varlist true)

995 (compute-lp big-varlist false)

996 (generate-decl big-varlist))

4.11.6 Auxiliary code

The code generated in this section is printed in another file. Memory allocation for global variables is
trivial: we print something like g_q = (Type) my_malloc_vector(n+1,type); for each variable. The
C variable type contains the current precision. Note that C++ wants a type, this is matrix or polynom,
which are typedefs in the template.

997 (defun print-a-global-malloc (L)

998 (let (dim1 dim2 x flag info extm)

999 (show-usage)

1000 (print "@ @<Allocate memory for all global variables@>=")

1001 (while L

1002 (advance-L)

1003 (when (and (vref info 4) (not (vref info 0)))

RR no 0123456789

152 José Grimm

1004 (for (mode 0 1 3)

1005 (setq extm (vref prefixes mode))

1006 (prin1 " a_") (prin1 extm) (prin1 x)

1007 (if dim2

1008 (print " = (matrix) my_malloc_matrix(" dim1 ","

1009 dim2 ",type);")

1010 (print " = (polynom) my_malloc_vector(" dim1 ",type);")))))))

In the case of local variables, we print something like temp[it].B = (Type) alloc(8,type); for
each variable. The allocator is my_malloc_matrix or my_malloc_vector. The size may depend on it
(this is because the k-th matrix we construct has McMillan degree k). Everything is put in a loop, and a
section is created for each mode. Special hack: space for y is allocated elsewhere, space for the derivatives
of y is allocated here.

1011 (defun print-a-local-malloc (l)

1012 (let (dim1 dim2 x flag info extm L)

1013 (for (mode 0 1 3)

1014 (setq extm (vref prefixes mode))

1015 (setq L l)

1016 (show-usage)

1017 (print "@ @<Fill |" extm "temp|@>=")

1018 (print "for(it=0;it<n;it++){")

1019 (while (consp L)

1020 (advance-L)

1021 (when (and (vref info 4) (vref info 0))

1022 (if (= flag 3)

1023 (if (= mode 0) (setq dim1 ())))

1024 (when dim1

1025 (prin1 extm)(prin1 "temp[it].") (prin1 x)

1026 (prin1 " = ")

1027 (if dim2 (prin1 "(matrix) my_malloc_matrix(")

1028 (prin1 "(polynom) my_malloc_vector("))

1029 (prin1 dim1)

1030 (when dim2 (prin1 ",") (prin1 dim2))

1031 (print ",type);"))))

1032 (print "}"))))

As explained above, the quantities D and q are initialised in a special way. In the next function, if
aux is empty, we put zero in Qi and dQi (−1 ≤ i < n). This piece of code is executed whenever we
compute ψ, and never when we compute the derivative. As a side effect, when we compute ψ, some of
the code here may be useless. We also put zero in dy.

If the value of aux is delta_, we put zero in δQi, δdQi and δdyi. This is used when we compute the
second derivative of ψ.

1033 (defun print-init-Dq-aux (prec extp aux)

1034 (print "{")

1035 (print "int p = a_p;")

1036 (print "int n = a_n;")

1037 (print "int i,j,k;")

1038 (prin "a_" aux "g_q[0]") (:call_clear_op prec)

1039 (prin "a_" aux "dg_q[0]") (:call_clear_op prec)

1040 (print "for(i=0;i<p*p;i++) {")

1041 (prin "a_" aux "g_D[i][0]")(:call_clear_op prec)

1042 (prin "a_" aux "dg_D[i][0]")(:call_clear_op prec)

1043 (print "}")

1044 (print "for(k=0;k<n;k++) ")

1045 (print " for(i=0;i<=k+1;i++) {")

INRIA

Rational approximation of transfer functions in the hyperion software 153

1046 (print " for(j=0;j<p*p;j++) {")

1047 (prin aux "temp[k].nD[j][i]")(:call_clear_op prec)

1048 (prin aux "dtemp[k].nD[j][i]")(:call_clear_op prec)

1049 (print "}")

1050 (prin aux "temp[k].nq[i]")(:call_clear_op prec)

1051 (prin aux "dtemp[k].nq[i]")(:call_clear_op prec)

1052 (print "}")

1053 (print "for(k=0;k<n;k++)")

1054 (print " for(i=0;i<p;i++)")

1055 (prin aux "dtemp[k].y[i]")(:call_clear_op prec))

This defines for each precision a function that calls the previous code. It puts in Q−1 the identity
matrix. In other words, it puts some ones in the variables g_q and g_D. Then, it defines a single function
that calls the one that corresponds to the current precision.

1056 (defun :generate_init_D ()

1057 (for (prec 0 1 3)

1058 (let ((extp (vref prec_types prec)))

1059 (show-usage)

1060 (print "@ @u void data2p" extp "::init_Dq()")

1061 (print-init-Dq-aux prec extp "")

1062 (set-cr-one "a_g_q" "[0]" prec "")

1063 (print "for(i=0;i<p;i++)")

1064 (set-cr-one "a_g_D" "[i*(p+1)][0]" prec "")

1065 (print "}")))

1066 (show-usage))

This defines for each precision a function, that sets every δD, δdD, δq and δdq to zero.

1067 (defun :init-delta-dq ()

1068 (for (prec 0 1 3)

1069 (let ((extp (vref prec_types prec)))

1070 (show-usage)

1071 (print "@ @u void data2p" extp "::init_delta_Dq()")

1072 (print-init-Dq-aux prec extp "delta_")

1073 (print "}"))))

The code of the Hessian always computes the Hessian applied to a vector vI , which is the Ith base
vector (we do not consider here the case I = −1, case where vI is set by the caller). This means that we
have to set δY to the vector that contains 1 in location I. However δY is a set of n vectors of size p that
may be complex. Assume J1 = I and J2 = I − 1. Write

J1 = ck + pci J2 = pk + ppi

by Euclidean division by p. Now, location J1 in Y is location ck in yci . Assume I > 1. What we computed
before is the Hessian of our function applied to vI−1. Thus, we have zeroes everywhere, but in I − 1,
which is location pk in ypi

. In the complex case, we let J1 = I/2, and J2 = (I − 1)/2. Thus we have
to put a one at location ck in yci

, using the real part if I is even, the imaginary part if I is odd. This
function computes these funny quantities.

1074 (defun :compute-indices ()

1075 (if (:prec-imag prec)

1076 (print "int is_even;"))

1077 (if (:prec-real prec)

1078 (print "J1=I;J2=I-1;")

1079 (print "is_even = I&1 ? 0 : 1;")

1080 (print "J1=I/2;J2 = (I-1)/2;"))

1081 (print "cur_i = J1/p;")

RR no 0123456789

154 José Grimm

1082 (print "cur_k = J1 - p*cur_i;")

1083 (print "prev_i = J2/p;")

1084 (print "prev_k = J2-p*prev_i;")

1085)

In case I = 0, we put zeroes everywhere, otherwise at location J2 (in the complex case, we put a zero
in the real and imaginary part).

1086 (defun :set-zero-where-indicated ()

1087 (print "if(I==0)")

1088 (print "for(i=0;i<n;i++) {")

1089 (print "delta_y = delta_temp[i].y;")

1090 (print "for(k=0;k<p;k++)")

1091 (prin "delta_y[k]")(:call_clear_op prec)

1092 (print " } else {")

1093 (prin "delta_temp[prev_i].y[prev_k]")(:call_clear_op prec)

1094 (print "}")

This is the main function. It sets δy, and calls the function that clears the derivatives of Q and y.
There is one function per precision.

1095 (defun :print-set-hess1 ()

1096 (let (e var)

1097 (for (prec 0 1 3)

1098 (setq e (vref prec_types prec))

1099 (show-usage)

1100 (print "@ @u void data2p" e "::set_hess(int I)")

1101 (print "{")

1102 (print "int p = a_p, n = a_n;")

1103 (print "int i,k,J1,J2;")

1104 (print "int cur_i,cur_k, prev_i,prev_k;")

1105 (print (vref types-vector prec) "* delta_y;")

1106 (:compute-indices)

1107 (:set-zero-where-indicated)

1108 (setq var (catenate "delta_temp[cur_i].y[cur_k]"))

1109 (if (:prec-real prec)

1110 (:print-set-one-only prec var)

1111 (print "if(is_even)")

1112 (:print-set-one-only prec (:real var prec))

1113 (print "else")

1114 (:print-set-one-only prec (:imag var prec)))

1115 (print "init_delta_Dq();")

1116 (print "}"))))

The Lisp function that generates all the code that is put in the ‘arl2mat2aux’ file.

1117 (defun init-aux2 ()

1118 (:print-bk-code)

1119 (:generate_init_D)

1120 (:init-delta-dq)

1121 (:print-set-hess1)

1122)

4.11.7 Inverse Schur code

In this section, we compute b = (z−ω)(1−ω) and some formulas needed by the inverse Schur algorithm.
Recall that b = (z−ω)(1−ω). We assume that or and oi hold the real and imaginary part of ω. We

have b = B0 + zB1, b− b̃ = B2 + zB3, i.e. B0 = |ω|2 − ω, B1 = 1− ω, B2 = |ω|2 − 1, B3 = −B2. This is
code for the real case. We use the relation B0 = −ωB1.

INRIA

Rational approximation of transfer functions in the hyperion software 155

1123 (defun :print-bk-real ()

1124 (show-usage)

1125 (print "@")

1126 (print "@u void data2pD::arl2mat_compute_B()")

1127 (print "{")

1128 (print "int it, n=a_n;")

1129 (print "for(it=0;it<n;it++) {")

1130 (print "double or = a_omega[it];")

1131 (print "double* B= temp[it].B;")

1132 (print " B[1] = 1.0-or;")

1133 (print " B[0] = -or *B[1];")

1134 (print " B[2] = or *or-1.0;")

1135 (print " B[3] = -B[2];")

1136 (print "}}"))

This is the complex code. We put |ω|2 in x, so that B0 = x− ω.

1137 (defun :print-bk-complex ()

1138 (show-usage)

1139 (print "@")

1140 (print "@u void data2pC::arl2mat_compute_B()")

1141 (print "{")

1142 (print "int it, n=a_n;")

1143 (print "for(it=0;it<n;it++) {")

1144 (print " double or,oi,x;")

1145 (print " Complex* B= temp[it].B;")

1146 (print " or = a_omega[it].r;")

1147 (print " oi = a_omega[it].i;")

1148 (print " B[1].r = 1.0-or;")

1149 (print " B[1].i = oi;")

1150 (print " x = or*or + oi*oi;")

1151 (print " B[0].r = x -or;")

1152 (print " B[0].i = -oi;")

1153 (print " B[2].r = x-1.0;")

1154 (print " B[3].r = -B[2].r;")

1155 (print " B[2].i = 0.0;")

1156 (print " B[3].i = 0.0;")

1157 (print "}}"))

This is the code in the SLD case. Note that we declare or, B, and a quantity t1 that holds the
constant one. We use B0 = −ωB1, B2 = |ω|2− 1. The code is: B3 = |ω|2, B2 = B3− 1, then B3 = −B2.

1158 (defun :print-bk-SLD ()

1159 (show-usage)

1160 (print "@")

1161 (print "@u void data2pS::arl2mat_compute_B()")

1162 (print "{")

1163 (print "int it, n=a_n;")

1164 (print "for(it=0;it<n;it++)")

1165 (print "{")

1166 (print " SLD t1;")

1167 (print " SLD& or = a_omega[it];")

1168 (print " SLD * B=temp[it].B;")

1169 (print " t1.get_one();")

1170 (print " B[1].sub(t1,or);")

1171 (print " B[0].mul(or,B[1]);")

1172 (print " B[0].neg();")

RR no 0123456789

156 José Grimm

1173 (print " B[3].mul(or,or);")

1174 (print " B[2].sub(B[3],t1);")

1175 (print " B[3].neg(B[2]);")

1176 (print "}}"))

And this is the code in the complex SLD case. Note that we declare or, oi, B, and two constants t1,
t2 that hold 1 and |ω|2.

1177 (defun :print-bk-SLD-complex ()

1178 (show-usage)

1179 (print "@")

1180 (print "@u void data2pSC::arl2mat_compute_B()")

1181 (print "{")

1182 (print "int it, n=a_n;")

1183 (print "for(it=0;it<n;it++)")

1184 (print "{")

1185 (print " SLD t1,t2;")

1186 (print " SLD_complex * B=temp[it].B;")

1187 (print " SLD& or = a_omega[it].r;")

1188 (print " SLD& oi = a_omega[it].i;")

1189 (print " t1.get_one();")

1190 (print " B[1].r.sub(t1,or);")

1191 (print " B[1].i = oi;")

1192 (print " t2.mul(or,or);")

1193 (print " t2.add_mul(oi,oi);")

1194 (print " B[0].r.sub(t2,or);")

1195 (print " B[0].i.neg(oi);")

1196 (print " B[2].kill();")

1197 (print " B[3].kill();")

1198 (print " B[2].r.sub(t2,t1);")

1199 (print " B[3].r.neg(B[2].r);")

1200 (print "}}"))

This is the code that computes B in every case. We declare the variables in case this is not yet done.

1201 (defun :print-bk-code ()

1202 (:print-bk-real)

1203 (:print-bk-complex)

1204 (:print-bk-SLD)

1205 (:print-bk-SLD-complex))

From now on, we consider the inverse Schur algorithm. We use a data structure, called T , that
contains now Lisp objects, instead of raw pointers. The first part of the algorithm computes y such that
y = Q(ω)∗u. We do not explain here how u and ω are computed. The important point is that omega and
u are some real vectors of size n and np (in the complex case, of size 2n and 2np) and we extract the j
value as a real or complex vector, and put it in cur_omega and cur_u.

This copies ω.

1206 (defun :print-construct-cur-omega ()

1207 (let (ext1 ext2 x y)

1208 (for (prec 0 1 3)

1209 (decl-sec0 "Construct |cur_omega|" prec)

1210 (if (:prec-real prec)

1211 (print "k=j;")

1212 (print "k=2*j;"))

1213 (setq ext2 (vref prec_types prec))

1214 (setq ext1 (vref prec_types (:prev-prec prec)))

INRIA

Rational approximation of transfer functions in the hyperion software 157

1215 (setq x (catenate "pol_coef" ext1 "(omega)[k]"))

1216 (setq y (catenate "pol_coef" ext2 "(cur_omega)[0]"))

1217 (:gen-copy-real2cmplx x y "k++;" prec))))

This copies u.

1218 (defun :print-construct-cur-u ()

1219 (let (m)

1220 (for (prec 0 1 3)

1221 (decl-sec0 "Construct |cur_u|" prec)

1222 (print "{")

1223 (print (vref types-vector prec) "*U=mat_coef"

1224 (vref prec_types prec) "(cur_u);")

1225 (setq m (:prev-prec prec))

1226 (print (vref types-vector m) "*cu=pol_coef" (vref prec_types m) "(u);")

1227 (if (:prec-real prec)

1228 (print "k=j*p;")

1229 (print "k=2*j*p;"))

1230 (print "for(i=0;i<p;i++){")

1231 (:gen-copy-real2cmplx "cu[k]" "U[i]" "k++;" prec)

1232 (print "}}"))))

First part of Schur inverse. We fetch ω and u, compute D̃ and q̃. If Q is the quotient of these
quantities, we evaluate the result at ω, then compute y = Q(ω)∗u. Note that Q = DB/q̃B , and D = D̃B ,
q = qB , so that D/q is the tilde of Q. We tilde these matrices, evaluate the result, and tilde it. This
gives Q(ω). If we multiply by u, we get y.

1233 (defun :print-schur-inverse1 ()

1234 (print "@ @u")

1235 (print "void Schur_inverse::part1(int j)")

1236 (print "{")

1237 (print "int i,k;")

1238 (print "switch(pol_type){")

1239 (for (prec 0 1 3)

1240 (:print-switch-case prec)

1241 (use-sec0 "Construct |cur_omega|" prec)

1242 (use-sec0 "Construct |cur_u|" prec)

1243 (print " break;"))

1244 (print "}")

1245 (print "}"))

This computes s = ‖y‖2. Here y is a pointer into some array, namely mat_coef(T->cur_y).D.

1246 (defun :print-ss-code-inv ()

1247 (for (prec 0 1 3)

1248 (decl-sec0 "Compute $\\norm y^2$ in |s|" prec)

1249 (prin "ss")(:call_clear_op prec)

1250 (print "for(w=0;w<p;w++) {")

1251 (:print-add-norm "y[w]" (:real "ss" prec) prec)

1252 (print "}")))

This defines or and oi, the real and imaginary part of ω.

1253 (defun :fetch-or-oi (prec)

1254 (let ((x "pol_coef") (y "(cur_omega)[0]") (z (vref prec_types prec)))

1255 (cond ((= prec 0) (print "or = " x z y ";"))

1256 ((= prec 1) (print "SLD& or = " x z y ";"))

1257 ((= prec 2)

1258 (print "or = " x z y ".r;")

RR no 0123456789

158 José Grimm

1259 (print "oi = " x z y ".i;"))

1260 ((= prec 3)

1261 (print "SLD& or = " x z y ".r;")

1262 (print "SLD& oi = " x z y ".i;")))))

This computes B0 = (z−ω)(1−ω). We compute first the coefficient of z, namely 1−ω, then x = |ω|2,
finally, the constant term, which is x− ω. We put 1 in t1.

1263 (defun :print-b0-code-inv ()

1264 (let (prec1)

1265 (for (prec 0 1 3)

1266 (setq prec1 (:prev-prec prec))

1267 (decl-sec0 "Put $(z-\\omega)(1-\\overline\\omega)$ in B_0" prec)

1268 (:fetch-or-oi prec)

1269 (:print-set-one-only prec "t1")

1270 (:op-sub prec1

1271 (list "t1" "or" (if (:prec-real prec) "B0[1]" "B0[1].r")))

1272 (when (:prec-imag prec)

1273 (print (:imag "B0[1]" prec) "=oi;"))

1274 (:print-add-norm1 "or" "oi" "x" prec)

1275 (:op-sub prec1

1276 (list "x" "or" (if (:prec-real prec) "B0[0]" "B0[0].r")))

1277 (when (:prec-imag prec)

1278 (:print-neg "oi" (:imag "B0[0]" prec) prec1)))))

This puts b− b̃ into B1. The coefficient of z is 1− x, the constant term is the opposite of it.

1279 (defun :print-b1-code-inv ()

1280 (let (prec1)

1281 (for (prec 0 1 3)

1282 (setq prec1 (:prev-prec prec))

1283 (decl-sec0 "Put $b-\\tilde b$ in B_1" prec)

1284 (when (:prec-imag prec)

1285 (prin "B1[0]")(:call_clear_op prec)

1286 (prin "B1[1]")(:call_clear_op prec))

1287 (:op-sub prec1

1288 (list "x" "t1" (if (:prec-real prec) "B1[0]" "B1[0].r")))

1289 (if (:spec-imag prec)

1290 (:print-neg "B1[0].r" "B1[1].r" prec1)

1291 (:print-neg "B1[0]" "B1[1]" prec1)))))

This puts b̃− ‖y‖2b in B2. If b = A+ zB, we generate B − sA+ z(A− sB) where s = ‖y‖2.
1292 (defun :print-b2-code-inv ()

1293 (let (prec1 op)

1294 (for (prec 0 1 3)

1295 (setq prec1 (:prev-prec prec))

1296 (decl-sec0 "Put $\\tilde b-\\norm y b$ in B_2" prec)

1297 (:op-transpose prec ’("B0[1]" "B2[0]"))

1298 (:op-transpose prec ’("B0[0]" "B2[1]"))

1299 (:op-sub-mul-K prec ’("B0[0]" "ss" "B2[0]"))

1300 (:op-sub-mul-K prec ’("B0[1]" "ss" "B2[1]")))))

Prints the test: is ω zero?. According to theorem 21, (z−ω)(1−ωz) divides every term in (3.11), and
we have to do the division. This polynomial is of degree 2, unless ω = 0, case where the degree is one.

1301 (defun :print-deg-test (prec)

1302 (cond ((= prec 0) (print "or==0)"))

1303 ((= prec 2) (print "or==0 && oi==0)"))

1304 ((= prec 1) (print "or.is_zero())"))

1305 ((= prec 3) (print "or.is_zero() && oi.is_zero())"))))

INRIA

Rational approximation of transfer functions in the hyperion software 159

Put −(z − ω)(1− ω̄z) in B3. Note that B3 is a Lisp polynomial, whose degree is zero or one. We set
the degree. The polynomial is ωx2 − (1 + x)z + ω, with x = |ω|2.

1306 (defun :print-b3-code-inv ()

1307 (let (prec1 op)

1308 (for (prec 0 1 3)

1309 (setq prec1 (:prev-prec prec))

1310 (decl-sec0 "Put $-(z-\\omega)(1-\\bar \\omega z)$ in B_3" prec)

1311 (print (:real "B3[0]" prec) " = or;")

1312 (print (:real "B3[2]" prec) " = or;")

1313 (when (:prec-imag prec)

1314 (print (:imag "B3[0]" prec) " = oi;")

1315 (:print-neg "oi" (:imag "B3[2]" prec) prec1))

1316 (prin "B3[1]")(:call_clear_op prec)

1317 (if (:prec-imag prec)

1318 (progn

1319 (:op-add prec1 ’("t1" "x" "B3[1].r"))

1320 (:op-neg prec1 ’("B3[1].r" "B3[1].r")))

1321 (:op-add prec1 ’("t1" "x" "B3[1]"))

1322 (:op-neg prec1 ’("B3[1]" "B3[1]")))

1323 (prin1 "if(")

1324 (:print-deg-test prec)

1325 (print "pol_deg(b3)=1; else pol_deg(b3) = 2;")

1326)))

Prints the declarations of all variables involved in the previous code.

1327 (defun :print-inv-header ()

1328 (let (prec1 op e)

1329 (for (prec 0 1 3)

1330 (setq prec1 (:prev-prec prec))

1331 (decl-sec0 "Initialize inverse" prec)

1332 (setq op (vref types-vector prec))

1333 (setq e (vref prec_types prec))

1334 (print op " * B0 = pol_coef" e "(b0);")

1335 (print op " * B1 = pol_coef" e "(b1);")

1336 (print op " * B2 = pol_coef" e "(b2);")

1337 (print op " * B3 = pol_coef" e "(b3);")

1338 (print op " * y = mat_coef" e "(cur_y);")

1339 (print op " ss;")

1340 (setq op (vref types-vector prec1))

1341 (print op " x,t1;")

1342 (if (<> prec1 1) (print op " or;"))

1343 (if (= prec 2) (print op " oi;"))

1344 (print "int w;"))))

Constructs a section ‘Compute bk and related constants’. This is the start of the function schur_inverse2.
Remaining of the code is written directly in C.

1345 (defun :merge-inv ()

1346 (for (prec 0 1 3)

1347 (decl-sec0 "Main inverse code" prec)

1348 (print "{")

1349 (use-sec0 "Initialize inverse" prec)

1350 (use-sec0 "Compute $\\norm y^2$ in |s|" prec)

1351 (use-sec0 "Put $(z-\\omega)(1-\\overline\\omega)$ in B_0" prec)

1352 (use-sec0 "Put $b-\\tilde b$ in B_1" prec)

1353 (use-sec0 "Put $\\tilde b-\\norm y b$ in B_2" prec)

RR no 0123456789

160 José Grimm

1354 (use-sec0 "Put $-(z-\\omega)(1-\\bar \\omega z)$ in B_3" prec)

1355 (print "}"))

1356 (print "@ @<Compute b_k and related constants@>=")

1357 (print "switch (prec_type) {")

1358 (for (prec 0 1 3)

1359 (:print-switch-case prec)

1360 (use-sec0 "Main inverse code" prec)

1361 (print " break;"))

1362 (print "}"))

The Lisp function that computes all that is put in the file ‘arl2mat3aux’.

1363 (defun print-schur-inverse ()

1364 (:print-construct-cur-omega)

1365 (:print-construct-cur-u)

1366 (:print-schur-inverse1)

1367 (:print-ss-code-inv)

1368 (:print-b0-code-inv)

1369 (:print-b1-code-inv)

1370 (:print-b2-code-inv)

1371 (:print-b3-code-inv)

1372 (:print-inv-header)

1373 (:merge-inv)

1374)

4.12 Main file

The description of all variables is found in table 4.16. Note that each variable has three dimensions here.

4.12.1 Preliminaries

Start of the file: load the differentiator, the patterns, the file with the main Lisp code. We open also the
output file.

1375 (load "diff.ll")

1376 (load "patterns.ll")

1377 (load "make_hessian1.ll")

1378 (outchan (openo "arl2mat.web"))

We omit here the start of the WEB file: it contains some TEX header, and a C header, formed of C
includes, and WEB includes.

4.12.2 The code of the functions

1379 (print "@* Main code.")

1380 (print "These are the user callable functions.")

1381
1382 (print-fct-00)

1383 (initialise-last-Dq)

1384 (initialise-midloop-vars)

1385 (print-initialisation)

1386 (print-M-minus-F)

1387 (for (prec 0 1 3)

1388 (print-code-before-returning prec 0)

1389 (print-code-before-returning prec 1)

INRIA

Rational approximation of transfer functions in the hyperion software 161

Table 4.16: List of variables

name specification
y (y p 1 0)
u (u p 1 0 constant)
yt (y p 1 0 transpose)
ut (u p 1 0 transpose constant)
D (D p p it)
E (E 1 1 it)
q (q 1 1 it)

yD (yD 1 p it)
Eneg (E 1 1 it neg)

F (FF 1 1 0)
M (M p p 0)
N (N p p 0)
qt (q 1 1 it transpose)

qdiv (q 1 1 it div)
qneg (q 1 1 it neg)
uu (uu p p 0 constant)
Z (Z p p it)
X (X p p it)
Y (Y p p it)

Gcopy (Grem gdim1 p m)
Grem (Grem gdim1 p n-1)

Gremneg (Grem gdim1 p n-1 neg)
Y1 (Y1 p 1 it)
Y2 (Y2 p p it+it)
P (P gdim1 p n-1+n)
V (V gdim1 p n-1)
psi (psi 1 1 0 psi)
s (ss 1 1 0)

B2 (B2 1 1 1 constant)
B2neg (B2 1 1 1 neg constant)

B4 (B4 1 1 1)
lastD (D p p n)

lastqdiv (q 1 1 n div)
G (G gdim1 p m constant)

RR no 0123456789

162 José Grimm

Table 4.17: All calls to differentiate

arg1 arg2 output section name
yt D yD Code of —yD—
yD u E Code of E
yt u FF Code of F
u yt M Code of M
y ut N Code of N
qt M Z Code of Z
D uu X Code of X, 1
y yD X Code of X, 2

qneg N X Code of X, 3
D u Y1 Code of Y , 1
Y1 yD Y2 Code of Y , 2

Eneg D Y2 Code of Y , 3
Y2 qdiv Z Code of Y , 4
B4 D nD New D, 1
B2 Z nD New D, 2

B2neg X nD New D, 3
B4 q nq New q, 1

B2neg E nq New q, 2
Gcopy lastqdiv Gquo First division
Grem lastD P Code of P

P lastqdiv V Code of V
V psi psi Code of psi, 1

Gremneg psi psi Code of psi, 2

INRIA

Rational approximation of transfer functions in the hyperion software 163

1390 (print-code-before-returning prec 2)

1391)

1392
1393 (print_a_switch_call1 "matrix_psi_hess" 3)

1394 (print_a_switch_call1 "matrix_psi_hess_single" 4)

1395 (terpri)

1396 (show-usage)

1397 (print "@* Hand written code.")

1398 (print "@ Indices used everywhere. @<Indices@>=")

1399 (print " int p=a_p;")

1400 (print " int n = a_n, m=a_m;")

1401 (print " int i,j,k,l,w,it;")

1402 (terpri)

1403
1404 ;;; define the aliases.

1405 (print-aliases)

1406
1407 (print "")

1408 (print "@")

1409 (print "")

1410 (for (prec 0 1 3)

1411 (for (mode 0 1 3)

1412 (print-B-code mode prec)))

1413
1414
1415 (for (prec 0 1 3)

1416 (for (mode 0 1 3)

1417 (print-s-code mode prec)))

1418 (print "@* The functions.")

1419 (print " ")

1420 (print "@ ")

1421 (print "")

1422 (print "")

1423 (print "@ @<External functions@>=")

1424 (print "extern void * GC_malloc(size_t size_in_bytes);")

1425 (print "extern void * GC_malloc_atomic(size_t size_in_bytes);")

4.12.3 The calls to the differentiator

1426 (print "@* Code of Z.")

1427 (differentiate1

1428 ‘("Complete code of Z"

1429 (,yt ,u FF "Code of F" "Define F to be y^*u"

1430 "We call this |FF|, since it’s an alias.")

1431 (,u ,yt M "Code of M" "Define M to be uy^*")

1432 "Compute $M-F$"

1433 (,qt ,M Z "Code of Z" "Compute now $M\\tilde q$ in Z.")))

1434 (print "@* Code of Y.")

1435 (differentiate1 (list

1436 "Code of Y"

1437 (list D u ’Y1 "Code of Y, 1")

1438 (list Y1 yD ’Y2 "Code of Y, 2")

1439 (list Eneg D ’Y2 "Code of Y, 3")

1440 (list Y2 qdiv ’Z "Code of Y, 4")

1441))

RR no 0123456789

164 José Grimm

1442 (print "@* Code of X, Y and Z.")

1443 (differentiate1 (list

1444 "Prepare X and Y"

1445 "Complete code of B"

1446 (list yt D ’yD "Code of |yD|")

1447 (list yD u ’E "Code of E")

1448 (list y ut ’N "Code of N")

1449 (list D uu ’X "Code of X, 1")

1450 (list y yD ’X "Code of X, 2")

1451 (list qneg N ’X "Code of X, 3")

1452 (list ’if "(p==2)" "Complete code of Z")

1453 (list ’if "(p>2)" "Code of Y")

1454))

1455 (print "@* Inner loop.")

1456 (differentiate1 (list

1457 "The main loop"

1458 "Prepare X and Y"

1459 (list B4 D ’nD "New D, 1")

1460 (list B2 Z ’nD "New D, 2")

1461 (list B2neg X ’nD ’"New D, 3")

1462 (list B4 q ’nq "New q, 1")

1463 (list B2neg E ’nq "New q, 2")

1464))

1465 (print "@* Outer code.")

1466
1467 (print-copy)

1468
1469 (differentiate1 (list

1470 "Remaining of the code"

1471 "Copy G into |Grem|" ; generated by print-copy.

1472 (list Gcopy lastqdiv ’Gquo "First division")

1473 (list Grem lastD ’P "Code of P")

1474 (list P lastqdiv ’V "Code of V")

1475 (list V psi ’psi "Code of psi, 1")

1476 (list Gremneg psi ’psi "Code of psi, 2")

1477))

1478 (print "@* The functions.")

1479 (declarations)

1480 (make-compiler-happy)

1481 (print "@* Index.")

We print now to a second file.

1482 (close (outchan))

1483 (outchan ())

1484 (outchan (openo "arl2mat2aux.web"))

1485 (print "@ Start of include file arl2mat2aux.web.")

1486 (print-banner "")

1487 (print-a-global-malloc global-list)

1488 (print-a-local-malloc local-list)

1489 (init-aux2)

1490 (print "@ End of include file arl2mat2aux.web.")

1491 (close (outchan))

1492 (outchan ())

INRIA

Rational approximation of transfer functions in the hyperion software 165

We use yet another file for the inverse Schur code.

1493 (outchan (openo "arl2mat3aux.web"))

1494 (print "@ Start of include file arl2mat3aux.web.")

1495 (print-banner "")

1496 (print-schur-inverse)

1497 (print "@ End of include file arl2mat3aux.web.")

1498 (close (outchan))

1499 (outchan ())

4.13 Scalar case

4.13.1 Introduction

This is the code used in the scalar case. We generate two sets of functions one for the case with weight,
and one for the case without weight. The variable have-weight is true when we generate the code for
the weight.

This function sets a variable to zero.

1500 (defun :kill-var (var prec)

1501 (if (= prec 0)

1502 (print var "=0;")

1503 (print var ".kill();")))

This kills a whole array. i2 is the end test. The array is named var, the index is idx, and the first
value is i1.

1504 (defun :kill-array (var idx i1 i2 prec)

1505 (print "for(" idx "=" i1 ";" idx i2 ";" idx "++)")

1506 (:kill-var (catenate var "[" idx "]") prec))

Generic function that calls an operator with three arguments. Uses a table.

1507 (defun :gen-op (a b c prec table)

1508 (let (op)

1509 (setq op (vref table prec))

1510 (print c "." op "(" a "," b ");")))

Computes c += ab.

1511 (defun :add-mult-conj (a b c prec)

1512 (if (= prec 0)

1513 (print c " += " a "*" b ";")

1514 (:gen-op a b c prec

1515 #[0 add_mul add_mul_conj add_mul_conj])))

Computes c −= ab.

1516 (defun :sub-mult-conj (a b c prec)

1517 (if (= prec 0)

1518 (print c " -= " a "*" b ";")

1519 (:gen-op a b c prec

1520 #[0 sub_mul sub_mul_conj sub_mul_conj])))

Computes c −= ab.

1521 (defun :sub-mult (a b c prec)

1522 (if (= prec 0)

1523 (print c " -= " a "*" b ";")

1524 (:gen-op a b c prec

1525 #[0 sub_mul sub_mul sub_mul])))

RR no 0123456789

166 José Grimm

Computes c += ab.

1526 (defun :add-mult (a b c prec)

1527 (if (= prec 0)

1528 (print c " += " a "*" b ";")

1529 (:gen-op a b c prec

1530 #[0 add_mul add_mult add_mul])))

Computes ψ += |var|2.

1531 (defun :norm2 (var psi prec)

1532 (cond ((= prec 0)

1533 (print psi " += " var "*" var ";"))

1534 ((= prec 2)

1535 (print psi " += " var ".r* " var ".r + " var ".i*" var ".i;"))

1536 ((= prec 1)

1537 (print psi ".add_mul(" var "," var ");"))

1538 ((= prec 3)

1539 (print psi ".add_mul(" var ".r," var ".r);")

1540 (print psi ".add_mul(" var ".i," var ".i);"))))

Derivative in reverse mode of the previous code. If we assume dψ = 1, this is just dv += 2v. We
open code it. In the SLD case, we copy 2v in a temporary variable. Note that the name of the variable
ψ is unused.

1541 (defun :norm2-diff (var prec)

1542 (cond ((= prec 0)

1543 (print "d" var " += 2*" var ";"))

1544 ((= prec 2)

1545 (print "d" var ".r += 2*" var ".r;")

1546 (print "d" var ".i += 2*" var ".i;"))

1547 ((= prec 1)

1548 (print "temp.double_it(" var ");")

1549 (print "d" var " += temp;"))

1550 ((= prec 3)

1551 (print "temp.double_it(" var ".r);")

1552 (print "d" var ".r += temp;")

1553 (print "temp.double_it(" var ".i);")

1554 (print "d" var ".i += temp;"))))

Derivative in direct mode. r += 2<(xx′).

1555 (defun :cmplx_2times (x xp r prec)

1556 (cond ((= prec 0)

1557 (print r "+= 2*" x "*" xp ";"))

1558 ((= prec 2)

1559 (print r "+= 2*(" x ".r*" xp

1560 ".r +" x ".i*" xp ".i);"))

1561 ((= prec 1)

1562 (print r ".two_times(" x "," xp ");"))

1563 ((= prec 3)

1564 (print r ".two_times(" x "," xp ");"))))

Second derivative. Since the name of ψ is unused, we do not use it. The code is δdx += 2δx.

1565 (defun :norm2-delta-diff (var prec)

1566 (cond ((= prec 0)

1567 (print "delta_d" var " += 2*delta_" var ";"))

1568 ((= prec 2)

1569 (print "delta_d" var ".r += 2*delta_" var ".r;")

INRIA

Rational approximation of transfer functions in the hyperion software 167

1570 (print "delta_d" var ".i += 2*delta_" var ".i;"))

1571 ((= prec 1)

1572 (print "temp.double_it(delta_" var ");")

1573 (print "delta_d" var "+= temp;"))

1574 ((= prec 3)

1575 (print "temp.double_it(delta_" var ".r);")

1576 (print "delta_d" var ".r += temp;")

1577 (print "temp.double_it(delta_" var ".i);")

1578 (print "delta_d" var ".i += temp;"))))

4.13.2 Basic code

This computes the product of G by q̃. In the case of weight, we have to multiply also by zd. Since G is
constant, the code of the derivative is easy in this case.

1579 (defun :multiplication1 (prec)

1580 (let ((prefix (vref prefixes mode)) varp varq)

1581 (print "for(j=0;j<=m;j++)")

1582 (print "for(i=1;i<=n;i++)")

1583 (setq varq (catenate prefix "q[n-i]"))

1584 (setq varp (catenate prefix "p[i+j" (if have-weight "+Wdeg" "") "]"))

1585 (cond ((eq mode 0) (:add-mult-conj varq "g[j]" varp prec))

1586 ((eq mode 1) (:add-mult-conj varp "g[j]" varq prec))

1587 ((eq mode 2) (:add-mult-conj varq "g[j]" varp prec))

1588 ((eq mode 3) (:add-mult-conj varp "g[j]" varq prec)))))

We should also consider the case where we multiply gw by the tilde of qw. This assumes that we have
a weight.

1589 (defun :multiplication-spec (prec)

1590 (let ((prefix (vref prefixes mode)) varp varq)

1591 (print "for(j=0;j<=m;j++)")

1592 (print "for(i=1;i<=nw;i++)")

1593 (setq varq (catenate prefix "qw[nw-i]"))

1594 (setq varp (catenate prefix "p[i+j]"))

1595 (cond ((eq mode 0) (:add-mult-conj varq "g[j]" varp prec))

1596 ((eq mode 1) (:add-mult-conj varp "g[j]" varq prec))

1597 ((eq mode 2) (:add-mult-conj varq "g[j]" varp prec))

1598 ((eq mode 3) (:add-mult-conj varp "g[j]" varq prec)))))

This is now the real code of the multiplication. We do not use the second function, because it is too
slow in some cases. We just keep the code somewhere, in case we wanted to implement it.

1599 (defun :multiplication (prec)

1600 (:multiplication1 prec))

1601 (defun :multiplication-unused (prec)

1602 (if (not have-weight)

1603 (:multiplication1 prec)

1604 (print "if(use_fw) {")

1605 (:multiplication-spec prec)

1606 (print "} else {")

1607 (:multiplication1 prec)

1608 (print "}")))

This computes the quotient. In the case of weight, we divide by qw, otherwise by q. The quotient
has m terms. The degree of qw is nw. Without weight, it is still nw, this makes is easier.

1609 (defun :division (prec)

1610 (let (q dq delta_q delta_dq)

RR no 0123456789

168 José Grimm

1611 (if (or (= mode 0) (= mode 2))

1612 (print "for(j=m;j>=0;j--){")

1613 (print "for(j=0;j<=m;j++){"))

1614 (if (or (= mode 0) (= mode 2))

1615 (progn (:division-lc) (:division-other))

1616 (progn (:division-other) (:division-lc)))

1617 (print "}")))

If lc is the coefficieent of Pi+n+d, then we have to add to ψ the square of this quantity.

1618 (defun :division-lc ()

1619 (cond ((eq mode 0)

1620 (print "lc = p[j+nw];")

1621 (:norm2 "lc" "psi" prec))

1622 ((eq mode 1)

1623 (:norm2-diff "p[j+nw]" prec))

1624 ((eq mode 2)

1625 (print "lc = p[j+nw];")

1626 (print "delta_lc = delta_p[j+nw];")

1627 (:cmplx_2times "lc" "delta_lc" "delta_psi" prec))

1628 ((eq mode 3)

1629 (:norm2-delta-diff "p[j+nw]" prec))))

This is the real code of the division. The code is: we decrement pi+j by the product of qi and pj+n.
This quantity is in lc is the mode is even.

1630 (defun :division-other ()

1631 (if have-weight

1632 (setq q "qw[i]" dq "dqw[i]" delta_q "delta_qw[i]" delta_dq "delta_dqw[i]")

1633 (setq q "q[i]" dq "dq[i]" delta_q "delta_q[i]" delta_dq "delta_dq[i]"))

1634 (print "for(i=0;i<nw;i++){")

1635 (cond ((eq mode 0)

1636 (:sub-mult q "lc" "p[i+j]" prec))

1637 ((eq mode 1)

1638 (:sub-mult-conj "p[j+nw]" "dp[i+j]" dq prec)

1639 (:sub-mult-conj q "dp[i+j]" "dp[j+nw]" prec))

1640 ((eq mode 2)

1641 (:sub-mult q "delta_lc" "delta_p[i+j]" prec)

1642 (:sub-mult delta_q "lc" "delta_p[i+j]" prec))

1643 ((eq mode 3)

1644 (:sub-mult-conj "p[j+nw]" "delta_dp[j+i]" delta_dq prec)

1645 (:sub-mult-conj "delta_p[j+nw]" "dp[j+i]" delta_dq prec)

1646 (:sub-mult-conj q "delta_dp[i+j]" "delta_dp[j+nw]" prec)

1647 (:sub-mult-conj delta_q "dp[i+j]" "delta_dp[j+nw]" prec)))

1648 (print "}"))

In the case of the weight, we have to compute qw, and the derivatives. We assume that the orthogonal
polynomials have been computed. Since one these polynomials is qw, there is no need to compute them.
The code is rather easy, since w is constant.

1649 (defun :qw-product (prec)

1650 (print "for(j=0;j<=Wdeg;j++)")

1651 (print "for(i=0;i<n;i++)")

1652 (cond ((eq mode 1)

1653 (:add-mult-conj "w[j]" "dqw[i+j]" "dq[i]" prec))

1654 ((eq mode 2)

1655 (:add-mult "w[j]" "delta_q[i]" "delta_qw[i+j]" prec))

1656 ((eq mode 3)

1657 (:add-mult-conj "w[j]" "delta_dqw[i+j]" "delta_dq[i]" prec))))

INRIA

Rational approximation of transfer functions in the hyperion software 169

4.13.3 The code of the function

This function multiplies G by the constant term of qw. Since this term is one, no multiplication is
required, and the derivative of this is zero. We use the same hack as for :multiplication, since this is
the start of the multiplication.

1658 (defun :print-init-p-weight ()

1659 (print "for(j=0;j<=m;j++)")

1660 (print "p[j+Wdeg] = g[j];"))

1661 (defun :print-init-p-weight-unused ()

1662 (print "if(use_fw)")

1663 (print "for(j=0;j<=m;j++) {")

1664 (print " p[j] = g[j];")

1665 (print "} else {")

1666 (print "for(j=0;j<=m;j++)")

1667 (print "p[j+Wdeg] = g[j];")

1668 (print "}"))

1669 (defun :print-init-p (prec)

1670 (if have-weight

1671 (progn

1672 (:kill-array "p" "j" "0" "<=m+nw" prec)

1673 (:print-init-p-weight))

1674 (progn

1675 (:kill-array "p" "j" "m+1" "<=m+n" prec)

1676 (print "for(j=0;j<=m;j++)")

1677 (print "p[j] = g[j];"))))

We compute now ψ for each k, i.e. for each component of G. In the case of weight, we have two parts,
see equation (2.71.3).

1678 (defun :print-main-psi (prec)

1679 (setq mode 0)

1680 (print "for(k=0;k<K;k++){")

1681 (print "p=P[k];")

1682 (print "g=G[k];")

1683 (:print-init-p prec)

1684 (:multiplication prec)

1685 (:division prec)

1686 (if have-weight (use-sec "Compute $\\psi_2$"))

1687 (print "}"))

This is the code for the function ψ. We need the following variables. In the case of weight, we also
need the degree of the weight, and the degree of qw. For simplicity, we declare nw to be n is the case
without weight. Note that m should be replaced by bigm in case we use gw. We fear that this m might
be a little too big.

1688 (defun :declare-scal-var-psi ()

1689 (show-usage)

1690 (print "@ @<Declare some local variable@>=")

1691 (print "int n = a_n;")

1692 ; (print "int m = use_fw ? bigm : a_m;")

1693 (print "int m = a_m;")

1694 (print "int K = g_dim1;")

1695 (print "int i,j,k;")

1696 (if have-weight

1697 (progn

RR no 0123456789

170 José Grimm

1698 (print "int Wdeg = Wdeg;")

1699 (print "int nw = a_nw;"))

1700 (print "int nw = n;")))

1701
1702 (defun :print-scal-var-psi ()

1703 (print "@<Declare some local variable@>@;")

1704 (if (or (= prec 1) (= prec 3)) (print "SLD temp;")))

We declare now the variables g, q and p, and G, P . In the case of weight, we have to declare qw.

1705 (defun :print-mat-var-psi (prec)

1706 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))

1707 (print type "*q=Y->q;")

1708 (print type "**G=use_fw ? Y->Gw : Y->G, *g;")

1709 (print type "**P=Y->p, *p;")

1710 (when have-weight

1711 (print type "**ps = Y->ps;")

1712 (print type "*qw = pol_coef" ext "(Y->qw);"))))

This defines three global variables. prev-prec is the real type associated to the current precision,
type-psi is the type of ψ and type-lc is the type of the leading coefficient (used for the division). It is
declared as a pointer in the SLD case.

1713 (defun :decl-psi-lc (prec)

1714 (setq prev-prec (:prev-prec prec))

1715 (setq type-psi (vref types-vector prev-prec))

1716 (setq type-lc (vref types-vector prec)))

We define now the variables lc and psi. We initialise ψ to zero.

1717 (defun :print-other-var-psi (prec)

1718 (let (type-psi type-lc prev-prec aux)

1719 (:decl-psi-lc prec)

1720 (if (= prev-prec 1)

1721 (setq aux "; psi.kill();")

1722 (setq aux " = 0;"))

1723 (print type-lc " lc;")

1724 (print type-psi " psi" aux)))

We copy ψ in the structure X and Y . The code is a bit easier in the double case.

1725 (defun :print-copy-psi (prec)

1726 (let ((prev (:prev-prec prec)))

1727 (if (= prev prec)

1728 (print "Y->psi[0] = psi;")

1729 (print "Y->psi[0].r = psi;"))

1730 (if (= prev 1)

1731 (progn

1732 (print "temp.get_one();");

1733 (print "a_psi = psi.to_double();")

1734 (print "psi.sub(temp,psi);")

1735 (print "one_minus_psi = psi.to_double();"))

1736 (print "a_psi = psi;")

1737 (print "one_minus_psi = 1-psi;"))))

We now put everything together. We use the same name, in the case of weight, and in the case
without weight, because the function is declared static, and these are put in two different files.

1738 (defun :print-scal-psi (prec)

1739 (show-usage)

INRIA

Rational approximation of transfer functions in the hyperion software 171

1740 (print "@ @u")

1741 (print "void arl2_data::scalar_psi" (:w-ext)

1742 " (arl2_scal" (vref prec_types prec) "*Y)")

1743 (print "{")

1744 (:print-scal-var-psi)

1745 (:print-mat-var-psi prec)

1746 (:print-other-var-psi prec)

1747 (:print-main-psi prec)

1748 (:print-copy-psi prec)

1749 (print "}"))

Some useful function. Note that Y is the data structure that contains everything that depends on the
current precision, while X contains everything. The :w-ext function adds the extension weight to the
name of the function, in case it is exported.

1750 (defun :fetch-Y ()

1751 (print "arl2_scal_temp* Y = cur_prec? SQ : SD;"))

1752 (defun :print-cast (prec)

1753 (let ((ext (vref prec_types prec)))

1754 (print "arl2_scal" ext "*Y1= static_cast<arl2_scal" ext "*>(Y);")))

1755 (defun :w-ext ()

1756 (if have-weight "_weight" ""))

This is the function that computes ψ. It calls one of the previous ones. The name of the function
depends on whether we use weight or not. If we do not use weight, we declare the function with weight.

1757 (defun :scalar-psi-def ()

1758 (show-usage)

1759 (print "@ @u")

1760 (print "void arl2_data::scalar_psi" (:w-ext) "()")

1761 (print "{")

1762 (:fetch-Y)

1763 (if have-weight (print "get_bezout(Y,1);"))

1764 (print "switch(Y->type){")

1765 (for (i 0 1 3)

1766 (:print-switch-case i) (print "{")

1767 (:print-cast i)

1768 (print "scalar_psi" (:w-ext) "(Y1);")

1769 (print "break;}"))

1770 (print "}")

1771 (print "}"))

4.13.4 Code of the derivative

We start with the main function. In principle, it is like the previous one. Note that the first thing to
do is to evaluate ψ. This computes also the scalar products in ps. After that, we compute the Bezout
coefficients. These are needed for ψ2.

1772 (defun :scalar-psi-prime-def()

1773 (show-usage)

1774 (print "@ @u")

1775 (print "void arl2_data::scalar_gradient" (:w-ext)

1776 "(double * grad, SLD* qqdot)")

1777 (print "{")

1778 (print "int N = a_N,i;");

1779 (:fetch-Y)

1780 (print "scalar_psi" (:w-ext) "();")

1781 (if have-weight (print "get_bezout(Y,2);"))

RR no 0123456789

172 José Grimm

1782 (print "for(i=0;i<N;i++) grad[i]=0;")

1783 (print "switch(Y->type){")

1784 (for (prec 0 1 3)

1785 (:print-switch-case prec)

1786 (print "{");

1787 (:print-cast prec)

1788 (print "scalar_gradient" (:w-ext) "(grad,Y1);")

1789 (:psi-prime-end prec)

1790 (print "break;}"))

1791 (print "}")

1792 (print "a_norm = l2_norm(N,grad);")

1793 (print "}"))

At the end, the derivative is in dq. We have to copy it into grad. In the multi-precision case, we have
also to copy it into qqdot. This last copy is done is the main function, so that we do not need to pass
qqdot as an argument

1794 (defun :psi-prime-end (prec)

1795 (if (or (= prec 1) (= prec 3))

1796 (progn

1797 (print "if(qqdot) {")

1798 (cond ((eq prec 1)

1799 (print "SLD *dq = Y1->dq;")

1800 (print "for(i=0;i<N;i++)")

1801 (print "qqdot[i] = dq[i];"))

1802 ((eq prec 3)

1803 (print "int n = N/2;")

1804 (print "SLD_complex *dq = Y1->dq;")

1805 (print "for(i=0;i<n;i++){")

1806 (print " qqdot[2*i] = dq[i].r;")

1807 (print " qqdot[2*i+1] = dq[i].i;")

1808 (print "}")))

1809 (print "}"))))

The first thing to do is to get all the variables. In the case of weight, q is not needed. However, the
polynomial q is needed for ψ2.

1810 (defun :print-mat-var-psi-prime (prec)

1811 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))

1812 (if have-weight

1813 (progn

1814 (print type "*w, *qw, *dq, *g, *p, *dp, *dqw;")

1815 (print "Polynom* table = Y->table;"))

1816 (print type "*q, *dq, *g, *p, *dp;"))

1817 (if (not have-weight)

1818 (print "q=Y->q;"))

1819 (when have-weight

1820 (print type "**ps = Y->ps;")

1821 (print type "**dps = Y->dps;")

1822 (print "int N = a_N;");

1823 (print "Polynom pol_q = Y->pol_q;")

1824 (print "qw = pol_coef" ext "(Y->qw);")

1825 (print "w = pol_coef" ext "(Y->a_w);")

1826 (print "dqw = Y->dqw;"))

1827 (print "dq = Y->dq;")))

We start by initialising the derivative of q and qw to zero.

1828 (defun :kill-dq-dqw (prec)

INRIA

Rational approximation of transfer functions in the hyperion software 173

1829 (:kill-array "dq" "i" 0 "<n" prec)

1830 (when have-weight (:kill-array "dqw" "i" 0 "<nw" prec)))

This is the start of the loop over k. We get g, p and dp, and clear the dp array.

1831 (defun :fetch-par-kill-p (prec)

1832 (print "g=Y->G[k];")

1833 (print "p=Y->p[k];")

1834 (print "dp=Y->dp[k];")

1835 (:kill-array "dp" "i" 0 "<=m+nw" prec))

This copies var into grad. Here var can be a complex variable, but grad is always real.

1836 (defun :copy-to-grad (var prec)

1837 (let ((need-brace false))

1838 (if (>= prec 2) (setq need-brace true))

1839 (print "for(i=0;i<n;i++)")

1840 (if need-brace (print "{"))

1841 (cond ((eq prec 0)

1842 (print "grad[i]=" var "[i];"))

1843 ((eq prec 1) ; SLD

1844 (print "grad[i] = " var "[i].to_double();"))

1845 ((eq prec 2)

1846 (print "grad[2*i]=" var "[i].r;")

1847 (print "grad[2*i+1]=" var "[i].i;"))

1848 ((eq prec 3)

1849 (print "grad[2*i] = " var "[i].r.to_double();")

1850 (print "grad[2*i+1] = " var "[i].i.to_double();")))

1851 (if need-brace (print "}"))))

Does the same operation the other way. Used for the Hessian. The value of grad is the direction in
which we compute the Hessian.

1852 (defun :copy-from-grad (var prec)

1853 (let ((need-brace false))

1854 (if (>= prec 2) (setq need-brace true))

1855 (print "for(i=0;i<n;i++)")

1856 (if need-brace (print "{"))

1857 (cond ((eq prec 0)

1858 (print var "[i]=grad[i];"))

1859 ((eq prec 1) ; SLD

1860 (print var "[i]=grad[i];"))

1861 ((eq prec 2)

1862 (print var "[i].r =grad[2*i];")

1863 (print var "[i].i =grad[2*i+1];"))

1864 ((eq prec 3) ; SLD complex

1865 (print var "[i].r = grad[2*i];")

1866 (print var "[i].i = grad[2*i+1];")))

1867 (if need-brace (print "}"))))

This is now the function.

1868 (defun :print-real-psi-prime (prec)

1869 (show-usage)

1870 (print "@ @u")

1871 (print "void arl2_data::scalar_gradient" (:w-ext)

1872 " (double* grad, arl2_scal" (vref prec_types prec) "*Y)")

1873 (print "{")

1874 (:print-scal-var-psi)

RR no 0123456789

174 José Grimm

1875 (:print-mat-var-psi-prime prec)

1876 (:kill-dq-dqw prec)

1877 (print "for(k=0;k<K;k++){")

1878 (:fetch-par-kill-p prec)

1879 (:division prec)

1880 (:multiplication prec)

1881 (print "}")

1882 (if have-weight (:qw-product prec))

1883 (if have-weight (use-sec "Compute $\\psi_2$"))

1884 (:copy-to-grad "dq" prec)

1885 (print "}"))

This piece of code fills delta_q by putting 1 in the i-th component and zero everywhere else. This is
used for computing the full Hessian.

1886 (defun :fill-delta-q (prec)

1887 (decl-sec0 "Fill |delta_q| for the Hessian" prec)

1888 (:kill-array "delta_q" "j" 0 "<n" prec)

1889 (cond ((eq prec 0)

1890 (print "delta_q[i] = 1;"))

1891 ((eq prec 1)

1892 (print "delta_q[i].get_one();"))

1893 ((eq prec 2)

1894 (print "j = i/2;")

1895 (print "if(i&1) delta_q[j].i = 1;")

1896 (print "else delta_q[j].r = 1;"))

1897 ((eq prec 3)

1898 (print "j = i/2;")

1899 (print "if(i&1) delta_q[j].i.get_one();")

1900 (print "else delta_q[j].r.get_one();"))))

4.13.5 Derivative in direct mode

We fetch here the variables that are are needed for both parts.

1901 (defun :vars-for-hess (prec)

1902 (let ((ext (vref prec_types prec)))

1903 (print "q = Y->q;")

1904 (print "delta_q = Y->delta_q;")

1905 (print "delta_dq = Y->delta_dq;")

1906 (when have-weight

1907 (print "qw = pol_coef" ext "(Y->qw);")

1908 (print "w = pol_coef" ext "(Y->a_w);")

1909 (print "delta_qw = Y->delta_qw;")

1910 (print "delta_dqw = Y->delta_dqw;"))))

We fetch the variables p, δp and g, and kill δp.

1911 (defun :get-p-prime-direct (prec)

1912 (print "p = Y->p[k];")

1913 (print "delta_p = Y->delta_p[k];")

1914 (print "g = Y->G[k];")

1915 (:kill-array "delta_p" "j" 0 "<=m+nw" prec))

This is now the complete code of the first part of the Hessian.

1916 (defun :scalar-psi-prime-direct (prec)

1917 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))

1918 (setq mode 2)

INRIA

Rational approximation of transfer functions in the hyperion software 175

1919 (decl-sec "Compute $\\psi$")

1920 (:vars-for-hess prec)

1921 (when have-weight

1922 (:kill-array "delta_qw" "i" 0 "<nw" prec)

1923 (:qw-product prec))

1924 (print "for(k=0;k<K;k++){")

1925 (:get-p-prime-direct prec)

1926 (:multiplication prec)

1927 (:division prec)

1928 (print "}")))

4.13.6 Hessian

This clears the arrays δdqw and δdq.

1929 (defun :kill-delta-qw (prec)

1930 (:kill-array "delta_dq" "i" 0 "<n" prec)

1931 (if have-weight (:kill-array "delta_dqw" "i" 0 "<nw" prec)))

Fetch the variables, kill δdp.

1932 (defun :get-p-hessian (prec)

1933 (print "p = Y->p[k];")

1934 (print "dp = Y->dp[k];")

1935 (print "delta_p = Y->delta_p[k];")

1936 (print "delta_dp = Y->delta_dp[k];")

1937 (print "g = Y->G[k];")

1938 (:kill-array "delta_dp" "j" 0 "<=m+nw" prec))

This computes now the second part of the Hessian.

1939 (defun :scalar-psi-hess (prec)

1940 (setq mode 3)

1941 (let ((type (vref types-vector prec)) (ext (vref prec_types prec)))

1942 (decl-sec "Compute $\\psi$")

1943 (:kill-delta-qw prec)

1944 (print "for(k=0;k<K;k++){")

1945 (:get-p-hessian prec)

1946 (:division prec)

1947 (:multiplication prec)

1948 (if have-weight (use-sec "Compute $\\psi_2$"))

1949 (print "}")

1950 (if have-weight (:qw-product prec))))

This function computes one row of the Hessian.

1951 (defun :def-scalar-hess (prec)

1952 (let ((type (vref types-vector prec)) (ext (vref prec_types prec))

1953 prev-prec type-psi type-lc aux)

1954 (show-usage)

1955 (print "@ @u")

1956 (print "void arl2_data::scalar_hess"

1957 "(arl2_scal" (vref prec_types prec) "*Y, double* grad"

1958 (if have-weight ",int l" "") ")")

1959 (print "{")

1960 (:scal-hess-prepare prec)

1961 (setq mode 2)

1962 (use-sec "Compute $\\psi$")

1963 (setq mode 3)

RR no 0123456789

176 José Grimm

1964 (use-sec "Compute $\\psi$")

1965 (:copy-to-grad "delta_dq" prec)

1966 (print "}")))

This initialises the variables for the Hessian.

1967 (defun :scal-hess-prepare (prec)

1968 (:print-scal-var-psi)

1969 (print type "*q, *delta_q, *delta_dq, *g;")

1970 (print type "*p, *dp,*delta_p, *delta_dp;")

1971 (when have-weight

1972 (print type "**ps = Y->ps;")

1973 (print type "**dps = Y->dps;")

1974 (print type "**ddps = Y->ddps;")

1975 (print "int N = a_N;");

1976 (print type "*w, *qw, *delta_qw, *delta_dqw;"))

1977 (:decl-psi-lc prec)

1978 (print type-lc " lc;")

1979 (print type-lc " delta_lc;")

1980 (if (= prev-prec 1)

1981 (setq aux "; delta_psi.kill();")

1982 (setq aux " = 0;"))

1983 (print type-psi " delta_psi" aux))

This computes the full Hessian if the flag is non-zero, the Hessian applied to a vector in the other
case. The vector is in grad. The result also. In the case of a weight, we have to compute the full Hessian
(perhaps we could do better). In the case where we have to compute the Hessian applied to a vector,
we compute the whole Hessian in temp storage and then, multiply. We could do better than allocate
memory each time, but this code is still unused.

1984 (defun :def-scalar-hessian (prec)

1985 (let ((ex (vref prec_types prec)))

1986 (show-usage)

1987 (print "@ @u")

1988 (print "void arl2_data::scalar_hessian" (:w-ext)

1989 "(arl2_scal" ex "*Y, double* grad, int flag)")

1990 (print "{")

1991 (print "int n=a_n, N=a_N,i,j;")

1992 (print (vref types-vector prec) "*delta_q = Y->delta_q;")

1993 (unless have-weight

1994 (print "if(flag==0) {")

1995 (:copy-from-grad "delta_q" prec)

1996 (print "scalar_hess(Y,grad);")

1997 (print "return;")

1998 (print "}"))

1999 (when have-weight

2000 (print "double * temp_grad;")

2001 (print "double * aux=NULL,*aux1=NULL;")

2002 (print "if(flag==0) {")

2003 (print " temp_grad= (double*) GC_malloc_atomic(N*N*sizeof(double));")

2004 (print "aux1 = temp_grad;")

2005 (print " aux = (double*) GC_malloc_atomic(N*sizeof(double));")

2006 (print "} else temp_grad = grad;"))

2007 (print "for(i=0;i<N;i++){")

2008 (use-sec0 "Fill |delta_q| for the Hessian" prec)

2009 (if have-weight

2010 (print "scalar_hess(Y,temp_grad,i);")

2011 (print "scalar_hess(Y,grad);"))

INRIA

Rational approximation of transfer functions in the hyperion software 177

2012 (if have-weight

2013 (print "temp_grad += N;")

2014 (print "grad += N;"))

2015 (print "}")

2016 (when have-weight

2017 (print "if(flag) return;")

2018 (print "for(i=0;i<N;i++)")

2019 (print " { aux[i] = grad[i]; grad[i] = 0; }")

2020 (print "temp_grad = aux1;")

2021 (print "for(i=0;i<N;i++)")

2022 (print "for(j=0;j<N;j++)")

2023 (print "grad[i]+= temp_grad[N*i+j]* aux[j];"))

2024 (print "}")))

This is now the main function. It is assumed that a call to the gradient is made before we compute
the Hessian.

2025 (defun :the-scalar-hessian ()

2026 (show-usage)

2027 (print "@ @u")

2028 (if have-weight

2029 (print "void arl2_data::scalar_hessian_weight(double* grad,int flag)")

2030 (print "void arl2_data::scalar_hessian(double* grad,int flag)"))

2031 (print "{")

2032 (:fetch-Y)

2033 (if have-weight (print "get_bezout(Y,3);"))

2034 (if have-weight (print "hess_of_scal(Y);"))

2035 (print "switch(Y->type){")

2036 (for (i 0 1 3)

2037 (:print-switch-case i)

2038 (print "{")

2039 (:print-cast i)

2040 (print "scalar_hessian" (:w-ext) "(Y1,grad,flag);")

2041 (print "break;}"))

2042 (print "}}"))

4.13.7 Second part of ψ

We have ψ2 =
∑
|akj |2 where

akj = 〈F/wek |Φj/qw〉

The sum is over all k, j and ek is the k-th base vector. Every piece of code that computes ψ2 is in a loop
over k. The loop over j is from n to n+ d− 1, where d is the degree of the weight.

The scalar product 〈F/w |Φ/x〉 is computed by a call to my_long_div, that takes 3 arguments: the
polynomial Φ, the data structure Y and the index k. We may (or may not) use the Bezout relation. It
is assumed that the denominator qw, and the Bezout coefficient are stored somewhere in Y .

2043 (defun :get-psi2-direct (prec)

2044 (let (aux (ext (vref prec_types prec)))

2045 (setq aux (catenate "ld_res->" ext))

2046 (cond ((eq prec 0) (setq aux "ld_res->C.r"))

2047 ((eq prec 1) (setq aux "ld_res->SC.r")))

2048 (setq mode 0)

2049 (decl-sec "Compute $\\psi_2$")

2050 (print "{")

2051 (print "for(j=0;j<Wdeg;j++){ ")

2052 (print "my_long_div(Y->orth_poly[0][0][j],Y,k);")

2053 (:norm2 aux "psi" prec)

RR no 0123456789

178 José Grimm

2054 (print "ps[k][j] = " aux ";")

2055 (print "}}")))

This computes now the derivative. We can safely put the result into dq. This piece of code is (mostly)
independent of the precision. The computation is done in direct mode! This has as side effect that we
have to loop over i. We have to put the result into the real or imaginary part of dq. This makes the code
a little complicated. Moreover, we have to compute ∂q, the direction in which to evaluate the derivative.
This is done by the function mk_zn, which puts the result in table at location 5. Note that we compute
the derivative of the scalar product of f and Φ/qw. This is the scalar product of f and the derivative
of Φ/qw. This is (∂Φq − Φ∂q)/q2w. We have to compute the numerator of this. It is assumed that the
denominator q2w is somewhere in the table. The result is stored in dps. Recall that if a is the scalar
product, then we have to add a2 to ψ, hence 2aa′ to ψ′, and 2(aa′′ + a′2) to ψ′′.
2056 (defun :get-psi2-diff (prec)

2057 (let (aux (ext (vref prec_types prec)))

2058 (setq aux (catenate "ld_res->" ext))

2059 (cond ((eq prec 0) (setq aux "ld_res->C.r"))

2060 ((eq prec 1) (setq aux "ld_res->SC.r")))

2061 (setq mode 1)

2062 (decl-sec "Compute $\\psi_2$")

2063 (print "{")

2064 (if (or (= prec 2) (= prec 3)) (print "int I,ev;"))

2065 (print "for(i=0;i<N;i++){ ")

2066 (if (or (= prec 2) (= prec 3))

2067 (print "I=i/2; ev = i&1;"))

2068 (print "pol_deg(table[5]) = -1;")

2069 (if (or (= prec 2) (= prec 3))

2070 (print "table[5]->change_deg(I);")

2071 (print "table[5]->change_deg(i);"))

2072 (cond ((eq prec 0) (print "pol_coefD(table[5])[i] = 1.0;"))

2073 ((eq prec 1) (print "pol_coefS(table[5])[i].get_one();"))

2074 ((eq prec 2)

2075 (print "if(ev) pol_coefC(table[5])[I].i= 1;")

2076 (print " pol_coefC(table[5])[I].r= 1;"))

2077 ((eq prec 3)

2078 (print "if(ev) pol_coefSC(table[5])[I].i.get_one();")

2079 (print " pol_coefSC(table[5])[I].r.get_one();")))

2080 (print "mk_zn(i,5,table);")

2081 (print "for(j=0;j<Wdeg;j++){ ")

2082 (print "table[7]->mul(Y->orth_poly[i+1][0][j],pol_q);")

2083 (print "table[7]->sub_mul(Y->orth_poly[0][0][j],table[5]);")

2084 (print "for(k=0;k<K;k++){")

2085 (print "my_long_div(table[7],Y,k);")

2086 (print "dps[k][j*N+i] = " aux ";")

2087 (if (or (= prec 2) (= prec 3))

2088 (progn

2089 (print "if(ev){")

2090 (:cmplx_2times "ps[k][j]" aux "dq[I].i" prec)

2091 (print "} else { ")

2092 (:cmplx_2times "ps[k][j]" aux "dq[I].r" prec)

2093 (print "}"))

2094 (:cmplx_2times "ps[k][j]" aux "dq[i]" prec))

2095 (print "}}}}")))

Let’s now compute the Hessian. The easiest thing to do is to compute the full Hessian of the scalar
product, and then to multiply by whatever is needed. This is now the function that computes it. We
have to compute the scalar product of f/w and x/q3w where

x = Φ(−q12q + 2q1q2)− Φ1q2q − Φ2q1q + Φ12q
2

INRIA

Rational approximation of transfer functions in the hyperion software 179

where xi is the derivative of x in one direction. This piece of code computes the polynomial x. We
compute the derivative in the directions i and l. Note that q12 = 0. It is assumed that q3w is somewhere
in the table.

2096 (defun :compute-one-hess-elt ()

2097 (print "for(i=0;i<N;i++){ ")

2098 (print " mk_zn(i,5,table);")

2099 (print " for(l=0;l<=i;l++){ ")

2100 (print " mk_zn(l,6,table);")

2101 (print " table[9]->mul(table[5],table[6]);")

2102 (print " table[9]->mul(table[9],2);")

2103 (print " for(j=0;j<Wdeg;j++){ ")

2104 (print "table[7]->mul(table[9],Y->orth_poly[0][0][j]);")

2105 (print "table[8]->mul(table[5],Y->orth_poly[l+1][0][j]);")

2106 (print "table[8]->add_mul(table[6],Y->orth_poly[i+1][0][j]);")

2107 (print "table[7]->sub_mul(table[8],pol_q);")

2108 (print "table[7]->add_mul(table[10],Y->orth_poly[i+1][l+1][j]);"))

We compute now the scalar products, and put them in a big table. This function is independent of
the type. The type is needed when we do the copy, but we know the type, since it is in the result of the
long division. Since the Hessian is symmetric, we copy Aij into Aji.

2109 (defun :compute-more-hess-elts ()

2110 (print "table[10]->mul(pol_q,pol_q);")

2111 (:compute-one-hess-elt)

2112 (print "for(k=0;k<K;k++){")

2113 (print "my_long_div(table[7],Y,k);")

2114 (print "my_copy_ld(ddps,k,l+N*(j*N+i));")

2115 (print "if(i!=l) my_copy_ld(ddps,k,i+N*(j*N+l));")

2116 (print "}}}}"))

We add now the declarations.

2117 (defun :hess-of-scal ()

2118 (print "@ @u void arl2_data::hess_of_scal"

2119 " (arl2_scal_temp*Y)")

2120 (print "{")

2121 (print "int N=a_N, i,j,k,l;")

2122 (print "int K = g_dim1;")

2123 (print "void* ddps = Y->get_ddps();")

2124 (print "Polynom* table = Y->table;")

2125 (print "Polynom pol_q = Y->pol_q;")

2126 (print "orth_poly(1);")

2127 (:compute-more-hess-elts)

2128 (print "}"))

This computes now the Hessian. In fact, we compute the Hessian in a given direction. It is assumed
that the direction is delta_q. This direction is the l-th partial derivative of q. The result should be
added to delta_dq. Recall that aij is the scalar product. Denote this by a. We have ψ = |a|2. This
gives ψ12 = 2(aa12 + a1a2).

2129 (defun :get-psi2-hess (prec)

2130 (let ((dest))

2131 (setq mode 3)

2132 (decl-sec "Compute $\\psi_2$")

2133 (print "{")

2134 (if (or (= prec 2) (= prec 3)) (print "int I,ev;"))

2135 (print "for(i=0;i<N;i++) {")

2136 (if (or (= prec 2) (= prec 3))

RR no 0123456789

180 José Grimm

2137 (print "I=i/2; ev = i&1;"))

2138 (print "for(j=0;j<Wdeg;j++){")

2139 (if (or (= prec 2) (= prec 3))

2140 (progn

2141 (print "if(ev){")

2142 (if (= prec 2)

2143 (:cpl-aux "delta_dq[I].i")

2144 (:cpl-aux "delta_dq[I].i"))

2145 (print "} else { ")

2146 (if (= prec 2)

2147 (:cpl-aux "delta_dq[I].r")

2148 (:cpl-aux "delta_dq[I].r"))

2149 (print "}"))

2150 (:cpl-aux "delta_dq[i]"))

2151 (print "}}}")))

2152 (defun :cpl-aux (r)

2153 (:cmplx_2times "ps[k][j]" "ddps[k][l+N*(j*N+i)]" r prec)

2154 (:cmplx_2times "dps[k][j*N+i]" "dps[k][j*N+l]" r prec))

This is now the main function of this file.

2155 (defun main-code ()

2156 (for (i 0 1 3) (:print-scal-psi i))

2157 (:scalar-psi-def)

2158 (:declare-scal-var-psi)

2159 (print "@* First derivative.")

2160 (setq mode 1)

2161 (for (i 0 1 3) (:print-real-psi-prime i))

2162 (:scalar-psi-prime-def)

2163 (print "@* Second derivative.")

2164 (setq mode 2)

2165 (for (i 0 1 3) (:scalar-psi-prime-direct i))

2166 (for (i 0 1 3) (:scalar-psi-hess i))

2167 (for (i 0 1 3) (:fill-delta-q i))

2168 (for (i 0 1 3) (:def-scalar-hess i))

2169 (for (i 0 1 3) (:def-scalar-hessian i))

2170 (when have-weight

2171 (:hess-of-scal)

2172 (for (i 0 1 3) (:get-psi2-direct i))

2173 (for (i 0 1 3) (:get-psi2-diff i))

2174 (for (i 0 1 3) (:get-psi2-hess i))

2175)

2176 (:the-scalar-hessian))

2177

This piece of code generates everything in the case without weight.

2178 (setq have-weight ())

2179 (outchan (openo "arl3aux.web"))

2180 (rmargin 100)

2181 (print "@* The function psi.")

2182 (print "@ Start of include file arl3aux.web")

2183 (print-banner "") (print "Copyright 1998-1999 INRIA/MIAOU")

2184 (print "The source was make_scalar.ll.")

2185 (main-code)

2186 (print "@ End of include file arl3aux.web.")

INRIA

Rational approximation of transfer functions in the hyperion software 181

2187 (close (outchan))

2188 (outchan ())

2189

This one generates everything in the case of weight.

2190 (setq have-weight true)

2191 (outchan (openo "arl3w1.web"))

2192 (rmargin 100)

2193 (print "@* The function psi.")

2194 (print "@ Start of include file arl3auxw.web")

2195 (print-banner "") (print "Copyright 1998-1999 INRIA/MIAOU")

2196 (print "The source was make_scalar.ll.")

2197 (main-code)

2198 (print "@ End of include file arl3auxw.web.")

2199 (close (outchan))

2200 (outchan ())

RR no 0123456789

182 José Grimm

INRIA

Rational approximation of transfer functions in the hyperion software 183

Chapter 5

Complexity

5.1 Scalar case of dimension one

Recall that, if q = z − α, then ψ(q) = ‖g‖2 − (1− |α|2)|g(α)|2. We can always assume that ‖g‖ = 1. In
this section, we shall write ψ(α) instead of ψ(q).

5.1.1 Real case of dimension one

In the real case, we can forget the absolute values, so that we have

ψ(x) = 1− (1− x2)g(x)2. (5.1)

We want to find the minimum of ψ for −1 ≤ x ≤ 1. We know that ψ(±1) = 1, and that 0 ≤ ψ(x) ≤ 1.
Thus, ψ has at least one local minimum. In fact, if ψ has n local minima, and m + 2 local maxima
(including ±1), then n = m+ 1.

Note that a zero of g is a maximum of ψ, so that, if g is of degree M , ψ could have more than M
local minima. Assume that we approximate a fraction p/q. Then g is roughly p̃/q̃. If equality holds, then
ψ′ = 0 if p̃ = 0 or xp̃q̃ = (1 − x2)(p̃q̃′ − p̃′q̃). This shows that ψ cannot have more than 3n/2 minima,
which is much better.

Note that our algorithm will fail in the case where ψ′ = ψ′′ = 0. We have ψ′ = 0 if g(x) = 0 or
xg = (1− x2)g′. The additional condition is

−2g2g′2 + g3g′′ − 9g′4 + 6g′2gg′′ − g2g′′2 = 0.

We give here the algorithm that is used to find all local minima of ψ.

Step one. The first three derivatives of ψ are given by:

ψ′ = 2g(xg − (1− x2)g′) (5.2.a)

ψ′′ = 2g2 + 8xgg′ − 2(1− x2)(g′2 + gg′′) (5.2.b)

ψ′′′ = 12(gg′ + xg′2 + xgg′′)− 2(1− x2)(3g′g′′ + gg′′′). (5.2.c)

Let Ik be the interval [−1 + k/20,−1 + (k + 1)/20], 0 ≤ k < 40. The interval I = [−1, 1] is hence split
into 40 smaller intervals. On each of them, we compute the maximum of the absolute value of ψ′′ and
ψ′′′ by evaluating these quantities on one thousand points. The main assumption is that the number of
evaluation points is large enough.

RR no 0123456789

184 José Grimm

Step two. If f is any function, we know that, for each interval [a, b], there exists a point ξ in the
interval such that

f(a)− f(b)
a− b

= f ′(ξ).

Now, if M is the maximum of |f ′| on [a, b], and if ε = |f(a)|/M , then f does not change sign on the
interval [a, b] in case b = a + ε. We give here a procedure that, given a, returns ε, such that f is of
constant sign on [a, a+ ε]. The trouble is, of course, that M depends on ε, and ε is defined as a function
of M . We assume here that Z is a table, such that Zk is the maximum of |f | on Ik.

1. Let i = 0, zi−1 = 0, and k be such that a ∈ Ik.

2. Let zi be the max of zi−1 and Zk+i (loop invariant: it is the max of f ′ on Ik, . . . , Ik+i).

3. Let ε = |f(a)|/zi, and j such that a+ ε is in Ik+j .

4. If j ≤ i, we have found ε. If a + |ε| > 1, we take ε = 1 − a (so that a + ε = 1). Otherwise, we
increment i and go back to point 2.

Step three. Given a, we compute here b such that ψ has zero or one local minimum in the interval
[a, b]. We compute first ε and ε1 such that ψ′ does not change sign on [a, a+ ε] and ψ′′ does not change
sign on [a, a+ ε1]. Let b = a+ max(ε, ε1).

• If ε > ε1, there is no root of ψ′ on [a, b], because ψ′ has constant sign on [a, b].

• Assume now ε < ε1. The assumption is now that ψ′′ has constant sign on [a, b]. If ψ′ and ψ′′ have
the same signs at a, then there is no root of ψ′ on [a, b] (because either ψ′ is positive and increasing,
or negative and decreasing).

• Now, ψ′ may change sign, but only once, in the interval [a, b]. In the case ψ′(a) < 0 and ψ′(b) > 0,
then we have a local minimum in the interval.

• Otherwise, there is no local minimum in the interval.

Step four. We have now a procedure that given a, returns b such that the interval [a, b] contains a
single local minimum of ψ, or none. In the first case, we compute it, in the second case we do nothing.
After that, we replace a by b, and restart with this new value of a, until we get a = 1.

The trouble is that the quantity b− a may be too small. If this is the case (i.e. if b− a < ε0, for some
fixed ε0), we replace b by a+ ε0, and decide that we have a local minimum, if and only if ψ′(a) < 0 and
ψ′(b) > 0.

Step five. In the case where we know that there is a root between a and b, we try the Newton method
to find it. There is however no warranty that this will succeed and that the result is between a and b.
For this reason, we try three starting points, namely a, b and (a+ b)/2.

5.1.2 Complex case of dimension one

If we write the equation ψ′ = 0, we get either g(α) = 0 or

αg(α)− (1− |α|)2g′(α) = 0. (5.3)

In the first case, α is a maximum of ψ. Hence, one way to minimise ψ is solve equation (5.3), evaluate
the second derivative of ψ, and check whether the Hessian is positive definite or not.

There is a way to find the roots of a function h(x, y), called exclusion method, see for instance [5].
The method works in the case where h has more than two arguments (in the case of 3, replace “squares”
by “cubes” and “four sub-squares” by “eight sub-cubes”). Let’s write z = x + iy, so that h becomes a

INRIA

Rational approximation of transfer functions in the hyperion software 185

Figure 5.1: Exclusion circles, showing the minimum of ψ, which is in one of the two white zones. It is to
be noticed that the size of the circle is not a function of the distance to the minimum: we have chosen
the centre on three horizontal lines. On the first and the last, the radius is rather constant, on the middle
line, the radius varies a lot.

real function of the complex variable z. Let Z be the set of all z such that h(z) = 0, this is the set of
zeroes of h. The idea is to take a point z0, evaluate h at z0, and if this is not zero, find ε such that z 6∈ Z
if |z − z0| ≤ ε. Hence, we can exclude zones in which the function does not vanish. The function z0 → ε
is called the exclusion function. On figure 5.1 we have shown a certain number of disks |z − z0| ≤ ε near
a zero of h.

There are different ways of using the exclusion function. One way is the following. We consider a
square that covers the domain of interest D. After a while, we get a certain number of squares Si, such
that, if z ∈ Z, then x is in at least one square. For each square Si, we evaluate ε(x) at the centre of the
square. In the good case, we can eliminate this square. In the bad case, we split the square into four
sub-squares. Some of these sub-squares may be outside D, hence can also be eliminated. After a while,
if the function ε(z) satisfies good properties, we can “see” the set of zeroes of h. The case of interest is
when h has only isolated zeroes (for instance if h is a polynomial). The hope is that, after a while, we
have as many small squares as roots of h, and a Newton method, with the centre of the square as initial
condition, will find the root. In practice (see figure 5.1), we get much more squares than roots of h, and
this method is not used to find the minimum of ψ.

Let η(z0) be the distance of z0 to the set of roots of h. Then 0 ≤ ε(z)/η(z) ≤ 1. One property of ε we
need is that the limit ε(z)/η(z) is not zero if z approaches Z. Assume that h is a polynomial function of
z. Then Z contains a finite number of points zi (1 ≤ i ≤ n), and the condition z approaches Z can be
written as: there is some i such that lim z = zi, and in this case η(z) = |z − zi|.

RR no 0123456789

186 José Grimm

Fix z0. Write

h(z + z0) =
n∑
k=0

hkz
k. (5.4.a)

Let ai = |hi| and

f(x) = −a0 +
n∑
i=1

aix
i. (5.4.b)

Because ai ≥ 0, there is a unique α ≥ 0 such that f(α) = 0. Moreover, if x > α then f(x) > 0, and if
0 < x < α, f(x) < 0. It is very easy to find x such that x > α: we start with x = 1, and multiply x by 2
while f(x) < 0. Moreover, if x0 > 0, then the sequence xk+1 = xk − f(xk)/f ′(xk) converges to α, and
satisfies α < xk. Thus, it is easy to find x such that 0.99x < α < x (in case f(0.99xk) < 0, then x = xk
is a good value). Hence, we obtain without pain a good estimation of α (with a precision of 1%).

If we compare (5.4.a) and (5.4.b), we see that α (or anything smaller than α) is a candidate for ε(z0).
Using the Taylor expansion, one can show that, if z0 is a root of multiplicity i of h, then

lim
α

|z − z0|
= 21/i − 1.

In particular, this limit is one in case of a single root,
√

2 − 1 in case of a double root. Thus, if h has
only single roots, our function ε is optimal.

In the special case where the polynomial is z2 − 1, and z0 = a+ ib, we have

f(x) = −|1− (a+ ib)|2 + 2x|a+ ib|+ x2 = 0

hence
ε = −

√
a2 + b2 +

√
a2 + b2 +

√
(1− a2 + b2)2 + 4a2b2.

Note that, if b = 0 and −1 ≤ a ≤ 1, then ε is the largest possible: the circle with centre z0 and radius ε
passes through one of the roots of the polynomial. We have shown in figure 5.2 some circles that show
the root z = 1.

We want to apply this technique in the case

h(a) = ag(a)− (1− |a|2)g′(a).

Instead of (5.4.a), we have now h(z0 + z) =
∑
i(aiz

i + bizz
i−1), from which we get a bound

|h(z0 + z)− h(z0)| ≤
∑

(|ai|+ |bi|)|z|i.

Hence we get a function f like before. Note however that h is not a polynomial. In particular, the set of
zeroes of h can contain an infinite number of points (see example from chapter 2: ψ(a) = 1− |a|2 + |a|4).

5.2 Scalar case

As explained elsewhere, we find a minimum of ψ using integration or a Quasi-Newton algorithm. The
number of times ψ′ and ψ′′ are computed depends a lot on the initial condition. In general, we use an
initial condition that has a pole on T, thus, is generally far from the minimum. In some other cases, we
may have a good guess of where the minimum lies.

From now on, we compute the complexity of the computation of ψ, ψ′ and ψ′′. What we count is the
number of multiplications. We assume that a division is equivalent to a multiplication. We assume that
the cost of a complex multiplication or division is four times the cost of a real multiplication.

In this section, we look at the scalar case. The quantity n will be the degree of q. In the real case,
we have

q = zn +
n−1∑
i=0

qiz
i

INRIA

Rational approximation of transfer functions in the hyperion software 187

x

y

Figure 5.2: Exclusion circles for z2 − 1, near the root z = 1.

RR no 0123456789

188 José Grimm

so that ψ is a function of n arguments. Of course, ψ depends on some other quantities (the function f ,
and maybe the weight), so that the complexity will depend on some other quantities. The important
point is that we have to compute n partial derivatives.

In the complex case, we write

q = zn +
n−1∑
k=0

(qk + irk)zk

so that ψ will be a function of 2n real variables. Note that ψ is a C∞ function of qk and rk, but is not
an analytic function of qk + irk.

If we compute the derivatives of ψ in direct mode, we have twice as many partial derivatives to
compute in the complex case (n in the real case, and 2n in the complex case). Since the Hessian is a
symmetric matrix, we have to compute n(n+1)/2 partial derivatives for ψ′′ in the real case, and n(2n+1)
partial derivatives in the complex case. Hence, the complex code of ψ′′ is a priori 16 times slower than
the real code. The quantity d will be the degree of the weight. The quantity m will be the number of
terms in G. Recall that G is an M × p matrix, and in the scalar case p = 1. Each element of G is a
polynomial. We assume that all elements have the same degree (the programs adds zeroes if needed), say
M1. Then m = M(M1 + 1). In general, we have M = 1, and in most cases, the complexity depends only
on m. If this is not the case, we shall indicate what happens if M 6= 1. For the numerical applications,
we always assume m = 400. We shall consider four values of n, namely 5, 8, 10 and 20. In the case of
weight, the weight will be 1, 2, 5, and 10.

5.2.1 Orthogonal polynomials

If P = Φn and Q = Φn−1 the formula for orthogonal polynomials is

Q̃(0)Q̃ = P̃ (0)P̃ − P (0)P.

Recall that Q̃(0) is the leading coefficient of Q, and this is a real number. Assume P =
∑
piz

i and
Q =

∑
qiz

i. Then
qn−1qj = pnpj+1 − p0pn−j−1, (5.5)

and for j = n− 1 we get
q2n−1 = p2

n − |p0|2. (5.6)

If we differentiate these formulas, we get

q′n−1qj + qn−1q
′
j = p′npj+1 + pnp

′
j+1 − p′0pn−1−j − p0p

′
n−j−1, (5.7)

and
qn−1q

′
n−1 = pnp

′
n −<(p0p

′
0). (5.8)

We can differentiate again. Note that the second derivative of a product ab is

δa db+ a δdb+ δda b+ da δb

if dX and δX are the derivatives of X in two directions. Hence, we get 12 terms for the derivatives
of (5.7). Equation (5.8) gives us q′n−1 and equation (5.7) gives us q′j . The complexity for computing the
generic term qj , q′j and q′′j is hence 3, 6 and 12 respectively. In the complex case, we take advantage of
the fact that the leading coefficients of P and Q are real, so that, instead of multiplying these numbers
by 4, we get 8, 16 and 32. The cost of the leading term qn−1, q′n−1 and q′′n−1 is 2, 3 and 6 in the real
case, 3, 4 and 8 in the complex case. Note that, for qn−1 we have to extract a square root.

Thus, we get a cost of 12k + 6 for one partial second derivative of Q, in the case where Q has degree
k. We have to compute all Φk (of degree k) for n ≤ k ≤ n + d. Note that Φn+d = qw, so that the first
derivative with respect to qi is just ziw: no multiplication is required. The second derivative is zero.
Results are in table 5.1.

INRIA

Rational approximation of transfer functions in the hyperion software 189

Table 5.1: Complexity of orthogonal polynomials (time)

Ψ Ψ′ Ψ′′

real d(4n+ 3d/2 + 1/2) nd(6n+ 3d) 3n(n+ 1)(2n+ d)d
complex d(12n+ 4d+ 1) 8nd(4n+ 2d− 1) 8n(2n+ 1)(4n+ 2d− 1)d

n = 5, d = 1 22 / 65 165 / 840 990 / 9 240
n = 8, d = 2 71 / 210 864 / 4 480 7 776 / 76 160
n = 10, d = 5 240 / 705 3 750 / 19 600 41 250 / 411 600
n = 20, d = 10 955 / 2810 30 000 / 158 400 630 000 / 6 494 400

Table 5.2: Complexity of orthogonal polynomials (space)

real complex
(n2 + n+ 1)(n+ 1 + d/2)(d+ 1) (4n2 + 2n+ 1)(2n+ 2 + d)(d+ 1)

n = 5, d = 1 403 5 106
n = 8, d = 2 2 190 16 380
n = 10, d = 5 8 981 63 992
n = 20, d = 10 120 406 938 652

Memory requirements: for simplicity we store the full Hessian. This gives hence table 5.2. The
algorithm for computing Ψ′ is not optimal. To see why, consider for instance the case d = 2 and n = 3.
We have

Φ5 = w0q0 + (w0q1 + w1q0)z + (w0q2 + w1q1 + q0)z2 + (w0 + w1q2 + q1)z3 + (w1 + q2)z4 + z5.

Let α =
√

1− w2
0q

2
0 . Note that α depends only on q0, and αdα/dq0 = −q0w2

0. Let Φ5 = a0 + a1z +
a2z

2 + a3z
3 + a4z

4 + z5. Then

αΦ4 = a1 − a0a4 + (a2 − a0a3)z + (a3 − a0a2)z2 + (a4 − a0a1)z3 + α2z4.

Write this as b0 + b1z + b2z
2 + b3z

3 + b4z
4. Now b4 is independent of q1, q2. Moreover, the derivative of

bi with respect to qj (j 6= 0) has the form a′u − a0a
′
v, for some indices u and v. Given the form of ai, we

can compute a′u without multiplication. Now a′v is 1, w0 or w1. Hence it suffices to use 2 multiplications
in order to compute a0a

′
v. Thus the complexity is 10 (we have 8 divisions), instead of 54. Since the total

cost is 144, this reduces it to 100. If we compute the second derivative, it is clear that ∂2Φu/∂qi∂qj is
zero, if none of i and j is zero. Thus, it suffices to compute only the first row of the Hessian.

In the general case, we can optimise the code of Φn+d−1, and perhaps the code of Φn+d−2. Given the
complexity of the other terms, these optimisations can be neglected.

5.2.2 Additional code

We have to compute now ψ0 and its derivative, where

ψ0 =
M∑
j=1

n+d−1∑
i=n

∣∣∣∣〈Φiejq |F 〉w
∣∣∣∣2 (5.9)

Denote by sk the scalar product in this expression. Then ψ0 =
∑
|sk|2, dψ0 = 2

∑
<(sk dsk) and

δdψ = 2
∑
<(δskdsk + skδdsk). In the next table (5.3), we assume M = 1 (recall that M is the number

of components of F). We show the cost of ψ0 and its derivatives, assuming that sk and their derivatives
have been computed.

RR no 0123456789

190 José Grimm

Table 5.3: Complexity of squares in (5.9), case M = 1

ψ ψ′ ψ′′

real Md Mnd Mdn(n+ 1)
complex 2Md 4Mnd 4Mdn(2n+ 1)

n = 5, d = 1 1/ 2 5/ 20 30/ 220
n = 8, d = 2 2/ 4 16/ 64 144/ 1 088
n = 10, d = 5 5/10 50/200 550/ 4 200
n = 20, d = 10 10/20 200/800 4200/32 800

We compute now the complexity of a single scalar product like

ψ0 = 〈F
w
| Φ
qw
〉. (5.10)

We have
dψ0 = 〈F

w
| dΦ
qw
〉 − 〈F

w
| Φdq
q2w

〉. (5.11.a)

dψ0 = 〈F
w
| q dΦ− Φ dq

q2w
〉. (5.11.b)

δdψ0 = 〈F
w
| δdΦ
qw

〉 − 〈F
w
| δq dΦ + dq δΦ

q2w
〉+ 2〈F

w
| Φ dq δq
q3w

〉. (5.12.a)

δdψ0 = 〈F
w
| q

2 δdΦ− q δd dΦ− q δΦ dq + 2Φ dq δq
q3w

〉. (5.12.b)

The question is now: should we implement (5.11.a) and (5.12.a) or (5.11.b) and (5.12.b). The answer
depends on what is the cheapest: the scalar product 〈F | dΦ/q〉w or the product qdΦ. Let’s start with
easy things: the multiplication by 2 in (5.12). In equation (5.12.a), the best thing to do is multiply F
by 2. This costs (in the example) 400 multiplications, and 400 memory cells. In the case of (5.12.b), the
best thing to do is to multiply Φ by 2. This costs

d(2n+ d+ 1)/2 (5.13)

multiplications and memory cells. This is small, so that we do not count it in our tables.
Assume now that we implement (5.12.b). The numerator has the form aq2 + bq+ c. We can compute

this as
(aq + b)q + c = a(q2) + bq + c. (5.14)

In general the first method (Horner scheme) is more efficient than the second one. But q dΦ appears in
(5.11), hence can be precomputed. In the next table (cf 5.4) we give the memory cost of storing these
quantities (which is nd(4n+ d+ 1)/2).

In the next table (cf 5.5), we give the complexity of computing the denominator of (5.11.b) and
(5.12.b). Recall that we have qw = Φn+d, and this is already computed. The complexity is n(n+ d) for
the product q2w and n(2n+d) for the product q3w. If we assume that we compute (5.14) as a(q2)+bq+c,
we count also the cost of q2 which is n2. Now, we can compute q2w by multiplying q2 by w. This costs
2nd. Whether this is better than multiplying qw by q depends on which is the greatest, n or d. In our
example, we always have n > d, but this is not always true. In fact, since q2 is needed for the Hessian,
and q2w for the first derivative, the best thing to do when we compute the first derivative is to multiply
qw by q. On the other hand, when we compute the Hessian, we need q3w. We can multiply qw by q2,
with a cost of 2n(n+ d), but this is greater than n(2n+ d), the cost of multiplying q2w by q.

INRIA

Rational approximation of transfer functions in the hyperion software 191

Table 5.4: Space needed for the products q dΦ

real complex
n = 5, d = 1 55 220
n = 8, d = 2 280 1 120
n = 10, d = 5 1150 4 600
n = 20, d = 10 9100 36 400

Table 5.5: Complexity of denominators in (5.11) and (5.12)

ψ′ ψ′′ ψ′′ plus q2

real n(n+ d) n(2n+ d) n(3n+ d)
complex 4n(n+ d) 4n(2n+ d) 4n(3n+ d)

n = 5, d = 1 30/ 120 55/ 220 80/ 320
n = 8, d = 2 80/ 320 144/ 876 208/ 432
n = 10, d = 5 150/ 600 250/1000 350/1400
n = 20, d = 10 600/2400 1000/4000 1400/5600

In the next table (cf. 5.6) we give the complexity for computing the numerators of (5.11.b) and (5.12.b).
In the first case, we have to compute q dΦ. If Φ has degree i, this costs n(i+ 1). Since i varies between
n and n + d − 1, this gives a total cost of nd(2n + d + 1)/2. We have to multiply this by the number
of directions dΦ (n in the real case, and 2n in the complex case). In the second column of the table,
we give the costs of the right-hand side of (5.14), assuming that q dΦ has been computed and stored.
Each term costs 2n(i + 1), hence a total of nd(2n + d + 1) for each direction. In the real case, there
are n(n + 1)/2 directions (because the Hessian is a symmetric matrix). In the complex case there are
n(2n + 1) directions. In the last last column, we give the cost when we use the left-hand side of (5.14).
We have a cost of n(n+ 2i+ 2) for each direction.

Table 5.6: Complexity of numerators in (5.11) and (5.12)

ψ′ ψ′′ (fast) ψ′′ (slow)
real n2d(2n+ d+ 1)/2 n2d(2n+ d+ 1)(n+ 1)/2 n2d(3n+ d+ 1)(n+ 1)/2

complex 4n2d(2n+ d+ 1) 4n2d(2n+ d+ 1)(2n+ 1) 4n2d(3n+ d+ 1)(2n+ 1)
n = 5, d = 1 150/ 1 200 900/ 13 200 1 275/ 18 500
n = 8, d = 2 1 216/ 9 728 10 944/ 165 376 15 552/ 235 008
n = 10, d = 5 6 500/ 52 000 71 500/ 1 092 000 99 000/ 1 512 000
n = 20, d = 10 102 000/816 000 2 142 000/33 456 000 2 982 000/46 576 000

Assume now that the scalar product

〈F
w
| p
q
〉 (5.15)

is computed via its Taylor expansion. Write

F

w
=

∞∑
k=0

fk/z
k+1, (5.16.a)

RR no 0123456789

192 José Grimm

p

q
=

∞∑
k=0

pk/z
k+1. (5.16.b)

Then

〈F
w
| p
q
〉 =

∞∑
k=0

fkpk. (5.16.c)

Let Fw be the truncation of F/w with m′ terms and F ′ = wFw. If m′ is big enough, the best approxi-
mation to F is very near to the best approximation to F ′. This means that we can replace F by F ′ (in
fact, in some examples given to hyperion, the data are measured with an unknown precision, and given
with 6 digits; the quantity F is an approximation to these data, with a typical precision of 10−3 in the
good cases, 10−2 in the bad cases. We do not lose precision in the case where the distance between F
and F ′ is less than 10−6).

Note however that we are computing the second term in (2.71.3). If we replace F by F ′, we should
also replace G by G′. This means that the complexity of the first term is increased. In fact, we do not
replace G by G′. This has no practical consequence, but in theory, it could change some results (the
behaviour on the boundary of the manifold, for instance).

The number of terms to take in the truncation depends on F and w. If the zeroes of w are small
(in fact if 1 − |z| is small enough for each root z of w), then we can take a small value for m′ −m, for
instance m/10. In the examples below, we take m′ −m = m/2, thus m′ = 600.

Quantities pk in (5.16.b) are computed as follows. Assume

p

q
=

n∑
k=0

pk/z
k+1 +

s

qzn+1
(5.17.a)

then
p

q
=
n+1∑
k=0

pk/z
k+1 +

s′

qzn+2
(5.17.b)

provided that
sz = pn+1q + s′. (5.17.c)

In other words, the cost of each coefficient pk is the degree of q (we assume q monic). In (5.16.c), we have
m′ coefficients to compute, and for each coefficient one multiplication is required. This gives a complexity
of m′(n+ 1). In table 5.7 we give the complexity of the scalar products.

Table 5.7: Complexity of scalar products via truncation

ψ ψ′ ψ′′

real m′(n+ d+ 1)d m′(2n+ d+ 1)dn m′(3n+ d+ 1)dn(n+ 1)/2
complex 4m′(n+ d+ 1)d 8m′(2n+ d+ 1)dn 4m′(3n+ d+ 1)dn(2n+ 1)

n = 5, d = 1 4 200/ 16 800 36 000/ 288 000 153 000/ 2 244 000
n = 8, d = 2 13 200/ 52 800 182 400/ 1 539 200 1 456 400/ 21 705 600
n = 10, d = 5 48 000/192 000 780 000/ 6 240 000 5 940 000/ 90 720 000
n = 20, d = 10 186 000/744 000 6 120 000/48 960 000 89 400 000/1 377 280 000

It is clear, according to this table, that (5.12.b) should be preferred to (5.12.a) (it is also clear that
another method should be used to compute the scalar products).

One way to reduce the complexity is by avoiding the truncation. This essentially replaces m′ by m.
We shall give later another way to compute the scalar products. The complexity is still O(n3d) for the
Hessian, but we can remove the factor m (thus replace ten minutes by one second).

INRIA

Rational approximation of transfer functions in the hyperion software 193

Assume that w is a polynomial of degree d. By definition of the scalar product, we have

〈F
w
|x〉 = 〈F | xz

d

w̃
〉.

Let x = p/s, and consider the equation
As+Bw̃ = zd. (5.18.a)

Then
〈F
w
| p
s
〉 = 〈F | pA

w̃
〉+ 〈F | Bp

s
〉.

Since w and F are stable, F is orthogonal to Ap/w̃, so that

〈F
w
| p
s
〉 = 〈F | Bp

s
〉. (5.18.b)

In the next table 5.8, we give the cost of computing A, B and s. Recall that s is qw for ψ, q2w for ψ′

and q3w for ψ′′. This is a stable polynomial, so that the Bezout equation (5.18.a) has a solution.

Table 5.8: Complexity of the Bezout relation (5.18.a)

ψ ψ′ ψ′′

real (2d+ 1)(n+ 2d) (2d+ 1)(2n+ 2d) + n(n+ d) (2d+ 1)(3n+ 2d) + (n+ 2d)n
complex 4(2d+ 1)(n+ 2d) 4(2d+ 1)(2n+ 2d) + 4n(n+ d) 4(2d+ 1)(3n+ 2d) + 4(n+ 2d)n

n = 5, d = 1 21/ 82 66/ 264 86/ 344
n = 8, d = 2 60/ 240 180/ 720 236/ 944
n = 10, d = 5 220/ 880 480/1920 660/2640
n = 20, d = 10 840/3360 1860/7440 2480/9920

In the next table 5.9, we give the cost of the scalar products 〈F |Bp/s〉. Assume that s = qiw, so
that its degree is d+ in and that p has degree j. Now B has degree d+ in−1 and the cost of the product
Bp is j(d + in). Its degree is j + d + in − 1. Thus Bp/s has the form α + β/s, where deg(β) < deg(s),
and α has degree j − 1. Computing α and β costs j(d+ in), and 〈F |Bp/s〉 = 〈F |β/s〉. The cost of the
scalar product is m(d+ in). This gives a total cost of (d+ in)(m+ 2j). Such a scalar product must be
computed for each orthogonal polynomial and for each direction of differentiation.

Table 5.9: Complexity of scalar products via the Bezout relation, α = m+ 2n+ d+ 1

ψ ψ′ ψ′′

real (n+ d)dα n(2n+ d)dα (3n+ d)dαn(n+ 1)/2
complex 4(n+ d)dα 8n(2n+ d)dα 4(3n+ d)dαn(2n+ 1)

n = 5, d = 1 2 47/ 9 888 22 660/ 181 280 98 850/ 1 449 800
n = 8, d = 2 8 380/ 33 520 120 672/ 965 376 784 368/ 11 852 672
n = 10, d = 5 31 950/127 800 532 500/ 4 260 000 4 100 250/ 63 622 000
n = 20, d = 10 135 300/541 200 4 150 000/33 220 000 66 297 000/1 035 496 000

Note that the last number in this table is still greater than 109.
We consider now another technique for computing the scalar products. Let di be defined by

〈F
w
| z

i

s
〉 = di. (5.19.a)

RR no 0123456789

194 José Grimm

Then, if p =
∑
piz

i, 〈F/w | p/s〉 =
∑
pidi, so that, if D =

∑
diz

i,

〈F
w
| p
s
〉 = 〈p |D〉. (5.19.b)

In the next table 5.10, we give the cost for (5.11.b) and (5.12.b), if the scalar products are computed in
this way.

Table 5.10: Complexity of scalar products via (5.19.b)

ψ ψ′ ψ′′

real d(2n+ d+ 1)/2 nd(4n+ d+ 1)/2 d(6n+ d+ 1)n(n+ 1)/4
complex 2d(2n+ d+ 1) 4nd(4n+ d+ 1) 2d(6n+ d+ 1)n(2n+ 1)

n = 5, d = 1 6/ 24 55/ 440 240/ 3 520
n = 8, d = 2 19/ 74 280/ 2 240 1 836/ 27 744
n = 10, d = 5 65/ 260 1150/ 9 200 9 075/ 138 600
n = 20, d = 10 255/1020 9100/72 800 137 550/2 148 400

Now, since these numbers are small, it is worth implementing (5.11.a) and (5.11.b). Assume that
Φ has degree j. Then the cost of 〈F/w | dΦ/qw〉 is j + 1. The cost of the scalar product of F/w and
Φdq/q2w is also j + 1, because Φ dq has only j + 1 non zero coefficients. Thus we get a cost of 2(j + 1),
hence a cost of d(2n + d + 1) for each direction. In the same fashion, we can write (5.11.b) as a sum of
four terms, each with complexity j + 1. Results are given in table 5.11.

Table 5.11: Complexity of scalar products via (5.19.b), and (5.11.a), (5.12.a)

ψ ψ′ ψ′′

real d(2n+ d+ 1)/2 nd(2n+ d+ 1) d(2n+ d+ 1)n(n+ 1)
complex 2d(2n+ d+ 1) 8nd(2n+ d+ 1) 8d(2n+ d+ 1)n(2n+ 1)

n = 5, d = 1 6/ 24 60/ 480 360/ 5 280
n = 8, d = 2 19/ 74 304/ 2 432 2 736/ 41 344
n = 10, d = 5 65/ 260 1 300/10 400 14 300/ 218 400
n = 20, d = 10 255/1020 10 200/81 600 214 200/3 345 600

We have now to compute the quantities that appear in (5.19.a). Assume that s has degree n and
that zn−1/s =

∑
k sk/z

k+1. Moreover, assume that we use the truncated power series expansion of F/w.
Then

〈F
w
| z

i

s
〉 = 〈F

w
|
∑

skz
i−n+1/zk+1〉

and
di =

∑
k

fk+(n−i−1)sk.

Hence, we get a cost of 2m′n, see table 5.12.
Assume now that we use formula (5.18.b). We get

di = 〈F
w
| z

i

s
〉 = 〈F | Bz

i

s
〉 = 〈F

zi
| B
s
〉.

This means that we can use the same technique as before. We have to compute B and the expansion
B/s, the cost is given in table 5.8, and then the scalar products are as in table 5.12, with m′ replaced by
m (for numeric values, multiply everything in the previous table by 2/3).

INRIA

Rational approximation of transfer functions in the hyperion software 195

Table 5.12: Complexity of the relation (5.19.a)

ψ ψ′ ψ′′

real 2m′(n+ d) 2m′(2n+ d) 2m′(3n+ d)
complex 8m′(n+ d) 8m′(2n+ d) 8m′(3n+ d)

n = 5, d = 1 7 200/ 28 800 13 200/ 52 800 19 200/ 76 800
n = 8, d = 2 12 000/ 48 000 21 600/ 86 400 31 200/124 800
n = 10, d = 5 18 000/ 72 000 30 000/120 000 42 000/168 000
n = 20, d = 10 36 000/144 000 60 000/240 000 84 000/336 000

The conclusion is the following: if there are few scalar products to compute (i.e., when we compute
ψ, and n, d are small), we can use a direct formula. Otherwise, the best thing to do is compute D such
that 〈F/w |x/q〉 = 〈D |x〉, and replace all scalar products with F/w by scalar products with D. In the
case where n is large enough, in the case of the derivatives of ψ, the complexity of the scalar products
becomes smaller that the complexity of the orthogonal polynomials.

5.2.3 Non-weighted case

Here, we have to compute ψ and its derivatives, given the formulas

Gq̃ = V q +R, ψ = ‖V ‖2. (5.20)

A basic implementation says that the cost of ψ is m(2n+ 1). If we differentiate in reverse mode, we get
a complexity of 3mn, because G is constant, thus a cost of m(5n + 1) for ψ and ψ′. If we differentiate
again, we get a cost of 8mn2.

In the table 5.13, we give the complexity of computing ψ and its derivatives in the case of a weight.
Here we have Gzdq̃ = V qw +R.

Table 5.13: Complexity of ψ1, first part of ψ with weight

ψ ψ′ ψ′′

real m(2n+ d+ 1) m(3n+ 2d) + n(d+ 1) nm(8n+ 6d+ 1) + 2n2(d+ 1)
complex m(8n+ 4d+ 2) 4m(3n+ 2d) + 4n(d+ 1) mn(64n+ 48d+ 2) + 16n2(d+ 1)

n = 5, d = 1 4 800/18 400 6 810/ 27 240 94 100/ 740 800
n = 8, d = 2 7 600/29 600 11 224/ 44 896 246 784/ 1 955 072
n = 10, d = 5 10 400/40 800 16 060/ 64 240 445 200/ 3 537 600
n = 20, d = 10 20 400/80 800 32 220/128 880 1 776 800/14 166 400

In the case without weight, we can simplify a bit these formulas. Results are given in table 5.14.
The question is now: what is the intrinsic complexity of ψ? We assume that G is a polynomial, of

degree m− 1, hence has m terms. If we consider the equations

zPk+1 + gk q̃ = Vkq + Pk, (5.21)

where Pk are polynomials of degree < n, initialised with Pm = 0, then these equations allow us to
compute all the coefficients Vk of V , with the same time complexity as above, but we have only to
allocate n memory cells for P , instead of n+m for the product Gq̃.

Remember that, in the case where q is of degree one and q = z − α, we have

ψ = ‖G‖2 − (1− |α|2)|G(α)|2, (5.22)

RR no 0123456789

196 José Grimm

Table 5.14: Complexity of ψ, scalar case, no weight

ψ ψ′ ψ′′

real m(2n+ 1) 3mn nm(8n+ 1)
complex m(8n+ 2) 12mn mn(64n+ 2)
n = 5 4 400/16 800 6 000/24 000 82 000/ 644 000
n = 8 6 800/26 400 9 600/38 400 208 000/ 1 644 800
n = 10 8 400/32 800 12 000/48 000 324 000/ 2 568 000
n = 20 16 400/64 800 24 000/96 000 1 288 000/10 256 000

and this gives a complexity of m+ 3 (recall that the norm of G is one). This is smaller than m(2n+ 1)
evaluated at n = 1.

More generally, assume that q =
∏

(z − αi), and q has only simple roots. Then (5.20) says

G(αi)q̃(αi) = R(αi). (5.23.a)

Let P = R̃. There exist some quantities βi such that P/q =
∑
βi/(z − αi) and

〈F | P
q
〉 =

∑
〈F | βi

z − αi
〉 =

∑
i

βiG(αi). (5.23.c)

Now, the quantities βi are defined by the equation:∑
j

βj
∏
k 6=j

(1− αkαi) = R(αi). (5.23.c)

Recall that ψ = ‖F‖2−〈F |P/q〉. Thus, the complexity for ψ is the following: we need nm multiplications
for evaluating G at αi, plus a cost that depends only on n: we have to compute the roots of q, evaluate
q̃(αi), compute

∏
(1 − αkαi), solve (5.23.c), etc. Hence, we have an algorithm whose complexity is

mn+ f(n). It works only in the case where q has single roots.
In order to see what happens if q has multiple roots, let’s consider the case where q has two roots α

and β. We have

〈F | P
q
〉 =

X + Y − Z

∆
, (5.24.1)

∆ = |1− αβ|2 − (1− |α|2)(1− |β|2), (5.24.2)

X = |G(α)|2(1− |α|2)|1− αβ|2, (5.24.3)

Y = |G(β)|2(1− |β|2)|1− αβ|2, (5.24.4)

Z = 2<[G(α)G(β)(1− αβ)](1− |α|2)(1− |β|2). (5.24.5)

These formulas are valid only in the case α 6= β. In fact, ∆ = |α− β|2. But we have a limit, and this is

〈F | P
q
〉 = |G′(α)|2(1− |α|2)3 + |G(α)|2(1− |α|2)− 2<[G(α)G′(α)α](1− |α|2)2. (5.25)

5.2.4 Alternate formulas

Consider equations (5.24) in the real case. These are symmetric functions of α and β, hence must be
rational functions of the coefficients of q (this is false in the complex case: ψ is not analytic, but there
must be a formula). The idea is the following: since ψ depends on G only through the values of G at the
roots of q, there has to be a way to express ψ as a function of the remainder of G by q. Thus the formula:

G = V1q +R1 R1q̃ = V2q +R2, (5.26.a)

INRIA

Rational approximation of transfer functions in the hyperion software 197

ψ = ‖G‖2 − ‖R1‖2 + ‖V2‖2. (5.26.b)

This trick does not work in the weighted case: essentially, we have to replace G by Gw = Gzd/w̃. But
this is not a polynomial. We get a polynomial if we multiply the first equation by w̃. This means that
we have to divide Gzd by qw̃. Note that the division is possible, but numerically unstable. Results are
given in table 5.15.

Table 5.15: Complexity of ψ, scalar case, alternate

ψ ψ′ ψ′′

real mn+ 2n+ n2 mn+ 3n2 n(2mn+ 10n2 + 2n)
complex 4(mn+ 2n+ n2) 4(mn+ 3n2) 8n(2mn+ 10n2 + 2n)
n = 5 2 035/ 8 140 2 075/ 8 300 21 300/ 170 400
n = 8 3 280/13 120 3 392/13 568 56 448/ 451 584
n = 10 4 120/16 480 4 300/17 200 90 200/ 721 600
n = 20 8 440/33 760 9 200/36 800 400 800/3 206 400

5.2.5 Direct mode differentiation

Let’s introduce the quantities defined by the following equations

Gzn−i = Uiq + Ci, V zi = Wiq +Di (5.27.a)

Uiz
j = Xijq + Zij , Wiz

j = Yijq + Tij . (5.27.b)

If we differentiate Gq̃ = V q +R, ψ = ‖V ‖2, we get

G∂q̃ = ∂V q + V ∂q + ∂R, (5.28.a)

∂ψ = 2<〈V | ∂V 〉. (5.28.b)

We assume now that q =
∑

(qk + irk)zk, where qn + irn = 1. In (5.28), we have to consider the case
where ∂X is the derivative with respect to qk or rk. In this case, ∂q is zk or izk, while ∂q̃ is zn−k or
−izn−k. Hence we get

Gzn−k − V zk = q
∂V

∂qk
+
∂R

∂qk

−iGzn−k − iV zk = q
∂V

∂rk
+
∂R

∂rk

According to (5.27.a), we get

∂V

∂qk
= Uk −Wk,

∂V

∂rk
= −iUk − iWk, (5.29.a)

and (5.28.b) gives
∂ψ

∂qk
= 2<〈V |Uk −Wk〉,

∂ψ

∂rk
= 2=〈V |Uk +Wk〉. (5.29.b)

If we differentiate again, we obtain

d∂ψ = 2<〈dV | ∂V 〉+ 2<〈V | d∂V 〉, (5.30.a)

Gd∂q̃ = d∂V q + dV ∂q + ∂V dq + V d∂q + d∂R.

RR no 0123456789

198 José Grimm

Since d∂q̃ and d∂q are zero, we get

−dV ∂q − ∂V dq = d∂V q + d∂R. (5.30.b)

If we use (5.29.a), we get

−Ukzj +Wk − Ujz
k +Wjz

k =
∂2V

∂qk∂qj
q +

∂2R

∂qk∂qj

and some other formulas. From (5.27), we get now

∂2ψ

∂qi∂qj
= 2<〈Ui −Wi |Uj −Wj〉+ 2<〈V |Yij + Yji −Xij −Xji〉, (5.31.a)

∂2ψ

∂qi∂rj
= −2=〈Uj +Wj |Ui −Wi〉+ 2=〈V | −Yij − Yji +Xij −Xji〉, (5.31.b)

∂2ψ

∂ri∂rj
= 2<〈Ui +Wi |Uj +Wj〉 − 2<〈V |Yij + Yji +Xij +Xji〉. (5.31.c)

Let Qq(X) and Rq(X) be the quotient and remainder in the division of X by q. Let also Qn(X) and
Rn(X) be the quotient and remainder in the division of X by zn. The second equation (5.27.a) is

Diz = αiq +Di+1, Wiz + αi = Wi+1. (5.32)

Thus Wi = Q1(Wi+1). More generally,

Wi = Qn−i−1(Wn−1), Ui = Qi(U0). (5.33)

Let vi be the coefficient of zi in V , wi the coefficient of zi in Wn−1 and ui the coefficient of zi in U0.
Then (5.29.b) is

∂ψ

∂qk
= 2<

∑
i

vi(ui−k − wn−k−1+i). (5.34)

This relation says that we have only to compute Wn−1 and U0 and allocate memory for these two
polynomials. Since G has degree m − 1, U0 has degree m − 1 and Wn−1 has degree m − 2. The cost of
computing these polynomials is (2m− 1)n. The number of terms in (5.34) is

max(m− k,m− n+ k).

This is between m−n/2 and m. Since n is small compared to n, we can estimate it to m (in fact, in order
to simplify the code, the polynomials are padded with zeroes, so that always m terms are computed).
Thus, the total cost of ψ′ is (3m− 1)n.

From (5.27), we get the equivalent of (5.32), namely

Yi,j+1 = Yijz + βij . (5.35)

But (5.32) says
Wiz

j+1 = Yi+1,jq + Ti+1,j − αiz
j . (5.36)

This equation says Yi+1,j = Yi,j+1. In fact, Yij is nothing else than the quotient of V zi+j by q2. The
equivalent of (5.33) is

Xij = Qn−j−1+i(X0,n−1), Yij = Qn−i−1+n−j−1(Yn−1,n−1). (5.37)

Note that X0,n−1 has degree m− 2, and Yn−1,n−1 has degree m− 3. This gives a cost of (2m− 3)n for
computing these polynomials. Let’s compute the cost of equations (5.31). Each scalar product has a cost

INRIA

Rational approximation of transfer functions in the hyperion software 199

of m. In the real case, this gives a cost of mn(n+ 1). There is another way to compute these equations:
we compute 〈V |Xij〉 and 〈V |Yij〉 for each i and j. Since Xij depends only on i− j and Yij depends only
on i+j, we have 2(2n−1) such scalar products to compute. This gives a cost of mn(n+1)/2+2m(2n−1).
This is cheaper for n ≥ 7. In the complex case, the first scalar products in (5.31) costs 2n(2n+1)m. This
gives a cost of 4n(2n+ 1)m if we implement directly (5.31). If we compute the scalar products 〈V |Xij〉
and 〈V |Yij〉, we get a cost of 2n(2n+ 1)m+ 8m(2n− 1). This is cheaper for n ≥ 2. Results are given in
table 5.16. It shows that for small n, there is little difference between these two methods. In table 5.17,
we give the complete complexity.

Table 5.16: Comparison of the two methods of computing ψ′′. It has the form mα(n) + β(n). The table
gives α(n).

n real 1 real 2 complex 1 complex 2
1 4 5 20 22
2 10 13 56 60
3 18 22 108 106
4 28 32 176 160
5 40 43 260 222
6 54 55 360 292
7 70 68 476 370

Table 5.17: Complexity of the derivatives of ψ, scalar case, direct mode

ψ ψ′ ψ′′

real m(2n+ 1) (3m− 1)n m(n(n+ 1)/2 + 6n− 2)− 3n
complex m(8n+ 2) 4(3m− 1)n m(4n2 + 26n− 8)− 12n
n = 5 4 400/16 800 5 995/23 980 17 185/ 88 740
n = 8 6 800/26 400 9 592/38 368 32 776/182 304
n = 10 8 400/32 800 11 990/47 960 45 170/260 680
n = 20 16 400/64 800 23 980/95 920 131 140/844 560

Consider now what happens when we implement the alternate formulas (5.26). We get

−V1∂q = ∂V1q + ∂R1, (5.38.a)

∂R1q̃ +R1∂q̃ − V2∂q = ∂V2q + ∂R2, (5.38.b)

∂ψ = 2〈V2 | ∂V2〉 − 2〈R1 | ∂R1〉. (5.38.c)

If we differentiate with respect to qi, the first equation becomes

−V1z
i = ∂V1q + ∂R1. (5.39)

Consider
V1z

i = Wiq +Di. (5.40)

Now (5.32) is still valid:
Diz = αiq +Di+1, Wiz + αi = Wi+1. (5.41)

We cannot obtain Di+1 directly from Di. However, computing D0 via (5.40) and Di via (5.41) has the
same cost as dividing Gzn−1 by q: it costs (m−1)n, and an additional memory cost of n(n−1). The cost

RR no 0123456789

200 José Grimm

of 〈R1 | ∂R1〉 is n(n − 1). In order to implement (5.38.b), we have to divide R1∂q̃ − V2∂dq by q. Using
the previous techniques, this costs (2n− 1)n. The cost of 〈V2 | ∂V2〉 is n2.

Now, there is an additional term: the division of ∂R1q̃ by q. Write

Diq̃ = Xiq + Si. (5.42)

We have to compute the quantity Xi. Write zSi = βiq + Si+1. Then

Xi+1 + αiq̃ = Xiz + βi. (5.43)

What we have to compute now is just the quantities αiq̃. This costs n(n− 1). Thus, we have a total cost
for ψ′ of

n(m+ 5n− 4). (5.44)

Let’s consider now the Hessian. Differentiating our equations again gives

−dV1∂q − ∂V1dq = d∂V1q + d∂R1, (5.45.a)

∂R1dq̃ + dR1∂q̃ + d∂R1q̃ − dV2∂q − ∂V1dq = d∂V2q + d∂R2, (5.45.b)

d∂ψ = 〈V2 | d∂V2〉+ 〈dV2 | ∂V2〉 − 〈R1 | d∂R1〉 − 〈dR1 | ∂R1〉. (5.45.c)

If
Wiz

j = Aijq +Bij

then d∂R1 = Bij + Bji. Remember that Ai+1,j = Ai,j+1. There is no such relation for B. Equation
(5.41) says Bi+1,j = Bi,j+1 + αiz

j . This equation says that Bij can be obtained easily if we know B0j

and Bi,n−1. We have also, for some numbers γij , Bi,j+1 = Bijz − γijq. Combining these equations gives
Bi+1,j = Bijxz − γijq + αiz

j . Hence, we can compute B00 with a cost of (m− 2n)n, then B0,j for each
j with a cost of (n− 1)n. Once we have B0,n−1, we compute Bi,n−1 with a cost of (n− 1)n. Hence, we
get a total cost of (m− 2)n. The cost of 〈R1 | d∂R1〉+ 〈dR1 | ∂R1〉 is n2(n+ 1).

We have now to compute d∂V2 from (5.45.b). Since there is no obvious relation between the quantities
d∂R1, the best thing to do is to divide for each direction. The non trivial operation on the left hand side
of (5.45.b) is the product of d∂R1 by q̃. This costs n2. The division costs also n2. Thus, we have a total
of n3(n+ 1). This means that the total cost of the second derivative of ψ is

(m− 2)n+ 2n2(n+ 1) + n3(n+ 1). (5.46)

5.2.6 Other formulas

Assume that Y is defined by

〈F | D
q
〉 = 〈D̃ |Y 〉, degD < n. (5.47)

From ψ = ‖F − P/q‖2 we get

∂ψ = 2〈F − P

q
| −∂P

q
+
P∂q

q2
〉.

We have
〈F − P

q
| rs
q2
〉 = 〈V̌ q̃

q
| rs
q2
〉 = 〈 r̃

q
| V s
q
〉.

If r = P and s = ∂q, V ∂q = sq +D we get

〈F − P

q
| p∂q
q2
〉 = 〈 p̃

q
| s+

D

q
〉,

hence

∂ψ = 〈 p̃
q
| D
q
〉 = 〈D̃

q
| P
q
〉.

INRIA

Rational approximation of transfer functions in the hyperion software 201

Remember that 〈F | r/q〉 = 〈P/q | r/q〉. If we consider again (5.27.a):

V zi = Wiq +Di

we get
∂ψ = 2〈Di |Y 〉. (5.48)

Assume F =
∑m−1
k=0 fk/z

k+1. Write
zn−1

q
=

∞∑
k=0

ak
zk+1

. (5.49.a)

Then

〈F | z
i

q
〉 =

∑
k

fkak+1−n−i. (5.49.b)

This scalar product is the coefficient of zi in Y . We have to compute ak for 0 ≤ k < m, and the products
in (5.49.b). This gives a cost of 2mn. As explained above, computing Di for each i costs mn, and the
scalar products 〈Di |Y 〉 costs n. Thus, we have a total cost of 3mn+ n2 for ψ′.

If we differentiate (5.48) we get

d∂ψ/2 = 〈dDi |Y 〉+ 〈Di | dY 〉. (5.50)

If we differentiate (5.47) we get

〈F | Ddq
q2

〉 = 〈D̃ | dY 〉, ∀D.

If Z is such that
〈F | D

q2
〉 = 〈D̃ |Z〉, degD < 2n

then
〈zi | ∂Y

∂qj
〉 = 〈zn−i−j |Z〉,

so that dY is trivially obtained if we know Z. The quantity Z is computed exactly like Y . It costs
4mn+ n2. We already computed the cost of dDi: it is d∂R1 in (5.45.a). Hence the total cost of ψ′′ is

5mn+ n2 − 2m+ n2(n+ 1). (5.51)

5.3 Matrix case

We make the following assumptions here: the size of G is p′ × p, and for simplicity, we assume p′ = p.
The McMillan degree of the result is n. The degree of the elements in G is < m. All entries in G are
padded so that there are exactly m coefficients in each polynomial. For numerical applications, we shall
assume m = 400.

There are np entries in y. This gives np columns in ψ′′ in the real case, and 2np columns in the
complex case. What we have to do is compute the cost of formulas (4.4) and (4.18).

5.3.1 Cost of ψ

We consider here formulas (4.18):

G = V1q +R1 R1D̃ = V2q +R2,

ψ = ‖F‖2 − ‖R1‖2 + ‖V2‖2.
The first equation is G = V1q+R1. We have to divide a p×p matrix of degree m−1 by a polynomial

of degree n. For some reasons, we do not use the fact that G is constant, so that the complexity is the
same as if G were variable.

RR no 0123456789

202 José Grimm

ψ ψ′ ψ′′

real p2(m− n)(n+ 1) 2p2(m− n)(n+ 1) p3n(m− n)(6n+ 7)
complex 4p2(m− n)(n+ 1) 8p2(m− n)(n+ 1) 8p3n(m− n)(6n+ 7)

From now on, everything depends only on n and p. We have now to multiply R1, a p×p matrix of degree
< n by D̃, which is a p× p matrix of degree n. The cost is the following.

ψ ψ′ ψ′′

real p3n(n+ 1) 2p3n(n+ 1) 6p4n2(n+ 1)
complex 4p3n(n+ 1) 8p3n(n+ 1) 48p4n2(n+ 1)

We have now to divide P = R1D̃ by q. The cost is the same as the previous division, with m replaced
by 2n.

ψ ψ′ ψ′′

real p2n(n+ 1) 2p2n(n+ 1) p3n2(6n+ 7)
complex 4p2n(n+ 1) 8p2n(n+ 1) 8p3n2(6n+ 7)

Finally, we have to compute ψ = ‖G‖2 − ‖R1‖2 + ‖V2‖2. Essentially, we compute the square of the
modules of 2np2 terms.

ψ ψ′ ψ′′

real 2np2 2np2 6n2p3

complex 4np2 4np2 24n2p3

If we put all these quantities together, the complexity of the function is asymptotically

C(ψ) = p2(n+ 1)(m+ pn).

In table 5.18 we give the cost of computing ψ and its derivatives. This cost does not include the cost
of computing the Schur parameters.

5.3.2 Cost of the Schur parameters

We compute here the complexity of the following formulas, as implemented in chapter 4.

qB = (b− b̃‖y‖2)qA + (b̃− b)y∗D̃Au.

D̃B = (b− b̃‖y‖2)D̃A + (b̃− b)[D̃Auu
∗ + yy∗D̃A − y∗uqA] +

b− b̃

qA
[D̃Auy

∗D̃A − y∗D̃AuD̃A].

We start by computing s = ‖y‖2. The complexity is the following.

ψ ψ′ ψ′′

real np np 3n2p2

complex 2np 2np 12n2p2

We compute then b− b̃‖y‖2. Here b̃ is constant and has two coefficients.

ψ ψ′ ψ′′

real 2n 2n 4n2p
complex 4n 4n 16n2p

In the case p = 2, we have to compute Z = q̃(y∗u− uy∗). The product y∗u costs p, and the product
uy∗ costs p2. The cost of y∗u− uy∗ is hence the following:

INRIA

Rational approximation of transfer functions in the hyperion software 203

Table 5.18: Cost of ψ and its derivatives, real and complex case. We have p = 2 and p = 4.

n Real ψ Real ψ′ Real ψ′′ Complex ψ Complex ψ′ Complex ψ′′

1 3 224 6 440 41 840 12 880 25 744 334 528
2 4 864 9 712 122 944 19 424 38 816 982 784
3 6 520 13 016 243 888 26 032 52 016 1 949 376
4 8 192 16 352 405 248 32 704 65 344 3 238 912
5 9 880 19 720 607 600 39 440 78 800 4 856 000
6 11 584 23 120 851 520 46 240 92 384 6 805 248
7 13 304 26 552 1 137 584 53 104 106 096 9 091 264
8 15 040 30 016 1 466 368 60 032 119 936 11 718 656
9 16 792 33 512 1 838 448 67 024 133 904 14 692 032
10 18 560 37 040 2 254 400 74 080 148 000 18 016 000
1 12 960 25 888 336 256 51 776 103 488 2 688 512
2 19 648 39 232 992 768 78 464 156 800 7 936 000
3 26 464 52 832 1 978 752 105 664 211 136 15 816 192
4 33 408 66 688 3 303 424 133 376 266 496 26 402 816
5 40 480 80 800 4 976 000 161 600 322 880 39 769 600
6 47 680 95 168 7 005 696 190 336 380 288 55 990 272
7 55 008 109 792 9 401 728 219 584 438 720 75 138 560
8 62 464 124 672 12 173 312 249 344 498 176 97 288 192
9 70 048 139 808 15 329 664 279 616 558 656 122 512 896
10 77 760 155 200 18 880 000 310 400 620 160 150 886 400

Table 5.19: Complexity of Z = q̃(y∗u− uy∗) in the case p = 2

n Real ψ Real ψ′ Real ψ′′ Complex ψ Complex ψ′ Complex ψ′′

1 10 14 72 40 56 480
2 18 30 336 72 120 2 496
3 30 54 936 120 216 7 200
4 46 86 2 016 184 344 15 744
5 66 126 3 720 264 504 29 280
6 90 174 6 192 360 696 48 960
7 118 230 9 576 472 920 75 936
8 150 294 14 016 600 1 176 111 360
9 186 366 19 656 744 1 464 156 384
10 226 446 26 640 904 1 784 212 160

ψ ψ′ ψ′′

real 6 6 24n
complex 24 24 96n

At iteration I, the polynomial q has degree I. The cost of multiplication of y∗u−uy∗ by q̃ is (I+1)p2.
This gives a total of p2n(n+ 1)/2.

ψ ψ′ ψ′′

real 2n(n+ 1) 4n(n+ 1) 24n2(n+ 1)
complex 8n(n+ 1) 16n(n+ 1) 192n2(n+ 1)

RR no 0123456789

204 José Grimm

Table 5.20: Cost of Y , in the case p = 4.

n Real ψ Real ψ′ Real ψ′′ Complex ψ Complex ψ′ Complex ψ′′

1 64 112 1 728 256 448 13 824
2 288 528 14 976 1 152 2 112 119 808
3 768 1 440 58 752 3 072 5 760 470 016
4 1 600 3 040 161 280 6 400 12 160 1 290 240
5 2 880 5 520 360 000 11 520 22 080 2 880 000
6 4 704 9 072 701 568 18 816 36 288 5 612 544
7 7 168 13 888 1 241 856 28 672 55 552 9 934 848
8 10 368 20 160 2 045 952 41 472 80 640 16 367 616
9 14 400 28 080 3 188 160 57 600 112 320 25 505 280
10 19 360 37 840 4 752 000 77 440 151 360 38 016 000

In table 5.19, we have put the total complexity of Z, in the case p = 2. Let’s now compute the
complexity of Y . This is the same quantity as above, but in the case p 6= 2. Note that if p = 1, this
expression is zero. In general it is:

D̃Auy
∗D̃A − y∗D̃AuD̃A

qA

We assume that yD contains y∗D̃A and that E contains y∗D̃Au. Thus, we have to divide DuyD − ED
by q.

The complexity of the product Du is p2(I + 1), because we multiply a matrix of size p× p and degree
I by a vector of size p × 1 of degree zero. The result is a vector of size p × 1, of degree I. Since we
multiply it by a vector of size 1 × p, of degree I, the cost is p2(I + 1)2. Now, we multiply the scalar E,
of degree I by the p× p matrix D of degree I. This costs also p2(I + 1)2. Finally, we have to divide this
all by q. The division costs also p2(I + 1)2.

In the next table, α is the sum of (I + 1)2, this is n(n+ 1)(2n+ 1)/6. We take into account the fact
that u is constant in the multiplication of D by u.

ψ ψ′ ψ′′

real 3p2α+ p2n(n+ 1)/2 6p2α+ p2n(n+ 1)/2 [18p2α+ 7p2n(n+ 1)/2]np
complex 12p2α+ 2p2n(n+ 1) 24p2α+ 2p2n(n+ 1) 8[18p2α+ 7p2n(n+ 1)/2]np

In table 5.20 we give the cost of Y in the case p = 4. This is the equivalent of table 5.19, which is
valid only if p = 2. The cost of Y is essentially

C(Y) = p2n3.

We have now to compute X = Duu∗ + yy∗D− y∗uq. In the next table, we start with three products:
there is the product yD = y∗D; this has a cost of p2(I + 1). We multiply this by u in order to get
E = y∗Du; it has a cost of p(I + 1). Finally, we compute N = yu∗; this has a cost of p2. Note that u is
a constant. We obtain the following result.

ψ ψ′ ψ′′

real (p2 + p)n(n+ 1)/2 + np2 (2p2 + p)n(n+ 1)/2 + np2 [(p+ 3p2)n(n+ 1) + 2np2]np
complex 2(p2 + p)n(n+ 1) + 4np2 2(2p2 + p)n(n+ 1) + 4np2 8[(p+ 3p2)n(n+ 1) + 2np2]np

The complexity of X is the following. We have to compute Duu∗. This costs p3(I + 1) (we assume
that uu∗ is already computed). Then we compute yy∗D, product of y by yD; this costs p2(I+1). Finally,
we compute Nq, this costs also p2(I + 1).

INRIA

Rational approximation of transfer functions in the hyperion software 205

Table 5.21: Complexity of X, for p = 2 and p = 4

n Real ψ Real ψ′ Real ψ′′ Complex ψ Complex ψ′ Complex ψ′′

1 30 42 220 112 160 1 680
2 82 118 1 248 312 456 9 664
3 156 228 3 636 600 888 28 368
4 252 372 7 936 976 1 456 62 208
5 370 550 14 700 1 440 2 160 115 600
6 510 762 24 480 1 992 3 000 192 960
7 672 1 008 37 828 2 632 3 976 298 704
8 856 1 288 55 296 3 360 5 088 437 248
9 1 062 1 602 77 436 4 176 6 336 613 008
10 1 290 1 950 104 800 5 080 7 720 830 400
1 138 186 1 888 540 732 14 848
2 392 536 10 944 1 544 2 120 86 528
3 762 1 050 32 256 3 012 4 164 255 744
4 1 248 1 728 70 912 4 944 6 864 563 200
5 1 850 2 570 132 000 7 340 10 220 1 049 600
6 2 568 3 576 220 608 10 200 14 232 1 755 648
7 3 402 4 746 341 824 13 524 18 900 2 722 048
8 4 352 6 080 500 736 17 312 24 224 3 989 504
9 5 418 7 578 702 432 21 564 30 204 5 598 720
10 6 600 9 240 952 000 26 280 36 840 7 590 400

ψ ψ′ ψ′′

real (p3 + 2p2)n(n+ 1)/2 (p3 + 4p2)n(n+ 1)/2 (p3 + 6p2)n2(n+ 1)p
complex 2(p3 + 2p2)n(n+ 1) 2(p3 + 4p2)n(n+ 1) 8(p3 + 6p2)n2(n+ 1)p

Let’s now compute D. We have to multiply D by b4. This costs 2p2(I+1). We have to compute b2Z.
This has the same cost, but b2 is constant. We are in the same case for b2X. For q, we have to compute
b4q − b2E. Each term costs 2(I + 1), but b2 is still constant.

ψ ψ′ ψ′′

real (3p2 + 2)n(n+ 1) (4p2 + 3)n(n+ 1) (10p2 + 8)n2(n+ 1)p
complex 4(3p2 + 2)n(n+ 1) 4(4p2 + 3)n(n+ 1) 8(10p2 + 8)n2(n+ 1)p

5.3.3 Memory requirements

Since all variables are declared in table 4.15 on page 146, computation of memory space is easy. The cost
of inner variables (used by the Schur algorithm) is

(5p2 + 2p+ 2)n(n+ 1)/2 + (2p2 + p+ 13)n+ p2 + 1

We have to add to this quantity the memory cost for u and uu∗, namely n(1 + p2), but no memory is
needed for the derivative of it. The variables needed for computing ψ need p2(m + 4n). Note that, if
G is not a square matrix, but of size q × p, this has to be replaced by qp(m + 4n). Results are given in
table 5.22.

Note that the space for ψ′ is more or less the space for ψ. If this quantity is N , then we allocate 3N
objects (for ψ, ψ′ and ψ′′). Each object is a number in double and quadruple precision. Hence 84N bytes
are allocated. In the complex case twice as many memory is needed. In the case p = 4, n = 8, this is
1.8M . The total memory allocated by hyperion is 4.3M .

RR no 0123456789

206 José Grimm

Table 5.22: Space complexity for p = 2 and p = 4

n ψ ψ′ ψ ψ′

1 1675 5 6637 6620
2 1771 10 6947 6913
3 1893 15 7347 7296
4 2041 20 7837 7769
5 2215 25 8417 8332
6 2415 30 9087 8985
7 2641 35 9847 9728
8 2893 40 10697 10561
9 3171 45 11637 11484

10 3475 50 12667 12497
11 3805 55 13787 13600
12 4161 60 14997 14793
13 4543 65 16297 16076
14 4951 70 17687 17449
15 5385 75 19167 18912
16 5845 80 20737 20465
17 6331 85 22397 22108
18 6843 90 24147 23841
19 7381 95 25987 25664
20 7945 100 27917 27577

The number of multiplications needed is the sum of all quantities given above. At first approximation
it is:

C = p2n(m+ 3pn/2 + n2).

Note that, in general, m is greater than 3pn/2 + n2, in practice, the ratio is between 2 and 4. Thus, it
could be interesting to truncate first G with m/2 coefficients, find the best approximation of this, and use
this result as starting condition for the approximation of G with all its coefficients. Such an algorithm is
not yet implemented in hyperion.

In the case p = 2, the complexity can be approximated by 35n2 + 4mn for ψ, 56n2 + 8mn for ψ′ and
308n3 + 48n2m for ψ′′. For large n, the quotient ψ′/ψ is 1.6 (recall that we have a theorem that says
that this is bounded by 2, see results on figure 5.3.3).

In the case p > 2, and n large, the complexity comes essentially from Y . It is p2n3. In this case the
ratio ψ′/ψ has 2 as limit. This means essentially that the number of terms in our sums that are products
of a constant and a variable is small against the number of terms where each factor is variable.

In the table 5.23, we give the exact total cost in the cases p = 2, p = 3 and p = 4. We give also on
figure 5.3, 5.4 and 5.5 the values of the cost. We take p = 2, p = 3, p = 4, p = 5 and p = 6. On the
y-axis we have put the logarithm of the time.

5.4 Derivatives in direct mode

In this section, we shall compute the cost of ψ′ and ψ′′ if the derivatives are computed in direct mode.
We assume that we have enough memory, so that everything will be stored, rather then recomputed. For
simplicity, we consider only the real case: in the complex case, we have to multiply the complexity of ψ′

and ψ′′ by a factor which is approximatively 8 or 16. In all tables, we show some values for p = 2 and
p = 10. More values of p will be used for the figures.

INRIA

Rational approximation of transfer functions in the hyperion software 207

Table 5.23: Global complexity, p = 2, p = 3 and p = 4

n Real ψ Real ψ′ Real ψ′′ Complex ψ Complex ψ′ Complex ψ′′

1 3 292 6 534 42 324 13 144 26 112 338 224
2 5 048 9 974 125 680 20 144 39 848 1 004 160
3 6 874 13 526 251 916 27 424 54 032 2 012 592
4 8 770 17 190 422 880 34 984 68 664 3 378 304
5 10 736 20 966 640 420 42 824 83 744 5 116 080
6 12 772 24 854 906 384 50 944 99 272 7 240 704
7 14 878 28 854 1 222 620 59 344 115 248 9 766 960
8 17 054 32 966 1 590 976 68 024 131 672 12 709 632
9 19 300 37 190 2 013 300 76 984 148 544 16 083 504
10 21 616 41 526 2 491 440 86 224 165 864 19 903 360
1 7 437 14 765 143 610 29 702 59 014 1 148 076
2 11 533 22 771 431 094 46 040 90 992 3 445 536
3 15 942 31 326 877 149 63 630 125 166 7 009 956
4 20 718 40 538 1 500 360 82 688 161 968 11 990 016
5 25 915 50 515 2 323 200 103 430 201 830 18 565 500
6 31 587 61 365 3 372 030 126 072 245 184 26 947 296
7 37 788 73 196 4 677 099 150 830 292 462 37 377 396
8 44 572 86 116 6 272 544 177 920 344 096 50 128 896
9 51 993 100 233 8 196 390 207 558 400 518 65 505 996
10 60 105 115 655 10 490 550 239 960 462 160 83 844 000
1 13 262 26 320 341 216 52 972 105 204 2 727 936
2 20 628 40 698 1 026 752 82 360 162 640 8 206 848
3 28 594 56 126 2 093 952 114 148 224 276 16 735 488
4 37 256 72 796 3 589 376 148 720 290 880 28 686 336
5 46 710 90 900 5 568 800 186 460 363 220 44 505 600
6 57 052 110 630 8 097 216 227 752 442 064 64 713 216
7 68 378 132 178 11 248 832 272 980 528 180 89 902 848
8 80 784 155 736 15 107 072 322 528 622 336 120 741 888
9 94 366 181 496 19 764 576 376 780 725 300 157 971 456
10 109 220 209 650 25 323 200 436 120 837 840 202 406 400

RR no 0123456789

208 José Grimm

3.5

4

4.5

5

5.5

6

6.5

1 2 3 4 5 6 7 8 9 10

real
complex

Figure 5.3: Complexity of the function

3.5

4

4.5

5

5.5

6

6.5

1 2 3 4 5 6 7 8 9 10

real
complex

Figure 5.4: Complexity of the first derivative

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

1 2 3 4 5 6 7 8 9 10

real
complex

Figure 5.5: Complexity of the second derivative. On each curve p is constant (2 ≤ p ≤ 6). On the x-axis
we have n, on the y-axis we have log10(T), the base-ten logarithm of time complexity. Computations are
done for the algorithm described in chapter 4.

INRIA

Rational approximation of transfer functions in the hyperion software 209

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10 12 14 16 18 20

’cdata’ u 1:2

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 2 4 6 8 10 12 14 16 18 20

’cdata’ u 1:3

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0 2 4 6 8 10 12 14 16 18 20

’cdata’ u 1:4

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0 2 4 6 8 10 12 14 16 18 20

’cdata’ u 1:5

Figure 5.6: Normalised cost: upper left, cost of ψ′r/2ψr; upper right, cost of ψ′c/8ψr; lower left, ψ′′r /6npψr;
lower right ψ′′c /48npψr. Here ψr is the cost of ψ in the real case, ψ′r and ψ′′r the cost of the first and
second derivatives of ψ; ψ′c and ψ′′c are the cost of the first and second derivatives of ψ in the complex
case. We have 2 ≤ n ≤ 20, 2 ≤ p ≤ 10. In principle the value should be one. Note the special case p = 2.

RR no 0123456789

210 José Grimm

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20 40 60 80 100 120 140 160 180 200

’cdata’ u 1:2

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20 40 60 80 100 120 140 160 180 200

’cdata’ u 1:3

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 20 40 60 80 100 120 140 160 180 200

’cdata’ u 1:4

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 20 40 60 80 100 120 140 160 180 200

’cdata’ u 1:5

Figure 5.7: Normalised cost: here n ranges from 1 to 200. The limits for n = ∞ are 1 in the general case.
In the case p = 2, the limit is 0.8 for the derivative, and 0.733 for the second derivative.

INRIA

Rational approximation of transfer functions in the hyperion software 211

Recall that the cost of the product AB, where A and B are matrices of size (n1, n2) and (n2, n3) and
degree p and q is

n1n2n3(p+ 1)(q + 1).

If C has size (n3, n4) and degree s, then the cost of the product ABC is

T [A(BC)] = n2n4[n1(p+ 1)(q + s+ 1) + n3(q + 1)(s+ 1)],

T [(AB)C] = n1n3[n2(p+ 1)(q + 1) + n4(p+ q + 1)(s+ 1)].

The first computation is the best if

(p+ 1)(q + s+ 1)
n3

+
(q + 1)(s+ 1)

n1
<

(p+ 1)(q + 1)
n4

+
(p+ q + 1)(s+ 1)

n2
.

For instance, if the matrices are of degree zero, the condition becomes:

1
n1

+
1
n3

<
1
n2

+
1
n4
.

In the case where p = q = s is large, the condition becomes

1
n1

+
2
n3

<
2
n2

+
1
n4
.

These formulas show that it is not obvious a priori to say which is the best order of computation. Note
that, if n1 = n4 (case where the result is a square matrix), in these two cases, the conditions simplify to
n2 < n3.

In what follows, we consider B = TΘ(A), where A is of degree i, and we differentiate this with respect
to yj and yk. We assume that yj and yk appear in ΘJ and ΘK . For the Hessian, we may always assume
k ≤ j, hence K ≤ J (recall that the Hessian is a symmetric matrix). This has the following consequences:

• If J > i+ 1, then B is independent of yj .

• If J = i+ 1, then A is independent of yj and Θ depends on yj .

• If J < i+ 1, then Θ is independent of yj , but A depends on yj .

We shall make a heavy use of the following formulas.

∑
i<n

i =
n(n− 1)

2
.

∑
i<n

i2 =
n(n− 1)(2n− 1)

6
.

∑
i<n

i3 =
n2(n− 1)2

4
.

∑
i<n

i(i+ 1) =
n(n− 1)(n+ 1)

3
.

∑
i<n

(i+ 1)ip(ip+ 1) =
pn(n− 1)(n+ 1)

3
(1 +

p(3n− 2)
4

).

RR no 0123456789

212 José Grimm

5.4.1 Pseudo-code

The polynomial q is defined
qB = (b− b̃‖y‖2)qA + (b̃− b)y∗D̃Au. (∗)

In order to make explicit the equations for which we compute the complexity, we shall give an implemen-
tation in pseudo-code.

In equation (∗), we assume that the quantities qA and D̃A are in q(i) and D(i), so that what we have
to compute is q(i+ 1). We assume that b− b̃‖y‖2 and b̃− b have been computed and stored in B4(i) and
B2(i) (we use here the same notations as in the previous chapter). The pseudo-code associated to (∗) is

∀i : q(i+ 1) = B2(i) ∗ q(i) +B4(i) ∗ (yt(i) ∗ (D(i) ∗ u(i))).

In fact, the pseudo-code will be more complicated than that, because we have to indicate the storage
used for every operation. Assume that we put D̃Au in Du and y∗D̃Au in Duy. Then the pseudo-code
will be

∀i : Du(i) = D(i) ∗ u(i),

∀i : Duy(i) = yt(u) ∗Du(i),

∀i : q(i+ 1) = B4(i) ∗Duy(i),

∀i : q(i+ 1) += b2(i) ∗ q(i).

It will always be understood that the quantification ∀i means: for all i from 0 up to n−1. The derivative
of the first part of (∗) looks like

∀i, j, (J ≤ i) : dq(i, j) = B4(i) ∗ dq(i, j),

∀i, j, (J = i+ 1) : dq(i, j) = −T1(i) ∗ 2yj .

Here dq(i, j) is the derivative of qA = q(i), with respect to yj , which is one component of the vector y. In
the first case, we assume J ≤ i, and in the second case J = i+1. The derivative is zero in case J > i+1.
The quantity T1 in the second equation is b̃qA. The code of the second derivative has the form

∀i, j, k, (K ≤ J ≤ i) : ddq(i+ 1, j, k) = B4(i) ∗ ddq(i, j, k).

Here ddq(i, j, k) is the second derivative of qA in the directions yj and yk. Since this is symmetric, we
compute only one half of the Hessian. Thus we assume k ≤ j. This implies K ≤ J .

5.4.2 Sample formula

Assume that we have an expression of the form

B = Ay, (5.52.a)

where A depends on yj for J ≤ i and y depends on yj , J = i+ 1. We have

∂B

∂yj
= y

∂A

∂yj
, J ≤ i, (5.52.b)

∂B

∂yj
=

∂y

∂yj
A, J = i+ 1. (5.52.c)

Let T (A′i) be the complexity of equation (5.52.b) and T (Ai) the complexity of (5.52.c). We assume that
these complexities depend only on i. Let’s denote by T (B′) and T (B′′) the complexity of the complete
first and second derivatives of B.

INRIA

Rational approximation of transfer functions in the hyperion software 213

There are ip vectors yj such that J ≤ i and p vectors such that J = i+ 1. Hence

T (B′) = p
∑

iT (A′i) + p
∑

T (Ai). (5.52.d)

Let’s now compute the complexity of the Hessian. Since k ≤ j, we have K ≤ J . So

∂2B

∂yj∂yk
= y

∂2A

∂yj∂yk
, J ≤ i.

The number of vectors yj , yk such that k ≤ j and J ≤ i is ip(ip + 1)/2. We denote by T (A′′i) the
complexity of one of these terms. If we differentiate now (5.52.c), the result will be zero if K = J . In
some cases, it can be non-zero, but only if y appears non-linearly in the expression. There remains

∂2B

∂yj∂yk
=

∂y

∂yj

∂A

∂yk
, J = i+ 1,K ≤ i.

Let’s denote by T (A′i) the cost of such an expression. For each i, there are ip vectors yk with K ≤ i and
p vectors yj with J = i. Hence

T (B′′) =
∑

ip(ip+ 1)T (A′′i)/2 + p2
∑

iT (A′i). (5.52.e)

5.4.3 Notations

We have to implement
qB = (b− b̃‖y‖2)qA + (b̃− b)y∗D̃Au. (5.53.a)

D̃B = (b− b̃‖y‖2)D̃A + (b̃− b)[D̃Auu
∗ + yy∗D̃A − yu∗qA −

D̃Auy
∗D̃A − y∗D̃AuD̃A

qA
]. (5.53.b)

The computation is done by introducing some variables (main variables)

X1 = (b− b̃‖y‖2)qA, (5.54.a)

X2 = (b̃− b)y∗D̃Au, (5.54.b)

X3 = (b− b̃‖y‖2)D̃A, (5.54.c)

X4 = D̃Auu
∗, (5.54.d)

X5 = yy∗D̃A, (5.54.e)

X6 = yu∗qA, (5.54.f)

X7 = D̃Auy
∗D̃A, (5.54.g)

X8 = y∗D̃AuD̃A, (5.54.h)

X9 = X7 −X8, (5.54.i)

X = X9/qA, (5.54.j)

Z = (b̃− b)(X4 +X5 −X6 −X). (5.54.k)

With these notations, qB = X1 +X2 and D̃B = X3 + Z.
We introduce other variables (temporaries)

B4 = b− b̃‖y‖2, (5.55.a)

B2 = b̃− b, (5.55.b)

T1 = b̃qA, (5.55.c)

RR no 0123456789

214 José Grimm

T2 = b̃
∂‖y‖2

∂yj
, (5.55.d)

T3 = (b̃− b)y, (5.55.e)

T4 =
∂

∂yj
D̃Au, (5.55.f)

T5 =
∂2

∂yj∂yk
D̃Au, (5.55.g)

T6 = b̃D̃A, (5.55.h)

T7 = y∗D̃A, (5.55.i)

T8 = y∗
∂

∂yj
D̃A, (5.55.j)

T9 = D̃Au, (5.55.k)

T10 = y∗D̃Au, (5.55.l)

T11 = y∗
∂

∂yj
D̃Au, (5.55.m)

T12 = yu∗. (5.55.n)

In some cases, we write bt for b̃, and yt for y∗. A scalar temporary T will also be used.

5.4.4 Space complexity

We have to store q, D and the derivatives of these quantities. This has a cost of
∑
α(i + 1), where i

ranges between 1 and n, and α is 1 for q, ip for q′ and ip(ip+ 1)/2 for q′′. This gives a total of

(n+ 1)(n+ 2)
2

, p
n(n+ 1)(n+ 2)

3
,

pn(n+ 1)(n+ 2)
6

(1 + p
3n+ 1

4
).

The memory cost for D is the same, multiplied by p2.
We shall see later, that for X = X9/qA, we have to allocate memory for X9 and its derivatives, and

for X and its first derivative. No space is needed for the second derivative of X. The degree of X9 is 2i,
and the degree of X is i. This gives hence

S(X) = p2n(n+ 1)/2, S(X ′) = p3(n3 − n)/3.

S(X9) = p2n2, S(X ′
9) = p3n(4n+ 1)(n− 1)/6, S(X ′′

9) = p3(n− 1)n(3pn2 − pn+ 4n+ 1− p)/12.

We need also space for Z0. This is the same as for D, but with n replaced by n− 1.
We need space for b, b̃, b− b̃ and b− b̃‖y‖2. This gives a total of 8p.
We have to allocate space for the temporary variables, see table 5.24.
This gives a total of

S = p2(n+ 1)(3n+ 1) + p(n2 + 3n+ 8) + (n+ 1)2. (5.56.a)

S′ = p3n
10n2 + 3n− 1

6
+ p2 2n(n− 1)(n+ 1)

3
+ p

2n(n+ 1)(2n+ 1)
3

+ +
n(n+ 1)

2
. (5.56.b)

S′′ =
pn

24
[p3(6+6n+12n3)+p2(4+3n+14n2 +3n3)+p(−2+9n+14n2 +3n3)+56+12n+4n2]. (5.56.c)

INRIA

Rational approximation of transfer functions in the hyperion software 215

Table 5.24: Space complexity for temporary variables

name used by complexity
T1 ψ′ n(n+ 1)/2
T2 ψ′′ 2np
T3 ψ 2np
T4 ψ′ p2n(n− 1)(n+ 1)/2
T5 ψ′′ p2n(n− 1)(n+ 1)(1 + p(3n− 2)/4)/6
T6 ψ p2n(n+ 1)/2
T7 ψ pn(n+ 1)/2
T8 ψ′ p2n(n− 1)(n+ 1)/3
T9 ψ pn(n+ 1)/2
T10 ψ n(n+ 1)/2
T11 ψ′ pn(n− 1)(n+ 1)/3
T12 ψ np2

Table 5.25: Space complexity

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 129 179 260 2 289 15 603 103 380
5 516 2 535 7 090 10 116 230 215 3 371 450
8 1 173 10 084 43 224 23 541 925 796 21 564 760
10 1 761 19 495 103 180 35 601 1 796 455 52 311 900
20 6 501 152 690 1 581 860 133 221 14 177 010 828 267 300

RR no 0123456789

216 José Grimm

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 5 10 15 20 25 30

’cres2’ u 1:2

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

’cres2’ u 1:3

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

’cres2’ u 1:4

Figure 5.8: Space complexity for direct mode. On each curve p is fixed (between 2 and 10). We give the
cost of ψ, ψ′ and ψ′′

INRIA

Rational approximation of transfer functions in the hyperion software 217

5.4.5 Case of X1

We have
X1 = (b− b̃‖y‖2)qA, (5.57.a)

∂X1

∂yj
= (b− b̃‖y‖2)∂qA

∂yj
, J ≤ i, (5.57.b)

∂X1

∂yj
= −b̃qA

∂‖y‖2

∂yj
, J = i+ 1, (5.57.c)

∂2X1

∂yj∂yk
= (b− b̃‖y‖2) ∂2qA

∂yj∂yk
, K ≤ J ≤ i, (5.57.d)

∂2X1

∂yj∂yk
= −b̃qA

∂2‖y‖2

∂yj∂yk
, K = J = i+ 1, (5.57.e)

∂2X1

∂yj∂yk
= −b̃ ∂qA

∂yk

∂‖y‖2

∂yj
, K < J = i+ 1. (5.57.f)

Since qB = X1 + X2, we can store X1 and its derivatives in q(i + 1). This gives the following
pseudo-code

∀i : q(i+ 1) = B4(i) ∗ q(i), (5.58.a)

∀i, j (J ≤ i) : dq(i+ 1, j) = B4(i) ∗ dq(i, j), (5.58.b)

∀i : T1(i) = bt(i) ∗ q(i), (5.58.c)

∀i, j (J = i+ 1) : dq(i+ 1, j) = −T1(i) ∗ 2yj , (5.58.d)

∀i, j (J = i+ 1) : T2(i, j) = bt(i) ∗ 2yj , (5.58.e)

∀i, j, k (K = J = i+ 1, k = j) : ddq(i+ 1, j, k) = −2T1(i), (5.58.f)

∀i, j, k (K < J = i+ 1) : ddq(i+ 1, j, k) = −T2(i, k) ∗ dq(i, j), (5.58.g)

∀i, j, k (K ≤ J ≤ i) : ddq(i+ 1, j, k) = B4(i) ∗ ddq(i, j, k). (5.58.h)

Time complexity: The cost of the product in (a) is 2(i+ 1), hence

T (X1) = n(n+ 1) + 2np. (5.59.a)

The complexity for each multiplication in (b), (c) and (d) is 2(i + 1), 2(i + 1) and i + 2, so that we get∑
2(i+ 1)ip+

∑
2(i+ 1) +

∑
(i+ 2)p and

T (X ′
1) = n(n+ 1) + pn

5 + 3n+ 4n2

6
. (5.59.b)

The complexity of the multiplication in (e), (f), (g) and (h) is 2, 0, 2(i+ 1) and 2(i+ 1), so that we get∑
2p+ 2i(i+ 1)p2 + (i+ 1)ip(ip+ 1), hence

T (X ′′
1) = 2(n− 1)p+

n(n− 1)(n+ 1)
3

(p+ p2 3n+ 6
4

). (5.59.c)

Note that T (X ′′
1) is zero for n = 1. This is because equation (e) is not executed for i = 1.

RR no 0123456789

218 José Grimm

Table 5.26: Cost of X1 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 6 24 32 6 96 640
5 30 230 936 30 1 030 21 480
8 72 832 5 404 72 3 872 127 820
10 110 1 560 12 576 110 7 360 300 480
20 420 11 520 180 956 420 55 920 4 415 980

5.4.6 Case of X2

X2 = (b̃− b)y∗D̃Au, (5.60.a)

∂X2

∂yj
= (b̃− b)y∗

∂D̃A

∂yj
u, J ≤ i, (5.60.b)

∂X2

∂yj
= (b̃− b)

∂y∗

∂yj
D̃Au, J = i+ 1, (5.60.c)

∂2X2

∂yj∂yk
= (b̃− b)y∗

∂2D̃A

∂yj∂yk
u, K ≤ J ≤ i, (5.60.d)

∂2X2

∂yj∂yk
= (b̃− b)

∂y∗

∂yj

∂D̃A

∂yk
u, K < J = i+ 1. (5.60.e)

Pseudo code
∀i : T9(i) = D(i) ∗ u(i), (5.61.a)

∀i : T3(i) = B2(i) ∗ yt(i), (5.61.b)

∀i : q(i+ 1) = T3(i) ∗ T9(i), (5.61.c)

∀i, j (J ≤ i) : T4(i, j) = dD(i, j) ∗ u(i), (5.61.d)

∀i, j (J ≤ i) : dq(i+ 1, j) = T3(i) ∗ T4(i, j), (5.61.e)

∀i, j (J = i+ 1) : dq(i+ 1, j) = B2(i) ∗ T9(i)(j), (5.61.f)

∀i, j, k (K ≤ J ≤ i) : T5(i, j, k) = ddD(i, j, k) ∗ u(i), (5.61.g)

∀i, j, k (K ≤ J ≤ i) : ddq(i+ 1, j, k) = T3(i) ∗ T5(i, j, k), (5.61.h)

∀i, j, k (K < J = i+ 1) : ddq(i+ 1, j, k) = B2(i) ∗ T4(i, k)(j). (5.61.i)

The cost of (a), (b) and (c) is (i+ 1)p2, 2p and 2p2(i+ 1), hence

T (X2) =
3p2n(n+ 1)

2
+ 2np. (5.62.a)

The cost of the multiplication in (d), (e) and (f) is p2(i+ 1), 2p2(i+ 1) and 2(i+ 1), hence

T (X ′
2) = pn(n+ 1) + p3n(n− 1)(n+ 1). (5.62.b)

The cost of the multiplications in (g), (h) and (i) is p2(i+ 1), 2p2(i+ 1) and 2(i+ 1), hence

T (X ′′
2) = p2n(n− 1)(n+ 1)(

2
3

+
p

2
+ p2 3n− 2

8
). (5.62.c)

INRIA

Rational approximation of transfer functions in the hyperion software 219

Table 5.27: Cost of X2 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 44 60 88 940 6 060 33 400
5 200 1 020 3 920 4 600 120 300 2 018 000
8 464 4 176 25 536 10 960 504 720 14 145 600
10 700 8 140 62 040 16 700 991 100 35 211 000
20 2 600 64 680 978 880 63 400 7 984 200 583 072 000

Table 5.28: Cost of X3 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 24 104 112 600 10 600 62 000
5 120 928 3 680 3 000 104 000 2 140 000
8 288 3 336 21 504 7 200 388 200 12 768 000
10 440 6 248 50 160 11 000 737 000 30 030 000
20 1 680 46 088 723 520 42 000 5 593 000 441 560 000

5.4.7 Case of X3

We have
X3 = (b− b̃‖y‖2)D̃A.

This is like X1, but qA is replaced by D̃A, and we use other temporaries. Note that b̃∂‖y‖2/∂yj is already
computed. The result is stored in D(i+ 1). Thus we get

T (X3) = p2n(n+ 1). (5.63.a)

T (X ′
3) = p2[n(n+ 1) + p

(n+ 1)(n+ 2)
2

+
2pn(n− 1)(n+ 1)

3
]. (5.63.b)

T (X ′′
3) = p3n(n− 1)(n+ 1)

3
(1 + p

3n+ 6
4

). (5.63.c)

5.4.8 Case of X4

X4 = D̃Auu
∗, (5.64.a)

∂X4

∂yj
=
∂D̃A

∂yj
uu∗, (5.64.b)

∂2X4

∂yj∂yk
=

∂2D̃A

∂yj∂yk
uu∗. (5.64.c)

We put X4, X5, X6 and X in Z0. The pseudo code is

∀i : Z0(i) = T9(i) ∗ u(i), (5.65.a)

∀i, j (J ≤ i) : dZ0(i+ 1, j) = T4(i, j) ∗ u(i), (5.65.b)

∀i, j, k (K ≤ J ≤ i) : ddZ0(i+ 1, j, k) = T5(i, j, k) ∗ u(i). (5.65.c)

RR no 0123456789

220 José Grimm

Table 5.29: Cost of X4 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 12 16 24 300 2 000 11 000
5 60 320 1 200 1 500 40 000 670 000
8 144 1 344 8 064 3 600 168 000 4 704 000
10 220 2 640 19 800 5 500 330 000 11 715 000
20 840 21 280 319 200 21 000 2 660 000 194 180 000

Each multiplication in (a), (b) and (c) costs p2(i+ 1) hence

T (X4) = p2n(n+ 1)/2. (5.66.a)

T (X ′
4) = p3n(n− 1)(n+ 1)

3
. (5.66.b)

T (X ′′
4) = p3n(n− 1)(n+ 1)

6
(1 + p

3n− 2
4

). (5.66.c)

5.4.9 Code of X5

X5 = yy∗D̃A, (5.67.a)

∂X5

∂yj
= yy∗

∂D̃A

∂yj
, J ≤ i, (5.67.b)

∂X5

∂yj
= (

∂y

∂yj
y∗ + y

∂y∗

∂yj
)D̃A, J = i+ 1, (5.67.c)

∂2X5

∂yj∂yk
= yy∗

∂2D̃A

∂yj∂yk
, K ≤ J ≤ i, (5.67.d)

∂2X5

∂yj∂yk
= (

∂y

∂yj
y∗ + y

∂y∗

∂yj
)
∂D̃A

∂yk
, K < J = i+ 1, (5.67.e)

∂2X5

∂yj∂yk
=

∂2yy∗

∂yj∂yk
D̃A, K = J = i+ 1. (5.67.f)

The pseudo code
∀i : T7(i) = yt(i) ∗D(i), (5.68.a)

∀i : Z0(i) = y(i) ∗ T7(i), (5.68.b)

∀i, j (J = i+ 1) : dZ0(i+ 1, j) = T7(i)(j), (5.68.c)

∀i, j (J = i+ 1) : dZ0(i+ 1, j) = y(i) ∗D(i)(j), (5.68.d)

∀i, j (J ≤ i) : T8(i, j) = yt(i) ∗ dD(i, j), (5.68.e)

∀i, j (J ≤ i) : dZ0(i+ 1, j) = y(i) ∗ T8(i, j), (5.68.f)

∀i, j, k (K ≤ J ≤ i) : T (i) = yt(i) ∗ ddD(i, j, k), (5.68.g)

∀i, j, k (K ≤ J ≤ i) : ddZ0(i+ 1, j, k) = y(i) ∗ T (i), (5.68.h)

∀i, j, k (K < J = i+ 1) : ddZ0(i+ 1, j, k) = yy(i) ∗ dD(i, k)(j), (5.68.i)

∀i, j, k (K < J = i+ 1) : ddZ0(i+ 1, j, k) = T8(i, k), (5.68.j)

INRIA

Rational approximation of transfer functions in the hyperion software 221

Table 5.30: Cost of X5 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 24 56 80 600 7 000 42 000
5 120 760 3 040 3 000 95 000 1 740 000
8 288 2 976 18 816 7 200 372 000 11 088 000
10 440 5 720 44 880 11 000 715 000 26 730 000
20 1 680 44 240 680 960 42 000 5 530 000 414 960 000

∀i, j, k (K < J = i+ 1) : ddZ0(i+ 1, j, k) = D(i)(j). (5.68.k)

The cost of the multiplications in (a) and (b) is p2(i+ 1), hence

T (X5) = p2n(n+ 1). (5.69.a)

There is no cost for (c), the cost of (d) is p2(i + 1), this is the same as (e), (f), hence a total of∑
p3(i+ 1) + 2p2ip(i+ 1).

T (X ′
5) =

p3n(n+ 1)(4n− 1)
6

. (5.69.b)

The cost of the products in (g), (h) and (i) are p2(i+ 1), hence a total of
∑
p2(i+ 1)(ip(ip+ 1) + ip2).

T (X ′′
5) =

p3n(n− 1)(n+ 1)(3pn+ 2p+ 4)
12

. (5.69.c)

5.4.10 Case of X6

X6 = yu∗qA, (5.70.a)
∂X6

∂yj
= yu∗

∂qA
∂yj

, J ≤ i, (5.70.b)

∂X6

∂yj
=

∂y

∂yj
u∗qA, J = i+ 1, (5.70.c)

∂2X6

∂yj∂yk
= yu∗

∂2qA
∂yj∂yk

, K ≤ J ≤ i, (5.70.d)

∂2X6

∂yj∂yk
=

∂y

∂yj
u∗
∂qA
∂yk

, K < J = i+ 1. (5.70.e)

Pseudo code
∀i : T12(i) = y(i) ∗ ut(i), (5.71.a)

∀i : Z0(i+ 1) = T12(i) ∗ q(i), (5.71.b)

∀i, j (J ≤ i) : dZ0(i+ 1, j) = T12(i) ∗ dq(i, j), (5.71.c)

∀i, j (J = i+ 1) : dZ0(i+ 1, j) = ut(i)(j) ∗ q(i), (5.71.d)

∀i, j, k (K ≤ J ≤ i) : ddZ0(i+ 1, j, k) = T12(i) ∗ ddq(i, j, k), (5.71.e)

∀i, j, k (K < J = i+ 1) : ddZ0(i+ 1, j, k) = ut(i)(j) ∗ dq(i, k). (5.71.f)

The cost of (b), (c) and (e) is p2(i+ 1), the cost of (a) is p2, the cost of (d) and (f) is p(i+ 1), hence

T (X6) = p2n(n+ 3)/2. (5.72.a)

T (X ′
6) =

p3n(n− 1)(n+ 1)
3

+ p2n(n+ 1)
2

. (5.72.b)

T (X ′′
6) =

p3n(n− 1)(n+ 1)
6

(3 + p
3n− 2

4
). (5.72.c)

RR no 0123456789

222 José Grimm

Table 5.31: Cost of X6 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 20 28 40 500 2 300 13 000
5 80 380 1 520 2 000 41 500 710 000
8 176 1 488 9 408 4 400 171 600 4 872 000
10 260 2 860 22 440 6 500 335 500 12 045 000
20 920 22 120 340 480 23 000 2 681 000 196 840 000

5.4.11 Case of X7

X7 = D̃Au.y
∗D̃A, (5.73.a)

∂X7

∂yj
= D̃Au.

∂y∗

∂yj
D̃A, J = i+ 1, (5.73.b)

∂X7

∂yj
=
∂D̃A

∂yj
u.y∗D̃Au+ D̃Au.y

∗ ∂D̃A

∂yj
, J ≤ i, (5.73.c)

∂2X7

∂yj∂yk
=
∂D̃A

∂yk
u.
∂y∗

∂yj
D̃A + D̃Au.

∂y∗

∂yj

∂D̃A

∂yk
, K < J = i+ 1, (5.73.d)

∂2X7

∂yj∂yk
=

∂2D̃A

∂yj∂yk
u.y∗D̃A + D̃Au.y

∗ ∂
2D̃A

∂yj∂yk
+
∂D̃A

∂yj
u.y∗

∂D̃A

∂yk
+
∂D̃A

∂yk
u.y∗

∂D̃A

∂yj
, K ≤ J ≤ i. (5.73.e)

Pseudo code
∀i : X9(i+ 1) = T9(i) ∗ T7(i), (5.74.a)

∀i, j (J ≤ i) : dX9(i+ 1, j) = T4(i, j) ∗ T7(i) + T9(i) ∗ T8(i, j), (5.74.b)

∀i, j (J = i+ 1) : dX9(i+ 1, j) = T9(i) ∗D(i)(j), (5.74.c)

∀i, j, k (K < J = i+ 1) : ddX9(i+ 1, j, k) = T4(i, k) ∗D(i)(j) + T9(i) ∗ dD(i, k)(j), (5.74.d)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T4(i, j) ∗ T8(i, k), (5.74.e)

∀i, j, k (K ≤ J ≤ i) : T = ddD(i, j, k) ∗ u(i), (5.74.f)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T ∗ T7(i), (5.74.g)

∀i, j, k (K ≤ J ≤ i) : T = yt(i) ∗ ddD(i, j, k), (5.74.h)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T9(i) ∗ T. (5.74.i)

Complexity. For (a) we have
∑
p2(i+ 1)2 hence

T (X7) = p2n(n+ 1)(2n+ 1)
6

. (5.75.a)

Each multiplication in (b) and (c) costs p2(i+ 1)2. There are 2ip+ p such products, thus

T (X ′
7) =

p3n(n+ 1)(3n2 + n− 1)
6

. (5.75.b)

Each product in (d), (e), (f), (g), (h) and (i) costs p2(i+ 1). For (d) we have 2ip2 products, for (e) we
have (ip)2 products, and for the other we have ip(ip+ 1)/2 each. Hence

T (X ′′
7) = p3n(n− 1)(n+ 1)

18pn2 + 15pn+ 15n− 2p+ 10
30

. (5.75.c)

INRIA

Rational approximation of transfer functions in the hyperion software 223

Table 5.32: Cost of X7 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 20 104 384 500 13 000 208 000
5 220 3 160 36 192 5 500 395 000 21 260 000
8 816 19 104 358 848 20 400 2 388 000 215 544 000
10 1 540 45 320 1 070 784 38 500 5 665 000 648 120 000
20 11 480 682 640 32 571 168 287 000 85 330 000 20 027 140 000

5.4.12 Case of X8

X8 = y∗D̃Au.D̃A, (5.76.a)

∂X8

∂yj
=
∂y∗

∂yj
D̃Au.D̃A, J = i+ 1, (5.76.b)

∂X8

∂yj
= y∗

∂D̃A

∂yj
u.D̃A + y∗D̃Au.

∂D̃A

∂yj
, J ≤ i, (5.76.c)

∂2X8

∂yj∂yk
=
∂y∗

∂yj

∂D̃A

∂yk
u.D̃A +

∂y∗

∂yj
D̃Au.

∂D̃A

∂yk
+ y∗

∂D̃A

∂yj
u.
∂D̃A

∂yk
, K < J = i+ 1, (5.76.d)

∂2X8

∂yj∂yk
= y∗

∂2D̃A

∂yj∂yk
u.D̃A + y∗

∂D̃A

∂yk
u.
∂D̃A

∂yj
+ y∗D̃Au.

∂2D̃A

∂yj∂yk
, K ≤ J ≤ i. (5.76.e)

Pseudo code
∀i : T10(i) = yt(i) ∗ T9(i), (5.77.a)

∀i : X9(i+ 1) = T10(i) ∗D(i), (5.77.b)

∀i, j (J = i+ 1) : dX9(i+ 1, j) = T9(i)(j) ∗D(i), (5.77.c)

∀i, j (J ≤ i) : T11(i, j, J) = yt(i) ∗ T4(i, j), (5.77.d)

∀i, j (J ≤ i) : dX9(i+ 1, j) = T11(i, j) ∗D(i), (5.77.e)

∀i, j (J ≤ i) : dX9(i+ 1, j) = T10(i) ∗ dD(i, j), (5.77.f)

∀i, j, k (K < J = i+ 1) : ddX9(i+ 1, j, k) = T4(i, k)(j) ∗D(i), (5.77.g)

∀i, j, k (K < J = i+ 1) : ddX9(i+ 1, j, k) = T9(i)(j) ∗ dD(i, k), (5.77.h)

∀i, j, k (K ≤ J ≤ i) : T = yt(i) ∗ T5(i, j, k), (5.77.i)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T ∗D(i), (5.77.j)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T11(i, k) ∗ dD(i, j), (5.77.k)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T11(i, j) ∗ dD(i, k), (5.77.l)

∀i, j, k (K ≤ J ≤ i) : ddX9(i+ 1, j, k) = T10(i) ∗ ddD(i, j, k). (5.77.m)

Complexity The cost of (a) is p(i+ 1), the cost of (b) is p2(i+ 1)2, hence

T (X8) = p
n(n+ 1)

2
+ p2n(n+ 1)(2n+ 1)

6
. (5.78.a)

The cost of (d) is p(i + 1), the cost of (c), (e), (f) is p2(i + 1)2. Number of operations: p for (c), ip for
(d), (e) and (f), hence

T (X ′
8) = p3n(n+ 1)(2n+ 1)

6
+ p2n(n− 1)(n+ 1)

3
+ p3n(n− 1)(n+ 1)(3n+ 2)

6
. (5.78.b)

RR no 0123456789

224 José Grimm

Table 5.33: Cost of X8 in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 26 112 300 530 13 200 165 100
5 250 3 320 26 088 5 650 399 000 15 317 000
8 888 1 9776 252 000 20 760 2 404 800 151 082 400
10 1 650 46 640 744 876 39 050 5 698 000 449 971 500
20 11 900 693 280 22 203 552 289 100 85 596 000 13 631 968 000

Table 5.34: Cost of X in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 32 64 144 800 8 000 66 000
5 280 2 720 19 008 7 000 340 000 10 680 000
8 960 17 472 205 632 24 000 2 184 000 120 456 000
10 1 760 42 240 632 016 44 000 5 280 000 375 210 000
20 12 320 659 680 20 416 032 308 000 82 460 000 12 440 820 000

The cost of (i) is p(i+1), the cost of (g), (h), (j), (k), (l) and (m) is p2(i+1)2. Equations (g) and (h) are
executed ip2 times, (i), (j) and (m) are executed ip(ip + 1)/2 times, while (k, l) is executed (ip)2 times
(note the special case when indices k and j are equal).

Hence
∑

2p4i(i+ 1)2 + p2i(i+ 1)(ip+ 1)/2 + p2(i+ 1)2ip(ip+ 1) + p4i2(i+ 1)2.

T (X ′′
8) = n(n− 1)(n+ 1)p2 48p2n2 + 60p2n+ 45pn+ 20 + 10p+ 8p2

120
. (5.78.c)

5.4.13 Cost of X

If X9 = X7 −X8, then
X = X9/qA, (5.79.a)

∂X

∂yj
=

1
qA

(
∂X9

∂yj
−X ∗ ∂qA

∂yj
), (5.79.b)

∂2X

∂yj∂yk
=

1
qA

(−∂qA
∂yk

∂X

∂yj
− ∂X

∂yk

∂qA
∂yj

−X ∗ ∂2qA
∂yj∂yk

+
∂2X9

∂yj∂yk
). (5.79.c)

The pseudo code is trivial. Note however the following facts. When we compute X and its first derivative,
we compute first the numerator, store it somewhere, divide, and store the result. This will be added to
Z0 and its derivative. However, there is no need to store the second derivative of X, we just add it.

Complexity: each polynomial division costs (i+ 1)(i+ 2).

T (X) = p2n(n+ 1)(n+ 2)
3

. (5.80.a)

T (X ′) = p3n(n− 1)(n+ 1)(3n+ 2)/6. (5.80.b)

T (X ′′) = p3n(n+ 1)(n− 1)
8pn2 − 5pn+ 10n− 2p

20
. (5.80.c)

INRIA

Rational approximation of transfer functions in the hyperion software 225

Table 5.35: Cost of Z in direct mode

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 24 32 48 600 4 000 22 000
5 120 640 2 400 3 000 80 000 1 340 000
8 288 2 688 16 128 7 200 336 000 9 408 000
10 440 5 280 39 600 11 000 660 000 23 430 000
20 1 680 42 560 638 400 42 000 5 320 000 388 360 000

5.4.14 Case of Z

Since
Z = (b− b̃)Z0, (5.81.a)

we have
∂Z

∂yj
= (b− b̃)

∂Z0

∂yj
, (5.81.b)

∂2Z

∂yj∂yk
= (b− b̃)

∂2Z0

∂yj∂yk
. (5.81.c)

Each operation costs 2(i+ 1)p2.
T (Z) = p2n(n+ 1). (5.82.a)

T (Z ′) =
2
3
p3n(n− 1)(n+ 1). (5.82.b)

T (Z ′′) =
p3n(n− 1)(n+ 1)(3pn− 2p+ 4)

12
. (5.82.c)

This gives a total complexity which is the following.

T (Q) = n
(
2 + 2n+ pn+ 5 p+ 15 p2n+ 2 p2n2 + 15 p2

)
/2. (5.83.a)

T (Q′) = n+ n2 + p[
3n2

2
+ +

11n
6

+
2n3

3
] + p2[

3n2

2
+
n3

3
+

7n
6

] + p3[−7n
3

+
16n3

3
+
n2

2
+

3n4

2
]. (5.83.b)

T (Q′′) = 2pn(n− 1) +
pn(n− 1)(n+ 1)

120
(168p3n2 + 30pn+ 255p3n+ 165p2n+ 40 + 160p− 2p3 + 310p2).

(5.83.c)
On figure 5.9 we have plotted some values. On figure 5.10, we have plotted the ratio of (b) and (c) by (a)
(we divided by np in the first case, and np(np+ 1)/2 in the second case). These ratios should be smaller
than 2 and 4 respectively. In all equations but X7, X8 and X, the ratio for the second derivative is 1/2.
This means that the average complexity of the second derivative of a product ab is 1/2; it is due to the
fact that, in general, one of the factors is constant, and the other factor depends only on half of the input
variables. In the case of X7 and X8, it happens that D̃A appears twice in the formula. In the case of X,
we divide something non-constant by q, so that the ratio is greater. According to (5.83.c), the limit for
large p and n is 14/5.

RR no 0123456789

226 José Grimm

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

0 5 10 15 20 25 30

’cres’ u 1:2

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

’cres’ u 1:3

3

4

5

6

7

8

9

10

11

12

5 10 15 20 25 30

’cres’ u 1:4

Figure 5.9: Cost of the Schur parameters direct mode. On each curve p is fixed (between 2 and 10). We
give the complexity of Q, Q′ and Q′′. For Q′′, we assume n ≥ 2, since no multiplication is required for
n = 1.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30

’cres’ u 1:5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30

’cres’ u 1:6

Figure 5.10: Cost of the Schur parameters direct mode. On each curve p is fixed (between 2 and 10). We
give the ratio of the cost of one element of Q′ or Q′′ by the cost of Q.

INRIA

Rational approximation of transfer functions in the hyperion software 227

5.4.15 Complexity of ψ

We assume here that D̃, q and the derivatives of these quantities have been computed and stored some-
where. We compute now ψ and its derivatives. In order to speed up things, we assume q monic. This
means that we have to divide everything by the leading coefficient u of q. Assume that we divide a by u,
giving b. The equations are

b =
a

u
. (5.84.a)

∂b

∂y
=

1
u

(
∂a

∂y
− b

∂u

∂y
). (5.84.b)

∂2b

∂y∂t
=

1
u

(
∂2a

∂y∂t
− ∂b

∂t

∂u

∂y
− ∂b

∂y

∂u

∂t
− b

∂2u

∂y∂t
). (5.84.c)

No additional memory is required. The cost of (a), (b) and (c) is 1, 2 and 4. We have (p2 + 1)(n+ 1)− 1
such quantities to compute, since there are p2(n+1) coefficients in D̃, and n coefficients in q (the leading
coefficient of q is left unchanged). This gives a complexity of

T (ψ) = (p2 + 1)(n+ 1)− 1. (5.85.a)

T (ψ′) = 2np[(p2 + 1)(n+ 1)− 1]. (5.85.b)

T (ψ) = 2np(np+ 1)[(p2 + 1)(n+ 1)− 1]. (5.85.c)

We implement now the formula GD̃ = V q + R, ψ = ‖G‖2 − ‖V ‖2. Assume that G =
∑
Gkz

k. Let
Rm = 0 and ψm = ‖G‖2. Consider

Rk+1z +GkD̃ = Vkq +Rk, (5.86.a)

ψk = ψk+1 − ‖V ‖2k. (5.86.b)

In each iteration of (a), we compute the left hand side. The leading coefficient of this will be Vk. We
subtract Vk(q − zn) from this. Given Vk, we compute its norm and update ψ. After that, computing
Rk+1z is nothing else than shifting Rk+1 and ignoring the leading term Vk. Thus we need only allocate
space for a matrix of polynomials of degree n.

Assume that G has g rows. This gives a space complexity of

S(ψ) = gp(n+ 1). (5.87.a)

S(ψ′) = npgp(n+ 1). (5.87.b)

S(ψ′′) = np(np+ 1)gp(n+ 1)/2. (5.87.c)

If we differentiate (5.86) we get

∂Rk+1

∂y
z +Gk

∂D̃

∂y
=
∂Vk
∂y

q + Vk
∂q

∂y
+
∂Rk
∂y

. (5.88.a)

∂ψk
∂y

=
∂ψk+1

∂y
− 2〈Vk |

∂Vk
∂y

〉. (5.88.b)

and
∂Rk+1

∂y∂t
z +Gk

∂2D̃

∂y∂t
=
∂2Vk
∂y∂t

q + Vk
∂2q

∂y∂t
+
∂Vk
∂y

∂q

∂t
+
∂Vk
∂t

∂q

∂y
+
∂2Rk
∂y∂t

. (5.89.a)

∂2ψk
∂y∂t

=
∂2ψk+1

∂y∂t
− 2〈∂Vk

∂y
| ∂Vk
∂t

〉 − 2〈Vk |
∂2Vk
∂y∂t

〉. (5.89.b)

RR no 0123456789

228 José Grimm

Multiplying Gk by a matrix costs gp2(n+ 1), multiplying a matrix by a polynomial costs gp(n+ 1),
the division by q costs gpn. Hence the complexity is

T (ψ) = mgp(n+ 1)(p+ 1). (5.90.a)

T (ψ′) = npmgp(n+ 1)(p+ 2). (5.90.b)

T (ψ′′) =
np(np+ 1)

2
mgp[(n+ 1)(p+ 4) + 1]. (5.90.c)

We have another way to compute ψ, namelyG = V1q+R1, R1D̃ = V2q+R2, ψ = ‖G‖2−‖R1‖2+‖V1‖2.
We use the same technique as before. Once R1 has been computed, we copy it in a matrix W , and define
W =

∑
wkz

k. We use the same memory location for the two division loops, but in the formulas that
follow, we shall add primes for the second loop.

S(ψ) = gp(n+ 2). (5.90.a)

S(ψ′) = npgp(n+ 2). (5.90.b)

S(ψ′′) = np(np+ 1)gp(n+ 2)/2. (5.90.c)

The formulas are
Rk+1z +Gk = Vkq +Rk. (5.91.a)

R′k+1z +WkD̃ = V ′kq +R′k. (5.91.b)

ψk = ψk+1 + ‖V ′k‖2 − ‖Wk‖2. (5.91.c)

The formulas for the derivatives are

∂Rk+1

∂y
z =

∂Vk
∂y

q + Vk
∂q

∂y
+
∂Rk
∂y

. (5.93.a)

∂R′k+1

∂y
z +

∂Wk

∂y
D̃ +Wk

∂D̃

∂y
=
∂V ′k
∂y

q + V ′k
∂q

∂y
+
∂R′k
∂y

. (5.93.b)

∂ψk
∂y

=
∂ψk+1

∂y
+ 2〈V ′k |

∂V ′k
∂y

〉 − 2〈Wk |
∂Wk

∂y
〉. (5.93.c)

The formulas for the second derivatives are

∂2Rk+1

∂y∂t
z =

∂2Vk
∂y∂t

q +
∂Vk
∂y

∂q

∂t
+
∂Vk
∂t

∂q

∂y
+ Vk

∂2q

∂y∂t
+
∂2Rk
∂y∂t

. (5.94.a)

∂2R′k+1

∂y∂t
z +

∂2Wk

∂y∂t
D̃ +

∂Wk

∂y

∂D̃

∂t
+
∂Wk

∂t

∂D̃

∂y
+Wk

∂2D̃

∂y∂t
=

=
∂2V ′k
∂y∂t

q +
∂Wk

∂y

∂D̃

∂t
+
∂Wk

∂t

∂D̃

∂y
+
∂V ′k
∂y

∂q

∂t
+ V ′k

∂2q

∂y∂t
+
∂2R′k
∂y∂t

. (5.94.b)

∂2ψk
∂y∂t

=
∂2ψk+1

∂y∂t
+ 2(〈V ′k |

∂2V ′k
∂y∂t

〉+ 〈∂V
′
k

∂y
| ∂V

′
k

∂t
〉 − 〈Wk |

∂2Wk

∂y∂t
〉 − 〈∂Wk

∂y
| ∂Wk

∂t
〉). (5.94.c)

The complexity is easy to compute. It is

T (ψ) = gpn[m+ 2 + p(n+ 1)]. (5.95.a)

T (ψ′) = npgp[m(2n+ 1) + 2n(1 + p(n+ 1))]. (5.95.b)

T (ψ′′) = gpn
np(np+ 1)

2
[m(4n+ 3) + 4n(1 + p(n+ 1))]. (5.95.c)

INRIA

Rational approximation of transfer functions in the hyperion software 229

Table 5.36: Cost of ψ, formulas (5.95), in direct mode, m = 400.

n ψ ψ′ ψ′′ ψ ψ′ ψ′′

2 3 264 32 448 356 480 86 400 4 248 000 195 216 000
5 8 280 181 200 10 406 000 231 000 25 050 000 6 642 750 000
8 13 440 454 656 63 574 016 393 600 66 048 000 43 835 904 000
10 16 960 708 800 152 208 000 512 000 106 200 000 109 282 000 000
20 35 520 2 899 200 2 403 584 000 1 224 000 496 800 000 2 013 216 000 000

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30

’cres1’ u 1:2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

’cres1’ u 1:3

4

5

6

7

8

9

10

11

12

13

14

0 5 10 15 20 25 30

’cres1’ u 1:4

Figure 5.11: Cost of ψ in direct mode. On each curve p is fixed (between 2 and 10). We assume g = p
and m = 400. The curves correspond to the function, the first derivative and the second derivative

RR no 0123456789

230 José Grimm

Let’s compute the ratio of these two complexities. We introduce

λ = 1 + p(n+ 1), t = m/n.

r = 1 +
(t− 1)λ− 1
tn+ λ+ 1

. (5.96.a)

r′ = 1 +
(t− 2)λ

2tn+ t+ 2λ
. (5.96.b)

r′′ = 1 +
(t− 4)λ+ t

t(4n+ 3) + 4λ
. (5.96.c)

In case t ≥ 4, these quantities are greater than one, and the second method is better than the first one.
In the case m is much larger than n, we can simplify a bit these formulas

r = 1 +
λ

n
. (5.97.a)

r′ = 1 +
λ

2n+ 1
. (5.97.b)

r′′ = 1 +
λ+ 1
4n+ 3

. (5.97.c)

If we assume that np is much smaller than m, we get

r = 1 + p, r′ = 1 + p/2, r′′ = 1 + p/4. (5.98.a)

But if p becomes large, we get
r = t, r′ = t/2, r′′ = t/4. (5.98.b)

For instance, if m = 200 and n = 20, then t = 10. Hence r′′ is 1 + p/4 for small p, 10/4 for large p. In
case p = 2, we have

r = 2.6, r′ = 1.7 r′′ = 1.4.

This means that we have more than a factor two for ψ, and 40% for the second derivative.

INRIA

Rational approximation of transfer functions in the hyperion software 231

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30

’cres2’ u 1:2

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

’cres2’ u 1:3

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

’cres2’ u 1:4

Figure 5.12: Gain. On each curve p is fixed (between 2 and 10). We assume g = p and m = 400.
Function, first derivative, second derivative.

RR no 0123456789

232 José Grimm

INRIA

Rational approximation of transfer functions in the hyperion software 233

Bibliography

[1] Daniel Alpay, Laurent Baratchart, and Andrea Gombani. On the differential structure of matrix-
valued rational inner functions. Operator Theory: Advances and Applications, 73:30–66, 1994.

[2] Laurent Baratchart. Sur l’approximation rationnelle L2 pour les systèmes dynamiques linéaires. PhD
thesis, Université de Nice, 1987.

[3] Laurent Baratchart and José Grimm. An elementary proof of the nonexistence of canonical forms
in the real and complex case. Systems and Control Letters, 3:193–196, September 1993.

[4] Michel Cardelli. Contribution à l’approximation rationnelle L2 des fonctions de transfert. PhD
thesis, Université de Nice-Sophia Antipolis, 1990.

[5] Jean-Pierre Dedieu and Jean-Claude Yakoubsohn. Localization of an algebraic hypersurface by the
exclusion algorithm. AAEC, 2:239–256, 1992.

[6] C. Faure and Y. Papegay. Odyssée User’s Guide. Version 1.7. Rapport technique 0224, INRIA,
September 1998.

[7] Christèle Faure. Le gradient de THYC3D par Odyssée. Technical Report RR-3519, Inria, 1998.

[8] Pascale Fulcheri. Approximation rationnelle matricielle dans H2 et analyse de Schur. Application à
l’identification des systèmes. PhD thesis, Université de Nice-Sophia Antipolis, December 1994.

[9] Pascale Fulcheri and Martine Olivi. Matrix rational H2 approximation: a gradient algorithm based
on Schur analysis. Siam J. on Cont. Optim., 36(6):2103–2127, November 1998.

[10] C. William Gear. Numerical Initial Value Problems in Ordinary Diffe rential Equations. Prentice
Hall, 1971.

[11] G. Hall and J.M. Watt, editors. Modern Numerical Methods for Ordinary Differential Equations.
Clarendon Press, Oxford, 1976.

[12] Donald E. Knuth and Silvio Levy. The CWEB system of Structured Documentation. Addison-Wesley,
1994.

[13] Juliette Leblond and Martine Olivi. Weighted H2 approximation of transfer functions. Technical
Report 2863, INRIA, 1996.

[14] Jacques Morgenstern. How to compute fast a function and its derivatives. SIGACT news, 1985.

[15] Norman Ramsey. Building a language-independent WEB. Communications of the ACM, pages 1051–
1055, 1989.

[16] N. Rostaing. Différentiation automatique: application à un problème d’optimisation en météorologie.
PhD thesis, Université de Nice-Sophia Antipolis, 1993.

[17] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

RR no 0123456789

234 José Grimm

[18] Szegö. Orthogonal Polynomials. Colloquium Publications, AMS, 1939.

[19] J.C. Willems. From time series to linear systems. part I: Finite dimensional linear time invariant
systems. Automatica, 22:561–580, 1986.

INRIA

Rational approximation of transfer functions in the hyperion software 235

List of Tables

4.1 Table of modes . 111
4.2 Table of precisions . 111
4.3 Operator table . 113
4.4 Operators . 114
4.5 How flags determine the operation . 117
4.6 The patterns for N . 119
4.7 The patterns for Ta . 119
4.8 The patterns for Tb . 120
4.9 The patterns for S . 120
4.10 The patterns for ST . 120
4.11 The patterns for ψ . 120
4.12 The patterns for D . 121
4.13 Table of abbreviations . 126
4.14 Flags for memory allocation . 145
4.15 Variables, size and flags . 146
4.16 List of variables . 161
4.17 All calls to differentiate . 162

5.1 Complexity of orthogonal polynomials (time) . 189
5.2 Complexity of orthogonal polynomials (space) . 189
5.3 Complexity of squares in (5.9), case M = 1 . 190
5.4 Space needed for the products q dΦ . 191
5.5 Complexity of denominators in (5.11) and (5.12) . 191
5.6 Complexity of numerators in (5.11) and (5.12) . 191
5.7 Complexity of scalar products via truncation . 192
5.8 Complexity of the Bezout relation (5.18.a) . 193
5.9 Complexity of scalar products via the Bezout relation, α = m+ 2n+ d+ 1 193
5.10 Complexity of scalar products via (5.19.b) . 194
5.11 Complexity of scalar products via (5.19.b), and (5.11.a), (5.12.a) 194
5.12 Complexity of the relation (5.19.a) . 195
5.13 Complexity of ψ1, first part of ψ with weight . 195
5.14 Complexity of ψ, scalar case, no weight . 196
5.15 Complexity of ψ, scalar case, alternate . 197
5.16 Comparison of the two methods of computing ψ′′. It has the form mα(n) + β(n). The

table gives α(n). 199
5.17 Complexity of the derivatives of ψ, scalar case, direct mode 199
5.18 Cost of ψ and its derivatives, real and complex case. We have p = 2 and p = 4. 203
5.19 Complexity of Z = q̃(y∗u− uy∗) in the case p = 2 . 203
5.20 Cost of Y , in the case p = 4. 204
5.21 Complexity of X, for p = 2 and p = 4 . 205
5.22 Space complexity for p = 2 and p = 4 . 206

RR no 0123456789

236 José Grimm

5.23 Global complexity, p = 2, p = 3 and p = 4 . 207
5.24 Space complexity for temporary variables . 215
5.25 Space complexity . 215
5.26 Cost of X1 in direct mode . 218
5.27 Cost of X2 in direct mode . 219
5.28 Cost of X3 in direct mode . 219
5.29 Cost of X4 in direct mode . 220
5.30 Cost of X5 in direct mode . 221
5.31 Cost of X6 in direct mode . 222
5.32 Cost of X7 in direct mode . 223
5.33 Cost of X8 in direct mode . 224
5.34 Cost of X in direct mode . 224
5.35 Cost of Z in direct mode . 225
5.36 Cost of ψ, formulas (5.95), in direct mode, m = 400. 229

INRIA

Rational approximation of transfer functions in the hyperion software 237

List of Figures

2.1 Step size adjustment of the integrator . 31
2.2 Coefficients for which g = z2 + az + b has no roots in [−1, 1] 40
2.3 Coefficients for which ψ has a unique critical point. 41
2.4 Coefficients for which the real minimum is a saddle point 42
2.5 Coefficients for which the real minimum is a saddle point 43
2.6 Example of ψ . 43
2.7 Set of stable polynomials . 51

3.1 Values of p3 and p4, as a function of a and b . 93
3.2 Values of a and b, as a function of p3 and p4 . 94
3.3 Roots of (3.111) . 97

5.1 Exclusion circles, showing the minimum of ψ . 185
5.2 Exclusion circles for z2 − 1, near the root z = 1. 187
5.3 Complexity of the function . 208
5.4 Complexity of the first derivative . 208
5.5 Complexity of the second derivative . 208
5.6 Normalised cost, 1 ≤ n ≤ 20 . 209
5.7 Normalised cost, 1 ≤ n ≤ 100 . 210
5.8 Space complexity for direct mode . 216
5.9 Cost of the Schur parameters direct mode . 226
5.10 Normalised cost of the Schur parameters direct mode . 226
5.11 Cost of ψ in direct mode . 229
5.12 Gain . 231

RR no 0123456789

238 José Grimm

INRIA

Rational approximation of transfer functions in the hyperion software 239

Contents

1 Introduction 3
1.1 Definitions . 3
1.2 Hp spaces . 4
1.3 Form of Smith McMillan . 7
1.4 Inner matrices . 9
1.5 Shift invariant spaces . 12
1.6 The state space . 15
1.7 Left shift . 17

2 System Theory 21
2.1 Realization . 21
2.2 Study of the approximation problem . 26

2.2.1 Scalar case . 26
2.2.2 Matrix case . 27

2.3 Properties of ψ . 28
2.3.1 Optimisation methods . 28
2.3.2 Primality . 33
2.3.3 Scalar case of degree one . 38
2.3.4 Boundary conditions . 44
2.3.5 Derivatives of ψ . 52
2.3.6 Other formulas . 54
2.3.7 Weighted approximation . 54

2.4 Continuous time systems . 60

3 The Schur algorithm 67
3.1 Schur functions . 67
3.2 The Schur algorithm . 68

3.2.1 Direct formulas . 69
3.2.2 Inverse formulas . 70
3.2.3 Properties of the Schur algorithm . 70

3.3 Reproducing kernel Hilbert spaces . 71
3.4 J-inner functions . 73

3.4.1 Introduction . 73
3.4.2 Basic properties . 74
3.4.3 J-inner functions and left shift invariant spaces . 76
3.4.4 The theorem of Potapov . 79

3.5 The Schur algorithm . 83
3.6 The manifold of inner functions . 87

3.6.1 Case of dimension one . 87
3.6.2 The case of dimension 2 . 89

RR no 0123456789

240 José Grimm

3.6.3 General case . 94
3.6.4 Minimisation of ψ . 97

4 Automatic differentiation 101
4.1 Introduction . 101
4.2 Straight line programs . 102

4.2.1 Definition . 103
4.2.2 Rational SLP . 103
4.2.3 Differentiation in direct mode . 104
4.2.4 Reverse mode . 104
4.2.5 Complex numbers . 106
4.2.6 Matrices . 106
4.2.7 The case of polynomials . 106

4.3 The WEB system . 108
4.4 Naming scheme . 110
4.5 Web interface . 112
4.6 Parsing arguments . 113
4.7 The patterns . 118
4.8 Differentiation . 125
4.9 Merging code . 130

4.9.1 Example . 132
4.10 Operators . 133
4.11 Other functions . 136

4.11.1 Main function . 138
4.11.2 Managing results . 144
4.11.3 Memory management . 145
4.11.4 Hand-written code . 148
4.11.5 Memory management . 151
4.11.6 Auxiliary code . 151
4.11.7 Inverse Schur code . 154

4.12 Main file . 160
4.12.1 Preliminaries . 160
4.12.2 The code of the functions . 160
4.12.3 The calls to the differentiator . 163

4.13 Scalar case . 165
4.13.1 Introduction . 165
4.13.2 Basic code . 167
4.13.3 The code of the function . 169
4.13.4 Code of the derivative . 171
4.13.5 Derivative in direct mode . 174
4.13.6 Hessian . 175
4.13.7 Second part of ψ . 177

5 Complexity 183
5.1 Scalar case of dimension one . 183

5.1.1 Real case of dimension one . 183
5.1.2 Complex case of dimension one . 184

5.2 Scalar case . 186
5.2.1 Orthogonal polynomials . 188
5.2.2 Additional code . 189
5.2.3 Non-weighted case . 195
5.2.4 Alternate formulas . 196

INRIA

Rational approximation of transfer functions in the hyperion software 241

5.2.5 Direct mode differentiation . 197
5.2.6 Other formulas . 200

5.3 Matrix case . 201
5.3.1 Cost of ψ . 201
5.3.2 Cost of the Schur parameters . 202
5.3.3 Memory requirements . 205

5.4 Derivatives in direct mode . 206
5.4.1 Pseudo-code . 212
5.4.2 Sample formula . 212
5.4.3 Notations . 213
5.4.4 Space complexity . 214
5.4.5 Case of X1 . 217
5.4.6 Case of X2 . 218
5.4.7 Case of X3 . 219
5.4.8 Case of X4 . 219
5.4.9 Code of X5 . 220
5.4.10 Case of X6 . 221
5.4.11 Case of X7 . 222
5.4.12 Case of X8 . 223
5.4.13 Cost of X . 224
5.4.14 Case of Z . 225
5.4.15 Complexity of ψ . 227

RR no 0123456789

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

