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OUTLINE

• Stationary gaussian procesess {y(t)}R as elements of a
separable Hilbert space Hy endowed with a shift U (See
talk of Deistler)

• Map (non unique!) into square integrable functions L2.

• Relate different models in terms of inner functions

• Use Hardy spece tools for approximation (See talk of
Baratchart. Other example: Hankel norm) in strong sense

• Try to explain why all this is interesting
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Aim of the talk

• To show that the study of stationary gaussian processes
can be carried out in the function space H2 and thus to
the use of H2 tools.

• Show that this leads to the study of different
representations aand thus a quite rich structure in H2.

• Give an example (Hankel norm approximation) where this
choice of representation matters.
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GAUSSIAN STATIONARY PROCESS

A bit of history:

Kolmogorov (1939) Wiener (1947) gave a Hilbert space (infinite
dimensional) representation (main reference is Rozanov).

Kalman (1960) gave a finite dimensional representation.

Anderson (1971) Ruckebusch (1974), Lindquist -Picci
(1975-85) and others gave a complete description of state
space representations.

4



m-dimensional continuous time gaussian process: sequence
of gaussian m-dimensional random vectors

y(t, ω)

on (Ω, F , P) indexed by t ∈ Z. It’s stationary if its mean

Ey(t) =
∫
Ω

y(t, ω)dω

is independent of t and its correlation function

C(t, s) =
∫
Ω

y(t, ω)y(s, ω)∗dω

only depends on the difference t − s We assume w.l.o.g. that
Ey(t) = 0.

Can define inner product

〈y(t), y(s)〉 := Ey(s)∗y(t) (1)
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(notice that this is not the correlation function, although
similar!)
Define linear span

H0
y := {ξ; ξ =

n∑
k=1

cky(tk), n < +∞, t1, ..., tn ∈ Z}

Can extend (1) to H0
y and take closure

Hy := H
0

y

It’s Hilbert!

6



Define U as

Uy(t) := y(t + 1)

and extend it easily to H0
y. Stationarity implies that U is

unitary. In fact,

‖Uy(t)‖2 = Ey(t + 1)∗y(t + 1) = Ey(t)∗y(t) = ‖y(t)‖2

so, U is in fact unitary on H0
y and thus on Hy.
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Spectral representation of stationary
gaussian processes

• It’s a very nice story...

• ...but a bit too long!

• See written notes (and Deistler’s talk)!
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Easy way...

(Use Wold decomposition for p.n.d process)

Define past of y as

H−
y (t) := span{y(s); s ≤ t}

u0(t) := y(t) − E
H

−
y (t−1)

y(t)

u−(t) :=
u0(t)

‖u0(t)‖

u− is a white noise since u−(t)u−(s)∗ = δt,s.
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Have a basis in Hy

In fact, u−(n) is an orthonormal family (p.n.d does the rest).
Then, setting

wn := 〈y(t), u−(t − n)〉 n ∈ N

we obviously have

{wn}n∈N ∈ l2(0, ∞)

and

y(t) =
∞∑

n=0

wnu−(t − n)
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Hardy space

Define

W−(z) :=
∞∑

n=0

wnz−n

It’s clearly analytic in the complement E of D.

If we define (see Baratchart’s talk),

H2 := span{z−n;n ≥ 0} (2)

we have

W− ∈ H2
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In fact, setting

Iu− : Hy �→ L2

Iu−u−(n) := zn

can write

Iu−y(0) =
∞∑

n=0

wnIun
u−(−n) =

∞∑
n=0

wnz−n = W−(z)
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Are we happy?

Not really:

• The Fourier Transform is quite artificial

• Is this representation unique?

• If not, what is the structure?
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Fourier Transform

It’s intrinsic in the shift U

U =
∫ π

−π

eiλE(dλ)

and

Un =
∫ π

−π

eiλnE(dλ)

See notes... (and Manfred’s talk)

(Can use same techinque in continuous time, using the
Spectral Theorem for self-adjoint operators)
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Uniqueness

There is none (there are many basis in a Hilbert space).

Is the representation unique if we impose the basis to be a
white noise? The answer is again no, as we can see in the
following
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Example

Let y be scalar and set

u′(t) := u−(t + 1)

Then

y(t) =
∞∑

n=0

wnu−(t − n)

=
∞∑

n=0

wnu′(t − n − 1)

=
∞∑

n=1

wn−1u
′(t − n)
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Setting

Iu′u′(n) = zn

we can see now that

Iu′y(0) = W ′(z) =
∞∑

n=1

wn−1z
−n =

∞∑
n=0

wnz−n−1=z−1W−(z)

(3)

i.e. W− and W ′ are related by an inner function, that is a
function Q ∈ H2 such that

Q(eiω)Q(eiω) = 1 ω ∈ [0, 2π)

That’s equivalent to say that

W−(z)W−(1/z) = W ′(z)W ′(1/z)
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General fact: set

cn := Ey(t)y∗(t − n)

Φ :=
∞∑

n=0

cnzn

Then W is a spectral factor of Φ, i.e.

WW ∗ = Φ

(W ∗ denotes W (1/z)
T

) iff ∃u(t) s.t.

Iuy(0) = W
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Corollary 1 if W1, W2 are spectral factors, then

Q := W1W
−1
2

is a unitary function, i.e.

Q(eiω)Q(eiω)∗ = I
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We are interested, in applications, in stable representations,
i.e. functions W analytic in the complement E of D.

Theorem 2 A stable spectral factor of y has an essentailly unique
factorization

W = W−Q

with Q inner and W− outer (i.e. it essentially generates H2; if it is
rational, and it has no zeros on iR, it is invertible in H2).
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This induces a partial ordering on factors Wi = W−Qi for
i = 1, 2, given by:

W1 < W2 ⇔ Q−1
1 Q2 ∈ H2

i.e. ordering of factors is equivalent to ordering of inner
functions.
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Assume now that Φ is rational. We say that W is minimal if
there is no representation of smaller degree.

The above example (3) was not minimal.

Is there a unique minimal representation?

No!
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The set of minimal representations

The outer factor is certainly minimal. Suppose now
W− = p(z)

q(z)
, with p, q coprime. Then the function

Q :=
p(1/z)

p(z)
=

p∗(z)

p(z)

is inner (in E) and

W+ := W−Q =
p∗(z)

q(z)

is also minimal!
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To complete the picture, introduce another inner function K

K :=
q∗(z)

q(z)

which will flip poles of W− and W+. That is, the functions
W − and W+

W − := W−K∗ =
p(z)

q∗(z)

W+ := W−K∗ =
p∗(z)

q∗(z)

are antistable (their poles are in E). The above is the
Douglas-Shapiro-Shields factorization of W− and W+.

24



To summarize, in this case, the situation is very simple

W − W+

W+W−

✲

✲

✻ ✻

Q

Q

K K

25



What happens if you consider a general minimal spectral
factor of arbitrary width, for a multivariable non full-rank
process? (Fuhrmann, G.)
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Things get easily out of hand!
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This mess can be sorted out by exploiting (heavily) the Hilbert
space structure.

The idea is to associate to each factor an inner function and
thus a coinvariant subspace in H2 and study the partial
ordering of projection operators on these spaces.
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Why would you care?

Important tool for designing filters; an intuitive example is the
smoothing problem, that is to find the estimate of y in a
certain time interval [T1, T2], given the observations outside
that interval.

More refined applications are in error in the variables models,
telecommunications and finance.
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In the dynamic errors in the variables problem (cfr. Deistler’s
talk), we want to decompose a square density Φ as

Φ(z) = Φ̂(z) + ∆

where Φ̂ is low rank and ∆ is constant. Can show that this
amount to find a suitable factor of the form:

W = [Ŵ ,D]

(is also has a very interesting approximate version!)
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A simple but nice example is in the use of Hankel norm
approximation (see Nikolski’s and Baratchart’s talks).

In fact, it might happen that a W constructed from the data is
rational, but of very high degree.
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Hankel norm approximation

We defined H2 in (2).

We define the orthogonal complement

H2 := L2 � H2

and

H∞ := {f ∈ L2; sup
0<ρ<1

ess sup
ω∈[0,2π)

|f(ρeiω)| < ∞}
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The Hankel operator with symbol W (for W ∈ H∞) is defined
as

HW : H2 �→ H2

HW f := PH2Wf f ∈ H2

The singular values σ1 > σ2 > ... > σn of HW are the square
roots of the eigenvalues of HW H∗

W in decreasing order.
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We define the Hankel norm of W ∈ H∞ as

‖W‖H := ‖HW ‖

Theorem 3 (AAK) Let HW have a (simple) singular value σk.
Then there exists a unique rational function Wk of degree k, such
that

‖W − Wk‖H = σk
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So, Hankel norm approximation provides a unique minimum
(and a bound on the L2 norm). But which factor W should be
used?

Lemma 4 If W1 = W2Q with Q inner, then

σ1
k ≥ σ2

k

Corollary 5 (G., Pavon) The best Hankel-norm approximant of a
process y(t) is the one obtained by the outer factor W−.
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