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General purpose

We survey some constructive aspects of

how to recover a function analytic in a plane

domain from complete or partial knowledge of

its boundary values

in connection with

identification issues for linear dynamical sys-

tems, i.e. one-dimensional deconvolution.

Our domains of analyticity will be either the

unit disk or the half-plane, as encountered in

this context. Many things carry over with ad-

ditional complications to smooth simply con-

nected domains, but irregular boundaries or

multiple connectedness may cause difficulties

.
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For a comparison...

Sometimes in system theory one looks for a

rational function, in which case we aim at ra-

tional approximation but the poles should lie

outside the domain.

In previous lectures we saw Padé approxima-

tion and Borel resummation used to try to con-

struct analytic continuation of a power series

expansion to some domain.

Here, we prescribe a domain of analyticity and

our data consist of boundary values or partial

estimation of them.

We need to define what “boundary value” means

to us. It means nontangential limit, i.e. the

limit of the function when the argument tends

to a boundary point within a cone, whose aper-

ture turns out to be irrelevant.
3



...nontangential limits
also define the function.

In fact, if an analytic function is bounded on
cones of fixed aperture over a (measurable)
subset E of the boudary, it has non-tangential
limit at almost every point of E. And if the
function has nontangential limit 0 on a set of
positive (arclength) measure of the boundary,
then it vanishes identically [Privalov].

Why worry about refined notions of boundary
values and not just work with continuous func-
tions on the closure of the domain?

Because we approach the recovery issue as
an extremal problem in Banach spaces of an-
alytic functions that need not have continu-
ous boundary values. This can be seen as a
regularization technique for an inverse problem
which is known to be ill-posed since Hadamard
(Cauchy problem for the Laplace equation).
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Hardy Spaces

Let T be the unit circle and D the unit disk in

the complex plane. Denote by Lp = Lp(T) the

familiar Lebesgue spaces.

For 1 ≤ p ≤ ∞, the Hardy space Hp of the unit

disk is the closed subspace of Lp consisting of

functions whose Fourier coefficients of strictly

negative index do vanish.

Alternatively, these are the nontangential lim-

its of functions g analytic in D having uniformly

bounded Lp means over all circles centered at

0 of radius less than 1 :

sup
0<r<1

‖g(reiθ)‖p <∞. (1)
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Poisson and Cauchy

This correspondence between an analytic func-

tion in D satisfying (1) and its boundary values

is one-to-one. Identifying them, we may regard

members of Hp as holomorphic functions in the

variable z ∈ D.

The extension to D is obtained from the values

on T through a Cauchy as well as a Poisson

integral, namely if g ∈ Hp then :

g(z) =
1

2 i π

∫
T

g(ξ)

ξ − z
dξ , z ∈ D, (2)

and also

g(z) =
1

2π

∫
T
Re

{
eiθ + z

eiθ − z

}
g(eiθ) dθ , z ∈ D.

(3)
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The space H∞ consists of bounded analytic

functions in D, and by Parseval’s theorem we

also get that

g(z) ∈ H2 iff f(z) =
∞∑
j=0

akz
k,

with
∞∑
j=0

|aj|2 <∞.

But if p 6= 2 it is uneasy to characterize Hp

functions from their Fourier-Taylor coefficients.

Very good expositions on Hardy spaces are to

be found in the books of [Duren,Garnett,Koosis],

and we will mention only a few facts here.

Actually, we shall work only with p = 2 and

p = ∞, but nothing would be gained at this

stage from such a restriction.

7



Inner-Outer Factorization

A nonzero g ∈ Hp can be uniquely factored as

g = jw, where :

w(z) = exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |f(eiθ)| dθ

}
(4)

belongs to Hp and is the outer factor of g,

while j ∈ H∞ has modulus 1 a.e. on T and is

the inner factor of g.

The inner factor decomposes as j = bSµ, where :

b(z) = eiθ0zk
∏
zl 6=0

−z̄l
|zl|

z − zl
1− z̄lz

(5)

is a Blaschke product,while

Sµ(z) = exp

{
−

1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

}
(6)

is a singular inner factor associated with µ ≥ 0

singular with respect to Lebesgue measure.
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The zl are the zeros of g in D \ {0}, counted

with their multiplicities, while k is the order of

the zero at 0. If there are infinitely many

zeros, the convergence of the product b(z) in

D is ensured by the condition∑
l

(1− |zl|) <∞

which holds automatically when g ∈ Hp\{0}. If

there are only finitely many zeros, say n count-

ing multiplicities, we say that (5) is a finite

Blaschke product of degree n.

That w(z) in (4) is well-defined rests on the

fact that log |g| ∈ L1 if f ∈ H1\{0}; this entails

that a Hp function cannot vanish on a set of

strictly positive Lebesgue measure on T unless

it is identically zero.
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Closely related is the Nevanlinna class N+ con-

sisting of holomorphic functions in D that can

be factored as jE, where j is inner and E an

outer function of the form :

E(z) = exp

{
1

2π

∫ 2π

0

eiθ + z

eiθ − z
log ρ(eiθ) dθ

}
, (7)

for some ρ ≥ 0 such that log ρ ∈ L1(T). Such

functions again have nontangential boundary

values a.e. on T, and N+ ∩ Lp = Hp. In

fact, (7) defines an Hp-function with modu-

lus ρ a.e. on T if, and only if, ρ ∈ Lp. A useful

consequence is that, whenever g1 ∈ Hp1 and

g2 ∈ Hp2, we have g1g2 ∈ Hp3 if, and only if,

g1g2 ∈ Lp3.
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Other Hardy Spaces

• We let H̄p be the Hardy space of the com-

plement of the disk, consisting of Lp func-

tions whose Fourier coefficients of strictly

positive index do vanish; these are, a.e. on

T, the complex conjugates of Hp-functions,

and they are also nontangential limits of

functions analytic in C\D having uniformly

bounded Lp means over all circles centered

at 0 of radius bigger than 1.

• We single out the subspace H̄p
0 ⊂ H̄p, con-

sisting of functions vanishing at infinity or,

equivalently, having vanishing mean on T.

Thus, a function belongs to H̄
p
0 if, and

only if, it is of the form e−iθg(eiθ) for some

g ∈ Hp.
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• The Hardy spaces Hp of the right half-

plane. consists of functions G analytic in

Π+ = {s; Res > 0} such that

sup
x>0

∫ +∞

−∞
|G(x+ iy)|p dy <∞,

and they have nontangential boundary func-

tions in Lp(iR). Clearly H∞ consists of

bounded analytic functions in Π+, and a

theorem of Paley-Wiener characterizes H2

as the space of Fourier transforms of func-

tions in L2(R) that vanish for negative ar-

guments. The study of Hp reduces to that

of Hp via the isometry :

g 7→ (1 + s)−2/pg

(
s− 1

s+ 1

)
(8)

from Hp onto Hp.



Rational and meromorphic functions

We let Rm,n be the set of rational functions

of type (m,n) that can be written p/q where

p and q are algebraic polynomials of degree at

most m and n respectively. A rational function

belongs to some Hp if, and only if, its poles

lie outside D, in which case it belongs to every

Hp.

A rational function belongs to H̄p if, and only

if, it can be written as p/q with degp ≤ degq

where q has roots in D only. In Systems termi-

nology Such a rational function is called stable

and proper, and it belongs to H̄
p
0 if, and only

if, degp < degq in which case it is called strictly

proper.

H
p
n is the set of meromorphic functions with

at most n poles in D, that may be written g/q

where g ∈ Hp and q is a polynomial of degree

at most n with roots in D only.

12



For applications to system-theory, it is often

necessary to consider functions in Hp or Hp

that have the conjugate-symmetry g(z̄) = g(z);

in the case of Hp this means they have real

Fourier coefficients, or in the case of H2 that

they are Fourier transforms of real functions.

For rational functions it means that the coeffi-

cients of p and q are real in the irreducible form

p/q. In the presence of conjugate symmetry,

every symbol will be decorated by a subscript

or a superscript “R”, like in H
p
R or RR

m,n etc...
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Motivations from System Theory

The connections between function theory and
linear dynamical system have been largely en-
countered already in the talks by J. Partington,
M. Deistler and G. Turchetti. They rely mainly
on two facts :

• the fact that these systems can be de-
scribed in the so-called frequency domain
as a multiplication operator by the trans-
fer function which belongs to certain Hardy
classes if the system has certain stability
properties (Fourier transform turns convo-
lutions into products);

• the fact that rational functions are pre-
cisely transfer functions of systems hav-
ing finite-dimensional state-space, namely
those that can be designed and handled in
practice.
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Discrete Systems

A linear causal discrete control system is a map
u→ y where the input u = (. . . , uk−1, uk, uk+1, . . .)
is a real-valued function of the discrete time k,
generating an output y = (. . . , yk−1, yk, yk+1, . . .)
via

yk =
∞∑
j=0

fjuk−j,

with fixed coefficients fj ∈ R.

Function theory enters the picture when sig-
nals are encoded by their generating functions:

u(z) =
∑
k∈Z

ukz
−k, y(z) =

∑
k∈Z

ykz
−k.

Indeed, if we define the transfer function of the
linear control system to be:

f(z) =
∞∑
k=0

fkz
−k,

the input-output behaviour can be described
as y(z) = f(z)u(z).
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Finite-Dimensional Systems

A linear control system is said to have finite

dimension n if its evolution can be described

in terms of a state variable xk ∈ Rn as :

xk+1 = Axk +Buk, yk = Cxk +Duk,

where A is a real n×n matrix, B (resp. C) a col-

umn (resp. row) vector with n real entries, and

D some real number, n being the smallest pos-

sible integer for which such an equation holds

[Kalman, Rosenbrock]. A linear time-invariant

system has dimension n iff its transfer-function

is rational of degree n and analytic at infinity.

The transfer-function is then :

f(z) = D+ C (zIn −A)−1B.
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Stability

Stability, namely the fact that the output dies

off if the input does, can be quantified using

operator norms. For instance :

(i) the system is bounded l2 → l2 iff f ∈
H̄∞

R , and the operator norm is ‖f‖∞: the

system is called (l2, l2)-stable;

(ii) the system is bounded l2 → l∞ iff f ∈
H̄2

R, and the operator norm is ‖f‖2: the

system is called (l2, l∞)-stable.

For finite-dimensional linear systems, any def-

inition of stability amounts to the requirement

that the poles of f should lie in {|z| < 1} thus

to f ∈ H̄p for some, and in fact all p.
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Stochastic Identification

Consider a discrete time real-valued stationary
stochastic process:

y = (. . . , y(k − 1), y(k), y(k+ 1), . . .).

If it is regular we have the Wold decomposition:

y(k) =
∞∑
j=0

fju(k − j)

where u is white noise and fj ∈ R. By the
Parseval identity :

∞∑
j=0

f2
j = E

{
y(k)2

}
which is independent on k by stationarity. If
we set

f(z) =
∞∑
k=0

fkz
−k ∈ H̄2,

we see that a regular process is obtained by
feeding white noise to an l2 → l∞ stable linear
system.

18



ARMA models

When f is rational, y is called an Auto-Regressive

Moving Average process, which is popular be-

cause it lends itself to efficient computations.

When trying to fit such a model, say of order

n to y, a standard goal is to minimize the vari-

ance of the error between the true output and

the prediction of the model :

min
g∈RR

n,n∩H̄2
‖f − g‖2. (9)

This principle can be used to identify a lin-

ear system from observed stochastic inputs,

although computing the fj is difficult because

it requires spectral factorization. In practice,

one would rather use time averages of the ob-

served sample path of y already in the opti-

mization criterium, but this is asymptotic to

the previous problem cf [Hannan and Deistler].

Note that (9) aims at a rational version of the

Szegö theory.
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Continuous time systems

These are convolution operators u(t) → y(t) of

the form:

y(t) =
∫ t

0
h(t− τ)u(τ) dτ.

The function h : [0,∞) → R is called the im-

pulse response of the system, as it formally cor-

responds to the output generated by a Dirac

delta. If h and u have exponential growth, so

does y and the one-sided Laplace transforms

Y (s), U(s) and H(s) are defined on some com-

mon half-plane {Rez > σ}. The system oper-

ates in this frequency domain as multiplication

by the transfer-function H:

Y (s) = H(s)U(s).

This time, rational transfer-functions of degree

n correspond to linear differential operators of

order n forced by the input u.
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Stability in continuous time.

The Hardy spaces involved are now those of

the right half-plane, and their relation to sta-

bility is :

(i) the system is bounded L2[0,∞) → L2[0,∞)

iff H ∈ H∞R ;

(ii) the system is bounded L2[0,∞) → L∞[0,∞)

iff H ∈ H2
R;

(iii) the system is bounded L∞[0,∞) → L∞[0,∞)

iff H ∈ WR, the Wiener algebra of the right

half-plane consisting of Laplace transforms

of summable functions [0,∞) → R.

21



Harmonic identification

One of the most effective methods to identify a

L∞ → L∞ stable system is to plug in a periodic

input u = eiωt and to observe the asymptotic

steady-state output :

y(t) = λeiφeiωt,

where λ and φ are respectively the modulus

and the argument of H(iω).

In this way, one can estimate the transfer func-

tion on the imaginary axis and he often wants

to rationally approximate the experimental data

he has got. In practice, the situation is more

complicated, because experiments are not avail-

able on the whole imaginary axis and the sys-

tem will not behave linearly at high frequencies

anyway.
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In fact, if Ω designates the bandwidth of the

system on the imaginary axis where experi-

ments are performed, one can usually get a

fairly precise estimate of H|Ω, but all he has on

iR\Ω are qualitative features of the system. It

seems natural to seek

min
G∈RR

n,n∩H2
‖H −G‖L2(Ω),

or

min
G∈RR

n,n∩H∞
‖H −G‖L∞(Ω),

but such a problem is often poorly behaved

because the optimum may not exist (spurious

poles!!) and even if it does it may lead to a

wild behaviour off Ω. One way out, which is

advocated here, is to extrapolate a complete

model in Hp from the knowledge of H|Ω before

going for further approximation.
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Bounded extremal problems

For I ⊂ T and J = T \ I, if h1 is a function on

E and h2 a function on J, we denote by h1 ∨
h2 the concatenated function defined on the

whole of T. The L2(I)/L2(J) analytic bounded

extremal problem is :

ABEP
(
L2(I), L2(J)

)
Given f ∈ L2(I), ψ ∈ L2(J) and a strictly

positive constant M , find g0 ∈ H2 such that

‖g0(eiθ)− ψ(eiθ)‖L2(J) ≤M and

‖f − g0‖L2(I) = min
g∈H2

‖g−ψ‖
L2(J)≤M

‖f − g‖L2(I) .

(10)

If I is symmetric with respect to R and f has

the conjugate symmetry, then g0 ∈ H2
R.
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The solution is best expressed upon introduc-

ing the Toeplitz operator :

φχJ : H2 → H2

g 7→ PH2(χJg) (11)

with symbol χJ, characteristic function of J.

Theorem If I has positive measure, there is a

unique solution g0 to (10). Moreover, if f

is not the restriction to I of a H2 function

whose L2(J)-distance to ψ is less than or

equal to M , this unique solution is given by

g0 =
(
1 + λφχJ

)−1
PH2(f ∨ (1 + λ)ψ),

(12)

where λ ∈ (−1,+∞) is the unique real num-

ber such that the right hand side of (12)

has L2(J)-norm equal to M .

Note that (12) indeed makes sense because

the spectrum of φχJ is [0,1].
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The theorem is due to J.Partington, J.Leblond,

L.B., but germane work was done by M.G.Krein

and P.Ya Nudel’man. It is closely related to

Carleman-Goluzin-Krylov interpolation, on which

many people have worked e.g. Patil, Aizen-

berg, V.P.Havin, Bart. Its principle was ab-

stracted to smooth Banach spaces and ap-

plied to the hyperinvariant subspace problem

[I.Chalendar, J.Partington, M.Smith].

The theorem provides a constructive means of

solving ABEP
(
L2(I), L2(J)

)
because, although

the correct value for λ is not known a priori, the

L2(J)-norm of the right-hand side in (12) is de-

creasing with λ so that iterating by dichotomy

allows one to converge to the solution.
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Because H2
|I

is dense in L2(I),, the error in

(10) can be made very small, but this is at

the cost of making M very big unless f ∈ H2
|I
,

a circumstance that essentially never happens

due to modelling and measurement errors.

In this connection, it is interesting to ask how

fast M goes to +∞ as the error e = ‖f −
g0‖L2(I) goes to 0.

Using the constructive diagonalization of Toeplitz

operators with multiplicity 1 [Rosenblum-Rovnyak],

one can get asymptotic estimates when I is an

interval. To state a typical result, put I =

(e−ia, eia) with 0 < a < π, and let W1,1(I) de-

note the Sobolev space of absolutely continu-

ous functions on I.
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Asymptotic estimates

Theorem Let f satisfy :

(1− e−iθeia)−1/2(1− e−iθe−ia)−1/2 f(eiθ) ∈ L1(I) ,

(13)

(1− e−iθeia)1/2(1− e−iθe−ia)1/2 f(eiθ) ∈ W1,1(I) .

(14)

If we set e = ‖f − g0‖2L2(I)
, where g0 is the

solution to (10), then to each K1 > 0 there

is K2 = K2(f) > 0 such that

M2 ≤ K2 e
2 exp{K1e

−1} . (15)

In the above statement, the factor e−1 in

the exponent cannot be replaced by h(e)

for some function h : R+ → R+ such that

h(x) = o(1/x) as x↘ 0.
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It is striking to compare this with the analogu-

ous result when f is the trace on I of a mero-

morphic function :

Theorem If f is of the form h/qN with h ∈ H2

and qN a polynomial of degree N whose

poles lie at distance d > 0 from T. Then

M2 = O
(
N2| log e|

)
, (16)

and the Landau symbol O holds uniformly

with respect to ‖h‖2 and d, the estimate

being sharp in the considered class of func-

tions.

The last two theorems are due to J.Partington,

J.Leblond and L.B. They suggest that approx-

imation is much easier if f extends holomor-

phically in a 2-D neighborhood of I.
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Uniform approximation

The L∞(I)/L∞(J) problem can also be adressed :

ABEP
(
L∞(I), L∞(J)

)
Given f ∈ L∞(I), ψ ∈ L∞(J), and a strictly

positive constant M , find g0 ∈ H∞ such

that

‖g0(eiθ)− ψ(eiθ)‖L∞(J) ≤M and

‖f − g0‖L∞(I) = min
g∈H∞

‖g−ψ‖L∞(J)≤M

‖f − g‖L∞(I) .

(17)

A seemingly more general version is obtained

by letting M be a function in L∞(J) and the

constraint become |g − ψ| ≤ M a.e. on J.

If ψ/M ∈ L∞(J), this version reduces to the

present one.
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Indeed, either logM /∈ L1(J) in which case the

inequality log |g| ≤ logM+log(1+|ψ/M |) shows

that g = 0 is the only candidate approximant,

or else logM ∈ L1(J) and we can form the

outer function wM ∈ H∞ having modulus 1

on I and M on J; then, upon replacing f by

f/wM and ψ/wM and observing that g belongs

to H∞ and satisfies |g| ≤ M a.e. on J if, and

only if, g/wM lies in H∞ and satisfies g/wM ≤ 1

a.e. on J (because g/wM lies by construction

in the Nevanlinna class whose intersection with

L∞(T) is H∞), we are back to M = 1. If ψ/M /∈
L∞(J) the situation is more complicated.
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Hankel Operators.

This time we introduce Hankel rather than Toeplitz
operators [N.Nikolskii, J.Partington, V.Peller].
Given ϕ ∈ L∞, the Hankel operator with sym-
bol ϕ is

Γϕ : H2 → H̄2
0

given by

Γϕg = PH̄2
0
(ϕg)

where PH̄2
0

denotes the orthogonal projection

of L2(T) onto H̄2
0. A Hankel operator is bounded,

and it is compact whenever it admits a contin-
uous symbol; note that the operator only char-
acterizes the symbol up to the addition of some
H∞-function. Thus, whenever ϕ ∈ H∞+C(T)
(the latter is in fact an algebra), the operator
Γϕ is compact and therefore it has a maximiz-
ing vector v0 ∈ H2, namely a function of unit
norm such that ‖Γϕ(v0)‖2 = |||Γϕ|||, the norm
of Γϕ. Let us mention Kronecker’s theorem
that Hankel operators of finite rank are those
admitting a rational symbol.
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Theorem Assume that I has positive mea-

sure and that ψ extends continuously to

J. Then, there is a solution g0 to (17).

Moreover, if f is not the restriction to I of

a H∞ function whose L∞(J)-distance to ψ

is less than M , so that the value β of the

problem is strictly positive, and if moreover

f ∨ ψ ∈ H∞ + C(T), this solution is unique

and given by :

g0 = w−1
M/β

PH2

(
(f ∨ ψ)wM/βv0

)
v0

, (18)

where wM/β is the outer function wih mod-

ulus M/β on I and modulus 1 on J, and v0
is a maximazing vector of the Hankel op-

erator Γ(f∨ψ)wM/β
.

Here again, the solution has conjugate symme-

try if the data do.
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The theorem is due to J. Leblond, J.Partington

and L.B., but makes essential use of Nehari’s

theorem to be reviewed shortly. Although the

value β of the problem is not known a priori,

it is the unique positive real number such that

the right hand side of (18) has modulus M

a.e. on J, and so the theorem allows for us

to constructively solve ABEP
(
L∞(I), L∞(J)

)
if a maximizing vector of Γ(f∨ψ)wM/β

can be

computed for given β. Generically convergent

algorithms to this effect have been given in

the case where I is an interval and f ∨ ψ is

C1-smooth.
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Bounded extremal problems can be posed in

various contexts. Versions with constraint on

real and imaginary part with application to in-

verse problems of the 2-D Laplacean were de-

veloped by A. Ben Abda, J. Leblond,J. Part-

ington, and others. The mixed L2/L∞ problem

also can be solved, and gives rise to a spectral

equation for an unbounded Toeplitz operator,

whose solution was developed through a poly-

nomial approximation scheme by F. Seyfert.

Abstract versions in Hilbert and Banach spaces

are due to Chalendar, Leblond, Partington, Smith.

But we leave such problems for now, and we

turn briefly to rational and meromorphic ap-

proximation.
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AAK Theory

We saw that rational approximation is an im-

portant issue in the modelling of linear dynam-

ical systems. Let us review the Adamjan-Arov-

Krein theory (in short : AAK) which deals

with a related problem, namely meromorphic

approximation in the uniform norm.

For k = 0,1,2, . . ., recall that the singular val-

ues of Γϕ are defined by the formula:

sk(Γϕ) := inf {|||Γϕ −A|||;

A an operator of rank ≤ k on H2
}
.

When ϕ ∈ H∞+C(T), the singular values are,

by compactness, the square roots of the eigen-

values of Γ∗ϕΓϕ arranged in non-increasing or-

der; a k-th singular vector is an eigenvector of

unit norm associated to sk(Γϕ).
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A celebrated connexion between the spectral

theory of Hankel operators and best meromor-

phic approximation on the unit circle is given

by AAK theory as follows.

inf
g∈H∞

n

‖ϕ− g‖∞ = sn(Γϕ) (19)

where the infimum is attained; moreover, the

unique minimizer is given by the formula

gn = ϕ−
Γϕvn
vn

=
PH2(ϕvn)

vn
, (20)

where vn is any n-th singular vector of Γϕ. For-

mula (20) entails in particular that the inner

factor of vn is a Blaschke product of degree

at most n. The error function ϕ − gn has fur-

ther remarkable properties; for instance it has

constant modulus sn(Γϕ) a.e. on T.
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Glover’s bound

From the point of view of constructive approx-

imation, it is remarkable that the infimum in

(19) can be computed, and the problem as to

whether one can pass from the optimal mero-

morphic approximant in to a nearly optimal ra-

tional approximant has attracted much atten-

tion. Most notably, it was shown by [Glover]

that PH̄2
0
(gn), which is rational in Rn−1,n, pro-

duces an L∞ error within

2
∞∑

j=n+1

sj(Γϕ) (21)

of the optimal one out of Rn−1,n. To estimate

how good this bound requires a link between

the decay of the singular values of Γϕ and the

smoothness of ϕ.
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Decay and smoothness.

The summability of the singular values is equiv-

alent to the belonging of PH̄2
0
(ϕ) to the Besov

class B1
1 of the disk as shown by V.Peller, but

this does not tell how fast the series converges.

When ϕ is analytic outside some compact K ⊂
D, it is an estimate of Walsh that, if en is the

optimal error in uniform approximation to ϕ

from Rn,n on C \ D, then

lim sup e
1/n
n ≤ e−1/(C) (22)

where C is the capacity of the condenser (K,T).
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Green Capacity.

To make for a definition of capacity here, let

us merely mention if K is non polar that there

is a unique µ among all probability measures

on K that minimizes the Green energy:

I(µ) =
∫ ∫

log
∣∣∣∣1− z̄t

t− z

∣∣∣∣ dµ(z)dµ(t).
This µ is, by definition, the Green equilibrium

distribution on the plate K of the condenser

(K,T), whose capacity is 1/I(µ) [Saff and Totik]

.
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Geometric rates

Walsh’s estimate shows that the decay of the

singular values is geometric when ϕ is ana-

lytic outside D and across T, and allows for

an appraisal of the tail in Glover’s estimates,

although this appraisal is pessimistic in that,

as was conjectured by Gonchar and proved by

Parfenov and Prokhorov :

lim inf e
1/m
m ≤ e−1/(2C).

However, no algorithmic process is known to

construct an optimal subsequence. But for

functions defined by Cauchy integrals over so-

called symmetric arcs, the lim inf is a true limit

as shown by Stahl, Gonchar and Rachmanov.

For Markov functions (Cauchy transforms of

positive measures), sharp estimates are avail-

able [Prokhorov, Saff, L.B.]
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Rational approximation.

Let us conclude with a few words concerning

H̄2 rational approximation of type (n, n). For a

comparison with AAK theory, let us point out

that

inf
g∈Rn−1,n∩H̄2

0

‖ϕ− g‖2 = sn(Γ
′
ϕ) (23)

where Γ′ϕ is again the Hankel operator but this

time H∞ → H̄2
0, and the error formula is still

valid while the maximizing vector is necessarily

a Blaschke product of degree n. The nonlinear

character of the set of Blaschke products of

given degree makes for a much more difficult

problem, and practical algorithms have to rely

on numerical searches with the usual burden of

local minima.
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In the special case of Markov functions, also

correspond to the transfer functions of so-called

relaxation systems a lot is again known includ-

ing sharp error rates [Prokhorov, Saff, Stahl,

Wielonsky, L.B.], asymptotic uniqueness of a

critical point for Szegö-smooth measures [Stahl,

Wielonsky] and uniqueness for all orders and

small support [Wielonsky, L.B.]. For certain

entire functions like the exponential, sharp er-

ror rates and asymptotic uniqueness of a criti-

cal point have also been derived [Saff, Wielon-

sky, L.B.], but for most classes of functions

the situation is still open. Finally we point

out that, despite the lack of a general theory,

rather efficient algorithms are available to gen-

erate local minima [Caedelli, Fulcheri, Grimm,

Marmorat, Olivi, L.B.].
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rational approximation of a hyperfrequency filter

’H2 approx. in degree 8’
’frequency measurements’

The

dotted line in this diagram is the Nyquist plot

(i.e. the image of the bandwidth on the imag-

inary axis) of the transfer function of the re-

flexion of a hyperfrequency filter measured by

the French CNES (Toulouse). The data were

first completed by solving an H̄2 bounded ex-

tremal problem and then approximated by a ra-

tional function of degree 8 whose Nyquist plot
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has been superimposed on the figure. The lo-

cus is not conjugate-symmetric because a low-

pass transformation sending the central fre-

quency to the origin was performed on the

data. This illustrates that approximation with

complex Fourier coefficients can be useful in

system identification, even though the physi-

cal system is real.


