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PART I: The general framework

1. Introduction

Time Series Analysis: Systematic approaches to extract

information from time series, i.e., from observations

ordered in time (no permutation invariance).

time series yt, t = 1, . . . , T ; yt ∈ Rn

discrete, equidistant observations

• Data driven modeling

• Signal and feature extraction

Observations may be “noisy”.

Questions: Trends,

Hidden periodicities,

Dependence on time (dynamics)

Models: Stationary processes

Linear systems
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2. The History of Time
Series Analysis
2.1. The Early History (1772 - 1920)

• Late 18th century astronomy:

– More accurate data from observation of the orbits

of the planets

– Kepler’s laws are based on the two body problem

−→ Are there deviations from the elliptic shape

of the orbits (beside measurement noise)?

hidden periodicities or trends

Question of secular changes (Laplace 1787; Jupiter,

Saturn) Harmonic analysis:

– J. L. Lagrange (1736 - 1813), Oeuvres, Vol 6,

1772

– L. Euler (1707 - 1783)

– J. B. J. Fourier (1768 - 1831), Théorie analytique

de la chaleur
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• Method of least squares for fitting a line into a scatter

plot: A.M. Legendre and C.F. Gauss: Early 19th

century.

• Periodogramm: G.C. Stokes (1879), A. Schuster

(1894) Detection of hidden periodicities:

IT (λ) =
1

T
|

T∑

t=1

xte
−iλt|2

T . . . sample size

Sunspot numbers, periodicity of earthquakes

• Empirical analysis of business cycles

W.S. Jevons: Periodic fluctuations in economic time

series (∼ 1870, 1880)

H. Moore “Economic Cycles: Their Law and Cause”

1914

W. Beveridge 1922: Wheat price index
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2.2. The formation of modern time
series analysis (1920-1970)

• Business cycles: Not exactly periodic:

Stochastic models: AR and MA process e.g.

yt = ayt−1 + εt, yt = εt + bεt−1

(εt) white noise

G.U. Yule (1921, 1927) E. Slutzky (1927)

R. Frisch: Propagation and Impulse Problems in

Dynamic Econometrics (1933)

• Theory of stationary processes:

Concept: A. Ya Khinchin (1934)

Spectral representation: A. N. Kolmogorov (1939,

1941)

Wold representation: H. Wold (1938)

Factorization of spectra; linear least squares

forecasting and filtering A.N. Kolmogorov (1939,

1941)
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Ergodic theory: G.D. Birkhoff (1931), A. Ya Khinchin

(1932)

• Cowles Commission, Identifiability and ML estimation

of (multivariate) ARX models.

H.B. Mann and A. Wald (1943),

T. Haavelmo (1944),

T.C. Koopmann, H. Rubin and R.B. Leipnik (1950);

Klein I model

• Spectral Estimation:

Daniel (1946),

R.B. Blackman and J. Tukey (1958),

U. Grenander and M. Rosenblatt (1958),

E. J. Hannan (1960)

• Asymptotic Theory for (mainly SISO) AR and ARMA

estimation: Durbin, E.J. Hannan (1970), T.W.

Anderson (1971)
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2.3. The recent past (1970-1990)

• Box, G.E.P. and G.M. Jenkins (1970)

Explicit instructions for SISO system identification:

Differencing, Order determination, ML-estimation,

validation

• Kalman: Structure theory for state space systems:

Realization and parametrization. MIMO case

• Order estimation by information criteria such as AIC

or BIC: Akakike, Hannan, Rissanen, Schwartz

• Asymptotic properties of ML-type estimation: E.J.

Hannan (1973), W. Dunsmuir and E.J. Hannan

(1976), P. Caines and L. Ljung (1979)

• Textbooks (late 80ies): Ljung, Caines, Hannan and

Deistler, Söderström and Stoica
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3. Areas of application

• Signal processing

• Control

• Econometrics: Macroeconometrics, finance,

microeconometrics, marketing, logistics

• Medicine and biology
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PART II: Stationary Processes

4. Stationary processes
in time domain

For us a stochastic process is a model for random

phenomena evolving in time

(Ω,A,P) probability space

yt : Ω→ Cn random variable

(yt|t ∈ T ), random process, T ⊂ R

in particular T = Z

Def.: A stochastic process (yt) is called (weakly)

stationary if:

(i) Ey∗t yt <∞ t ∈ Z

(ii) Eyt = m = const t ∈ Z

(iii) γ(s) = Eyt+sy
∗
t does not depend on t
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Covariance function

γ : Z→ Cn×n : γ(t) = Eyty
∗
0

describes all linear dependence relations between the

one dimensional random variables y
(i)
t , y

(j)
s

γ is a covariance function if and only if γ is nonnegative

definite

y
(i)
t ∈ L2 (over (Ω,A,P))

Note L2 with inner product

< x, y >= Exȳ

is a Hilbert space

Def.: The time domain H ⊂ L2 of a stationary

process yt is the Hilbert space spanned by

{y(i)
t |t ∈ Z, i = 1, . . . , n}
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5. Stationary processes
in frequency domain

As a consequence of the “translation invariance” of the

covariances we have:

Theorem: For every stationary process (yt) there is a

unique unitary operator U : H → H such that

y
(i)
t = U ty

(i)
0 , i = 1, . . . , n, t ∈ Z holds.

From this wie obtain

Theorem: (Spectral representation of stationary

processes). For every stationary process (yt) there

exists a process (z(λ)|λ ∈ [−π, π]) (called process

with orthogonal increments)
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satisfying

(i) z(−π) = 0, z(π) = x0

(ii) limε↓0 z(λ+ ε) = z(λ)

(iii) Ez∗(λ)z(λ) <∞

(iv) E{(z(λ4)− z(λ3))(z(λ2)− z(λ1))
∗} = 0

for λ1 < λ2 ≤ λ3 < λ4

such that

yt =

∫

eiλtdz(λ)

holds.

Thus, every stationary process is obtained as a limit of

harmonic processes

yt =
h∑

j=1

eiλjtz(λj)
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Second moments in frequency domain:

Spectral distribution function

F : [−π, π]→ Cn×n : F (λ) = Ez(λ)z(λ)∗

Spectral representation of covariance function

γ(t) =
∫
eiλtdF (λ)

γ ←→ F

Spectral density (w. r. t. L-measure)

F (λ) =

∫ λ

−π

f(ω)dω

exists e.g. if
∑
‖γ(t)‖2 <∞

γ(t) =

∫

eiλtf(λ)dλ

f(λ) = (2π)−1
∑

γ(t)e−iλt

f (if it exists) contains the same information as γ but,

often displayed in a more convenient form.

Peaks of f indicate dominating frequency bands.
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6. Linear transformations
of stationary processes

Let (xt) be stationary; a linear transformation of (xt) is

given by yt =
∑∞

j=−∞ kjxt−j ; kj ∈ Rn×m;
∑ ‖kj‖ <∞
then (x′t, y

′
t)
′ is jointly stationary.

(kj |t ∈ Z) weighting function

yt =
∫
eiλtdzy(λ) =

∑
kj

∫
eiλ(t−j)dzx(λ) =

∫
eiλt (

∞∑

j=−∞

kje
−iλj)

︸ ︷︷ ︸

transfer function k(e−iλ)

dzx(λ)

k ←→ (kj)

The transfer function describes the linear transformation

in frequency domain.
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Linear system

stable, time invariant

(xt) input

(yt) output

Linear system with noise

(εt) white noise, i.e., Eεt = 0, Eεsε
′
t = δst · Σ

fε = (2π)−1 · Σ
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“dzy(λ) = k(e−iλ)dzx(λ)”

Transformation of second moments in frequency domain

fy = kfxk
∗

fyx = kfx

7. The Wold decomposition

Let (xt) be stationary

Hx(t) = sp{x(i)
s |i = 1, . . . , n, s ≤ t} ⊂ Hx is

called the past of (xt)

Def.: A stochastic process (xt) is called

(linear) regular if
⋂

t Hx(t) = {0}
and (linear) singular if

⋂

tHx(t) = Hx
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Theorem: (Wold decomposition)

(i) Every stationary process (xt) can be uniquely

decomposed as

xt = yt + zt

where (yt) is regular, (zt) is singular, Eytz
∗
s = 0,

y
(i)
t ∈ Hx(t), z

(i)
t ∈ Hx(t)

(ii) Every regular process (yt) can be represented as

yt =
∞∑

j=0

kjεt−j ,
∑

‖kj‖2 <∞ (1)

where (εt) is white noise satisfying ε
(i)
t ∈ Hy(t),

i = 1, . . . , n

Thus, “practically every” stationary process is obtained as

an output of a linear system whose input is the “simplest”

random process, namely white noise.
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(εs, s ≤ t) constitutes an “orthonormal” basis for

Hy(t), (1) is an abstract Fourier series.

Linear least squares forecasting:

of yt+τ based on ys, s ≤ t
project y

(i)
t+τ on Hy(t):

yt+τ =
∞∑

j=h

kjεt+τ−j

︸ ︷︷ ︸

forecast ŷt,τ

+
h−1∑

j=0

kjεt+τ−j

︸ ︷︷ ︸

forecasting error

Spectral factorization:

The spectral density of (yt) is given by

fy = (2π)−1 · (
∑

j

kje
−iλj)

︸ ︷︷ ︸

k(e−iλ)

·Σ · k(e−iλ)∗ (2)

Question: Obtain k (and Σ) from fy (in 2).
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8. Estimation I

Estimation of mean

ȳT = 1
T

∑T
t=1 yt

Estimation of covariances (ass. Eyt = 0)

γ̂(t) = 1
T

∑

s yt+sy
∗
s

Estimation of spectra

Periodogram

IT (λ) =
∑
γ̂(t)e−iλt

is not consistent; smoothed periodogram
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9. Rational spectra, ARMA and
state-space systems

ARMA system

p
∑

j=0

ajyt−j

︸ ︷︷ ︸

=

p
∑

j=0

bjεt−j

a(z)yt = b(z)εt

z: backward shift as well as complex variable

Stability condition

det a(z) 6= 0 |z| ≤ 1

Miniphase condition

det b(z) 6= 0 |z| < 1

Normalization

a0 = b0

Steady state solution

yt = a−1(z)b(z)
︸ ︷︷ ︸

Transfer function k(z)

εt
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This transfer function corresponds to the Wold

decomposition.

State space system

xt+1 = Axt +Bεt

yt = Cxt + εt

xt: state (n-dimensional)

Stability condition

|λmax(A)| < 1

Miniphase condition

|λmax(A−BC)| ≤ 1

Steady state solution

yt = (C(Iz−1 −A)−1B + I)εt

again corresponds to the Wold decomposition
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Theorem:

(i) Every rational and a.e. nonsingular spectral density

matrix may be uniquely factorized (as in (2)), where

k(z) is rational (in z ∈ C), analytic within a circle

containing the closed unit disk, det k(z) 6= 0,

|z| < 1 and Σ > 0.

(ii) For every rational transfer function k satisfying the

above mentioned properties there is a stable and

miniphase ARMA system with a0 = b0 and

conversely every such ARMA system has a transfer

function with the properties mentioned in (i).

(iii) A completely analogous statement holds for state

space systems
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PART III: Identification of linear systems

10. Problem statement

Data driven modeling: Find a good model from (noisy)

data

One has to specify:

• The model class, i.e. the class of all a priori feasible

candidate systems to be fitted to the data. Here the

model class is the set of all stable and miniphase

ARMA or state space systems (for given s)

• The class of feasible data

• An identification procedure, which is a set of rules - in

the fully automatized case a function - attaching to

every feasible data string yt, t = 1, . . . , T a system

from the model class.

The theory of identification is mainly concerned with the

development and evaluation of identification algorithms.
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Steps in actual identification

• Data generation and preprocessing of data (e.g.

removing outliers)

• Description of the model class using the prior

knowledge available

• Identifying the model

• Model validation

In identification in general the following parameters

have to be determined from data

• Integer-valued parameters such as the state

dimension of a minimal state space system; this

defines a subclass, namely the class of all systems of

order n

• Real-valued parameters, such as the entries in

(A,B,C)

Semi-nonparametric estimation problem
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3 modules of the problem:

• Structure theory: Idealized identification, we

commence from the population second moments of

the observations or from the (“true”) transfer

functions rather than from data

• Estimation of real-valued parameters for given

integer-valued parameters

• Model selection: Estimation of integer-valued

parameters
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11. Structure Theory

Note: (2) defines a one-to-one relation between f and

k, Σ under our assumptions.

We restrict ourselves to state space systems:

Let UA denote the set of all rational s× s transfer

functions k(z) satisfying our assumptions and let TA

denote the set of all state space systems (A,B,C) (for

fixed s but variable n) satisfying our assumptions; finally

let the mapping π : TA → UA be defined by

π(A,B,C) = C(Iz−1 −A)−1B + I
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• π is not injective (no identifiability)

π−1(k) the class of observationally equivalent

systems

• There exists no continuous selection of

representatives from the equivalence classes

“illposedness”
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Identifiability and continuity of the parametrization are

desirable: UA and TA are broken into bits Uα and Tα

respectively s.t. π/Tα is injective and surjective and its

inverse, the parametrization

ψα : Uα → Tα ⊂ R
dα

is continuous

Free parameters Rdα 3 τα ↔ (A,B,C)

for given Tα.
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12. Estimation of real-valued
parameters

(Gaussian) Likelihood function (−2T−1 × log)

LT (τα,Σ) = T−1 log det ΓT (τα,Σ)

+T−1y′(T )Γ−1
T (τα,Σ)y(T )

where

y(T ) = (y′1, . . . , y
′
T )′ (stacked sample)

ΓT (τα,Σ)
︸ ︷︷ ︸

T ·s×T ·s

= (
∫
e−iλ(r−t)fy(λ; τα,Σ)dλ)r,t=1,...,T

ML estimators:

(τ̂α,T , Σ̂T ) = arg minτα∈Tα,Σ∈Σ LT (τα,Σ)
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Coordinate free MLE: k̂T

Asymptotic properties:

• Consistency:

k̂T → k0

Σ̂T → Σ0

• Asymptotic normality

√
T (τ̂α,T − τα,0)→ N(0, V )
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13. Model Selection

Example: Estimation of n, analogous for α

Information criteria: Tradeoff between fit and complexity

IT (n) = log det Σ̂T (n)
︸ ︷︷ ︸

Measure of fit

+ (2ns)
︸ ︷︷ ︸

dimension, measures complexity

c(T )

T

n̂T = arg min In

AIC criterion c(T ) = 2

BIC criterion c(T ) = log(T )

BIC is consistent, AIC not

Post model selection properties
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