Stationary Processes and
Linear Systems

M. Deistler

Y

O

Econometrics, Operations Research
and Systems Theory

Institute of Econometrics, OR and Systems Theory
University of Technology, Vienna
manfred. dei stl er @uw en. ac. at
http:\\ww. eos.tuw en. ac. at



Porquerolles - 09/2003  Stationary Processes and Linear Systems

PART I: The general framework ‘

1. Introduction

Time Series Analysis: Systematic approaches to extract

information from time series, i.e., from observations
ordered in time (no permutation invariance).
time seriesy;, t =1,...,T; y; € R"

discrete, equidistant observations
e Data driven modeling
e Signal and feature extraction

Observations may be “noisy”.

Questions:  Trends,
Hidden periodicities,

Dependence on time (dynamics)

Models: Stationary processes

Linear systems
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2. The History of Time
Series Analysis

2.1. The Early History (1772 - 1920)

e Late 18" century astronomy:

— More accurate data from observation of the orbits

of the planets
— Kepler’s laws are based on the two body problem

—— Are there deviations from the elliptic shape
of the orbits (beside measurement noise)?

hidden periodicities or trends

Question of secular changes (Laplace 1787; Jupiter,

Saturn) Harmonic analysis:

— J. L. Lagrange (1736 - 1813), Oeuvres, Vol 6,
1772

— L. Euler (1707 - 1783)
— J. B. J. Fourier (1768 - 1831), Théorie analytique

de la chaleur
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e Method of least squares for fitting a line into a scatter
plot: A.M. Legendre and C.F. Gauss: Early 19"

century.

e Periodogramm: G.C. Stokes (1879), A. Schuster
(1894) Detection of hidden periodicities:

T
1 —i
Ir(A) = =] p_wee™™P?
t=1

1. ..sample size

Sunspot numbers, periodicity of earthquakes

e Empirical analysis of business cycles
W.S. Jevons: Periodic fluctuations in economic time
series (~ 1870, 1880)
H. Moore “Economic Cycles: Their Law and Cause”
1914
W. Beveridge 1922: Wheat price index
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2.2. The formation of modern time
series analysis (1920-1970)

e Business cycles: Not exactly periodic:

Stochastic models: AR and MA process e.g.
Yt = AYt—1 + €, Yy = € + beg_q

(€¢) white noise
G.U. Yule (1921, 1927) E. Slutzky (1927)
R. Frisch: Propagation and Impulse Problems in

Dynamic Econometrics (1933)

e Theory of stationary processes:
Concept: A. Ya Khinchin (1934)
Spectral representation: A. N. Kolmogorov (1939,
1941)
Wold representation: H. Wold (1938)
Factorization of spectra; linear least squares
forecasting and filtering A.N. Kolmogorov (1939,
1941)
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Ergodic theory: G.D. Birkhoff (1931), A. Ya Khinchin
(1932)

e Cowles Commission, ldentifiability and ML estimation
of (multivariate) ARX models.
H.B. Mann and A. Wald (1943),
T. Haavelmo (1944),
T.C. Koopmann, H. Rubin and R.B. Leipnik (1950);

Klein | model

e Spectral Estimation:
Daniel (1946),
R.B. Blackman and J. Tukey (1958),
U. Grenander and M. Rosenblatt (1958),
E. J. Hannan (1960)

e Asymptotic Theory for (mainly SISO) AR and ARMA
estimation: Durbin, E.J. Hannan (1970), T.W.
Anderson (1971)
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2.3. The recent past (1970-1990)

e Box, G.E.P. and G.M. Jenkins (1970)
Explicit instructions for SISO system identification:
Differencing, Order determination, ML-estimation,

validation

e Kalman: Structure theory for state space systems:

Realization and parametrization. MIMO case

e Order estimation by information criteria such as AIC

or BIC: Akakike, Hannan, Rissanen, Schwartz

e Asymptotic properties of ML-type estimation: E.J.
Hannan (1973), W. Dunsmuir and E.J. Hannan
(1976), P. Caines and L. Ljung (1979)

e Textbooks (late 80ies): Ljung, Caines, Hannan and

Deistler, Soderstrom and Stoica
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3. Areas of application

e Signal processing
e Control

e Econometrics: Macroeconometrics, finance,

microeconometrics, marketing, logistics

e Medicine and biology
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PART II: Stationary Processes |

4. Stationary processes
INn time domain

For us a stochastic process is a model for random
phenomena evolving in time

(€2, A, P) probability space

y; : 2 — C"™ random variable

(y¢|t € T'), random process, " C R

in particular ' = Z

Def . : A stochastic process (y; ) is called (weakly)

stationary if:
(i) Eyiys <oo teZ
(i) Eyy =m =const te

(i) v(s) = Ey;1sy; does not depend on ¢

Institute of Econometrics, OR and Systems Theory - University of Technology, Vienna  —-8—




Porquerolles - 09/2003 4. Stationary processes in time domain

Covariance function

Y1 Z— CMy(t) = By

describes all linear dependence relations between the
one dimensional random variables y,gi), yéj)

7y is a covariance function if and only if 7y is nonnegative
definite

y,gi) € Lo (over (2, A, P))

Note Lo with inner product

< x,y >= Ezy

Is a Hilbert space

Def . : The time domain H C L+ of a stationary

process v is the Hilbert space spanned by
Wlez i=1,...n
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5. Stationary processes
In frequency domain

As a consequence of the “translation invariance” of the

covariances we have:

Theor em For every stationary process (y; ) there is a
unique unitary operator U : H — H such that
y§’> = Uty(()z), 1 =1,...,n,t € Z holds.

From this wie obtain

Theor em (Spectral representation of stationary
processes). For every stationary process (yt) there
exists a process (z(A)|\ € [—m, 7]) (called process

with orthogonal increments)
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satisfying

(i) 2(—7) =0, z(7) = xg
(i) limejg 2(A+€) = z(A)
(i) E2*(A\)z(\) < o0

(iv) E{(2(A1) — 2(A3))(2(A2) — 2(A1))*} =0
for \1 < Ao < A3 < M4

such that
Yy = /ei’\tdz()\)

holds.

Thus, every stationary process is obtained as a limit of

harmonic processes

h

Yt = Z GthZ()‘j)

j=1
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Second moments in frequency domain:
Spectral distribution function
F:|l—mn] —=C"": F(A) =Ez(AN)z(\)*

Spectral representation of covariance function

V(1) = [ eMdF(N)
Y e I

Spectral density (w. r. t. L-measure)

A
F(\) = ) f(w)dw

exists e.g. if >_ ||v(¢)]|* < oo

W0 = [N
FO) = @r) Y (e

f (if it exists) contains the same information as -y but,
often displayed in a more convenient form.

Peaks of f indicate dominating frequency bands.
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0. Linear transformations
of stationary processes

Let () be stationary; a linear transformation of (¢ ) is
given by y; = Z;?i_oo kijzi_j; k; € RP™,

> ksl < o

then (x}, ;)" is jointly stationary.

(k;|t € Z) weighting function

ye = [ eMdzy(\) = X ky [P dz () =

JeX (D kem™) dz (M)

J=0C0
\ J
N~

transfer function k(e %)
k—— (k;)
The transfer function describes the linear transformation

in frequency domain.
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Linear system

() — ko —

stable, time invariant
(x¢) input
(y¢) output

Linear system with noise

i e

(e ——M

() —— 1 [Et ]

y ()

(€;) white noise, i.e., Ee; = 0, Eege}, = b5 - 2
fe=02m) 1.2
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‘dzy,(N) = k(e™)dz, (M)
Transformation of second moments in frequency domain
fy — kfmk*
fyw — kfa:

/. The Wold decomposition

Let () be stationary
H,(t) = Sp{a:g&)\i =1,...,n,s <t} C H,is

called the past of (x)

Def . : A stochastic process (x;) is called
(linear) regular if (), H,(t) = {0}
and (linear) singular if (), Hy(t) = H,
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Theor em (Wold decomposition)

(i) Every stationary process () can be uniquely

decomposed as
Tt = Yt T+ 2t

where (y;) is regular, (z;) is singular, Ey;2¥ = 0,
) € Hy(t), 2" € Hy(1)

(i) Every regular process (¥;) can be represented as
oo
o= kjej Y lIkIP <o @
§=0

where (€;) is white noise satisfying egi) c Hy(t),

1=1,...,n

Thus, “practically every” stationary process is obtained as
an output of a linear system whose input is the “simplest”

random process, namely white noise.
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(€5, s < t) constitutes an “orthonormal” basis for

H,(t), (1) is an abstract Fourier series.

Linear least squares forecasting:

of Y4, basedon ys, s < ¢
project y&)T on H(t):

00 h—1
Yprr = E ki€iyr—j+ E ki€iyr—;

J/ \ . J/
~ ~

forecast 4 - forecasting error

Spectral factorization:

The spectral density of () is given by

fy= @07 (ke )2 ke @

J

A\ 4
~

k(e—tN)

Quest i on: Obtain k (and X) from f, (in 2).
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8. Estimation |

Estimation of mean

_ T
yr = % Zt:1 Yt

Estimation of covariances (ass. [£y; = 0)

’?(t) — % Zs yt—l—sy:

Estimation of spectra

Periodogram

Ir()) = S A(t)e

IS not consistent; smoothed periodogram
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lI: Stationary Processes

9. Rational spectra, ARMA and
state-space systems

ARMA system

p
E bjét_j
7=0

b(z)eq

z: backward shift as well as complex variable

Stability condition
deta(z) #0 |z| <1

Miniphase condition
detb(z) #0 |z] <1

Normalization

aOZbO

Steady state solution
ye= a '(2)b(2) e

7

TV
Transfer function k(z)
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This transfer function corresponds to the Wold

decomposition.

State space system

Li4+1 = Aﬂft + BEt
yr = Crp+e

T+. state (n-dimensional)

Stability condition
[Amac(A)] <1

Miniphase condition

‘Amax(A o BC)‘ S 1

Steady state solution
y; = (C(Iz7t —A)™IB + D¢

again corresponds to the Wold decomposition
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Theor em

(i) Every rational and a.e. nonsingular spectral density
matrix may be uniquely factorized (as in (2)), where
k(z) is rational (in z € C), analytic within a circle
containing the closed unit disk, det k(z) # 0,
|z| < 1and X > 0.

(i) For every rational transfer function k satisfying the
above mentioned properties there is a stable and
miniphase ARMA system with ag = by and
conversely every such ARMA system has a transfer

function with the properties mentioned in (i).

(i) A completely analogous statement holds for state

space systems
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PART Ill: identification of linear systems ‘

10. Problem statement

Data driven modeling: Find a good model from (noisy)
data

One has to specify:

e The model class, i.e. the class of all a priori feasible
candidate systems to be fitted to the data. Here the
model class is the set of all stable and miniphase

ARMA or state space systems (for given s)
e The class of feasible data

e An identification procedure, which is a set of rules - in
the fully automatized case a function - attaching to
every feasible data string y;, t = 1, ...,7" a system

from the model class.

The theory of identification is mainly concerned with the

development and evaluation of identification algorithms.
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Steps in actual identification

e Data generation and preprocessing of data (e.g.

removing outliers)

e Description of the model class using the prior

knowledge available
e |dentifying the model
e Model validation

In identification in general the following parameters

have to be determined from data

e Integer-valued parameters such as the state

dimension of a minimal state space system,; this
defines a subclass, namely the class of all systems of

order n

e Real-valued parameters, such as the entries in
(A,B,C)

Semi-nonparametric estimation problem
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3 modules of the problem:

e Structure theory: ldealized identification, we
commence from the population second moments of
the observations or from the (“true”) transfer

functions rather than from data

e Estimation of real-valued parameters for given

integer-valued parameters

e Model selection: Estimation of integer-valued

parameters
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11. Structure Theory

Note: (2) defines a one-to-one relation between f and

k, 32 under our assumptions.

We restrict ourselves to state space systems:

Let U 4 denote the set of all rational s X s transfer
functions k(z) satisfying our assumptions and let 7’4
denote the set of all state space systems (A, B, C') (for
fixed s but variable n) satisfying our assumptions; finally

let the mapping 7 : T4 — U 4 be defined by

m(A,B,C)=C(Iz"' —A) ™ 'B+1

Institute of Econometrics, OR and Systems Theory - University of Technology, Vienna —25-




Porquerolles - 09/2003 11. Structure Theory

® 7T is not injective (no identifiability)
7~ 1(k) the class of observationally equivalent

systems

® There exists no continuous selection of

representatives from the equivalence classes

“lllposedness”
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|dentifiability and continuity of the parametrization are
desirable: U 4 and I'4 are broken into bits U, and T,
respectively s.t. / T, is injective and surjective and its

inverse, the parametrization
Vo : Uy — T, C R

IS continuous
Free parameters R% > 1, < (A4, B, C)

for given 1,.
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12. Estimation of real-valued
parameters

(Gaussian) Likelihood function (—2T_1 X log)

L7 (74,%) = T logdet Ty (74, X)
+T =1y (T)T7 (7o, B)y(T)

where

y(T) = (yq,.-.,yr) (stacked sample)

FT(TOM Z) — (f e_w\(r_t)fy()‘; Tas E)d)\)r,t:l,...,T

~

T-sxT'-s

ML estimators:

(7A'a,T, ET) — arg minTaeTmzeg LT(Ta, Z)
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Coordinate free MLE: ]%T
Asymptotic properties:

e Consistency:

kT%ko

ZT — 20

e Asymptotic normality

\/T(%Q,T — Ta,O) — N(O, V)
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13. Model Selection

Example: Estimation of n, analogous for «

Information criteria: Tradeoff between fit and complexity

. T
IT(n) = log det ZT(nZ + (2ns) C(T )
Measa;a of fit dimension, measures complexity

np = arg min I,

AIC criterion ¢(T') = 2

BIC criterion ¢(T") = log(T)
BIC is consistent, AIC not

Post model selection properties
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