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H. Padé
(1863-1953)

Student of Hermite
His thesis won

French Academy of
Sciences Prize

C. Hermite

(1822-1901)

Used Padé

approximants

to prove that e

is trancendental

But origins of subject go back to Cauchy, Jacobi,
Frobenius.

Historical Reference: C. Brezinski, History of
Continued Fractions and Padé Approximants,
Springer-Verlag, (Berlin, 1991)



Why Padé?

1) Convergence Acceleration [e.g. ε-algorithm]

2) Numerical Solutions to Partial Differential

Equations [exp(At) ≈ Q(At)−1P(At)]

3) Analytic Continuation of Power Series

[regions of convergence beyond a disk]

4) Includes Study of Orthogonal Polys on

Interval [Padé denominators for Markov

functions are orthogonal]

5) Finding Zeros/Roots, Poles/Singularities

[use zeros and poles of Padé approximants to

predict - e.g. QD algorithm]



Padé Approximants (PA) generalize
Taylor Polynomials

Given f(z) =
∞∑

k=0

ckzk

Taylor poly Pm(z) =
m∑

k=0

ckzk

Then

f(z) − Pm(z) =
∞∑

k=m+1

ckzk

f(z) − Pm(z) = O
(
zm+1

)
Equivalently,

Pm(0) = f(0)

P ′
m(0) = f ′(0)

·
·
·

P (m)(0) = f(m)(0) .



Idea of PA: Given m, n

Rational function R = P/Q

degP ≤ m , degQ ≤ n

Choose P, Q so that

(f − R)(z) = O
(
zl
)

,

l as large as possible.

How large can we expect l to be?

P has m + 1 parameters
Q has n + 1 parameters

P/Q has −1 parameter
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

So total of m + n + 1 parameters

Expect:

(
f − P

Q

)
(z) = O

(
zm+n+1

)
.



NOT ALWAYS POSSIBLE

Ex: m = n = 1, f(z) = 1 + z2 + z4 + · · · .

R(z) =
P(z)

Q(z)
=

az + b

cz + d
.

Want

(1) R(z) = 1 + z2 + O
(
z3
)

.

But R is either identically constant or

one-to-one.

From (1), neither is possible
[
R′(0) = 0

]
.

Idea: Linearize by requiring

Qf − P = O
(
zm+n+1

)
Pk := all polynomials of degree ≤ k .



DEF Let f(z) =
∞∑
0

ckzk be a formal power

series, and m, n nonnegative integers. A Padé

form (PF) of type (m, n) is a pair (P, Q) such

that P =
m∑

k=0

pkzk ∈ Pm, Q =
n∑

k=0

qkzk ∈ Pn,

Q �≡ 0 and

(2) Qf − P = O
(
zm+n+1

)
as z → 0 .

Proposition Padé forms of type (m, n) always

exist.

Proof. (2) is a system of m+n+1 homogeneous

equations in m + n + 2 unknowns:

(3)
n∑

j=0

ck−jqj − pk = 0 , 0 ≤ k ≤ m

(4)
n∑

j=0

ck−jqj = 0 , k = m + 1, . . . , m + n .

cm,n :=
(
cm+i−j

)n

i,j=1
Toeplitz matrix



THM Every PF of type (m, n) for f(z) yields

the same rational function.

Proof. (P, Q) and
(
P̂ , Q̂

)
are PF’s.

Qf − P = O
(
zm+n+1

)
Q̂f − P̂ = O

(
zm+n+1

)
so

−Q̂P + P̂Q = O
(
zm+n+1

)
∈ Pm+n .

Thus P̂Q ≡ Q̂P ⇒ P̂ /Q̂ ≡ P/Q .

DEF The uniquely determined rational P/Q is

called the Padé Approximant (PA) of type

(m, n) for f(z), and is denoted by

[m/n]f(z) or rm,n(f ; z) .



Remark In reduced form

[m/n]f(z) = pm,n(z)/qm,n(z) ,

where we (often) normalize so that

qm,n(0) = 1 , pm,n(0) = c0 ,

pm,n and qm,n relatively prime.

Padé Table for f

Taylor
polys

[0/0] [0/1] [0/2] · · ·

[1/0] [1/1] [1/2] · · ·

[2/0] [2/1] [2/2] · · ·
· · ·
· · ·
· · ·

Equal entries occur in “square” blocks.



Ex: f(z) = 1 + z2 + z4 + z6 + · · ·
(
=

1

1 − z2

)

Block structure

[0/0] = [0/1] [0/2] = · · ·
� � �

[1/0] = [1/1] [1/2] = · · ·
�

[2/0] = [2/1] [ ] = · · ·
� � �

[3/0] = [3/1] [ ] = · · ·
�

[4/0] = [4/1] [ ] = · · ·

THM Let p/q be a reduced PA for f(z), with

c0 �= 0. Suppose

m = exact deg of p

n = exact deg of q

and

qf − p = O
(
zm+n+k+1

)
exactly .



Then

(a) k ≥ 0

(b) [µ/ν]f = p/q iff

m ≤ µ ≤ m + k , n ≤ ν ≤ n + k .

See: W. B. Gragg, The Padé Table and its

Relation to Certain Algorithms of Numerical

Analysis, SIAM Review (1972), 1-62.

DEF A Padé approximant is said to be normal

if it appears exactly once in table. We say

“f is normal” if every entry in its Padé table is

normal.

Ex: f(z) = ez is normal.



Determinant Representations and Frobenius

Identities.

f(z) =
∑∞

k=0 ckzk, fm(z) :=
∑m

k=0 ckzk ∈ Pm

um,n(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm(z) zfm−1(z) · · · znfm−n(z)
cm+1 cm · · · cm−n+1
cm+2 cm+1 cm−n+2

· · ·
· · ·

cm+n cm+n−1 · · · cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vm,n(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z · · · zn

cm+1 cm · · · cm−n+1
cm+2 cm+1 cm−n+2

· · ·
· · ·

cm+n cm+n−1 · · · cm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Note: um,n(z) ∈ Pm, vm,n(z) ∈ Pn.

THM f(z)vm,n(z) − um,n(z) = O
(
zm+n+1

)
.



DEF For arbitrary, but fixed polys g, h, let

wm,n(z) := g(z)um,n(z) + h(z)vm,n(z)

cm,n := det
(
cm+i−j

)n

i,j=1

THM Between any 3 entries in the table of

wm,n functions, there is a homogeneous linear

relation with poly coefficients which can be

computed from the coefficients ck of f .

cm,n+1wm+1,n−cm+1,nwm,n+1 = cm+1,n+1zwm,n

cm+1,nwm−1,n + cm,n+1wm,n−1 = cm,nwm,n

cm,ncm+1,nwm,n+1 − cm,n+1cm+1,n+1zwm,n−1

= (cm+1,ncm,n+1 − cm,ncm+1,n+1z)wm,n

· · ·
Proof. Use Sylvester’s identity on determinant

representation for Padé denominator vm,n.

detAdetAi,j;k,l = detAi;k detAj;l−detAi;l detAj;k



Padé Approximants for the Exponential

f(z) = ez =
∞∑

k=0

zk

k!

Want to find pm,n ∈ Pm, qm,n ∈ Pn such that

(5) qm,n(z)e
z − pm,n(z) = O

(
zm+n+1

)
.

Let D := d/dz. Then

D [qez] = qez + q′ez = ez (I + D) q

Apply Dm+1 to (5)

ez (I + D)m+1 qm,n + 0 = O (zn)

⇒ (I + D)m+1 qm,n = km,nzn

⇒ qm,n = km,n(I + D)−(m+1)zn .

Recall

(1 + x)−(m+1) =
∞∑

j=0

(−1)j
( m + j

m

)
xj .



So

qm,n(z)= km,n

n∑
j=0

(−1)j
(m + j

m

)
Djzn

= km,n

n∑
j=0

(−1)j
(m + j

m

) n!

(n − j)!
zn−j .

qm,n(z) =
n∑

k=0

(m + n − k)!n!

(m + n)!(n − k)!

(−z)k

k!

qm,nez − pm,n =O
(
zm+n+1

)
,

qm,n − pm,ne−z =O
(
zm+n+1

)
.

So pm,n(−z) = qn,m(z),

pm,n(z) =
m∑

k=0

(m + n − k)!m!

(m + n)!(m − k)!

zk

k!
.

Also from

Dm+1[qm,nez − pm,n] = km,nznez ,

and integration by-parts we get



qm,n(z)e
z − pm,n(z)

=
(−1)n

(m + n)!
zm+n+1

∫ 1

0
sn(1 − s)meszds .

Remark For |z| ≤ ρ,

|qm,n(z)| ≤ 1 + ρ +
ρ2

2!
+

ρ3

3!
+ · · · = eρ .

So qm,n form a normal family in C. Further,

if m + n → ∞, m/n → λ,

coeff of zk → (−1)k

(1 + λ)kk!
.

Hence . . .



THM (Padé) Let mj, nj ∈ Z+ satisfy

mj + nj → ∞ , mj/nj → λ as j → ∞.

Then

lim
j→∞ qmj,nj(z) = e−z/(1+λ) ,

lim
j→∞ pmj,nj(z) = eλz/(1+λ) ,

and

lim
j→∞[mj/nj](z) = ez ,

locally uniformly in C. More precisely
(m = mj, n = nj)

|[m/n](z) − ez|

=
m!n! |z|m+n+1e2Re(z)/(1+λ)

(m + n)!(m + n + 1)!
(1 + o(1)) .

COR All zeros and poles of PA’s to ez go to
infinity as m + n → ∞.

But where are they located?



Zeros of pm,0(z) =
∑m

k=0 zk/k! , m = 1,2, . . . ,40

THM (S+Varga) For every m, n ≥ 0, the
normalized Padé numerator pm,n((n + 1)z) for
ez is zero-free in the parabolic region

P : y2 ≤ 4(x + 1) , x > −1 .

Result is sharp!



THM (S+Varga) Consider any ray sequence
[mj/nj](z) where nj/mj → σ (0 ≤ σ < ∞).

Sσ :=
{
z : |arg z| > cos−1[(1 − σ)/(1 + σ)]

}

wσ(z) =
Cσ z eg(z)

[1 + z + g(z)]
2

(1+σ)[1 − z + g(z)]
2σ

(1+σ)

,

where g(z) :=
√

1 + z2 − 2z
(
1−σ
1+σ

)
. Then

(i) ẑ is a lim. pt. of zeros of [mj/nj] ((mj + nj)z)
iff ẑ ∈ Dσ :=

{
z ∈ Sσ : |wσ(z)| = 1, |z| ≤ 1

}
.

(ii) ẑ is a lim. pt. of poles of [mj/nj] ((mj + nj)z)
iff ẑ ∈ Eσ :=

{
z ∈ C \ Sσ : |wσ(z)| = 1, |z| ≤ 1

}
.



More recent variations:

Multi-point Padé Approx.

Let B(m+n) =
{
x
(m+n)
k

}m+n

k=0
⊂ R,

Rm,n = Pm,n/Qm,n, degPm,n = m, degQm,n = n ,

interpolates ez in B(m+n).

THM (Baratchart+S+Wielonsky) If B(m+n) ⊂
[−ρ, ρ], m = mν, n = nν (m + n → ∞), then

Rm,n(z) → ez ∀ z ∈ C .

Moreover, the zeros and poles of Rm,n lie within
ρ of the zeros and poles, respectively, of the
Padé approximants [m/n](z) to ez.

COR Conclusion holds for best uniform rational
approx. to ex on any compact subinterval of
R.

Analogous results for best L2-rational approx-
imants to ez on unit circle.



Introduction to Convergence Theory

f(z) =
∑∞

k=0 ckzk

[m/0]f(z) =
∑m

k=0 ckzk converges in largest open

disk centered at z = 0 in which f is analytic:

|z| < R , where
1

R
= limsup

m→∞ |cm|1/m .

Next simplest case: [m/1]f .

vm,1(z) = det

(
1 z

cm+1 cm

)
= cm − zcm+1 .

Assume cm+1 �= 0. Then vm,1 has zero at

cm/cm+1.

lim inf
m→∞

∣∣∣∣cm+1

cm

∣∣∣∣ ≤ 1

R
≤ lim sup

m→∞

∣∣∣∣cm+1

cm

∣∣∣∣ .

It’s possible for ratios to have many limit points

different from 1/R.



ALL IS NOT ROSES - There can be “spurious”

poles.

Perron’s Example: ∃ f entire (R = ∞) such

that every point in C is a limit point of poles

of some subsequence of [m/1]f .

THM (de Montessus de Ballore, 1902) Let f

be meromorphic with precisely ν poles (counting

multiplicity) in the disk ∆ : |z| < ρ, with no

poles at z = 0. Then

lim
m→∞[m/ν]f(z) = f(z)

uniformly on compact subsets of ∆\{ν poles of f}.
Furthermore, as m → ∞, the poles of [m/ν]f
tend, respectively, to the ν poles of f in ∆.

Ex: f(z) = zΓ(z) has poles at z = −1,−2, . . . .

The n-th column of Padé table will converge

to zΓ(z) in {|z| < n + 1} \ {−1, . . . ,−n}.



Proof of de Montessus de Ballore Theorem:

Hermite’s Formula Suppose g is analytic

inside and on Γ, a simple closed contour. Let

z1, z2, . . . , zµ be points interior to Γ, regarded

with multiplicities n1, n2, . . . , nµ. Set

N := n1 + n2 + · · · + nµ .

Then ∃ a unique poly p ∈ PN−1 such that

p(j)(zk) = g(j)(zk) , j = 0,1, . . . , nk − 1 ,
k = 1, . . . , µ .

Moreover,

p(z) =
1

2πi

∫
Γ

ω(ζ) − ω(z)

ω(ζ)(ζ − z)
g(ζ) dζ z ∈ C ,

g(z) − p(z) =
1

2πi

∫
Γ

ω(z)g(ζ)

ω(ζ)(ζ − z)
dζ z inside Γ ,

where

ω(z) :=
µ∏

j=1

(z − zj)
nj .



Idea of Proof of de M. de Ballore Thm

f meromorphic with ν poles in |z| < ρ.

um,ν, vm,ν PF of type (m, ν) for f .

(6) fvm,ν − um,ν = O
(
zm+ν+1

)
.

Let Qν ∈ Pν have zeros at poles of f with same

multiplicity.

Qνfvm,ν − Qνum,ν = O
(
zm+ν+1

)

=
1

2πi

∫
|ζ|=ρ−ε

zm+ν+1 (Qνfvm,ν) (ζ)

ζm+ν+1(ζ − z)
dζ ,

for |z| < ρ − ε.

For vm,ν suitably normalized, integral → 0 for

|z| < ρ − ε.

Method extends to multi-point Padé .



What about other sequences from Padé Table,

such as rows, diagonals, ray sequences?

THM (Wallin) There exists f entire such that

the diagonal sequence [n/n]f(z), n = 0,1,2, . . . ,

is unbounded at every point in C except z = 0.

Baker-Gammel-Wills Conjecture: If f is

analytic in |z| < 1 except for m poles (�= 0),

then there exists a subsequence of diagonal

PAs [n/n]f(z) that converges to f locally

uniformly in {|z| < 1} \ {m poles of f}.

Conjecture is FALSE!

D. S. Lubinsky, “Rogers-Ramanujan and . . . ”,

Annals of Math, 157 (2003), 847-889.



Next step: Consider a weaker form of con-

vergence, such as convergence in measure or

convergence in capacity.

Nuttall-Pommerenke

Near-diagonal PAs will be inaccurate approx-

imations to f only on sets of small capacity

(transfinite diameter).

THM f analytic at ∞ and in a domain D ⊂ C

with cap(C \ D) = 0. Let Rm,n(z) denote the

PA to f at ∞. Fix r > 1, λ > 1. Then for

ε, η > 0 there exists an m0 such that

|Rm,n(z) − f(z)| < εm

for all m > m0, 1/λ ≤ m/n ≤ λ, and for all z in

|z| < r, z �∈ Em,n, cap(Em,n) < η.



THM (Stahl) Let f(z) be analytic at infinity.

There exists a unique compact set K0 ⊂ C such

that

(i) D0 := C \ K0 is a domain in which f(z) has

a single-valued analytic continuation,

(ii) cap(K0) = infK cap(K), where the infimum

is over all compact sets K ⊂ C satisfying (i),

(iii) K0 ⊂ K for all compact sets K ⊂ C

satisfying (i) and (ii).

The set K0 is called minimal set (for single-

valued analytical continuation of f(z)) and the

domain D0 ⊂ C is called extremal domain.



THM (Stahl) Let the function f(z) be defined

by

f(z) =
∞∑

j=0

fjz
−j

and have all its singularities in a compact set

E ⊂ C of capacity zero. Then any close to

diagonal sequence of Padé approximants [m/n](z)

to the function f(z) converges in capacity to

f(z) in the extremal domain D0.


