INTRODUCTION TO PADÉ APPROXIMANTS

E. B. Saff Center for Constructive Approximation

H. Padé (1863-1953) Student of Hermite His thesis won French Academy of Sciences Prize C. Hermite (1822-1901) Used Padé approximants to prove that *e* is trancendental

But origins of subject go back to Cauchy, Jacobi, Frobenius.

Historical Reference: C. Brezinski, *History of Continued Fractions and Padé Approximants*, Springer-Verlag, (Berlin, 1991)

Why Padé?

1) Convergence Acceleration [e.g. ϵ -algorithm]

2) Numerical Solutions to Partial Differential Equations $[\exp(At) \approx Q(At)^{-1}P(At)]$

3) Analytic Continuation of Power Series [regions of convergence beyond a disk]

4) Includes Study of Orthogonal Polys on Interval [Padé denominators for Markov functions are orthogonal]

5) Finding Zeros/Roots, Poles/Singularities [use zeros and poles of Padé approximants to predict - e.g. QD algorithm] Padé Approximants (PA) generalize Taylor Polynomials

Given
$$f(z) = \sum_{k=0}^{\infty} c_k z^k$$

Taylor poly
$$P_{\mathbf{m}}(z) = \sum_{k=0}^{\mathbf{m}} c_k z^k$$

Then

$$f(z) - P_m(z) = \sum_{k=m+1}^{\infty} c_k z^k$$

$$f(z) - P_m(z) = \mathcal{O}\left(z^{m+1}\right)$$

Equivalently,

$$P_m(0) = f(0)$$

 $P'_m(0) = f'(0)$

$$P^{(m)}(0) = f^{(m)}(0).$$

Idea of PA: Given m, n

Rational function R = P/Q

 $\deg P \leq m\,, \quad \deg Q \leq n$

Choose P, Q so that

$$(f-R)(z) = \mathcal{O}\left(z^l\right),$$

l as large as possible.

How large can we expect l to be?

	P	has	m + 1	parameters
	Q	has	n + 1	parameters
	P/Q	has	-1	parameter
So	total	of	m + n + 1	parameters

Expect:
$$\left(f - \frac{P}{Q}\right)(z) = \mathcal{O}\left(z^{m+n+1}\right).$$

NOT ALWAYS POSSIBLE

Ex: m = n = 1, $f(z) = 1 + z^2 + z^4 + \cdots$. $R(z) = \frac{P(z)}{Q(z)} = \frac{az + b}{cz + d}$.

Want

(1)
$$R(z) = 1 + z^2 + O(z^3)$$
.

But R is either identically constant or one-to-one.

From (1), neither is possible [R'(0) = 0].

Idea: Linearize by requiring

$$Qf - P = \mathcal{O}\left(z^{m+n+1}\right)$$

 $\mathcal{P}_k :=$ all polynomials of degree $\leq k$.

DEF Let $f(z) = \sum_{0}^{\infty} c_k z^k$ be a formal power series, and m, n nonnegative integers. A **Padé** form (PF) of type (m, n) is a pair (P, Q) such that $P = \sum_{k=0}^{m} p_k z^k \in \mathcal{P}_m$, $Q = \sum_{k=0}^{n} q_k z^k \in \mathcal{P}_n$, $Q \neq 0$ and

(2)
$$Qf - P = \mathcal{O}\left(z^{m+n+1}\right)$$
 as $z \to 0$.

Proposition Padé forms of type (m, n) always exist.

Proof. (2) is a system of m+n+1 homogeneous equations in m + n + 2 unknowns:

(3)
$$\sum_{j=0}^{n} c_{k-j}q_j - p_k = 0, \quad 0 \le k \le m$$

(4) $\sum_{j=0}^{n} c_{k-j}q_j = 0, \quad k = m+1, \dots, m+n.$

$$c_{m,n} := \left(c_{m+i-j}\right)_{i,j=1}^n$$
 Toeplitz matrix

THM Every PF of type (m, n) for f(z) yields the same rational function.

Proof.
$$(P,Q)$$
 and (\hat{P},\hat{Q}) are PF's.
 $Qf - P = \mathcal{O}(z^{m+n+1})$
 $\hat{Q}f - \hat{P} = \mathcal{O}(z^{m+n+1})$

SO

$$-\hat{Q}P + \hat{P}Q = \mathcal{O}\left(z^{m+n+1}\right) \in \mathcal{P}_{m+n}.$$

Thus $\hat{P}Q \equiv \hat{Q}P \Rightarrow \hat{P}/\hat{Q} \equiv P/Q$.

DEF The uniquely determined rational P/Q is called the **Padé Approximant** (PA) of type (m, n) for f(z), and is denoted by

$$[m/n]_f(z)$$
 or $r_{m,n}(f;z)$.

Remark In reduced form

$$[m/n]_f(z) = p_{m,n}(z)/q_{m,n}(z),$$

where we (often) normalize so that

$$q_{m,n}(0) = 1$$
, $p_{m,n}(0) = c_0$,

 $p_{m,n}$ and $q_{m,n}$ relatively prime.

Padé Table for f

	[0/0]	[0/1]	[0/2]	•	•	٠	
	[1/0]	[1/1]	[1/2]	•	•	•	
Taylor polys	[2/0]	[2/1]	[2/2]	•	•	•	
	•	•	•				
	•	•	•				
	•	•	•				

Equal entries occur in "square" blocks.

Ex:
$$f(z) = 1 + z^2 + z^4 + z^6 + \dots \left(= \frac{1}{1 - z^2} \right)$$

Block structure

$$\begin{bmatrix} 0/0 \end{bmatrix} = \begin{bmatrix} 0/1 \end{bmatrix} \begin{bmatrix} 0/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ \parallel & \parallel & \parallel \\ 1/0 \end{bmatrix} = \begin{bmatrix} 1/1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ \parallel & \parallel \\ 1/0 \end{bmatrix} = \begin{bmatrix} 2/1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ \parallel & \parallel \\ 1/0 \end{bmatrix} = \begin{bmatrix} 3/1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = 1 \end{bmatrix} = \cdot \cdot \cdot \cdot \cdot \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = 1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = 1 \end{bmatrix} = 1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = 1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} = 1 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \end{bmatrix}$$

THM Let p/q be a reduced PA for f(z), with $c_0 \neq 0$. Suppose

$$m = \text{exact deg of } p$$

 $n = \text{exact deg of } q$

and

$$qf - p = \mathcal{O}\left(z^{m+n+k+1}\right)$$
 exactly.

Then

(a) $k \ge 0$

(b)
$$[\mu/\nu]_f = p/q$$
 iff
 $m \le \mu \le m+k$, $n \le \nu \le n+k$.

See: W. B. Gragg, *The Padé Table and its Relation to Certain Algorithms of Numerical Analysis*, SIAM Review (1972), 1-62.

DEF A Padé approximant is said to be **normal** if it appears exactly once in table. We say "*f* is normal" if every entry in its Padé table is normal.

Ex: $f(z) = e^z$ is normal.

Determinant Representations and Frobenius Identities.

$$f(z) = \sum_{k=0}^{\infty} c_k z^k, \quad f_m(z) := \sum_{k=0}^m c_k z^k \in \mathcal{P}_m$$
$$u_{m,n}(z) := \begin{vmatrix} f_m(z) & z f_{m-1}(z) & \cdots & z^n f_{m-n}(z) \\ c_{m+1} & c_m & \cdots & c_{m-n+1} \\ c_{m+2} & c_{m+1} & c_{m-n+2} \\ \vdots & \vdots & \vdots \\ c_{m+n} & c_{m+n-1} & \cdots & c_m \end{vmatrix}$$
$$v_{m,n}(z) := \begin{vmatrix} 1 & z & \cdots & z^n \\ c_{m+1} & c_m & \cdots & c_{m-n+1} \\ c_{m+2} & c_{m+1} & c_{m-n+2} \\ \vdots & \vdots & \vdots \\ c_{m+n} & c_{m+n-1} & \cdots & c_m \end{vmatrix}$$

Note: $u_{m,n}(z) \in \mathcal{P}_m, v_{m,n}(z) \in \mathcal{P}_n.$

THM $f(z)v_{m,n}(z) - u_{m,n}(z) = \mathcal{O}(z^{m+n+1}).$

DEF For arbitrary, but fixed polys g, h, let

$$w_{m,n}(z) := g(z)u_{m,n}(z) + h(z)v_{m,n}(z)$$
$$c_{m,n} := \det \left(c_{m+i-j} \right)_{i,j=1}^{n}$$

THM Between any 3 entries in the table of $w_{m,n}$ functions, there is a homogeneous linear relation with poly coefficients which can be computed from the coefficients c_k of f.

$$c_{m,n+1}w_{m+1,n} - c_{m+1,n}w_{m,n+1} = c_{m+1,n+1}zw_{m,n}$$
$$c_{m+1,n}w_{m-1,n} + c_{m,n+1}w_{m,n-1} = c_{m,n}w_{m,n}$$
$$c_{m,n}c_{m+1,n}w_{m,n+1} - c_{m,n+1}c_{m+1,n+1}zw_{m,n-1}$$
$$= (c_{m+1,n}c_{m,n+1} - c_{m,n}c_{m+1,n+1}z)w_{m,n}$$

Proof. Use *Sylvester's identity* on determinant representation for Padé denominator $v_{m,n}$.

• • •

$$\det A \det A_{i,j;k,l} = \det A_{i;k} \det A_{j;l} - \det A_{i;l} \det A_{j;k}$$

Padé Approximants for the Exponential

$$f(z) = e^{z} = \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$$

Want to find $p_{m,n} \in \mathcal{P}_m, q_{m,n} \in \mathcal{P}_n$ such that

(5)
$$q_{m,n}(z)e^{z} - p_{m,n}(z) = \mathcal{O}\left(z^{m+n+1}\right)$$
.

Let D := d/dz. Then

$$D[qe^{z}] = qe^{z} + q'e^{z} = e^{z} (I + D) q$$

Apply D^{m+1} to (5)

$$e^{z} (I + D)^{m+1} q_{m,n} + 0 = \mathcal{O} (z^{n})$$

$$\Rightarrow (I + D)^{m+1} q_{m,n} = k_{m,n} z^{n}$$

$$\Rightarrow q_{m,n} = k_{m,n} (I + D)^{-(m+1)} z^{n}.$$

Recall

$$(1+x)^{-(m+1)} = \sum_{j=0}^{\infty} (-1)^j {\binom{m+j}{m}} x^j.$$

So

$$q_{m,n}(z) = k_{m,n} \sum_{j=0}^{n} (-1)^{j} {\binom{m+j}{m}} D^{j} z^{n}$$
$$= k_{m,n} \sum_{j=0}^{n} (-1)^{j} {\binom{m+j}{m}} \frac{n!}{(n-j)!} z^{n-j}.$$

$$q_{m,n}(z) = \sum_{k=0}^{n} \frac{(m+n-k)!n!}{(m+n)!(n-k)!} \frac{(-z)^{k}}{k!}$$

$$q_{m,n}e^{z} - p_{m,n} = \mathcal{O}\left(z^{m+n+1}\right) ,$$

$$q_{m,n} - p_{m,n}e^{-z} = \mathcal{O}\left(z^{m+n+1}\right) .$$

So $p_{m,n}(-z) = q_{n,m}(z)$,

$$p_{m,n}(z) = \sum_{k=0}^{m} \frac{(m+n-k)!m!}{(m+n)!(m-k)!} \frac{z^k}{k!}.$$

Also from

$$D^{m+1}[q_{m,n}e^z - p_{m,n}] = k_{m,n}z^n e^z,$$

and integration by-parts we get

$$q_{m,n}(z)e^{z} - p_{m,n}(z)$$

$$= \frac{(-1)^{n}}{(m+n)!} z^{m+n+1} \int_{0}^{1} s^{n} (1-s)^{m} e^{sz} ds.$$

Remark For
$$|z| \leq \rho$$
,
 $|q_{m,n}(z)| \leq 1 + \rho + \frac{\rho^2}{2!} + \frac{\rho^3}{3!} + \dots = e^{\rho}$.
So $q_{m,n}$ form a **normal family** in \mathbb{C} . Further,
if $m + n \to \infty$, $m/n \to \lambda$,

coeff of
$$z^k o \frac{(-1)^k}{(1+\lambda)^k k!}$$
.

Hence...

THM (Padé) Let m_j , $n_j \in \mathbb{Z}^+$ satisfy

 $m_j + n_j \to \infty \,, \quad m_j/n_j \to \lambda \quad \text{as } j \to \infty.$ Then

$$\lim_{j\to\infty} q_{m_j,n_j}(z) = e^{-z/(1+\lambda)},$$

$$\lim_{j\to\infty} p_{m_j,n_j}(z) = e^{\lambda z/(1+\lambda)},$$

and

$$\lim_{j\to\infty} [m_j/n_j](z) = e^z \,,$$

locally uniformly in \mathbb{C} . More precisely $(m = m_j, n = n_j)$ $|[m/n](z) - e^z|$

$$=\frac{m!n!|z|^{m+n+1}e^{2\Re(z)/(1+\lambda)}}{(m+n)!(m+n+1)!}\left(1+o(1)\right).$$

COR All zeros and poles of PA's to e^z go to infinity as $m + n \rightarrow \infty$.

But where are they located?

Zeros of $p_{m,0}(z) = \sum_{k=0}^{m} z^k / k!, \ m = 1, 2, ..., 40$

THM (S+Varga) For every $m, n \ge 0$, the normalized Padé numerator $p_{m,n}((n+1)z)$ for e^z is zero-free in the parabolic region

 $\mathcal{P}: y^2 \le 4(x+1), \quad x > -1.$

Result is sharp!

THM (S+Varga) Consider any **ray sequence** $[m_j/n_j](z)$ where $n_j/m_j \to \sigma$ ($0 \le \sigma < \infty$). $S_{\sigma} := \left\{ z : |\arg z| > \cos^{-1}[(1-\sigma)/(1+\sigma)] \right\}$

$$w_{\sigma}(z) = \frac{C_{\sigma} z e^{g(z)}}{[1 + z + g(z)]^{\frac{2}{(1 + \sigma)}} [1 - z + g(z)]^{\frac{2\sigma}{(1 + \sigma)}}},$$

where $g(z) := \sqrt{1 + z^2 - 2z \left(\frac{1-\sigma}{1+\sigma}\right)}$. Then

(i) \hat{z} is a lim. pt. of **zeros** of $[m_j/n_j]$ $((m_j + n_j)z)$ iff $\hat{z} \in D_{\sigma} := \{z \in \overline{S}_{\sigma} : |w_{\sigma}(z)| = 1, |z| \leq 1\}.$

(ii) \hat{z} is a lim. pt. of **poles** of $[m_j/n_j]$ $((m_j + n_j)z)$ iff $\hat{z} \in E_{\sigma} := \left\{ z \in \overline{\mathbb{C} \setminus S_{\sigma}} : |w_{\sigma}(z)| = 1, |z| \leq 1 \right\}.$

[24/8](322), σ=1/3 □ poles * zeros More recent variations:

Multi-point Padé Approx.

Let
$$B^{(m+n)} = \left\{ x_k^{(m+n)} \right\}_{k=0}^{m+n} \subset \mathbb{R},$$

 $R_{m,n} = P_{m,n}/Q_{m,n}$, deg $P_{m,n} = m$, deg $Q_{m,n} = n$, interpolates e^z in $B^{(m+n)}$.

THM (Baratchart+S+Wielonsky) If $B^{(m+n)} \subset [-\rho, \rho]$, $m = m_{\nu}$, $n = n_{\nu}$ $(m + n \to \infty)$, then

$$R_{m,n}(z) \to e^z \qquad \forall z \in \mathbb{C}.$$

Moreover, the zeros and poles of $R_{m,n}$ lie within ρ of the zeros and poles, respectively, of the Padé approximants [m/n](z) to e^z .

COR Conclusion holds for best *uniform* rational approx. to e^x on any compact subinterval of \mathbb{R} .

Analogous results for best L_2 -rational approximants to e^z on unit circle.

Introduction to Convergence Theory

$$f(z) = \sum_{k=0}^{\infty} c_k z^k$$

 $[m/0]_f(z) = \sum_{k=0}^m c_k z^k$ converges in largest open disk centered at z = 0 in which f is analytic:

|z| < R, where $\frac{1}{R} = \limsup_{m \to \infty} |c_m|^{1/m}$. Next simplest case: $[m/1]_f$.

$$v_{m,1}(z) = \det \begin{pmatrix} 1 & z \\ c_{m+1} & c_m \end{pmatrix} = c_m - zc_{m+1}.$$

Assume $c_{m+1} \neq 0$. Then $v_{m,1}$ has zero at c_m/c_{m+1} .

$$\liminf_{m \to \infty} \left| \frac{c_{m+1}}{c_m} \right| \le \frac{1}{R} \le \limsup_{m \to \infty} \left| \frac{c_{m+1}}{c_m} \right| \,.$$

It's possible for ratios to have many limit points different from 1/R.

ALL IS NOT ROSES - There can be "spurious" poles.

Perron's Example: $\exists f$ entire $(R = \infty)$ such that every point in \mathbb{C} is a limit point of poles of some subsequence of $[m/1]_f$.

THM (de Montessus de Ballore, 1902) Let f be meromorphic with precisely ν poles (counting multiplicity) in the disk Δ : $|z| < \rho$, with no poles at z = 0. Then

$$\lim_{m \to \infty} [m/\nu]_f(z) = f(z)$$

uniformly on compact subsets of $\Delta \setminus \{\nu \text{ poles of } f\}$. Furthermore, as $m \to \infty$, the poles of $[m/\nu]_f$ tend, respectively, to the ν poles of f in Δ .

Ex: $f(z) = z \Gamma(z)$ has poles at z = -1, -2, ...

The *n*-th column of Padé table will converge to $z\Gamma(z)$ in $\{|z| < n + 1\} \setminus \{-1, \ldots, -n\}$.

Proof of de Montessus de Ballore Theorem:

Hermite's Formula Suppose g is analytic inside and on Γ , a simple closed contour. Let $z_1, z_2, \ldots, z_{\mu}$ be points interior to Γ , regarded with multiplicities $n_1, n_2, \ldots, n_{\mu}$. Set

$$N:=n_1+n_2+\cdots+n_\mu.$$

Then \exists a unique poly $p \in \mathcal{P}_{N-1}$ such that

$$p^{(j)}(z_k) = g^{(j)}(z_k), \quad j = 0, 1, \dots, n_k - 1,$$

 $k = 1, \dots, \mu.$

Moreover,

$$p(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\omega(\zeta) - \omega(z)}{\omega(\zeta)(\zeta - z)} g(\zeta) d\zeta \quad z \in \mathbb{C},$$

$$g(z) - p(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\omega(z)g(\zeta)}{\omega(\zeta)(\zeta - z)} d\zeta \quad z \text{ inside } \Gamma,$$

where

$$\omega(z) := \prod_{j=1}^{\mu} (z-z_j)^{n_j}.$$

Idea of Proof of de M. de Ballore Thm

f meromorphic with ν poles in $|z| < \rho$.

 $u_{m,
u}$, $v_{m,
u}$ PF of type (m,
u) for f.

(6)
$$f v_{m,\nu} - u_{m,\nu} = \mathcal{O}\left(z^{m+\nu+1}\right)$$
.

Let $Q_{\nu} \in \mathcal{P}_{\nu}$ have zeros at poles of f with same multiplicity.

$$Q_{\nu}fv_{m,\nu} - Q_{\nu}u_{m,\nu} = \mathcal{O}\left(z^{m+\nu+1}\right)$$
$$= \frac{1}{2\pi i} \int_{|\zeta|=\rho-\epsilon} \frac{z^{m+\nu+1}\left(Q_{\nu}fv_{m,\nu}\right)\left(\zeta\right)}{\zeta^{m+\nu+1}\left(\zeta-z\right)} d\zeta,$$

for $|z| < \rho - \epsilon$.

For $v_{m,\nu}$ suitably normalized, integral \rightarrow 0 for $|z| < \rho - \epsilon$.

Method extends to multi-point Padé.

What about other sequences from Padé Table, such as rows, diagonals, ray sequences?

THM (Wallin) There exists f entire such that the diagonal sequence $[n/n]_f(z)$, n = 0, 1, 2, ...,is unbounded at every point in \mathbb{C} except z = 0.

Baker-Gammel-Wills Conjecture: If f is analytic in |z| < 1 except for m poles ($\neq 0$), then there exists a **subsequence** of diagonal PAs $[n/n]_f(z)$ that converges to f locally uniformly in $\{|z| < 1\} \setminus \{m \text{ poles of } f\}$.

Conjecture is FALSE!

D. S. Lubinsky, "Rogers-Ramanujan and ...", *Annals of Math*, **157** (2003), 847-889.

Next step: Consider a weaker form of convergence, such as convergence in measure or convergence in capacity.

Nuttall-Pommerenke

Near-diagonal PAs will be inaccurate approximations to f only on sets of small capacity (transfinite diameter).

THM f analytic at ∞ and in a domain $D \subset \overline{\mathbb{C}}$ with $\operatorname{cap}(\overline{\mathbb{C}} \setminus D) = 0$. Let $R_{m,n}(z)$ denote the **PA** to f at ∞ . Fix r > 1, $\lambda > 1$. Then for ϵ , $\eta > 0$ there exists an m_0 such that

 $|R_{m,n}(z) - f(z)| < \epsilon^m$

for all $m > m_0$, $1/\lambda \le m/n \le \lambda$, and for all z in |z| < r, $z \notin E_{m,n}$, $cap(E_{m,n}) < \eta$.

THM (Stahl) Let f(z) be analytic at infinity. There exists a unique compact set $\mathcal{K}_0 \subset \mathbb{C}$ such that

(i) $\mathcal{D}_0 := \overline{\mathbb{C}} \setminus \mathcal{K}_0$ is a domain in which f(z) has a single-valued analytic continuation,

(ii) $\operatorname{cap}(\mathcal{K}_0) = \inf_{\mathcal{K}} \operatorname{cap}(\mathcal{K})$, where the infimum is over all compact sets $\mathcal{K} \subset \mathbb{C}$ satisfying (i),

(iii) $\mathcal{K}_0 \subset \mathcal{K}$ for all compact sets $\mathcal{K} \subset \mathbb{C}$ satisfying (i) and (ii).

The set \mathcal{K}_0 is called minimal set (for singlevalued analytical continuation of f(z)) and the domain $\mathcal{D}_0 \subset \overline{\mathbb{C}}$ is called extremal domain. **THM** (Stahl) Let the function f(z) be defined by

$$f(z) = \sum_{j=0}^{\infty} f_j z^{-j}$$

and have all its singularities in a compact set $E \subset \overline{\mathbb{C}}$ of capacity zero. Then any close to diagonal sequence of Padé approximants [m/n](z) to the function f(z) converges in capacity to f(z) in the extremal domain \mathcal{D}_0 .