INTRODUCTION TO PADÉ APPROXIMANTS

E. B. Saff
Center for Constructive Approximation

V
VANDERBILT
UNIVERSITY

H. Padé
(1863-1953)
Student of Hermite His thesis won
French Academy of Sciences Prize

C. Hermite
(1822-1901)
Used Padé approximants
to prove that e
is trancendental

But origins of subject go back to Cauchy, Jacobi, Frobenius.

Historical Reference: C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, (Berlin, 1991)

Why Padé?

1) Convergence Acceleration [e.g. ϵ-algorithm]
2) Numerical Solutions to Partial Differential Equations $\left[\exp (\mathbf{A} t) \approx Q(\mathbf{A} t)^{-1} P(\mathbf{A} t)\right]$
3) Analytic Continuation of Power Series [regions of convergence beyond a disk]
4) Includes Study of Orthogonal Polys on Interval [Padé denominators for Markov functions are orthogonal]
5) Finding Zeros/Roots, Poles/Singularities [use zeros and poles of Padé approximants to predict-e.g. QD algorithm]

Padé Approximants (PA) generalize Taylor Polynomials

Given $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$
Taylor poly $P_{m}(z)=\sum_{k=0}^{m} c_{k} z^{k}$
Then

$$
\begin{aligned}
f(z)-P_{m}(z) & =\sum_{k=m+1}^{\infty} c_{k} z^{k} \\
f(z)-P_{m}(z) & =\mathcal{O}\left(z^{m+1}\right)
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
P_{m}(0) & =f(0) \\
P_{m}^{\prime}(0) & =f^{\prime}(0) \\
& \cdot \\
& \cdot \\
P^{(m)}(0) & =f^{(m)}(0) .
\end{aligned}
$$

Idea of PA: Given m, n
Rational function $R=P / Q$

$$
\operatorname{deg} P \leq m, \quad \operatorname{deg} Q \leq n
$$

Choose P, Q so that

$$
(f-R)(z)=\mathcal{O}\left(z^{l}\right)
$$

l as large as possible.

How large can we expect l to be?

P	has	$m+1$	parameters
Q	has	$n+1$	parameters
P / Q	has	-1	parameter

So total of $m+n+1$ parameters

Expect: $\left(f-\frac{P}{Q}\right)(z)=\mathcal{O}\left(z^{m+n+1}\right)$.

NOT ALWAYS POSSIBLE

Ex: $m=n=1, \quad f(z)=1+z^{2}+z^{4}+\cdots$.

$$
R(z)=\frac{P(z)}{Q(z)}=\frac{a z+b}{c z+d} .
$$

Want

$$
\begin{equation*}
R(z)=1+z^{2}+\mathcal{O}\left(z^{3}\right) . \tag{1}
\end{equation*}
$$

But R is either identically constant or one-to-one.

From (1), neither is possible $\left[R^{\prime}(0)=0\right]$.

Idea: Linearize by requiring

$$
Q f-P=\mathcal{O}\left(z^{m+n+1}\right)
$$

$\mathcal{P}_{k}:=$ all polynomials of degree $\leq k$.

DEF Let $f(z)=\sum_{0}^{\infty} c_{k} z^{k}$ be a formal power series, and m, n nonnegative integers. A Padé form (PF) of type (m, n) is a pair (P, Q) such that $P=\sum_{k=0}^{m} p_{k} z^{k} \in \mathcal{P}_{m}, Q=\sum_{k=0}^{n} q_{k} z^{k} \in \mathcal{P}_{n}$, $Q \not \equiv 0$ and

$$
\begin{equation*}
Q f-P=\mathcal{O}\left(z^{m+n+1}\right) \quad \text { as } z \rightarrow 0 \tag{2}
\end{equation*}
$$

Proposition Padé forms of type (m, n) always exist.

Proof. (2) is a system of $m+n+1$ homogeneous equations in $m+n+2$ unknowns:
(3) $\quad \sum_{j=0}^{n} c_{k-j} q_{j}-p_{k}=0, \quad 0 \leq k \leq m$
(4) $\quad \sum_{j=0}^{n} c_{k-j} q_{j}=0, \quad k=m+1, \ldots, m+n$.

$$
c_{m, n}:=\left(c_{m+i-j}\right)_{i, j=1}^{n} \quad \text { Toeplitz matrix }
$$

THM Every PF of type (m, n) for $f(z)$ yields the same rational function.

Proof. (P, Q) and (\hat{P}, \widehat{Q}) are PF's.

$$
\begin{aligned}
& Q f-P=\mathcal{O}\left(z^{m+n+1}\right) \\
& \widehat{Q} f-\widehat{P}=\mathcal{O}\left(z^{m+n+1}\right)
\end{aligned}
$$

so

$$
-\widehat{Q} P+\widehat{P} Q=\mathcal{O}\left(z^{m+n+1}\right) \in \mathcal{P}_{m+n}
$$

Thus $\hat{P} Q \equiv \widehat{Q} P \Rightarrow \widehat{P} / \widehat{Q} \equiv P / Q$.

DEF The uniquely determined rational P / Q is called the Padé Approximant (PA) of type (m, n) for $f(z)$, and is denoted by

$$
[m / n]_{f}(z) \text { or } r_{m, n}(f ; z)
$$

Remark In reduced form

$$
[m / n]_{f}(z)=p_{m, n}(z) / q_{m, n}(z),
$$

where we (often) normalize so that

$$
q_{m, n}(0)=1, \quad p_{m, n}(0)=c_{0},
$$

$p_{m, n}$ and $q_{m, n}$ relatively prime.
Padé Table for f

Equal entries occur in "square" blocks.
$\mathrm{Ex}: f(z)=1+z^{2}+z^{4}+z^{6}+\cdots\left(=\frac{1}{1-z^{2}}\right)$

Block structure

$$
\begin{aligned}
& {[0 / 0]=[0 / 1] \quad[0 / 2]=} \\
& {[1 / 0]=[1 / 1] \quad[1 / 2]=} \\
& {[2 / 0]=[2 / 1] \quad[\quad]=} \\
& \left.\left.{ }^{\prime \prime} / 0\right]=[3 / 1]{ }^{\prime \prime}{ }^{\prime \prime}\right]= \\
& {[4 / 0]=[4 / 1] \quad[\quad=}
\end{aligned}
$$

THM Let p / q be a reduced PA for $f(z)$, with $c_{0} \neq 0$. Suppose

$$
\begin{aligned}
m & =\text { exact deg of } p \\
n & =\text { exact deg of } q
\end{aligned}
$$

and

$$
q f-p=\mathcal{O}\left(z^{m+n+k+1}\right) \quad \text { exactly }
$$

Then

(a) $k \geq 0$
(b) $[\mu / \nu]_{f}=p / q$ iff

$$
m \leq \mu \leq m+k, \quad n \leq \nu \leq n+k
$$

See: W. B. Gragg, The Padé Table and its Relation to Certain Algorithms of Numerical Analysis, SIAM Review (1972), 1-62.

DEF A Padé approximant is said to be normal if it appears exactly once in table. We say " f is normal" if every entry in its Padé table is normal.

Ex: $f(z)=e^{z}$ is normal.

Determinant Representations and Frobenius Identities.

$f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}, \quad f_{m}(z):=\sum_{k=0}^{m} c_{k} z^{k} \in \mathcal{P}_{m}$
$u_{m, n}(z):=\left|\begin{array}{ccccc}f_{m}(z) & z f_{m-1}(z) & \cdot & \cdot & \cdot \\ c_{m} f_{m-n}(z) \\ c_{m+2} & c_{m} & \cdot & \cdot & \cdot \\ c_{m+1} & & & c_{m-n+1} \\ \cdot & \cdot & & & c_{m-n+2} \\ \cdot & \cdot & & & \cdot \\ c_{m+n} & c_{m+n-1} & \cdot & \cdot & c_{m}\end{array}\right|$
$v_{m, n}(z):=\left|\begin{array}{cccccc}1 & z & \cdot & \cdot & z^{n} \\ c_{m+1} & c_{m} & \cdot & \cdot & \cdot & c_{m-n+1} \\ c_{m+2} & c_{m+1} & & & c_{m-n+2} \\ \cdot & \cdot & & & \cdot \\ \cdot & \cdot & & & \cdot \\ c_{m+n} & c_{m+n-1} & \cdot & \cdot & \cdot & c_{m}\end{array}\right|$

Note: $u_{m, n}(z) \in \mathcal{P}_{m}, v_{m, n}(z) \in \mathcal{P}_{n}$.

ТНM $f(z) v_{m, n}(z)-u_{m, n}(z)=\mathcal{O}\left(z^{m+n+1}\right)$.

DEF For arbitrary, but fixed polys g, h, let

$$
\begin{gathered}
w_{m, n}(z):=g(z) u_{m, n}(z)+h(z) v_{m, n}(z) \\
c_{m, n}:=\operatorname{det}\left(c_{m+i-j}\right)_{i, j=1}^{n}
\end{gathered}
$$

THM Between any 3 entries in the table of $w_{m, n}$ functions, there is a homogeneous linear relation with poly coefficients which can be computed from the coefficients c_{k} of f.

$$
\begin{gathered}
c_{m, n+1} w_{m+1, n}-c_{m+1, n} w_{m, n+1}=c_{m+1, n+1} z w_{m, n} \\
c_{m+1, n} w_{m-1, n}+c_{m, n+1} w_{m, n-1}=c_{m, n} w_{m, n} \\
c_{m, n} c_{m+1, n} w_{m, n+1}-c_{m, n+1} c_{m+1, n+1} z w_{m, n-1} \\
=\left(c_{m+1, n} c_{m, n+1}-c_{m, n} c_{m+1, n+1} z\right) w_{m, n}
\end{gathered}
$$

Proof. Use Sylvester's identity on determinant representation for Padé denominator $v_{m, n}$. $\operatorname{det} A \operatorname{det} A_{i, j ; k, l}=\operatorname{det} A_{i ; k} \operatorname{det} A_{j ; l}-\operatorname{det} A_{i ; l} \operatorname{det} A_{j ; k}$

Padé Approximants for the Exponential

$$
f(z)=e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}
$$

Want to find $p_{m, n} \in \mathcal{P}_{m}, q_{m, n} \in \mathcal{P}_{n}$ such that
(5) $\quad q_{m, n}(z) e^{z}-p_{m, n}(z)=\mathcal{O}\left(z^{m+n+1}\right)$.

Let $D:=d / d z$. Then

$$
D\left[q e^{z}\right]=q e^{z}+q^{\prime} e^{z}=e^{z}(I+D) q
$$

Apply D^{m+1} to (5)

$$
\begin{aligned}
& e^{z}(I+D)^{m+1} q_{m, n}+0=\mathcal{O}\left(z^{n}\right) \\
\Rightarrow & (I+D)^{m+1} q_{m, n}=k_{m, n} z^{n} \\
\Rightarrow & q_{m, n}=k_{m, n}(I+D)^{-(m+1)} z^{n} .
\end{aligned}
$$

Recall

$$
(1+x)^{-(m+1)}=\sum_{j=0}^{\infty}(-1)^{j}\binom{m+j}{m} x^{j} .
$$

So

$$
\begin{aligned}
& q_{m, n}(z)=k_{m, n} \sum_{j=0}^{n}(-1)^{j}\binom{m+j}{m} D^{j} z^{n} \\
& =k_{m, n} \sum_{j=0}^{n}(-1)^{j}\binom{m+j}{m} \frac{n!}{(n-j)!} z^{n-j} \\
& q_{m, n}(z)=\sum_{k=0}^{n} \frac{(m+n-k)!n!}{(m+n)!(n-k)!} \frac{(-z)^{k}}{k!} \\
& q_{m, n} e^{z}-p_{m, n}=\mathcal{O}\left(z^{m+n+1}\right) \\
& q_{m, n}-p_{m, n} e^{-z}=\mathcal{O}\left(z^{m+n+1}\right)
\end{aligned}
$$

So $p_{m, n}(-z)=q_{n, m}(z)$,

$$
p_{m, n}(z)=\sum_{k=0}^{m} \frac{(m+n-k)!m!}{(m+n)!(m-k)!} \frac{z^{k}}{k!}
$$

Also from

$$
D^{m+1}\left[q_{m, n} e^{z}-p_{m, n}\right]=k_{m, n} z^{n} e^{z}
$$

and integration by-parts we get

$$
\begin{aligned}
& q_{m, n}(z) e^{z}-p_{m, n}(z) \\
= & \frac{(-1)^{n}}{(m+n)!} z^{m+n+1} \int_{0}^{1} s^{n}(1-s)^{m} e^{s z} d s
\end{aligned}
$$

Remark For $|z| \leq \rho$,

$$
\left|q_{m, n}(z)\right| \leq 1+\rho+\frac{\rho^{2}}{2!}+\frac{\rho^{3}}{3!}+\cdots=e^{\rho}
$$

So $q_{m, n}$ form a normal family in \mathbb{C}. Further, if $m+n \rightarrow \infty, m / n \rightarrow \lambda$,

$$
\text { coeff of } z^{k} \rightarrow \frac{(-1)^{k}}{(1+\lambda)^{k} k!}
$$

Hence . . .

THM (Padé) Let $m_{j}, n_{j} \in \mathbb{Z}^{+}$satisfy

$$
m_{j}+n_{j} \rightarrow \infty, \quad m_{j} / n_{j} \rightarrow \lambda \quad \text { as } j \rightarrow \infty .
$$

Then

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} q_{m_{j}, n_{j}}(z)=e^{-z /(1+\lambda)}, \\
& \lim _{j \rightarrow \infty} p_{m_{j}, n_{j}}(z)=e^{\lambda z /(1+\lambda)},
\end{aligned}
$$

and

$$
\lim _{j \rightarrow \infty}\left[m_{j} / n_{j}\right](z)=e^{z},
$$

locally uniformly in \mathbb{C}. More precisely
($m=m_{j}, n=n_{j}$)

$$
\begin{aligned}
& \left|[m / n](z)-e^{z}\right| \\
= & \frac{m!n!|z|^{m+n+1} e^{2 \mathfrak{R e}(z) /(1+\lambda)}}{(m+n)!(m+n+1)!}(1+o(1)) .
\end{aligned}
$$

COR All zeros and poles of PA's to e^{z} go to infinity as $m+n \rightarrow \infty$.

But where are they located?

Zeros of $p_{m, 0}(z)=\sum_{k=0}^{m} z^{k} / k!, m=1,2, \ldots, 40$

THM (S+Varga) For every $m, n \geq 0$, the normalized Padé numerator $p_{m, n}((n+1) z)$ for e^{z} is zero-free in the parabolic region

$$
\mathcal{P}: y^{2} \leq 4(x+1), \quad x>-1
$$

Result is sharp!

THM (S+Varga) Consider any ray sequence $\left[m_{j} / n_{j}\right](z)$ where $n_{j} / m_{j} \rightarrow \sigma(0 \leq \sigma<\infty)$.

$$
S_{\sigma}:=\left\{z:|\arg z|>\cos ^{-1}[(1-\sigma) /(1+\sigma)]\right\}
$$

$$
w_{\sigma}(z)=\frac{C_{\sigma} z e^{g(z)}}{[1+z+g(z)]^{\frac{2}{(1+\sigma)}}[1-z+g(z)]^{\frac{2 \sigma}{(1+\sigma)}}}
$$

where $g(z):=\sqrt{1+z^{2}-2 z\left(\frac{1-\sigma}{1+\sigma}\right)}$. Then
(i) \bar{z} is a limp. pt. of zeros of $\left[m_{j} / n_{j}\right]\left(\left(m_{j}+n_{j}\right) z\right)$
iff $\widehat{z} \in D_{\sigma}:=\left\{z \in \bar{S}_{\sigma}:\left|w_{\sigma}(z)\right|=1,|z| \leq 1\right\}$.
(ii) \bar{z} is a lime. pt. of poles of $\left[m_{j} / n_{j}\right]\left(\left(m_{j}+n_{j}\right) z\right)$ iff $\hat{z} \in E_{\sigma}:=\left\{z \in \overline{\mathbb{C} \backslash S_{\sigma}}:\left|w_{\sigma}(z)\right|=1,|z| \leq 1\right\}$.

$[24 / 8](32 z), \quad \sigma=1 / 3$

$$
\begin{aligned}
& \text { poles } \\
& \text { * zeros }
\end{aligned}
$$

More recent variations:

Multi-point Padé Approx.

Let $B^{(m+n)}=\left\{x_{k}^{(m+n)}\right\}_{k=0}^{m+n} \subset \mathbb{R}$,
$R_{m, n}=P_{m, n} / Q_{m, n}, \operatorname{deg} P_{m, n}=m, \operatorname{deg} Q_{m, n}=n$, interpolates e^{z} in $B^{(m+n)}$.

THM (Baratchart+S+Wielonsky) If $B^{(m+n)} \subset$ $[-\rho, \rho], m=m_{\nu}, n=n_{\nu}(m+n \rightarrow \infty)$, then

$$
R_{m, n}(z) \rightarrow e^{z} \quad \forall z \in \mathbb{C} .
$$

Moreover, the zeros and poles of $R_{m, n}$ lie within ρ of the zeros and poles, respectively, of the Padé approximants $[m / n](z)$ to e^{z}.

COR Conclusion holds for best uniform rational approx. to e^{x} on any compact subinterval of \mathbb{R}.

Analogous results for best L_{2}-rational approximants to e^{z} on unit circle.

Introduction to Convergence Theory

$f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$
$[m / 0]_{f}(z)=\sum_{k=0}^{m} c_{k} z^{k}$ converges in largest open disk centered at $z=0$ in which f is analytic:

$$
|z|<R, \quad \text { where } \quad \frac{1}{R}=\limsup _{m \rightarrow \infty}\left|c_{m}\right|^{1 / m} .
$$

Next simplest case: $[m / 1]_{f}$.

$$
v_{m, 1}(z)=\operatorname{det}\left(\begin{array}{cc}
1 & z \\
c_{m+1} & c_{m}
\end{array}\right)=c_{m}-z c_{m+1} .
$$

Assume $c_{m+1} \neq 0$. Then $v_{m, 1}$ has zero at c_{m} / c_{m+1}.

$$
\liminf _{m \rightarrow \infty}\left|\frac{c_{m+1}}{c_{m}}\right| \leq \frac{1}{R} \leq \limsup _{m \rightarrow \infty}\left|\frac{c_{m+1}}{c_{m}}\right| .
$$

It's possible for ratios to have many limit points different from $1 / R$.

ALL IS NOT ROSES - There can be "spurious" poles.

Perron's Example: $\exists f$ entire $(R=\infty)$ such that every point in \mathbb{C} is a limit point of poles of some subsequence of $[m / 1]_{f}$.

THM (de Montessus de Ballore, 1902) Let f be meromorphic with precisely ν poles (counting multiplicity) in the disk $\Delta:|z|<\rho$, with no poles at $z=0$. Then

$$
\lim _{m \rightarrow \infty}[m / \nu]_{f}(z)=f(z)
$$

uniformly on compact subsets of $\Delta \backslash\{\nu$ poles of $f\}$. Furthermore, as $m \rightarrow \infty$, the poles of $[m / \nu]_{f}$ tend, respectively, to the ν poles of f in Δ.

Ex: $f(z)=z \Gamma(z)$ has poles at $z=-1,-2, \ldots$.

The n-th column of Padé table will converge to $z \Gamma(z)$ in $\{|z|<n+1\} \backslash\{-1, \ldots,-n\}$.

Proof of de Montessus de Ballore Theorem:

Hermite's Formula Suppose g is analytic inside and on Γ, a simple closed contour. Let $z_{1}, z_{2}, \ldots, z_{\mu}$ be points interior to Γ, regarded with multiplicities $n_{1}, n_{2}, \ldots, n_{\mu}$. Set

$$
N:=n_{1}+n_{2}+\cdots+n_{\mu} .
$$

Then \exists a unique poly $p \in \mathcal{P}_{N-1}$ such that

$$
\begin{array}{ll}
p^{(j)}\left(z_{k}\right)=g^{(j)}\left(z_{k}\right), & j=0,1, \ldots, n_{k}-1, \\
k=1, \ldots, \mu .
\end{array}
$$

Moreover,

$$
p(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\omega(\zeta)-\omega(z)}{\omega(\zeta)(\zeta-z)} g(\zeta) d \zeta \quad z \in \mathbb{C}
$$

$g(z)-p(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\omega(z) g(\zeta)}{\omega(\zeta)(\zeta-z)} d \zeta \quad z$ inside Γ,
where

$$
\omega(z):=\prod_{j=1}^{\mu}\left(z-z_{j}\right)^{n_{j}} .
$$

Idea of Proof of de M. de Ballore Thm
f meromorphic with ν poles in $|z|<\rho$.
$u_{m, \nu}, v_{m, \nu}$ PF of type (m, ν) for f.
(6) $\quad f v_{m, \nu}-u_{m, \nu}=\mathcal{O}\left(z^{m+\nu+1}\right)$.

Let $Q_{\nu} \in \mathcal{P}_{\nu}$ have zeros at poles of f with same multiplicity.

$$
\begin{gathered}
Q_{\nu} f v_{m, \nu}-Q_{\nu} u_{m, \nu}=\mathcal{O}\left(z^{m+\nu+1}\right) \\
=\frac{1}{2 \pi i} \int_{|\zeta|=\rho-\epsilon} \frac{z^{m+\nu+1}\left(Q_{\nu} f v_{m, \nu}\right)(\zeta)}{\zeta^{m+\nu+1}(\zeta-z)} d \zeta,
\end{gathered}
$$

for $|z|<\rho-\epsilon$.

For $v_{m, \nu}$ suitably normalized, integral $\rightarrow 0$ for $|z|<\rho-\epsilon$.

Method extends to multi-point Padé.

What about other sequences from Padé Table, such as rows, diagonals, ray sequences?

THM (Wallin) There exists f entire such that the diagonal sequence $[n / n]_{f}(z), n=0,1,2, \ldots$, is unbounded at every point in \mathbb{C} except $z=0$.

Baker-Gammel-Wills Conjecture: If f is analytic in $|z|<1$ except for m poles ($\neq 0$), then there exists a subsequence of diagonal PAs $[n / n]_{f}(z)$ that converges to f locally uniformly in $\{|z|<1\} \backslash\{m$ poles of $f\}$.

Conjecture is FALSE!

D. S. Lubinsky, "Rogers-Ramanujan and ...", Annals of Math, 157 (2003), 847-889.

Next step: Consider a weaker form of convergence, such as convergence in measure or convergence in capacity.

Nuttall-Pommerenke

Near-diagonal PAs will be inaccurate approximations to f only on sets of small capacity (transfinite diameter).

THM f analytic at ∞ and in a domain $D \subset \overline{\mathbb{C}}$ with $\operatorname{cap}(\overline{\mathbb{C}} \backslash D)=0$. Let $R_{m, n}(z)$ denote the PA to f at ∞. Fix $r>1, \lambda>1$. Then for $\epsilon, \eta>0$ there exists an m_{0} such that

$$
\left|R_{m, n}(z)-f(z)\right|<\epsilon^{m}
$$

for all $m>m_{0}, 1 / \lambda \leq m / n \leq \lambda$, and for all z in $|z|<r, z \notin E_{m, n}, \operatorname{cap}\left(E_{m, n}\right)<\eta$.

THM (Stahl) Let $f(z)$ be analytic at infinity. There exists a unique compact set $\mathcal{K}_{0} \subset \mathbb{C}$ such that
(i) $\mathcal{D}_{0}:=\overline{\mathbb{C}} \backslash \mathcal{K}_{0}$ is a domain in which $f(z)$ has a single-valued analytic continuation,
(ii) $\operatorname{cap}\left(\mathcal{K}_{0}\right)=\inf _{\mathcal{K}} \operatorname{cap}(\mathcal{K})$, where the infimum is over all compact sets $\mathcal{K} \subset \mathbb{C}$ satisfying (i),
(iii) $\mathcal{K}_{0} \subset \mathcal{K}$ for all compact sets $\mathcal{K} \subset \mathbb{C}$ satisfying (i) and (ii).

The set \mathcal{K}_{0} is called minimal set (for singlevalued analytical continuation of $f(z)$) and the domain $\mathcal{D}_{0} \subset \overline{\mathbb{C}}$ is called extremal domain.

THM (Stahl) Let the function $f(z)$ be defined by

$$
f(z)=\sum_{j=0}^{\infty} f_{j} z^{-j}
$$

and have all its singularities in a compact set $E \subset \overline{\mathbb{C}}$ of capacity zero. Then any close to diagonal sequence of Padé approximants $[m / n](z)$ to the function $f(z)$ converges in capacity to $f(z)$ in the extremal domain \mathcal{D}_{0}.

