
Secure Information Flow in ULM as a Safety Property

Zhengqin Luo

INRIA Sophia-Antipolis

April 4, 2009

Abstract

Following the line of work of [4], we study the secure information flow property as a standard safety
property, namely that one should not store in a public location values elaborated using confidential infor-
mation, under the context of reactive programs which manipulate broadcasting signals and synchronized
threads. We show that in the reactive programming setting, it opens covert channels for leaking secret
information by broadcasting signals and testing signals. From the point of programmers’ view, the prin-
ciples of safe programming are extended: one should never do something observable elaborated using
confidential information. Particularly, we take the core ULM language [2], a ML-like multi-thread pro-
gramming language extended with suspension and preemption constructs and non-deterministic schedul-
ing mechanism, and show that any behavior violating those principles is an run-time error according
to a security-minded semantics which dynamically check information flow. Moreover, we design a type
and effect system to guarantee this safety property. Hopefully, the approach is able to be extended to
different variants of reactive programming style.

1 Introduction

The issue of developing secure software has gained many focuses over last two decades. One of central and
long-standing problem in this area is secure information flow problem, aimed at preventing programs from
leaking confidential information (such as credit card number) to public in a language-based setting.

The information-flow security is a well established theory, providing static analysis technique to ensure the
most famous property, non-interference, for programs in various languages. Informally, this property states
that differences in secret inputs should not have effect on outputs of programs. The usual approach is to
have a type system, and to show the soundness result, namely the typable programs satisfy non-interference.
In some concurrent languages, this non-interference property is extend to some properties based on notion
of bisimulation (such as “non-disclosure” in [5]).

However, it has been argued in [4] that, it is certainly not easy to find a counter-example to those
programs which are not typable. Actually it is possible to have non-interferent programs which are not
typable. For example the program below (informally we use footnote L to represent a public value, and H

for a secret value), where we use ML jargon

vL := (if !uH then E else E′)

will be rejected by a standard type system, although it might be secure if E and E′ always evaluate to
same value. Nevertheless, the assignment to public location vL should be seen as a programming error, since
the value stored contain secret information from dereferencing uH . From a programmers’ point view, one
should not write secure programs in such a risk way. Then the approach is to give a security-mind semantics
to the language, marking any attempt of assigning to public locations values elaborating using confidential
information as runtime error, and the security property is a standard safety property, namely no runtime
error will happen.

1

In this paper, we consider to extend this approach in a reactive programming (a.k.a. synchronous
programming) setting , which is similar to concurrent programming. But it has mechanism to cooper-
atively synchronize between different threads without worrying about unpredictable behavior caused by
non-deterministic thread scheduling, that is a thread will not yield the scheduler until it is suspended or
terminated. Also a suspension can only be triggered by waiting a currently absent signal. It also provides
a time-out mechanism (preemption) to control waiting time of a given thread. The main feature in this
programming style is:

• broadcast signal Program components react according to the absence or presence of signals, by com-
puting, and emitting signals which will be broadcast to each component of a given synchronous area.

• suspension Program components may be in a suspended state by waiting a signal which is absent at
the moment.

• preemption There are ways to give up the execution of a program component (time-out), depend
whether a given signal is present.

• instants Instant are successive periods of the execution of a program, where all the signals are reset to
be absent at the start of the instant.

This reactive programming paradigm certainly opens new covert channels for leaking information flow.
First let us consider the synchronous area of signal environment. One can imagine it as a set of boolean
variables shared by threads. Thus, emitting a signal will correspond to updating the variable to true, testing
a signal then actually is checking whether the value of given variable is true. Similar to the locations, we
can distinguish between secret signals and public signals. Therefore, the meaning of “storing information in
public locations” is extended, which includes also emitting public signals. The following program should be
ruled out as insecure program as well in reactive setting, where emit construct will broadcast the signal to
the signal environment:

if !uH then (emit sL) else (emit s′L)

because public view of the signal environment is dependent on the confidential information stored in uH .
The other way of covert channel might be opened by testing a confidential signal with reactive constructs,

due to that the suspension and preemption construct will change the order of the execution of threads, thus
implicitly given some secret information. If one consider the following program, where informally the when

construct will execute the code only if being waited signal is present, and “||” represents parallel composition
of threads:

(when sH do vL := 1)||(emit sH); vL := 2

If the secret signal sH is not initially present, then the thread one the left will get suspended, and the right
one will emit the signal and assign vL with 2, then the left one will resume from suspension, assign vL with
1. In the other case, where sH is initially present, the final result for vL will be 1. So it has an insecure flow
from sH to vL.

In this paper, we investigate that to what extent the reactive construct will influence the flow of in-
formation in reactive programming paradigm, and we show how to define a run-time security error in this
particularly setting, to prevent all the explicit and implicit insecure information flow. We consider here a
core language which is a subset of ULM language that extends the imperative ML-like language with reac-
tive primitive for suspension (when) and preemption (watch), together with a non-deterministic semantics
for scheduling over threads. We implement the semantics as an abstract machine. At each step of the
evaluation, we record a confidential level and a suspension level, respectively, for indicating the security level
of reading and testing of signals might influence current thread so far. Then assignment to a location or
emitting a signal which have level lower than currently recorded level will rise an run-time error. Especially,
we separately record these two levels for each thread, to obtain the enough flexibility for different thread.

The rest of the paper is organized as follows. In Section 2 we introduce the language and its operational
semantics, we will also show some examples of secure and insecure flow accounting for the semantics. Then
in Section 3 we define the type system, and show some necessary properties of typed programs, and also the
soundness result w.r.t the safety property.

2

M, N ::= V | (if M then N else N ′) | (MN) | (M ; N)
| (refl,θM) | (!M) | (M := N)
| sigl | (emit M) | (thread M)
| (when M do N) | (watch M Do N)

V, W ::= x | sl | ul,θ | λxM | tt | ff | ()

Figure 1: Syntax of the language

2 The language

2.1 Syntax

The language in which we are interested here is an slight variant of the ULM, an ML-like imperative higher-
order language extended with suspension and preemption constructs. Differing from the original ULM
language, we confine us here to the local behavior of programs without considering the mobility of codes,
and we also adopt a slightly different scheduling policy for local threads.

In the language, when a location or a signal is created, it will be assigned with a confidentiality level.
We assume a security lattice (L,�) for confidentiality levels. The least and greatest element in L is written
⊥ and ⊤, respectively. And for any l, l′ ∈ L, we denote the meet (greatest lower bound) of them l f l′ and
the join (least upper bound) of them l g l′. For ease of representation, we also use H and L to denote high
level and low level, respectively, with L � H

We assume two infinite and disjoint sets for signals and variables, S and N . The syntax of the language
is given in Figure 1.

In the grammar, sl is any signal name annotated with confidentiality level l, where s ∈ S. ul,θ is any
reference annotated with security level l and type θ, where u ∈ N . The definition of bound and free variables
are as usual, and an expression is closed if it does not contain free variables. We also denote by {x 7→ N}M
the capture-avoiding substitution of free variable x in M with N .

A reactive machine contains a collection of concurrent threads, organized in a multi-set denoted by T .
All these threads share the same store µ and signal environment ξ. We precisely define the configuration of
a machine as a quadruples of following form:

M = [µ, ξ, t, T]

where

• µ is the memory store shared by all threads, mapping each location in dom(µ) to a value. We denote
by µ[ul,θ := V] updating a reference;

• The signal environment ξ ⊆ S is the set of currently present signal;

• t is the currently running thread, explained below in the semantics;

• T is the multi-set of waiting threads, of the form T = {t1, t2, · · · , tn}

For the imperative constructs for the language is quite standard, details can be find in [?]. Let us briefly
introduce the reactive construct now. Roughly speaking, an important feature of reactive programming is
the ability of synchronizing by signals. By emit construct one can broadcast signals to signal environment ξ.
The when construct will test whether a given signal is present or not, if it is present then the current thread
will continue to execute, otherwise it will suspend to yield the scheduler to choose another non-suspended
thread to execute. If current thread and all thread in the multi-set T are suspended, the watch construct
will take effect, killing its body if and only if the watching signal is present.

3

S ::= ε | S ·F
F ::= (if [] N0N1) | ([]〈N〉l) | (〈V 〉l[]) | ([]; 〈N〉l)

| (〈ref l,θ〉
l′ []) | ([] := 〈N〉l) | (〈V 〉l :=l′ [])

| (〈emit〉l[]) | (〈when [] do 〈N〉l)(when sl do [])

| (watch [] do 〈N〉l) | (watch 〈sl〉l
′

do [])
| (watch sl do [])

Figure 2: Definition of stack frames

2.2 Operational semantics

The operational semantics are define by means of an abstract machine for each independent thread. It
augment the standard machines by separately building a reading level and a suspension level while computing
the value of an expression. We first define this abstract machine on single thread, and then lift the thread
transitions to transitions over configuration.

2.2.1 Thread transition (abstract machine)

Running threads are organized as following form:

t = (pc, cur, S, M)

where

• pc records the upper bound of the confidentiality level of reading that may influence the final evaluation
result of expression M with the control stack S;

• cur records the suspension level, which is the upper bound of levels of reading references or testing
signals that may influence suspensions during the evaluation to M with the control stack S;

• S is the control stack, which is a sequence of stack frame (given below);

• M is the code to evaluate.

Notice that we separately record the level pc and cur for each threads, from which high level reading in
one thread will not influence low level writing in another thread. The syntax of stacks and stack frames are
given in Figure 2. Here ε denotes the empty stack. Given a store µ and a signal environment ξ, the thread
transitions has the form:

(µ, ξ, t)
t′′

−→ (µ′, ξ′, t′)

where t′′ = () when there is no new thread spawned, otherwise t′′ is the thread created in this step. The
rules of thread transition are given below in Table 1.

We remark here that the thread transitions can only occur when a thread is not suspended, that is it is
not waiting the presence of a signal by when construct. We define the suspension predicate (ξ, S)† , which
is formalized by the following rule:

S = S′ · (when sl do []) · S′′ sl 6∈ ξ

(ξ, S)†

We also write (ξ, S) ⇂ for ¬(ξ, S)†.

4

code transition

(if M then N0

else N1)

(µ, ξ, (pc, cur, S, (if M then N0 else N1)))
()
−→ (µ, ξ, (pc, cur, S · (if [] N0N1), M))

(µ, ξ, (pc, cur, S · (if [] N0N1), tt))
()
−→ (µ, ξ, (pc, cur, S, N0))

(µ, ξ, (pc, cur, S · (if [] N0N1),ff))
()
−→ (µ, ξ, (pc, cur, S, N1))

(MN)

(µ, ξ, (pc, cur, S, (MN)))
()
−→ (µ, ξ, (pc, cur, S · ([]〈N〉pc), M))

(µ, ξ, (pc, cur, S · ([]〈N〉l), V))
()
−→ (µ, ξ, (l, cur, S · (〈V 〉pc[]), N))

(µ, ξ, (pc, cur, S · (〈λxM〉l[]), V))
()
−→ (µ, ξ, (pc g l, cur, S, {x 7→ V }M))

(M ; N)
(µ, ξ, (pc, cur, S, (M ; N)))

()
−→ (µ, ξ, (pc, cur, S · ([]; 〈N〉pc), M))

(pc, cur, S · ([]; 〈N〉l), V))
()
−→ (µ, ξ, (l, cur, S, N))

(ref l,θ M)

(µ, ξ, (pc, cur, S, (refl,θ M)))
()
−→ (µ, ξ, (pc, cur, S · (〈ref l,θ〉pc[]), M))

(µ, ξ, (pc, cur, S · (〈ref l,θ〉l
′

[]), V))
()
−→ (µ ∪ {ul,θ 7→ V }, ξ, (l′, cur, S, ul,θ))

where ul,θ is fresh and (pcg cur) � l

(!M)
(µ, ξ, (pc, cur, S, (! M)))

()
−→ (µ, ξ, (pc, cur, S · (![]), M))

(µ, ξ, (pc, cur, S · (![]), ul,θ))
()
−→ (µ, ξ, (pc g l, cur, S, V))

where µ(ul′,θ) = V

(M := N)

(µ, ξ, (pc, cur, S, (M := N)))
()
−→ (µ, ξ, (pc, cur, S · ([] := 〈N〉pc), M))

(µ, ξ, (pc, cur, S · ([] := 〈N〉l), V))
()
−→ (µ, ξ, (l, cur, S · (〈V 〉pc :=l []), N))

(µ, ξ, (pc, cur, S · (〈ul,θ〉l0 :=l1 []), V))
()
−→ (µ[ul,θ 7→ V], ξ, (l1, cur, S, ()))

where (pcgcurgl0) � l

(sigl)
(µ, ξ, (pc, cur, S, (sigl)))

()
−→ (µ, ξ, (pc, cur, S, sl))

where sl is fresh

(emit M)

(µ, ξ, (pc, cur, S, (emit M)))
()
−→ (µ, ξ, (pc, cur, S · (〈emit〉pc[]), M))

(µ, ξ, (pc, cur, S · (〈emit〉l0 []), sl))
()
−→ (µ, ξ ∪ {sl}, (l0, cur, S, ()))

where pc g cur � l

(thread M) (µ, ξ, (pc, cur, S, (thread M)))
t
−→ (µ, ξ, (pc, cur, S, ()))

where t = (pc, cur, Sw, M)

(when M do N)

(µ, ξ, (pc, cur, S, (when M do N)))
()
−→ (µ, ξ, (pc, cur, S · (when [] do 〈N〉pc), M))

(µ, ξ, (pc, cur, S · (when [] do 〈N〉l), sl′))
()
−→ (µ, ξ, (l, pc g cur g l′, S · (when sl′ do []), N))

(µ, ξ, (pc, cur, S · (when sl′ do []), V))
()
−→ (µ, ξ, (pc, cur, S, V))

(watch M do N)

(µ, ξ, (pc, cur, S, (watch M do N)))
()
−→ (µ, ξ, (pc, cur, S · (watch [] do 〈N〉pc), M))

(µ, ξ, (pc, cur, S · (watch [] do 〈N〉l), sl′))
()
−→ (µ, ξ, (l, cur, S · (watch 〈sl′〉pc do []), N))

(µ, ξ, (pc, cur, S · (watch 〈sl′〉l do []), V))
()
−→ (µ, ξ, (pc, cur, S, V))

(µ, ξ, (pc, cur, S · (watch sl do []), V))
()
−→ (µ, ξ, (pc, cur, S, V))

Table 1: The Abstract Machine

5

2.2.2 Configuration transitions

To define the transitions over configurations, we first lift the thread transitions of the currently active thread
to the configuration transitions. When a thread spawn a new thread t′, then new thread t′ will be added to
the multi-set of waiting thread.

(µ, ξ, t)
()
−→ (µ′, ξ′, t′)

[µ, ξ, t, T] −→ [µ′, ξ′, t′, T]

(µ, ξ, t)
t′

−→ (µ′, ξ′, t′′)

[µ, ξ, t, T] −→ [µ′, ξ′, t′′, T ∪ t′]

Then, when current thread is suspended or terminated, we should non-deterministic choose a non-
suspended thread from the multi-set T of waiting threads. Abusively, we use (ξ, T) ⇂ to denote that there
exists some threads in T which is not suspended, formalized by following rules:

¬(ξ, S) † M 6∈ Val or S 6= ε

(ξ, t) ⇂
t = (pc, cur, S, M)

(ξ, T) ⇂

(ξ, T ∪ T ′) ⇂

(ξ, T) ⇂

(ξ, T ′ ∪ T) ⇂

Now the rule of scheduling transition is as follows:

¬(ξ, t) ⇂ (ξ, T) ⇂ t′ ∈ T (ξ, t′) ⇂

[µ, ξ, t, T] 7−→ [µ, ξ, t′, (T \{t′}) ∪ {t}]

When all thread are suspended, the instant transition will occur. During the instant transition, any
suspended watch construct should be eliminated when the being waited signal is present. We also update
the suspension level ls(cur) for each thread according to the watch constructs in their control stacks. The
signal environment will be reset to empty set after the transition.

We define κξ to do such a transformation on a single thread, where ξ is the current present signal
environment. We also extend κξ to the multi-set T of waiting threads:

κξ(pc, cur, ε, M) = (pc, cur, ε, M)

κξ(pc, cur, (when sl do []) · S, M) =

{

(pc, cur, (when sl do []) · S, M) if sl 6∈ ξ

(pc′, cur′, (when sl do []) · S′, M ′) otherwise

κξ(pc, cur, (watch 〈sl〉l
′

do []) · S, M) =

{

(pc, cur g l g l′, ε, ()) if sl ∈ ξ

(pc′, cur′ g l g l′, (watch sl do []) · S′, M ′) otherwise

κξ(pc, cur, (watch sl do []) · S, M) =

{

(pc, cur, ε, ()) if sl ∈ ξ

(pc′, cur′, (watch sl do []) · S′, M ′) otherwise

κξ(pc, cur,F · S, M) = (pc′, cur′,F · S′, M ′)

where (pc′, cur′, S′, M ′) = κξ(pc, cur, S, M)

κξ(T) = {κξ(t1), . . . , κ
ξ(tn)} where T = {t1, . . . , tn}

Finally, the rules of instant transition is

¬(ξ, t) ⇂ ¬(ξ, T) ⇂

[µ, ξ, t, T] →֒ [µ, ∅, κξ(t), κξ(T)]

2.3 Secure and Insecure programs

Before going into the semantics, let us first see some example of insecure programs, that we want to mark
as run-time error. We will abusively use “||” again as the informal parallel composition of thread.

First, we sure want to rule out explicit flow as usual, thus in the semantics we should increase the reading
level when we execute the dereferencing.

(uL := vH) (1)

6

(refL(!uH)) (2)

The usual implicit flow must be also be ruled out, for doing this we should transmit the reading level from
evaluating the guard

(if !uH then vL := tt else vL := ff) (3)

However we don’t want the semantics to be too conservative. For example in the sequential composition
of programs (M ; N), the reading level concerning M won’t influence the result of computing N , that is the
following programs should be considered as secure:

!uH ; (vL := tt)

Thus, the reading level should not be propagated along sequential composition.
In the application construct, the following should be considered as insecure flow,

(λx(vL := x)(!uH)) (4)

(if !uH then λx(vL := tt) else λx(vL := ff))() (5)

Basically, we also have to take into consideration the security level accumulated for evaluating the function
and the argument separately.

Extended to the reactive setting, the definition of insecure flow is widened. When emitting a signal, the
following implicit flow is a run-time error.

(if !uH then (emit sL) else ()) (6)

Implicit flow can also occur when spawning a new threads. To prevent this we should keep the current
recorded level from parent thread to child thread.

(if !uH then (thread (vL := tt)) else ()) (7)

Since our language adopts cooperative scheduling, the only way for switching threads is by termination
or suspension. Thus those suspension which depend on high level information may influence the order of
“low level commands”. For example

((if !uH then (when sL do ()) else ()); vL = tt; (emit sL)) ||
((if !uH then () else (when sL do ())); vL = ff ; (emit sL))

(8)

show be note as insecure. Dissimilar to the reading level, as the suspension will affect all the up-coming
computation, there is no way to recover the suspension level as we do for sequential computation. The
principle should be that there is no low level behavior after testing a high level signal. Also we mark
following programs as insecure:

(when sH do (uL = tt)) || (if !vH then (emit sH)) (9)

((when sH do ()); uL = tt) || (if !vH then (emit sH)) (10)

(if !uH then () else (when sL do ())); vL = ff || (emit sL); vL = tt (11)

(if !uH then uH := (λx(when sL do ()))
else uH := (λx())); (!uH ()); vl := tt ||

(emit sL); vL := ff
(12)

Although the preemption does not cause suspension, it causes the recovery of the suspension. So the tested
signal might leak some information. The following examples show some insecure flow.

(watch sH do (when sL do (vL := tt))) ||
(if !uH then (emit sH) else ()); pause; (emit sL)

(13)

7

(if !uH then (emit sH) else ()); pause; (emit sL; vL := ff) ||
(watch sH do (when sL do ())); vL := tt

(14)

where pause can be coded by only using when and watch for some fresh sL and s′L:

pause := (watch sL do ((emit sL); when s′L do()))

Note that preemption only occurs at the end of each instant, so actually the testing of the signal occurs at
the end of instants. To be flexible, we should only increase the suspension level caused by preemption at the
end of instants. For example the following program is secure:

(watchsHdo(uL := tt)); vL := ff

2.4 Explanations

Now let us explain how the information flow is controlled in the semantics. First, one should observe that if
we abandon security levels recorded in the semantics, this abstract machine is just a standard stack machine.
For example, the rules for application are:

(µ, ξ, (S, (MN)))
()
−→ (µ, ξ, (S · ([]N), M))

(µ, ξ, (S · ([]N), V))
()
−→ (µ, ξ, (S · (V []), N))

(µ, ξ, (S · (λxM []), V))
()
−→ (µ, ξ, (S, {x 7→ V }M))

During the evaluation of the thread, we record the pc as the reading level which will effect the result of
current running thread. We note that this level can only increase by reading from a location. The security
level of the location will be added to the reading level.

(µ, ξ, (pc, cur, S · (![]), ul.θ))
()
−→ (µ, ξ, (pc g l, cur, S, µ(ul,θ)))

However, we should be careful that this level will not accumulate levels from unnecessary read operations
that will not influence the current expression. For example in the evaluation of application (MN) or sequence
(M ; N), certainly the reading happened in M will not influence the evaluation of N . So what we have to do
is to “forget” about the reading level concerning computing M . The strategy we use here is that when we
start to evaluate (MN) we push frame ([]N) together with current pc, when we pop the frame, we should
recover the reading level recorded in frame to pc. For example,

(µ, ξ, (pc, cur, S, (MN)))
()
−→ (µ, ξ, (pc, cur, S · ([]〈N〉pc), M))

(µ, ξ, (lc, ls, S · ([]〈N〉pc), V))
()
−→ (µ, ξ, (pc, ls, S · (〈V 〉lc []), N))

(µ, ξ, (l′c, l
′

sS · (〈λxM〉lc []), V))
()
−→ (µ, ξ, (lc g l′c, l

′

s, S, {x 7→ V }M))

We use similar strategy for evaluating sub-expression in sequence, reference creating, assignment, emit signal,
suspension construct and preemption construct.

When we have evaluated the guard of the conditional construct, we keep the current reading level, to
prevent implicit flow.

(µ, ξ, (pc, cur, S · (if [] N0N1), tt))
()
−→ (µ, ξ, (pc, cur, S, N0))

When we create a reference, or do an assignment, or emit a signal, we compare the level of target location
to join of current reading level and suspension level, to prevent one from storing in low level location high
level information:

(pc g cur) � l

8

especially, in assignment we also take the level l0 when evaluating the location into consideration.
When we test some signal by the when construct, we increase the current suspension level with the join

of pc, cur and the level of tested signal l, because that the pc record the reading level that might influence
the evaluation of the tested signal.

(µ, ξ, (pc, cur, S · (when [] do 〈N〉l), sl′))
()
−→ (µ, ξ, (l, pc g cur g l′, S · (when sl′ do []), N))

For watch construct it is a slight different, due to the fact that the testing of the signal only occurs at the
end of each instant, then we could postpone to increase the suspension level at instant transition. Therefore
we have to annotate in the stack frame the reading level used for evaluating the tested signal:

(watch 〈sl′〉
pc do [])

and the increasing of the level happens at the instant transition by κ transformation.

κξ(pc, cur, (watch 〈sl〉l
′

do []) · S, M) =

{

(pc, cur g l g l′, ε, ()) if sl ∈ ξ

(pc′, cur′ g l g l′, (watch sl do []) · S′, M ′) otherwise

Finally, let us comment on the propagation of suspension level. Unlike the reading level. The suspension
level gained from testing a signal will not only influence the body of reactive construct, but also the up-
coming computation. Thus the suspension level is always transmitted to next step, to prevent implicit flow
originated from testing a high level signal.

2.5 Secure programs

Then the definition of a secure program is straightforward: it should not run into security error, that is,
violating the condition appear in the box defined in the semantics of abstract machine. One could easily see
that if the condition is violated, then the computing will get stuck, with no further possible transition.

Definition 2.1 We denote a machine transition from one configuration C to another configuration C′ as
C C′ if one of following occurs

• C → C′ (thread transition)

• C 7−→ C′ (scheduling transition)

• C →֒ C′ (instant transition)

To define the notion of the secure program, we introduce an unmonitored variant of the operational
semantics on machine configurations,denoted by ⇒, which is exactly defined as except that we ignore
all the conditions when we do “something observable” (those conditions appears in the box when we define
the abstract machine). Obviously the unmonitored semantics is more flexible than the monitored one. Then
then definition of a secure program is straightforward, that is all the security check during the semantics
succeed. In another word, those checks are useless.

Definition 2.2 (Secure Programs) A program M is secure (from the confidentiality point of view) if and
only if for a class of initial memory µ and signal environment ξ,

[µ, ξ, (⊥,⊥, M), ∅] ⇒∗ [µ′, ξ′, t, T] implies [µ, ξ, (⊥,⊥, M), ∅] ∗ [µ′, ξ′, t, T]

such that t is neither terminated (a value) nor suspended, but can not go on for further step.

9

3 Type and effect system

In this section we show a standard type system which entails the safety property. The design of the type
system follow the line of “state-oriented” approach [3, 1, 5]. Furthermore, we take the current reading level
and suspension level into typing judgment, in order to type running thread. The types are defined by the
following grammar:

τ, σ, θ . . . ::= t | bool | unit | tsigl | θrefl | (τ
e
−→ σ)

where t is any type variables, tsigl is the type of signals whose confidentiality level are l, and e is any “security
effect”. The judgements of the type and effect system have the form

pc; cur; Γ ⊢ M : e, τ

where Γ is a typing context, e is a security effect, which is a triple (e.c, e.w, e.s), and τ is a type. They can
be explained as follows:

• pc is the initial confidentiality level.

• cur is the initial suspension level.

• Γ maps each variable to a type.

• e.c is the confidentiality level of M , indicating the upper bound of the confidentiality levels of reading
that may influence the final evaluation result of expression (pc, cur, M);

• e.w is the writing level of M , that is the lower bound of levels of references that (pc, cur, M) might
update;

• e.s denotes the suspension level of M , which is the upper bound of levels of reading references or testing
signals that may influence suspensions during the evaluation of (pc, cur, M).

• τ is the type of M .

We denote e.c g e.s by e.r.

3.1 Typing programs

The typing rule is given in Figure 3.

3.2 Typing running configurations

We also have to give types to a running configuration, in order to obtain the subject reduction property.
Therefore, we extend the typing judgement to type the running thread, which have the following form

pc; cur; Γ ⊢ (S, M) : e, τ

The rules are given in Figure 4.
To establish the safety results, we have to show how to type the configuration. For doing this we first

define how to the memory. The typing judgement follows the form Γ ⊢ µ, which can be inferred by following
rules:

Γ ⊢ ∅

Γ ⊢ ∅ Γ(ul,θ) = θ ⊥,⊥, Γ ⊢ V : (⊥,⊤⊥), θ

Γ ⊢ µ ∪ {ul,θ 7→ V }

Finally, the typing rule for configuration is

pc; cur; Γ ⊢ (S, M) : e, τ

Γ ⊢ (pc, cur, S, M)

Γ ⊢ µ Γ ⊢ t ∀ti ∈ T, Γ ⊢ ti

Γ ⊢ [µ, ξ, t, T]

10

Loc
pc; cur; Γ ⊢ ul,θ : (pc,⊤, cur), θref l

Var
pc; cur; Γ, x : τ ⊢ x : (pc,⊤, cur), τ

BoolT
pc; cur; Γ ⊢ tt : (pc,⊤, cur), bool

BoolF
pc; cur; Γ ⊢ ff : (pc,⊤, cur), bool

CreaSig
pc; cur; Γ ⊢ sigl : (pc,⊤, cur), tsigl

Sig
pc; cur; Γ ⊢ sl : (pc,⊤, cur), tsigl

Nil
pc; cur; Γ ⊢ () : (pc,⊤, cur), unit

Abs
⊥;⊥; Γ, x : τ ⊢ M : e, σ

pc; cur; Γ ⊢ λxM : (pc,⊤, cur), (τ
e
−→ σ)

Cond
pc; cur; Γ ⊢ M : e, bool e.c; e.s; Γ ⊢ Ni : ei, τ

pc; cur; Γ ⊢ (if M then N0 else N1) : e g e0 g e1, τ

App

pc; cur; Γ ⊢ M : e, (τ
e′

−→ σ)
pc; e.s; Γ ⊢ N : e′′, τ (e.r g e′′.r) � e′.w

pc; cur; Γ ⊢ MN : e g e′ g e′′, σ
Seq

pc; cur; Γ ⊢ M : e, τ pc; e.s; Γ ⊢ N : e′, σ

pc; cur; Γ ⊢ M ; N : (⊥, e.w, e.s) g e′, σ

Ref
pc; cur; Γ ⊢ M : e, θ e.r � l

pc; cur; Γ ⊢ (refl,θM) : (pc, e.w f l, e.s), θrefl
DeRef

pc; cur; Γ ⊢ M : e, θrefl

pc; cur; Γ ⊢ (!M) : e g (l,⊤,⊥)

Assign
pc; cur; Γ ⊢ M : e, θrefl pc; e.s; Γ ⊢ N : e′, θ (e.r g e′.r) � l

pc; cur; Γ ⊢ (M := N) : (pc, e.w f e′.w f l, e.s g e′.s), unit

Thread
pc; cur; Γ ⊢ M : e, σ

pc; cur; Γ ⊢ (thread M) : e, unit
Emit

pc; cur; Γ ⊢ M : e, tsigl e.r � l

pc; cur; Γ ⊢ (emit M) : (pc, e.w f l, e.s), unit

When
pc; cur; Γ ⊢, M : e, tsigl pc; e.s g e.c g l; Γ ⊢ N : e′, τ

pc; cur; Γ ⊢ (when M do N) : e g e′, τ

Watch
pc; cur; Γ ⊢ M : e, tsigl pc; e.s; Γ ⊢ N : e′, τ (e.c g l) � e′.w

pc; cur; Γ ⊢ (watch M do N) : e g e′, τ

Figure 3: The type and effect system

11

Active
pc; cur; Γ ⊢ M : e, θ

pc; cur; Γ ⊢ (ε, M) : e, θ

Cond-E
pc; cur; Γ ⊢ (S, M) : e, bool e.c; e.s; Γ ⊢ Ni : ei, τ

pc; cur; Γ ⊢ ((if [] then N0 else N1) · S, M) : e g e0 g e1, τ

App-E1

pc; cur; Γ ⊢ (S, M) : e, (τ
e′

−→ σ)
l; e.s; Γ ⊢ N : e′′, τ (e.r g e′′.r) � e′.w

pc; cur; Γ ⊢ (([]〈N〉l) · S, M) : e g e′ g e′′, σ

App-E2

⊥;⊥; Γ ⊢ V : ⊥, (τ
e′

−→ σ)
pc; cur; Γ ⊢ (S, N) : e′′, τ (l g e′′.r) � e′.w

pc; cur; Γ ⊢ ((〈V 〉l[]) · S, N) : (l,⊤,⊥) g e′ g e′′, σ

Seq-E
pc; cur; Γ ⊢ (S, M) : e, τ l; e.s; Γ ⊢ N : e′, σ

pc; cur; Γ ⊢ (([]; 〈N〉l) · S, M) : (⊥, e.w, e.s) g e′, σ

Ref-E
pc; cur; Γ ⊢ (S, M) : e, θ e.r � l

pc; cur; Γ ⊢ ((〈ref l,θ 〉l
′

[]) · S, M) : (l′, l f e.w, e.s), θrefl

DeRef-E
pc; cur; Γ ⊢ (, S, M) : e, θrefl

pc; cur; Γ ⊢ ((![]) · S, M) : e g (l,⊤,⊥)

Assign-E1
pc; cur; Γ ⊢ (S, M) : e, θrefl l′, e.s; Γ ⊢ N : e′, θ (e.r g e′.r) � l

pc; cur; Γ ⊢ (([] := 〈N〉l
′

) · S, M) : (l′, e.w f e′.w f l, e.s g e′.s), unit

Assign-E2
⊥;⊥; Γ ⊢ ul,θ : ⊥, θref l pc; cur; Γ ⊢ N : e′, θ (l0 g e′.r) � l

pc; cur; Γ ⊢ ((〈ul,θ〉l0 :=l1 []) · S, N) : (l′, e′.w f l, e′.s), unit

Emit-E
pc; cur; Γ ⊢ (S, M) : e, tsigl e.r � l

pc; cur; Γ ⊢ ((〈emit〉l
′

[]) · S, M) : (l′, e.w f l, e.s), unit

When-E1
pc; cur; Γ ⊢ (S, M) : e, tsigl l′; e.s g e.c g l; Γ ⊢ N : e′, τ

pc; cur; Γ ⊢ ((when [] do 〈N〉l
′

) · S, M) : (e′.c, e.w f e′.w, e.s g e′.s), τ

When-E2
pc; cur; Γ ⊢ (S, M) : e, τ

pc; cur; Γ ⊢ ((when sl do []) · S, M) : e, τ

Watch-E1
pc; cur; Γ ⊢ (S, M) : e, tsigl l′; e.s g e.c g l; Γ ⊢ N : e′, τ

pc; cur; Γ ⊢ ((watch [] do 〈N〉l
′

) · S, M) : (e′.c, e.w f e′.w, e.s g e′.s), τ

Watch-E2
pc; cur; Γ ⊢ (S0, M) : e, τ l g l′ � e.w

pc; cur; Γ ⊢ ((watch 〈sl〉
l′ do []) · S0, M) : e g (⊥,⊤, l g l′), τ

Watch-E3
pc; cur; Γ ⊢ (S, M) : e, τ

pc; cur; Γ ⊢ ((watch sl do []) · S, M) : e, τ

Figure 4: Typing running thread

12

3.3 Type safety

To obtain the type safety results, we follow the stand approach: to prove a “subjection property” property,
and further show that insecure program are not typable.

Lemma 3.1 (Typing Values) For all V ∈ V, if pc; cur; Γ ⊢ V : e, τ , then e = (pc,⊤, cur).

Proof Straightforward by typing rules Loc, Var, BoolT, BoolF, Sig, Nil, and Abs.

Lemma 3.2 (Strengthening Initial Effect) If pc; cur; Γ ⊢ M : e, τ , and lc, ls � e.w, then (pcglc); (curg

ls); Γ ⊢ M : e0, τ , such that e0 = e g (lc,⊤, ls).

Proof By induction on the height of inference tree. We examine the case of rule Cond here.

pc; cur; Γ ⊢ M : e, bool e.c; e.s; Γ ⊢ Ni : ei, τ

pc; cur; Γ ⊢ (if M then N0 else N1) : e g e0 g e1, τ

By induction hypothesis, we have

pc g lc; cur g ls; Γ ⊢ M : e g (lc,⊤, ls), bool

and
e.c g lc; e.s g ls; Γ ⊢ Ni : ei g (lc,⊤, ls), τ

We can conclude that
pc g lc; cur g ls; Γ ⊢ M : e g (lc,⊤, ls), bool

e.c g lc; e.s g ls; Γ ⊢ Ni : ei g (lc,⊤, ls), τ

pc; cur; Γ ⊢ (if M then N0 else N1) :
e g e0 g e1 g (lc,⊤, ls), τ

Other cases are similar.

Lemma 3.3 (Replacement Lemma) If pc; cur; Γ ⊢ (S ·S0, M) : e, τ , then there exists e0 and σ, such that
pc; cur; Γ ⊢ (S0, M) : e0, σ, and if pc′; cur′; Γ ⊢ (S′

0, M
′) : e1, σ with e1 � e0, then pc′; cur′; Γ ⊢ (S · S′

0, M
′) :

e′, τ for some e′ such that e′ � e.

Proof By induction on the typing inference.

Lemma 3.4 (Substitution Lemma) If ⊥;⊥; Γ, x : τ ⊢ M : e, σ, and ⊥;⊥; Γ ⊢ V : ⊥, τ , then ⊥;⊥; Γ ⊢
{x 7→ V }M : e, τ .

Proof The lemma is quite standard, proof by induction on the structure of M and the typing inference.

Proposition 3.5 (Subject Reduction) If Γ ⊢ [µ, ξ, t, T], and [µ, ξ, t, T] → [µ′, ξ′, t′, T ′], then there exist
Γ′, such that Γ ⊆ Γ′ and Γ′ ⊢ [µ′, ξ′, t′, T ′].

Proof We need only exam the cases when the transition comes from a thread transition or a instant tran-
sition. For scheduling transition, it is trivial from the typing judgement of configuration.

Assuming that t = (pc, cur, S, M), then by typing rules of configuration, we have that

pc; cur; Γ ⊢ (S, M) : e, θ

For the thread transitions, we proceed case by case on the thread transitions.

13

• (µ, ξ, (pc, cur, S, (if M then N0 else N1)))
()
−→

(µ, ξ, (pc, cur, S · (if [] N0N1), M))

By Lemma 3.3, we have

pc; cur; Γ ⊢ M : e, bool e.c; e.s; Γ ⊢ Ni : ei, σ

pc; cur; Γ ⊢ (if M then N0 else N1) : e2, σ

pc; cur; Γ ⊢ (ε, (if M then N0 else N1)) : e2, σ

and then we have
pc; cur; Γ ⊢ M : e, bool

pc; cur; Γ ⊢ (ε, M) : e, bool
e.c; e.s; Γ ⊢ Ni : ei, σ

pc; cur; Γ ⊢ ((if [] N0N1), M) : e2, σ

By Lemma 3.3 again we can conclude that

pc; cur; Γ ⊢ (S · (if [] N0N1), M) : e, θ

We omit all the other cases of “administrative” transitions which consist in pushing a frame into the
stack.

• (µ, ξ, (pc, cur, S · (if [] N0N1), b))
()
−→

(µ, ξ, (pc, cur, S, Ni))

where b = tt and i = 0 or b = ff and i = 1. By Lemma 3.1 and Lemma 3.3, we have

pc; cur; Γ ⊢ b : (pc,⊤, cur), bool

pc; cur; Γ ⊢ (ε, b) : (pc,⊤, cur), bool
pc; cur; Γ ⊢ Ni : ei, σ

pc; cur; Γ ⊢ ((if [] N0N1), M) : e2, σ

and then we have
pc; cur; Γ ⊢ Ni : ei, σ

pc; cur; Γ ⊢ (ε, Ni) : ei, σ

where ei � e2, then by Lemma 3.3 we can conclude.

• (µ, ξ, (pc, cur, S · (〈λxM〉l[]), V))
()
−→

(µ, ξ, (pcg l, cur, S, {x 7→ V }M))

By Lemma 3.1 and Lemma 3.3, we have

⊥;⊥; Γ, x : τ ⊢ M : e1, σ

⊥;⊥; Γ ⊢ (λxM) : ⊥, (τ
e1−→ σ)

pc; cur; Γ ⊢ (ε, V) : (pc,⊤, cur), τ (l g pc g cur) � e1.w

pc; cur; Γ ⊢ ((〈λxM〉l[]), V) : e0, σ

where e0 = e1 g (l g pc,⊤, cur). Then by Lemma 3.4, we have

⊥;⊥; Γ ⊢ {x 7→ V }M : e1, σ

then by Lemma 3.2, we could infer

pc g l; cur; Γ ⊢ {x 7→ V }M : e′1, σ

where e′1 � e0, then by Lemma 3.3 we can conclude.

14

• (µ, ξ, (pc, cur, S · ([]; 〈N〉l), V))
()
−→

(µ, ξ, (l, cur, S, N))

By Lemma 3.3, we have

pc; cur; Γ ⊢ (ε, V) : (pc,⊤, cur), τ l; cur; Γ ⊢ N : e0, σ

pc; cur; Γ ⊢ (([]; 〈N〉l), V) : e0, σ

which implies the following
l; cur; Γ ⊢ N : e0, σ

l; cur; Γ ⊢ (ε, N) : e0, σ

Then by Lemma 3.3 again we can conclude this case.

• (µ, ξ, (pc, cur, S · (〈ref l,θ〉l
′

[]), V))
()
−→

(µ ∪ {ul,θ 7→ V }, ξ, (l′, cur, S, ul,θ))

By Lemma 3.3 and 3.1, we have

pc; cur; Γ ⊢ (ε, V) : (pc,⊤, cur), θ pc g cur � l

pc; cur; Γ ⊢ ((〈ref l,θ 〉l
′

[]), V) : (l′, l, cur), θref l

Then we can show that
l′; cur; Γ ⊢ (ε, ul,θ) : (l′,⊤, cur), θref l

Then by Lemma 3.3 we can conclude. Furthermore, we have to show that Γ ⊢ µ ∪ {ul,θ 7→ V }. Since
ul,θ is fresh, it is trivial.

• (µ, ξ, (pc, cur, S · (![]), ul,θ))
()
−→

(µ, ξ, (pc g l, cur, S, V))

By Lemma 3.3, we have

pc; cur; Γ ⊢ (ε, ul,θ) : (pc,⊤, cur), θref l

pc; cur; Γ ⊢ ((![]) · ε, ul,θ) : (pc,⊤, cur) g (l,⊤,⊥), θ

Then we can show that
pc g l; cur; Γ ⊢ (ε, V) : (pc g l,⊤, cur), θ

By Lemma 3.3 we can conclude.

• (µ, ξ, (pc, cur, S · (〈ul,θ〉l0 :=l1 []), V))
()
−→

(µ[ul,θ 7→ V], ξ, (l1, cur, S, ()))

By Lemma 3.3, we have

⊥;⊥; Γ ⊢ ul,θ : ⊥, θrefl pc; cur; Γ ⊢ (ε, V) : (pc,⊤, cur), θ (l0 g pc g cur) � l

pc; cur; Γ ⊢ ((〈ul,θ〉l0 :=l1 []), V) : (l1, l, cur), unit

Then we can show that
l1; cur; Γ ⊢ (ε, ()) : (l1,⊤, cur), unit

By Lemma 3.3 we can conclude, and Γ ⊢ µ[ul,θ 7→ V], since V is well-typed.

15

• (µ, ξ, (pc, cur, S · (〈emit〉l0 []), sl))
()
−→

(µ, ξ ∪ {sl}, (l0, cur, S, ()))

By Lemma 3.3, we have

pc; cur; Γ ⊢ (ε, sl) : (pc,⊤, cur), tsigl (pc g cur) � l

pc; cur; Γ ⊢ ((〈emit〉l
′

[]), sl) : (l′, l, cur), unit

Then we can show that
l′; cur; Γ ⊢ (ε, ()) : (l′,⊤, cur), unit

By Lemma 3.3 again we can conclude.

• (µ, ξ, (pc, cur, S, (thread M)))
t
−→

(µ, ξ, (pc, cur, S, ()))

By Lemma 3.3, we can have

pc; cur; Γ ⊢ M : e0, σ

pc; cur; Γ ⊢ (thread M) : e0, unit

pc; cur; Γ ⊢ (ε, thread M) : e0, unit

Since t = (pc, cur, ε, M), then it is typable.

• (µ, ξ, (pc, cur, S · (when [] do 〈N〉l), sl′))
()
−→

(µ, ξ, (l, pc g cur g l′, S · (when sl′ do []), N))

By Lemma 3.3, we have

pc; cur; Γ ⊢ (ε, sl′) : (pc,⊤, cur), tsigl′ l; pc g cur g l′; Γ ⊢ N : e′, τ

pc; cur; Γ ⊢ ((when [] do 〈N〉l), sl′) : e′, τ

we can show that
l; pc g cur g l′; Γ ⊢ (ε, N) : e′, τ

l; pc g cur g l′; Γ ⊢ ((when sl′ do []), N) : e′, τ

By Lemma 3.3 again, we can conclude.

For the scheduling, since the transition will not actually change any thread, the it will not affect the
typability of the configuration.

It remains to show the case for instant transition. In this case, it is suffice to show that the transformation
κξ preserves the typability of running threads under same (or weaker) security effect e. That is, if we have

pc; cur; Γ ⊢ (S, M) : e, τ

and
κξ(pc, cur, S, M) = (pc′, cur′, S′, M ′)

Then we show that, for some e′ � e

pc′; cur′; Γ ⊢ (S′, M ′) : e′, τ

We prove by induction on the length of the stack S in (S, M).

• S = ε. It is trivial since κξ(pc, cur, ε, M) = (pc, cur, ε, M).

• S = (when sl do []) · S0. If sl 6∈ ξ, then it is trivial similar to above case. If sl ∈ ξ. By induction
hypothesis and typing rule When-E2, we can conclude.

16

• S = (watch 〈sl〉l
′

do []) · S0, M) we have

pc; cur; Γ ⊢ (S0, M) : e, τ l g l′ � e.w

pc; cur; Γ ⊢ ((watch 〈sl〉l
′

do []) · S0, M) : e g (⊥,⊤, l g l′), τ

If sl ∈ ξ, then we have

pc; cur g l g l′Γ ⊢ (ε, ()) : (pc,⊤, cur g l g l′), unit

where (pc,⊤, cur g l g l′) � e g (⊥,⊤, l g l′).
If sl 6∈ ξ, then by induction hypothesis, we have

pc′; cur′; Γ ⊢ (S′

0, M
′) : e′, τ

where e′ � e, which implies l g l′ � e′.w. By Lemma 3.2, we have

pc′; cur′ g l g l′; Γ ⊢ (S′

0, M
′) : e′ g (⊥,⊤, l g l′), τ

pc′; cur′ g l g l′; Γ ⊢ ((watch sl do []) · S′

0, M
′) : e′ g (⊥,⊤, l g l′), τ

• Other cases are simple.

Lemma 3.6 (insecure program) The following insecure programs (threads) are not typable

• (pc, cur, S · (〈ref l,θ〉l
′

), V), where (pc g cur) 6� l

• (pc, cur, S · (〈ul,θ〉l0 :=l1 []), V), where (pc g cur g l0) 6� l

• (pc, cur, S · (〈emit〉l0), sl), where (pc g cur) 6� l

Proof Straightforward by type rules Ref-E, Assign-E2, and Emit-E.

Finally, we could state our safety result.

Theorem 3.7 (Type Safety) If M is typable in typing context Γ for initial effect (⊥,⊥), that is, ⊥,⊥, Γ ⊢
M : e, τ for some e and τ . Then M is secure with the class of typable memory {µ|τ ⊢ µ}.

Proof Direct consequence of Proposition 3.5 and Lemma 3.6.

4 Conclusion

In this paper we investigate the information flow problem in a reactive programming setting, which augments
the multi-threaded functional language with reactive constructs to achieve cooperative synchronization be-
tween threads. We point out new covert channel in this programming paradigm. Furthermore, we define the
security property as a safety property by means of dynamically checking information flow during evaluation.
Finally, we show a type system to ensure that typable programs do not need these dynamical checks during
the computing.

References

[1] G. Boudol and M. Kolundzija. Access Control and Declassification. In Computer Network Security,
volume 1 of CCIS, pages 85–98. Springer-Verlag, 2007.

[2] Gérard Boudol. ULM: A core programming model for global computing: (extended abstract). In ESOP,
pages 234–248, 2004.

17

[3] Gérard Boudol. On typing information flow. In Dang Van Hung and Martin Wirsing, editors, ICTAC,
volume 3722 of Lecture Notes in Computer Science, pages 366–380. Springer, 2005.

[4] Gérard Boudol. Secure information flow as a safety property. submitted, 2008.

[5] Ana Almeida Matos and Gérard Boudol. On declassification and the non-disclosure policy. In CSFW,
pages 226–240. IEEE Computer Society, 2005.

18

