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Abstract

Mashups are a prevailing kind of web applications integrating external gadget APIs often written
in the Javascript programming language. Writing secure mashups is a challenging task due to the
heterogeneity of existing gadget APIs, the priviledges granted to gadgets during mashup executions, and
the Javascript’s highly dynamic environment.

We propose a new compiler, called Mashic, for the automatic generation of secure Javascript-based
mashups from existing mashup code. The Mashic compiler can effortlessly be applied to existing mashups
based on a wide-range of gadget APIs. It offers security and correctness guarantees. Security is achieved
by using the Same Origin Policy. Correctness is ensured in the presence of benign gadgets, that sat-
isfy confidentiality and integrity constrains with regard to the integrator code. The compiler has been
successfully applied to real world mashups based on Google maps, Bing maps, YouTube and Zwibbler
APIs.
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1 Introduction

Mixing existing online libraries and data into new online applications in a rapid, inexpensive manner,
often referred to as mashups, has captured the way of designing web applications. ProgrammableWeb
mashup graphs currently report that over 5000 mashup-based web applications and over 3000 gadget
APIs currently exist (http://www.programmableweb.com/). Since the release of the first major example,
HousingMaps.com in early 2005, mashups have offered the potential to finally make widespread software
reuse a reality.

In a mashup the integrator code integrates gadget from external code providers, permitting to execute
attacker code with otherwise impossible integrator privileges due to browsers security policies. Typically,
code is written in the JavaScript (JS) language, the most popular scripting language on the Internet
nowadays. JS programs execute on the browser as embedded script nodes in the document object model
(DOM) [Hors et al., 2000]. The highly dynamic nature of the language, that is usually combined with
the DOM API [Gardner et al., 2008], has led to a prevalence of security vulnerabilities associated with
leakage of pointers to sensitive resources in the DOM such as the property “window” of the global object,
or rewriting of object properties changing functionality of native functions.

Browsers implement the Same Origin Policy (SOP). An origin is characterized by the protocol, the
domain name, and the port used for communication. The SOP does not allow sharing of the global
object between different origins in order to isolate untrusted JS code. Two ways of including untrusted
JS code are available in the browsers: either including it with the script tag and granting access to all
the resources of the integrator, or limiting it within a single frame of a different origin (with the iframe
tag) and granting no access to any resource, by the SOP. (For ease of presentation, when we mention
frame in the rest of the paper, we mean “frame with a different origin”.)

Mashup programmers are thus challenged to provide flexible functionality even if the code consumer
is not willing to trust the gadgets that mashups utilize. Often, programmers choose to include gadgets
using the script tag and resign security in the name of functionality.

Recently AdJail [Louw et al., 2010] and Postmash [Barth et al., 2009a] propose to use inter-frame
communication between integrator and gadgets. AdJail focuses on advertisement scripts by delegating
limited DOM interfaces from the integrator. PostMash [Barth et al., 2009a] targets more general inter-
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faces to operate on gadgets and propose a promising architecture for mashups depicted in Figure 1. In the
PostMash design a programmer must write stub libraries on both the integrator and the gadget. On the
integrator side, the stub library must provide an interface similar to the original gadget’s interface. The
stubbed interface sends corresponding messages by means of the PostMessage API in HTML5. On the
gadget side, there is another stub library, listening and decoding incoming messages. Postmash design
presents several issues:

• Lack of generality: each gadget requires different interfaces;

• Programmer intervention: the programmer manually writes interfaces for different gadgets. More-
over, the programmer needs to write integrator’s code in CPS (Continuation Passing Style) [Danvy
and Filinski, 1992] to adapt to the asyncronous nature of PostMessage.

These issues compromise the guarantees offered by the architecture. Crucially, reliability of the mashup
depends on the programmer without any enforced guarantees.

We address these issues with a novel compiler called Mashic which inputs existing mashup code,
JS code integrated to HTML, to generate reliable mashups using gadget isolation as shown in Figure 1.
Automated code transformation with clear correctness and security guarantees can support programmers
in dealing with the challenge of writting secure mashups without resigning functionalities. The compiler
offers the following features:

Automation and generality: Inter-frame communication and sandboxing code is fully generated by
the compiler and can be used with any untrusted gadget without rewriting the gadget’s code. Automation
is achieved via a proxy and a listener interface (Figure 1), that provide general encoding and operations
on gadget objects that are not directly reached by the integrator when the SOP applies. Due to the
asynchronous nature of the PostMessage API, integrator’s code that initially directly interacts with the
gadget is transformed into CPS style in order to interact with the proxy.

Correctness guarantees: We prove a correctness theorem that states that the behavior of the
Mashic compiled code is equivalent to the original mashup behavior under the hypothesis that the
gadget is benign. Precisely defining a benign gadget turns out to be a technical challenge in itself. For
that, we instrument the JS semantics extended with HTML constructs by a a generalization of colored
brackets [Grossman et al., 2000] and resort to equivalences used in information flow security [Sabelfeld
and Myers, 2003].

Security guarantees: We prove a security theorem that guarantees integrity and confidentiality for
the compiled mashup. These guarantees are essential for the success of the compiler since the programmer
can rely on security of compiled mashups using untrusted gadgets without further hypotheses. Indeed,
if the gadget is not benign in the original mashup, malicious behavior is neutralized in the compiled
mashup. This proof relies on the browsers’ SOP, that we formalize by means of iframe DOM elements.

The proposed compiler is directly applicable to real world and widespread mashups. We present
evidence that our compiler is effective. We have implemented the compiler in a dialect of Scheme and
JS. We have compiled several mashups based on Google and Bing maps, YouTube, and Zwibbler APIs.
In summary our contributions are:

1. The Mashic compiler, its design and implementation, that applies to existing mashups that include
untrusted gadgets using the script tag.

2. Strong security and correctness guarantees for Mashic compiled code and hence direct guarantees
for the mashup end consumer.

3. Case studies based on existing widespread mashups that demonstrate the effectiveness of the com-
piler.

Related Work: The closest related works to Mashic are AdJail [Louw et al., 2010] and Post-
mash [Barth et al., 2009a], and are described above. We focus now in other related work.

Jang et al. [2010] study on top of 50000 websites privacy violating information flows in JS based
web applications. Their survey shows that top-100 sites present vulnerabilities related to cookie stealing,
location hijacking, history sniffing and behavior tracking. Browser implementation vulnerabilities have
also been shown to leak JS capabilities between different origins [Barth et al., 2009c]. Many mechanisms
to prevent JS based attacks have been deployed. For example the Facebook JS subset (FBJS) [Inc., 2011a]
was intended to prevent user-written gadgets to attack trusted code but it did not really succeed in its
goals [Maffeis and Taly, 2009]. Google Caja [Inc., 2011b] is similar to FBJS, transforming JS programs to
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insert run-time checks to prevent malicious access. Yahoo ADsafe [Crockford, 2011] statically validates
JS programs. Maffeis et al. [2009] resort to language-based techniques to find out a subset of JS that
can be used to prove an isolation property for JS code. Static analysis is usually not applicable or
not sound for large and real world web applications due to the highly dynamic nature of JS programs
and because gadgets in general can not be restricted to subsets of JS. As a response to the increasing
need to get flexible functionality without resigning to security guarantees, the research community has
proposed several communication abstractions [Wang et al., 2007, Crockford, 2010, Jackson and Wang,
2007, Keukelaere et al., 2008]. Specifically, OMASH [Crites et al., 2008] proposes a refined the SOP to
enable mashup communication.These abstractions usually require browser modifications and so far have
not been adopted in HTML standards [Hickson, 2011].

2 Running Example

In order to provide some background, we illustrate with a mashup different kinds of gadget inclusions
and inter-frame communication. We reuse this example thought the rest of the sections.

There are two major types of gadgets in web mashups. The first type requires an interface from
the integrator to accomplish some tasks. For instance advertisement scripts, which necessarily need to
gather information of the integrator page through DOM APIs to implement the advertisement strategy.
Another example of the first type of gadgets are user-supplied gadgets in social network platforms such
as facebook.com. The second type provides a set of interfaces to the integrator. For instance the Google
maps API is of this kind. It provides various interfaces to visualize and operate a map gadget. In this
work, we are interested in the second type of gadget inclusion. We focus on the second type, that is
gadget scripts that provide a set of interfaces to enable the integrator to manipulate the gadget.

In the example an integrator i.com wants to include a gadget gadget.js provided by untrusted.com.
The integrator usually creates an empty div element to delegate part of the DOM tree. The integrator
includes the gadget by using a script tag:

1 <div id=gadget_canvas></div>

2 <script src=’http://untrusted.com/gadget.js’></script>

Listing 1: Code Snippet of http://i.com/integrator.html

The integrator calls methods or functions as interfaces to change the state of the gadget. For example,
the following is a code snippet (in the integrator) to manipulate the untrusted gadget via interfaces:

1 var mydiv = document.getElementById("gadget_canvas")

2 var instance = new gadget.newInstance(

3 mydiv, gadget.Type.SIMPLE);

4 instance.setLevel(9);

Listing 2: Code Snippet of http://i.com/integrator.html

The gadget defines a global variable gadget to provide interfaces to the integrator. The gadget.newInstance
is used to create a new gadget instance that binds to the div; and instance.setLevel is a method used
to change state at the gadget instance.

Assume that the integrator stores a secret in global variable secret and a global variable price

holding certain information with an important integrity requirement:

1 var secret = document.getElementById("secret_input");

2 var price = 42

Listing 3: Code Snippet of http://i.com/integrator.html

If the gadget contains the following code, then the secret flows to an untrusted source and the price
is modified at the gadgets will:

1 var steal;

2 steal = secret;

3 price = 0;

Listing 4: Non-benign Gadget
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If the gadget is isolated using the iframe tag with a different origin, variables secret and price cannot
be directly accessed by the gadget. We can modify the example in the following way:

1 <iframe src=’http://u-i.com/gadget.html’></iframe>

Listing 5: Code Snippet of http://i.com/integrator-msg.html

1 <div id=gadget_canvas></div>

2 <script src=’http://untrusted.com/gadget-msg.js’>

3 </script>

Listing 6: Code Snippet of http://u-i.com/gadget.html

Instead of directly including the script, the integrator invents a new origin u-i.com to be used as an
untrusted gadget container, and puts the gadget code in a frame belonging to this origin. By doing this,
the JS execution environment between integrator and gadget is isolated, as guaranteed by the browser’s
SOP. Limited communication between frames and integrator is possible through the PostMessage API
in the browser1 if there is an event listener for the ‘message’ event. To register a listener one provides a
callback function as parameter and treats messages in a waiting queue, asynchronously. With PostMes-
sage, only strings can be sent. However it is possible to marshal objects that do not point to themselves
(as e.g. the global object), via the JSON stringify method.

Code in ( gadget-msg.js and integrator-msg.html) needs to adapt to the asynchronous behaviour.
Instead of calling methods or functions, the integrator must send messages to manipulate the untrusted
gadget in iframe as shown in the following example:

1 PostMessage(stringify({action : "newInstance",

2 container : "gadget_div",

3 type : "SIMPLE"}),

4 "http://u-i.com");

5 PostMessage(stringify({action : "setLevel",

6 container : "gadget_div"}),

7 "http://u-i.com");

Listing 7: PostMessage Example

Compilation with Mashic will not preserved behavior of Listing 4 but will only preserved behavior
that does not represent a confidentiality or integrity violation to the integrator.

The compiler relieves the programmer from rewriting code. Instead of rewriting gadget’s code, our
compiler inserts a proxy and listerner library that implement a communication protocol for manipulating
gadgets independently of untrusted gadgets sandboxed in frames. Instead of rewriting integrators code,
our compiler implements a CPS transformation to overcome the asynchronous nature of PostMessage.
After compilation of code in Listing 1 and 2 the gadget is modified in the following way:

1 <html>

2 <script src="listener.js"></script>

3 <script src="untrusted.com/gadget.js"></script>

4 </html>

Listing 8: Compiled Gadget at http://u-i.com/gadget.html

The integrator is modified in the following way:

1 <html>

2 <script src="proxy.js"></script>

3 <iframe src="http://u-i.com/gadget.html"></iframe>

4 <script src="integrator_cps.js"></script>

5 </html>

Listing 9: Compiled Integrator

1Inter-frame communication is also possible via e.g navigation policies Barth et al. [2009b] but this kind of communication
is now obsolete.
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Notice that the gadget code used in the compiled gadget is not modified from the original one. The proxy
library and the listener library provide general ways to encode gadget operations, and the programmer
does not need to manually write the stub library to operate on confined gadgets. The integrator code,
as we mentioned above is transformed to CPS code integrator cps.js to perform the same task as in
the code shown in Listing 2.

3 Mashic Compilation

In this section we describe in detail how proxy and listener libraries work. For that, we need to define
opaque object handles.

Opaque Object Handle We sandbox gadgets inside an iframe tag with a different origin. By the
SOP policy, the integrator and the gadget cannot exchange JS references to objects. We provide a way
for the integrator to refer to objects that are defined inside the gadget, called opaque object handles.

An opaque object handle is essentially an unique number associated with an object in the frame. The
following code excerpt demonstrate the data type for an opaque object handle:

1 function OHandle(id){

2 if (id == undefined) id = handle_id_gen();

3 this._id = id;

4 this._is_ohandle = true;}

Practically an opaque object handle is an object with a field is ohandle being true and a field id being
the corresponding id. The handle id gen function generates an unique id. Since the data structure for
handles only contains primitive values, they can be exchanged via PostMessage and JSON Stringify.

On the listener library side, we keep a list for associating handles and objects:

1 var handle_list = {};

2 function add_handle_obj(ohandle,obj){

3 handle_list[ohandle._id] = obj;}

4 function get_obj_by_handle(ohandle){

5 return handle_list[ohandle._id];}

Since an object could possibly be an opaque object handle, it is necessary to dynamically check
weather the object being operated is an opaque object handle or a local object existing in the integrator.
If it is an opaque object handle, we need to proxy the operation to the sandbox; if it is a local object,
we can directly operate on this object. We define an isOpaque function to do the dynamic check:

1 function isOpaque(obj){

2 if ((obj != null) && obj._is_ohandle) return true;

3 return false;

4 }

Listing 10: isOpaque Function

We model the interface provided by a given gadget as a set V of global variables in the gadget.

Example 1. For instance in our running example, V = {gadget}, since gadget is the only global variable
defined by the gadget. Another example is the interface provided by Google Maps API, that contains
only the global variable google.

The Mashic compiler inserts bootstrapping scripts on both sides, integrator and gadget. The boot-
strapping script for the integrator takes a set of variables V = {x1, . . . , xn} and generates opaque object
handles for each of them:

1 var xi = new OHandle(i);

Listing 11: Integrator Bootstrapping

The bootstrapping script for the gadget also generates opaque object handles and add them to a list.

1 add_handle_object(new OHandle(i),xi);

Listing 12: Gadget Bootstrapping

In the rest of the paper we let BootstrapVi and BootstrapVg be the bootstrapping scripts for variable
set V for the integrator and the gadget respectively.
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Proxy and Listener Interface In the rest of the paper we let Pp denote the proxy library, and
Pl the listener library. On the proxy library side, we provide a series of interfaces to obtain an opaque
object handle, or operate on it. The proxy library Pp and the listener library Pl is defined in Appendix
A.

To obtain an opaque object handle from a global variable in the gadget, the GET GLOBAL REF interface
can be used:

1 function GET_GLOBAL_REF(global_name,cont){

2 var m_id = gen_id();

3 var msg = {msg_id : m_id,

4 msg_type : ’GET_GLOBAL_REF’,

5 global_name : global_name};

6 PostMessage(stringify(msg));

7 set_cont(m_id,cont);}

Listing 13: Code Snippet of the Proxy Library

The GET GLOBAL REF interface takes two parameters, the global name, and a function cont to be used as
continuation.

The GET GLOBAL REF function, upon invocation on the proxy side, composes a message with a fresh
message id and sends it to the gadget in iframe. Because of the asynchronous nature of the PostMessage
communication, the listener library on the gadget side cannot respond to this message immediately.
Hence, we register a continuation cont with the message id m id.

There are other interfaces that are supported to operate on opaque object handles:

• GET PROPERTY: to obtain an opaque object handle or the primitive value of a property of a given
object (opaque object handle);

• OBJ PROP ASSIGN: to assign a primitive value or an object or an opaque object handle to a property
of a given object;

• CALL FUNCTION: to call a function (opaque object handle) with all parameters being primitive values,
objects or opaque object handles;

• CALL METHOD: to call a method of an object (opaque object handle) with all parameters being
primitive values or objects or opaque object handles;

• NEW OBJECT: to instantiate a function object (that is, an opaque object handle) with all parameters
being primitive values or objects or opaque object handles.

Example 2. Recall the mashup from Section 2. The interface to obtain an opaque object handle in the
integrator is:

GET_GLOBAL_REF("gadget", function(val){...});

where “gadget” is the interface provided by the gadget and the second parameter is a callback function.
Once the integrator obtains an opaque object handle, it can use other interfaces from the integrator
to operate on the opaque object handle. If opq instance corresponds to an instance object inside the
gadget, to mimic the code of line 4 in Listing 2 we use:

CALL_METHOD(opq_instance, "setlevel",function(val){...}, 9);

The interface CALL METHOD sends a message via PostMessage, and waits for a response from the gadget.
Once the response arrives, the callback function(val){...} is invoked on the returned result. Note that
the result might be an opaque object handle as well.

In the listener library, there are interfaces to generate a response as the following function:

1 function GET_GLOBAL_REF_L(recv){

2 var obj = window[recv.global_name];

3 return make_resp_msg(recv,obj);

4 }

5 function make_resp_msg(recv,obj){

6 var ohandle, msg;

7 if (obj != null &&

8 (typeof(obj) == "object" ||

9 typeof(obj) == "function"))
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10 {ohandle = new OHandle();

11 add_handle_obj(ohandle,obj);

12 msg = {msg_id : recv.msg_id,

13 msg_type:’EXE_CONT’,

14 return_val : ohandle};}

15 else {msg = {msg_id: recv.msg_id,

16 msg_type:’EXE_CONT’,

17 return_val : obj};}

18 return msg;

19 }

The function GET GLOBAL REF L gets the real object by the global name, and generates an opaque
object handle if the object is not a primitive value. Then the opaque object handle is sent back to
the integrator via PostMessage as a response for the previous sent message. Finally, the associated
continuation cont will be applied on the response (possibly an opaque object handle).

Here we give details on how interface CALL METHOD works.

1. The integrator invokes CALL METHOD(opq obj,method,cont,args), where opq obj stands for the
object inside the iframe on which we want to invoke the method;cont is the continuation; the args

is possibly a list of arguments.

2. The proxy sends the following message to the listener in iframe:

1 { msg_id : m_id,

2 msg_type: ’CALL_METHOD’,

3 object : opq_obj,

4 method_name: method,

5 arguments : args }

3. The proxy library associates m id with the continuation cont.

4. When the listener receives the message, it first obtains the real object corresponding to the handle
obj; and then it converts the opaque object handles in arguments to corresponding objects; and
finally it invokes object[method name] on the arguments.

5. Once the invocation is finished, it sends back a message:

1 { msg_id: m_id,

2 msg_type:’EXE_CONT’,

3 return_val : val}

where val is either a primitive value or an opaque object handle.

6. Upon receiving the response, the proxy library applies the continuation cont with the received
result val.

CPS Transformation JS does not support Scheme-style call/cc (Call-with-Current-Continuation)
for suspending and resuming an execution. Demanding the programmer to write in CPS style would
turn the proposal impractical.

Example 3. Recall the example in Section 2. In order to obtain the property gadget.Type.SIMPLE, the
programmer should write the following code (using the proxy interface):

1 GET_GLOBAL_REF("gadget",

2 function(opq_gadget){

3 GET_PROPERTY(opq_gadget,"Type",

4 function(opq_Type){

5 GET_PROPERTY(opq_Type,"SIMPLE",

6 function(val_SIMPLE){...});});});

This style is similar to the CPS , where one needs to explicitly specify continuations for the rest of
a computation. In order to reuse the legacy code that operates on a gadget, we propose an automated
CPS transformation of legacy code in such a way that programmers do not need to rewrite their code.
Legacy code in the integrator will be CPS-transformed, and inserted with dynamic checks for opaque
object handles when necessary.
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C〈s0; s1〉 :
function( k){

C〈s0〉(function( v){C〈s1〉( k); });
}

C〈if (e) s0 else s1〉 :
function( k){

C〈e〉(function( b){
if ( b) C〈s0〉( k)

else C〈s1〉( k);
});

}

C〈while (e) s〉 :
function( k){

var c;
c = function( v){

C〈e〉(function( b){
if ( b) C〈s〉( c)

else k(undefined);
});

};
c(undefined);

}

C〈return e〉 :
function( k){C〈e〉( fun cont)}

Figure 2: CPS Transformation of Statements

C〈this〉 :
function( k){ k( this); }

C〈pv〉 :
function( k){ k(pv); }

C〈x〉 :
function( k){ k(x); }

x = e
function( k){

C〈e0〉(function( x0){
k(x = x0);

});
}

e0 op e1
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

k( x0 op x1);
});

});
}

typeof e
function( k){

C〈e0〉(function( x0){
k(typeof x0);

});
}

{m0 : e0,m1 : e1}
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

k({m0 : x0,m1 : x1});
});

});
}

function(x){s}
function( k){

k(function( fun cont , x){
var this;
this = this;
C〈s〉( fun cont);

});
}

Figure 3: CPS Transformation of Expressions, Non-Message-Passing part

We formally define the CPS transformation of an integrator code s, denoting C〈s〉. The function
C : s 7→ s transforms JS code into CPS style. CPS-transformed programs are functions that take as
parameter another function as an explicit continuation of the computation. The transformation rules
are defined in Figure 2, 3 and 4. For each operation, the compilation inserts dynamic checks to check
whether the object is an opaque object handle or not.

We transform e0[e1] to a function taking a parameter k as continuation. In the body of the function,
we apply the CPS-transformed code of e0 to a continuation where the CPS-transformed code of e1 is
applied to an inner-most continuation. In the inner-most continuation x0 and x1 bind to the results
of evaluating e0 and e1 respectively. We dynamically check if x0 is an opaque object object handle to
decide whether to use the proxy interface or to apply k to x0[ x1] directly. Notice that x1 can only
hold a string, otherwise the execution blocks since in our simplified JS semantics we do not consider
type-casting.

The transformation of the expression new e0(e1) is trickier. The semantics of new is similar to
calling a function except that the returning value is not the result of evaluating the function but the
newly created object. In the inner-most continuation, we first create a dummy function x3 which
duplicates the prototype of x0, then we create an empty object x2 with this dummy function (with the
same prototype as in x0). Next we create a warp continuation x4 where k is always applied to x2,
no matter what is the parameter v. Finally, we apply x0 to x1, using x4 as continuation and binding
x2 to this keyword (to initialize properties in x2). Notice that the continuation will be always applied

to x2, as new e0(e1) will return the created object rather than the result of the function invocation.
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C〈e0[e1]〉 :
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

if (isOpaque( x0)){
GET PROPERTY( x0, x1, k);

} else {
k( x0[ x1]);

}
}); }); }

C〈new e0(e1)〉 :
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

if (isOpaque( x0)){
NEW OBJECT( x0, x1, k);

} else {
var x2, x3, x4;
x3 = function(x){};
x3[“prototype”] = x0[“prototype”];
x2 = new x3();
x4 = function( v){ k( x2); };
x0[“apply”]( x2, x4, x1);

}
}); }); }

C〈e0(e1)〉 :
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

if (isOpaque( x0)){
CALL FUNCTION( x0, x1, k);

} else {
x0( k, x1);

}
}); }); }

C〈e0[e1](e2)〉 :
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

C〈e2〉(function( x2){
if (isOpaque( x0[ x1])){

CALL METHOD( x0, x1, x2, k);
} else {

x0[ x1]( k, x2);
}

}); }); }); }

e0[e1] = e2
function( k){

C〈e0〉(function( x0){
C〈e1〉(function( x1){

C〈e2〉(function( x2){
if (isOpaque( x0[ x1])){

PROPERTY ASSIGN( x0, x1, x2, k);
} else {

k( x0[ x1] = x2);
}

}); }); }); }

Figure 4: CPS Transformation of Expressions, Message-Passing Part

4 Decorated Semantics

In this section we define JS (integrated to HTML) decorated semantics to formally present the correctness
and security results of the compiler in following sections.

Corresponding heaps in the executions of original and compiled mashups have different structures
and, in particular, objects in the original heap are composed by properties created by the gadget or the
integrator, whereas in the compiled mashup objects are not shared between different principals.

We propose a JS decorated semantics to partition a heap at the granularity of object properties
according to three different colors. We denote the Integrator Principal with ♠, the Gadget Principal with
V, and we use W to denote neutral principal. We use 2 or 4 to denote any of them.

For the sake of brevity, we do not include an origin parameter in the primitive PostMessage since
there is only two possibilities: either the integrator communicates with the frame or viceversa. We also
simplify AddListener for the formal presentation: we assume that the only events it listens to is the event
“message”.

Our Javascript semantics rules are mostly compliant with Javascript semantics of Maffeis et al. [2008],
that conforms to the ECMAScript (ECMA262-3) specification.

4.1 Heaps and Objects

Objects are the main protagonists in JS semantics. An object o is a tuple
{
i1{2} : v1, . . . in{4} : vn

}
associating decorated properties i{2} (internal identifiers or strings) to values. We use i instead of i{2}
whenever the decoration is not important.

We distinguish internal properties that cannot be changed by programs with the symbol “@” in front
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of an identifier. We do not model attributes of properties that may indicate access controls as for example
“do-not-delete” attributes [Maffeis et al., 2008].

We present a series of auxiliary definitions used in the operational semantics. For an object o and a
property i, we use i{2} ∈ o to denote o has property i with decoration 2, and use i 6∈ o to denote o does
not have property i with any decoration.

Objects are stored in heaps. A heap h is a partial mapping from locations in a set L to objects. We
use the notation h(`) = o, to retrieve the object o stored in location `; and the notation o.i{2} = v to
retrieve the value store in property i{2}. We also use a shortcut h(`).i{2} whenever possible. To update
(or create) a property i{2} of an object at location ` in the heap, we use the notation h(`.i{2} = v) = h′,
where h′ is the updated heap. We also use Alloc(h, o) = h′, `′, where `′ 6∈ dom(h), for allocating a fresh
location for an object in the heap. The new heap after adding the location is h′.

JS heaps contain two important chains of objects. The scope chain in a JS execution keep track of
the dynamic chains of function calls via the @scope property. To resolve a scope of a variable name, one
starts from the bottom of the chain, until reaching a scope object which contains the searched variable
name. The scope look-up process Scope(h, `,m) function is defined by the following rules. It take 3
parameters: a current heap, a heap location for a scope object (as the bottom of the scope chain), and
a variable name as string to look up.

Scope-null
Scope(h,null ,m) = null

Scope-ref
m ∈ h(`)

Scope(h, `,m) = `

Scope-lookup
m 6∈ h(`) Scope(h, h(`).@scope,m) = `n

Scope(h, `,m) = `n

Example 4. To lookup for name x from scope object ` in h, we use Scope(h, `, “x”).

Similarly, the prototype chain represents the hierarchy between objects. A property that is not present
in the current object, will be searched in the prototype chain, via the @prototype property. The helper
function Prototype(h, `,m) looks for the m property of the object h(`) via the prototype chain.

Prototype-null
Prototype(h,null ,m) = null

Prototype-ref
m ∈ h(`)

Prototype(h, `,m) = `

Prototype-lookup
m 6∈ h(`) Prototype(h, h(`).@prototype,m) = `n

Prototype(h, `,m) = `n

In the top of a scope chain, there is a distinguished object called the global object. We define (a
simplified version of) an intial global object below for the integrator (we use the form #addr to represent
an unique heap location):

global i =



@this{W} : #global i
@scope{W} : null
“Stringify”{W} : #stringifyi

“Parse”{W} : #parsei
“PostMessage”{W} : #postmessagei
“Addlistener”{W} : #addlisteneri
“window”{W} : #global i


Global variables are defined as properties in the global object. For example window is a global variable
holding the location #global i of the global object. Notice that properties in the initial global object are
decorated with W, which are not considered as heap locations created neither by the integrator nor the
gadget.

Since by SOP the integrator and the frame does not have shared objects in the heap, we define
similarly an initial global object global f for the frame, in which the properties hold locations #global f ,
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global 
object

Figure 5: Uniformly Colored Heap

#stringifyf ,. . . , and #addlistenerf .

globalf =



@this{W} : #globalf
@scope{W} : null
“Stringify”{W} : #stringifyf

“Parse”{W} : #parsef
“PostMessage”{W} : #postmessagef
“Addlistener”{W} : #addlistenerf
“window”{W} : #globalf


Heap locations of the form #addrf with a subscript f , as in #global f , denote native objects that resides
in the frame reserved part of the heap, as described by the semantics rules shown later.

Native functions in a heap are represented by locations (e.g. #postmessagei) as abstract function
objects. We use NativeFuns to denote the set of locations of native functions. We give definition for
pre-defined native objects existing in an initial heap when initializing an integrator or a frame. These
native objects are defined below:

Object Prototype
objprot = {@prototype : null}

Function Prototype
funprot = {@prototype : null}

Stringify Function

stringify =

{
@prototype : #funprot
@call : true

} Parse Function

parse =

{
@prototype : #funprot
@call : true

}
PostMessage Function

postmessage =

{
@prototype : #funprot
@call : true

} AddListener Function

addlistener =

{
@prototype : #funprot
@call : true

}
The prototype objects of object and function are used as default prototypes. We have 4 native functions
defined for marshaling/demarshaling objects to strings, posting messages, and setting event listener.

We assume that Alloc(h, o) will never allocate those pre-defined heap locations mentioned above. We
also use ⊕ to denote the union of two disjoint heap (with non-overlapping addresses).

It is useful to define an initial heap. An initial heap for the integrator (resp. for the frame) denoted
by hin (resp. hf

in), such that hin(#global i) = global i (for the case of frame hf
in(#global f ) = #global f ).

We give the definition of the intial heaps below:

hin =



#global 7→ global ,
#objprot 7→ objprot ,
#funprot 7→ funprot ,
#stringify 7→ stringify ,
#parse 7→ parse,
#postmessage 7→ postmessage,
#addlistener 7→ addlistener


hf
in =



#global f 7→ global ,
#objprot f 7→ objprot ,
#funprot f 7→ funprot ,
#stringify f 7→ stringify ,
#parse f 7→ parse,
#postmessage f 7→ postmessage,
#addlistener f 7→ addlistener


We say that a decorated object o is single-colored if and only if all properties of o are decorated with

the same color. We say that a decorated heap h is uniformly colored if and only if for all ` ∈ dom(h) such
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that h(`) is not a global object, then h(`) is a single-colored object (see Figure 5, where solid black dots
are ♠-colored objects, hollow red dots are V-colored objects). Notice that the only object in the heap
that may contain different colors is the global object, since global variables can be created with different
decorations as properties of the global object in JS.

Definition 1 (Object Inclusion). o′ ⊆ o if and only if

1. dom(o′) ⊆ dom(o);

2. ∀ i{2} ∈ dom(o′), o′.i{2} = o.i{2}.

Definition 2 (Heap Inclusion). h′ ⊆ h if and only if

1. dom(h′) ⊆ dom(h);

2. ∀ ` ∈ dom(h′), h′(`) ⊆ h(`).

We also define well-formedness of a decorated heap.

Definition 3 (Well-formed Decorated Heap). Let h be a decorated heap, h is a well-formed decorated
heap, if and only if h is a uniformly colored heap and hin ⊆ h.

The projection o�2 for a decorated object o is defined by eliminating non-2 colored properties of o.
If there is no property in o with color 2 then the projection is undefined and denoted by ⊥. We define
heap projections in order to reason about the portion of the heap owned by a given principal.

Definition 4 (Heap Projection). Given a heap h, projection h�2 is either undefined if there are no objects
with property of color 2 or it is a heap h′ such that: ∀` ∈ dom(h), h(`)�2 6= ⊥ ⇔ ` ∈ dom(h′) & h′(`) =
h(`)�2.

Remark 1. If h is a uniformly colored heap, and h′ = h�2, then for all ` ∈ dom(h) such that ` 6= #global
or ` 6= #global f , h′(`) = h(`).

We define h = h′ as equality on heaps. We denote h′ =2 h for h′�2 = h�2. We also denote h′ ⊆2 h
for h′�2 ⊆ h�2.

4.2 Syntax

We present in Figure 6 a simplified syntax of the language extended with HTML constructs, where we
assume a set of URLs or origins Url , and u ∈ Url .

A program in the language is an HTML page M with embedded scripts and frames. Frames are
important to reason about the SOP and untrusted code. For simplicity, we choose to restrict the language
with at most one frame in HTML pages. Inclusion of many frames does not add any insights to the
technical results but adds confusion. (This restriction does not apply to the Mashic compiler.) We
assume given an environment Web : Url 7→ J that maps URLs to gadgets code. When a program M
contains an iframe, we model with Web(u) (implicit in the semantics rules) a gadget from a different
origin u ∈ Url . In the syntax, scripts are decorated with a color to denote the principal owner of the
script. Statements and expressions ranged over by P , s, and e are standard. Notice that f ranges over
native functions, as the native PostMessage function.

Before a JS program in a script node is executed, or before a body of a function is evaluated, all
variable declarations are added to the current scope object in the heap. To that end, we use a function
VD that takes as parameters a heap h, a location ` of the current scope object, a statement s, and a
color 2 to bind variables with proper decorations to the scope object `:

VD(h, `, s,2) =



h if s = e

VD(VD(h, `, s0,2), `, s1,2) if s = s0; s1

h(`.x{2} = undefined) if s = var x

VD(h, `, s0; s1,2) if s = if (e) s0 else s1

VD(h, `, s,2) if s = while (e) s

VD(h, `, s,2) if s = return e
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M ::= <html> F J </html> HTML page
F ::= <iframe src=u></iframe> | ε a frame or empty
J ::= <script2> s </script> J | ε sequence of scripts

P, s ::= e expression
| s; s block
| var x variable declaration
| if (e) s else s conditional
| while (e) s while loop
| return e return

e ::= this special property
| x identifier
| f native functions
| pv primitive values
| {m0 : e0, . . . ,mn : en} object literal
| e0[e1] member selector
| new e0(e1) constructor invocation
| e0(e1) function invocation
| function(~x){s} function expressions
| e0 bin e1 binary operations
| typeof e typeof expression

f ::= PostMessage | AddListener native functions
Stringify | Parse

pv ::= m string
| n number
| b boolean
| null null

bin ::= + | - | < | > | === | = binary operators

Figure 6: JS Language Syntax
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Finally we define a helper function GetType(v), to return a string as the type of a primitive value.

GetType(h, v) =



“number” if v = n

“string” if v = m

“boolean” if v = b

“undefined” if v = null or v = undefined

“object” if v = l and @call 6∈ h(`)

“function” if v = l and @call ∈ h(`)

4.3 Configurations and Transition Relation

Instrumented global configurations feature a decoration component that denotes the owner principal of
the program being executed. Decorations are propagated via semantics rules and, importantly, do not
affect the normal semantics of JS programs (they can be erased without further changes in the state). A
global configuration is a 5-tuple 〈2, h, `, R,Q〉I that features:

• A subscript I identifying the execution context of current code, (I denotes that the current context
is the integrator, and F denotes that the current context is the frame. We use the subscript x
to denote a wildcard symbol for both I or F . This subscript is used to identify destinations of a
message being sent.)

• A decoration 2 that denotes the principal of the current program in the configuration.

• A heap h.

• A location ` ∈ L pointing to the current scope object (or null only for the initial configuration).

• A run-time program R currently being executed, and a waiting queue Q in order to give semantics
to PostMessage mechanism.

• A waiting queue that is of the form 〈`i,mqi〉 ‖ 〈`f ,mqf 〉, where `i and `f are locations for event
listeners and mqi and mqf are message queues for both, the integrator and the frame, respectively.
The syntax for defining a message queue is :

mq ::= m mq | ε

where m is a string. We use mq1 +mq2 to denote the concatenation of two message queues.

An initial configuration is of the form 〈2, ε,null ,M,Qinit〉I where Qinit = 〈null , ε〉 ‖ 〈null , ε〉. We
use a transition system to define the semantics of our language, via the −→ relation between global
configurations. We denote by −→∗ the reflexive and transitive closure of −→.

We also define a configuration for the core JS semantics

(2, h, `, s)

to be a 4-tuple featuring:

• A decoration 2 that denotes the principal of the current program in the configuration;

• A heap h;

• A location ` of the current scope object;

• A current statement s being evaluated.

the transitions between core JS configurations is featured with a label `mq : (h, `, s)
`mq−−→(h′, `, s′). The

label `mq carries the side-effect of PostMessage and event listeners added by the native function addlis-
tener, and is defined by the following syntax:

`mq ::= mq | `+mq

where mq is a message queue and ` is a mark that denotes that an event listener is added and holds in

location ` of the heap. We denote
`mq−−→

∗
to be a transitive closure of the transition relation, where `mq

denotes the accumulated side-effect. A trace of transitions is valid only if there is at most one side-effect
for addlistener.

15



4.4 DOM Semantics Rules

We extend the syntax with run-time expressions as the following.

R ::= M | F J | FRT J | J | s J run-time programs
FRT ::= <iframe> J </iframe> run-time frames

| <iframe> s J </iframe>

e ::= . . . | @FunExe(`, s,2) | @NewExe(`o, `, s,2) run-time expressions
v ::= pv | ` | undefined run-time values
i ::= @x | m properties of objects

In the run-time syntax, R denotes run-time programs being executed, extended by run-time frame
FRT . The run-time expression e is extended with two types of function execution @FunExe(`, s,2) and
@NewExe(`o, `, s,2). v denotes run-time values which consist of primitive values pv, heap locations `,
undefined value undefined .

We define semantics rules for the DOM, i.e. the global transitions, in Figure 7. Now we comment on
the semantics rules.

DInit A mashup execution initializes the heap of the configuration to the initial heap of the integrator
hin . The scope object is set to the global object #global .

DScript A 4-decorated script starts by VD(h, `, s,4) to initialize variables defined in s to the current scope
object ` in h. The new configuration has color 4.

DScriptFini When an execution of a statement terminates, we continue with the rest of the computation.

DScript-I-1 This is a contextual rule: if the core JS configuration can advance by 1 step with label mq as the
integrator, then the global configuration will accordingly update the message queue mqf for the
frame. If the listener for the frame `f is not null , then we append mq to mqf , otherwise we do
nothing since no listener will respond to incoming messages.

DScript-I-2 This rule is similar to DScriptFini except it set the listener of the integrator to `′ appeared in the
label of core JS transition.

DScript-F-1 Similar to rule DScript-I-1.

DScript-F-2 Similar to rule DScript-I-2.

DFrameInit A frame fetches the content Web(u) and joins the initial frame heap hf
in to the current heap.

Addresses in h do not overlap with addresses in hf
in by the SOP. Notice that the current scope

object is set to the frame’s global object.

DFrameFini This is similar to rule DScriptFini when the execution of a frame is terminated.

DFrameExec This is a contextual rule for the execution of the program inside a frame.

DCallback-I When no program is executing, we can apply the event listeners to pending messages in the queues
(this rule and rule DCallback-F). For example, if the integrator’s event listener `i is not null
and the message queue mqi is not empty, then we can apply the listener to the first message in the
queue. Note that the only non-determinism comes from these two rules for event listeners.

DCallback-F See explanation above.

4.5 Core Semantics Rules

The semantics rules of core JS is defined in a context-redex style in Figure 8 and 9 and 10. The evaluation
contexts of the core JS are defined below, where op ∈ {<,>,+,-,===}:

C ::= | Ci[C] | C=e
Ci ::= Cv | (e)
Cv ::= [e] | l[ ] | new (e) | new l( )

| l( ) | l[m]( ) | op e | v op
| typeof | x = | l[m] =

Evaluation context Ci is special for a redex in the form of x (an identifier) to be evaluate to a value.
For example, in the expression x = 3, x should not be evaluated to a value. Therefore =e is not a Ci
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DInit
〈2, ε,null , <html> FJ </html>, Qinit〉I−→〈2, hin ,#global , FJ,Qinit〉I

DScript
VD(h, `, s,4) = h′

〈2, h, `, <script4> s </script>J,Q〉x−→〈4, h′, `, s J,Q〉x

DScriptFini

〈2, h, `, v J,Q〉x−→〈2, h, `, J,Q〉x

DScript-I-1

(2, h, `, s)
mq−−→(2, h′, `, s′) mq′f =

{
mqf if `f = null

mqf +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉I−→〈2, h′, `, s′ J, 〈`i,mqi〉 ‖ 〈`f ,mq′f 〉〉I

DScript-I-2

(2, h, `, s)
`′+mq−−−−→(2, h′, `, s′) mq′f =

{
mqf if `f = null

mqf +mq otherwise

〈2, h, `, s J, 〈null , ε〉 ‖ 〈`f ,mqf 〉〉I−→〈2, h′, `, s′ J, 〈`′, ε〉 ‖ 〈`f ,mq′f 〉〉I

DScript-F-1

(2, h, `, s)
mq−−→(2, h′, `, s′) mq′i =

{
mqi if `i = null

mqi +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉F−→〈2, h′, `, s′ J, 〈`i,mq′i〉 ‖ 〈`f ,mqf 〉〉F

DScript-F-2

(2, h, `, s)
`′+mq−−−−→(2, h′, `, s′) mq′i =

{
mqi if `i = null

mqi +mq otherwise

〈2, h, `, s J, 〈`i,mqi〉 ‖ 〈null , ε〉〉F−→〈2, h′, `, s′ J, 〈`i,mq′i〉 ‖ 〈`′, ε〉〉F

DFrameInit
Web(u) = J ′ J ′ 6= ε

〈2, h,#global , <iframe src=u></iframe> J,Q〉I−→〈2, h⊕ hf ,#global f , <iframe> J
′
</iframe> J,Q〉F

DFrameFini
〈2, h,#global f , <iframe> v </iframe> J,Q〉F−→〈2, h,#global , J,Q〉I

DFrameExec
〈2, h,#global f , P,Q〉F−→〈4, h

′,#global f , P
′, Q′〉F

〈2, h,#global f , <iframe> P </iframe> J,Q〉F−→〈4, h′,#global f , <iframe> P
′
</iframe> J,Q′〉F

DCallback-I
`i 6= null

〈2, h, `, ε, 〈`i,m+mqi〉 ‖ 〈`f ,mqf 〉〉x−→〈2, h,#global , `i(m), 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉I

DCallback-F
`f 6= null

〈2, h, `, ε, 〈`i,mqi〉 ‖ 〈`f ,m+mqf 〉〉x−→〈2, h,#global f , `f (m), 〈`i,mqi〉 ‖ 〈`f ,mqf 〉〉F

Figure 7: Decorated Semantics Rules (DOM)
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DThis
h(`).@this = v

(2, h, `,C[this])
ε−→(2, h, `,C[v])

DObj-Literal
o =

{
@prototype{2} : #objprot

}
Alloc(h, o) = h1, `o

(2, hi, `, ei)
mqi−−→

∗
(2, h′i, `, v1) h′i(`o.mi{2} = vi) = hi+1 mq = mq1 +mq2 + · · ·mqn
(2, h, `,C[{m1 : e1, . . . ,mn : en}])

mq−−→(2, hn+1, `,C[`o])

DCallFunc
`1 6∈ NativeFuns h(`1).@body{4} = function(x){s} `g = GetGlobal(h, `)

os =


@scope{4} : h(l1).@fscope
@prototype{4} : null
@this{4} : `g
“x”{4} : v

 Alloc(h, os) = h1, `s VD(h1, `s, s,4) = h2

(2, h, `,C[`1(v)])−→(4, h2, `s,C[@FunExe(`, s,2)])

DCallMethod
Prototype(h, `1,m) = `2 6= null h(`2).m = `3 `3 6∈ NativeFuns h(`3).@body{4} = function(x){s}

os =


@scope{4} : h(`3).@fscope
@prototype{4} : null
@this{4} : `1
“x”{4} : v

 Alloc(h, os) = h1, `s VD(h1, `s, s,4) = h2

(2, h, `,C[`1[m](v)])−→(4, h2, `s,C[@FunExe(`, s,2)])

DCallContext
(2, h, `s, s)−→(2, h′, `′s, s

′)

(2, h, `s,C[@FunExe(`, s,4)])−→(2, h′, `′s,C[@FunExe(`, s′,4)])

DCallFini
(2, h, `s,C[@FunExe(`, v,4)])−→(4, h, `,C[undefined ])

DCallRet
(2, h, `s,C[@FunExe(`, return v,4)])−→(4, h, `,C[v])

DNew
o =

{
@prototype{4} : h(`1).“prototype”

}
Alloc(h, o) = h1, `o `1 6∈ NativeFuns h1(`1).@body{4} = function(x){s}

os =


@scope{4} : h1(`1).@fscope
@prototype{4} : null
@this{4} : lo
“x”{4} : v

 Alloc(h1, os) = h2, `s VD(h2, `s, s,4) = h3

(2, h, `,C[new `1(v)])−→(4, h3, `s,C[@NewExe(`o, `, s,2)])

DNewContext
(2, h, `s, s)−→(2, h′, `′s, s

′)

(2, h, `s,C[@NewExe(`o, `, s,4)])−→(2, h′, `′s,C[@NewExe(`o, `, s
′,4)])

DNewFini
(2, h, `s,C[@NewExe(`o, `, v,4)])−→(4, h, `,C[`o])

Figure 8: Decorated Semantics Rules (Core JS)
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DFun
p =

{
@prototype{2} : #objprot

}
Alloc(h, p) = h1, `1

o =


“prototype”{2} : `1
@prototype{2} : #funprot
@call{2} : true
@fscope{2} : `
@body{2} : function(x){s}

 Alloc(h1, o) = h′, `′

(2, h, `,C[function(x){s}]) ε−→(2, h′, `,C[`′])

DTypeof
GetType(h, v) = m

(2, h, `,C[typeof v])
ε−→(2, h, `,C[m])

DOP
v1 op v2 = v

(2, h, `,C[v1 op v2])
ε−→(2, h, `,C[v])

DAsgnIdent
Scope(h, `, “x”) = `n `g = GetGlobal(h, `)

h1 =

{
h(`g.“x”{2} = v) if `n = null

h(`n.“x” = v) otherwise

(2, h, `,C[x = v])
ε−→(2, h1, `,C[v])

DAsgn-New-Property
m 6∈ h(`1) h(`1.m{2} = v) = h1

(2, h, `, `1[m] = v,Q)
ε−→(2, h1, `, v,Q)

DModify-Property
m{2} ∈ h(`1) h(`1.m{2} = v) = h′

(4, h, `, `1[m] = v,Q)
ε−→(4, h′, `, v,Q)

DGetVProp
Prototype(h, `,m) = `2

v =

{
undefined if `2 = null

h(`2).“x” otherwise

(2, h, `,C[Cv[`1[m]]])
ε−→(2, h, `,C[Cv[v]])

DGetVIdent
Scope(h, `, “x”) = `1 6= null v = h(`1).“x”

(2, h, `,C[Ci[x]])
ε−→(2, h, `,C[Ci[v]])

DParse
`1 = #Parse or `1 = #Parse f o = parse(m) Alloc(h, o) = h1, `o

(2, h, `,C[`1(m)])
ε−→(2, h, `,C[`o])

DStringify
`1 = #Stringify or `1 = #Stringify f

m = stringify(h, v)

(2, h, `,C[`1(v)])
ε−→(2, h, `,C[m])

DPostMsg
`1 = #Postmessage or `1 = #Postmessage f

(2, h, `,C[`1(m)])
m−→(2, h, `,C[undefined ])

DAddListener
`1 = #Addlistener or `1 = #Addlistener f

(2, h, `,C[`1(`i)])
`i−→(2, h1, `,C[undefined ])

Figure 9: Decorated Semantics Rules (core JS, continued)
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DVar

(2, h, `, var x)
ε−→(2, h, `, undefined)

DBlockNext

(2, h, `, v s∗) ε−→(2, h, `, s∗)

DBlockContext

(2, h, `, s0)
lmq−−→(2, h′, `, s1)

(2, h, `, s0; s)
lmq−−→(2, h, `, s1; s)

DIfTrue

(2, h, `, e)
lmq−−→

∗
(2, h′, `, true)

(2, h, `, if (e) s0 else s1)
lmq−−→(2, h′, `, s0)

DIfFalse

(2, h, `, e)
lmq−−→

∗
(2, h′, `, false)

(2, h, `, if (e) s0 else s1)
lmq−−→

∗
(2, h, `, s1)

DWhileTrue

(2, h, `, e)
lmq−−→(2, h′, `, true)

(2, h, `,while (e) s)
lmq−−→(2, h′, `, s while (e) s)

DWhileFalse

(2, h, `, e)
lmq−−→(2, h′, l, false)

(2, h, `,while (e) s)
lmq−−→(2, h′, `, undefined)

DReturn

(2, h, `, e)
lmq−−→(2, h′, `, v)

(2, h, `, return e; s)
ε−→(2, h′, `, return v)

Figure 10: Decorated Semantics Rules (core JS, continued)

context. Evaluation context Cv is special for a redex in the form of `[m] (a property accessor) to be
evaluate to a value. For example, in the expression `[m](e), `[m] should not be evaluated into a value
since it is a method invocation. Therefore (e) is not a Cv context.

Now we explain the transition rules in detail.

DThis To resolve the this keyword, we return the @this property of the current scope object ` in h.

DObj-Literal We first allocate a new empty object in h, represented by `o. Then we evaluate each ei separately,
adding the results vi as properties mi of the object in `o

2. The result is the location `o of created
object. The properties of the created object is all decorated with 2.

DCallFunc To invoke a function, we create a new scope object `s as current scope object in which the @scope
property is set to the function’s closure scope h1(`1).@fscope. Furthermore, the @this property of
`s is set to `g, the global scope object of the current scope chain. VD(h1, `s, s,4) initializes local
variables defined in the body of the function in `1 with the decoration of the function object rather
than the current decoration in the configuration. The resulting expression @FunExe(`, s,2) keeps
record of the scope object ` to return, and the decoration 2 to recover when the function execution
finishes.For simplicity, we present functions with one parameter only. Function GetGlobal look up
in the scope chain to get the address of the global object via the window property.

DCallMethod This rule is similar to DCallFunc, the different is that we look up thought the prototype chain
to obtain the function object `3 from `1[m], and we set the @this property of `s is set to `1, since
it is a method call rather than a function call.

DCallContext This is a contextual rule for evaluating a body of a function.

DCallFini When a function invocation is finished and no value is returned, we restore the scope to ` and
return undefined as result.

DCallRet When a function invocation is finished and value v is returned, we restore the scope to ` and return
v as result.

DNew The new construct uses a function as a constructor to initialize an object. It behaves method
invocation. We first creates an empty object `o in which the internal @prototype property is set to
the “prototype” property of the function h`1. Then we proceed as in method invocation. The result
expression @NewExe(`o, `, s,2) keep records of both `o and `.

2We do not explicit mention the heap h when there is no ambiguity.
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DNewContext This is a contextual rule for evaluating a body of a function as object initialization.

DNewFini When an execution of @NewExe(`o, `, v) finished, we restore the scope object to ` and return `o as
the result of creating an object.

DFun To create a new function, we first create an empty prototype object `p, then we create `′ as the
function object, where the “prototype” property is set to `p. We keep the current scope object ` in
the @fscope property of `′ as the closure captured by the function definition. We finally return`′ as
result. The function object is decorated with 2, keeping track the owner of the function.

DTypeof We use the GetTypeh, v to obtain a string representing the type of v.

DOP We use a conventional interpretation of op.

DAsgnIdent We first look up through the scope chain to check if x is defined in the chain. If it exist in scope
object `n , then we update the property of “x” in `n, otherwise we create a property “x” in the
global object `g.

DAsgn-New-Property To create a property m of `1, we directly update `1 in h without following the prototype chain. A
decoration is created only when a new property is created and cannot be changed afterward.

Example 5 (Decoration of a new property). Suppose a location ` in variable x points to object o.
A program, with decoration V, x[“b”] = 3 results in the decorated object on the right side:

o =

{
a{V} : 2
c{♠} : 4

}
⇒


a{V} : 2
b{V} : 3
c{♠} : 4


DModify-Property It is similar to DAsgn-New-Property. The color of the property in the heap is not changed.

DGetVProp To access a property of an object, we look up through the prototype chain. The value v could
possibly be an location. When the property m does not exist we return undefined .

DGetVIdent To resolve a variable name, we look up through the scope chain.

DParse To de-marshal an object we use parse(m) to reconstruct an object o. Note that it is a special rule
for a native function.

DStringify To marshal an object we use stringify(o) to return the string (in JSON format) representation of
the object.

DPostMsg To post a message m, we use a label m to indicate the side-effect.

DAddListener To set a event listener `i, we use a label `i to indicate the side-effect.

DVar Since var x has already been treated by VD before statement execution, we just skip this statement.

DBlockNext When a statement evaluates to a value, we continue with the next one.

DBlockContext It is a contextual rule for evaluating sequential composition of statements (block).

DIfTrue If the condition expression e evaluates to true then we execute the “then” branch.

DIfFalse If the condition expression e evaluates to false then we execute the “else” branch.

DWhileTrue If the condition expression e evaluates to true then we unfold the while body s once.

DWhileFalse If the condition expression e evaluates to true then we skip the while body.

DReturn For return statement, we skip all the rest of the statement s.

Example 6 (Decorated Global Object). Recall variables secret and steal in Listing 4 and 3 of Section
2. Assuming that the secret input is “yes”, and after execution of the non-benign gadget, the shared
global object has the following form:

h(#global) =


...

“price”{♠} : 0
“secret”{♠} : “yes”
“steal”{V} : “yes”


If the gadget is sandboxed as in Listing 5, the gadget code gets stuck by the semantics when trying to
read secret since the variable has not been defined. (In practice, however, the program raises an exception
that we do not model in the semantics.)
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5 Correctness Theorem

In this section we formally present the correctness theorem and its hypotheses. In order to state the
theorem, we define decorations for original and compiled mashups. In the original mashup we decorate
the integrator as ♠ and the gadget as V.

Definition 5 (Decorated Original Mashup). Let Pi be an integrator script and Pg be a gadget script.
We define the original mashup M̃(Pi, Pg) to be:

<html>

<scriptV> Pg </script>

<script♠> Pi </script>
</html>

In the compiled mashup we decorate the run-time libraries as W. The run-time libraries are marked
as neutral colour W since we show with the correctness theorem that the integrator’s heap is preserved
in the original and compiled version. The runtime libraries do not appear in the original heap.

Definition 6 (Mashic Compilation). Let Pi be an integrator script, Pg be a gadget script, V be a set
of variables denoting global names exported by the gadget script, we define the Mashic compilation
M̃c(Pi, Pg,V) to be:

<html>

<iframe src=u></iframe>
<scriptW> Pp </script>

<scriptW> BootstrapVi </script>

<script♠> C〈Pi〉(function( x){ x}) </script>

</html>

where

Web(u) =
<scriptW> Pl </script>
<scriptV> Pg </script>

<scriptW> BootstrapVg </script>

We formally define the bootstrapping script that appears in Section 2.

Definition 7 (Bootstrapping Script). Given a set of variables V = {x0, . . . , xn}, the Mashic bootstrap-
ping script for an integrator BootstrapVi is defined, for i ∈ {0 . . . n}, as

var xi;xi = new OHandle(i);

and the bootstrapping script for a gadget BootstrapVg is:

add handle obj (new OHandle(i), xi);

5.1 Assumptions

It is useful for the assumptions to define the notion of simple object. The native stringify function in
HTML5 converts an object into JSON-formatted string, ignoring the graph structure of the object. For
example the following object o in h:

o = {a : `, b : `} h(`) = {c : 2}

will result in the below JSON-formatted string:

{a:{c:2},b:{c:2}}
in which the original graph structure is not preserved.

Simple objects are objects that have a tree structure preserved by stringify. We further simplify this
definition to an object with all properties being primitive values for ease of presentation:

Definition 8 (Simple Object). An object o is simple if:

1. o.@prototype = null ;

2. ∀i ∈ dom(o) o.i{2} = pv for some primitive value pv.
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Example 7 (Simple Object). o1 is a simple object but o2 is not.

o1 =


a : 3
b : true
@prototype : null

 o2 =


c : 3
d : `
@prototype : `′


Mashic compilation may produce different results from the original mashup if a non-simple object is

used as parameter when calling to gadget-defined functions, as shown below:

Example 8 (Simple object). Consider a non-simple object h(`):

h(`) =


“a” `′

“b” `′

“c” true

 h(`′) = {a : 3}

By semantics of parse and stringify, in the Mashic compilation, the following object is obtained on the
gadget side:

g(`) =


“a” `1
“b” `2
“c” true

 g(`1) = {a : 3} g(`2) = {a : 3}

If the gadget compares `[“a”] === `[“b”], it gets true in the original mashup and false in the compiled
one.

We now turn to the hypotheses required for correctness.

Benign Gadget Intuitively, a benign gadget Pg does not modify the integrator’s portion (marked
by ♠) and the neutral portion (marked by W) of the heap. Furthermore the evaluation of Pg does not
depend on any part of the heap except for the initial heap.

In order to state the assumption we first define a benign gadget heap as a heap that contains gadget
functions with confidentiality and integrity properties.

Definition 9 (Benign Gadget Heap). A heap hg is benign if and only if for any hi (i ∈ {0, 1}) such
that hi�V = hg, for any function located in ` ∈ dom(hg), for any `′ such that h0(`′) = h1(`′) is a simple
object, and (♠, hi, `i, `(`′)) −→∗ (♠, h′i, `′i, v′i), the following conditions holds:

1. v′0 = v′1;

2. (integrity) hi =♠ h
′
i and hi =W h′i ;

3. (confidentiality) h′0�V = h′1�V;

4. (preservation of benignity) h′1�V is benign

Example 9 (Benign Heap). Recall the integrator’s code in Listing 3 in Section 2. If the gadget contains
the following code, then the gadget will not produce a benign gadget heap:

1 var rungadget;

2 rungadget = function(x){

3 var steal;

4 steal = secret;

5 price = 0;

6 };

Listing 14: Non-benign Gadget Heap

The gadget defines a function in the heap which tries to read from the global variable secret and tries
to write into the global variable price. Calling the function from the integrator will violate the integrity
and confidentiality requirement.

Assumption 2 (Benign Gadget). Program Pg is benign if and only if for any heaps hi (i ∈ {0, 1}) such
that hi�V = ∅ and (V, hi, `, Pg) −→∗ (V, h′i, `, vi), the following conditions hold:

1. (integrity) hi =♠ h
′
i and hi =W h′i;

2. (confidentiality) h′0 =V h
′
1;
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3. h′0�V is benign.

Example 10 (Benign Gadget Example). Recall the example in Section 2, Listing 4. The gadget is not
benign since it tries to read from the global variable secret and tries to write into the global variable
price.

In the benign gadget assumption we explicitly require that the initialization phase (adding functions
to the heap) and execution of all functions (that are defined in the heap) always terminate.

It is possible to relax this assumption by not requiring termination of benign gadgets (by using
indistinguishability invariants for intermediate running expressions) but we consider more appropriate to
see non-terminating behaviour in gadgets as non benign behaviour since the gadget will never give the
hand to the integrator to execute. Hence if the gadget is non-terminating we do not offer any correctness
guarantees (security guarantees still apply).

Notice that the termination requirement on gadgets does not imply termination of the mashup. The
mashup might never terminate if gadget and integrator continously run listener continuations and this
is independent of termination of functions in gadgets (see e.g. fair termination Boudol [2010]).

Simple Integrator For correctness, we impose some reasonable restrictions on the integrators’s
code. Intuitively, a simple integrator does not modify directly a non-W-colored property; and does not
use objects defined by gadgets in the prototype chain. This restriction is not very limiting in practice since
integrator’s usually operate on gadgets via the interfaces provided by it and not directly modifying its
properties. We also require a simple integrator only sends simple objects to functions defined by gadgets.
This assumption is a conservative hypothesis to get correctness using the native stringify function in the
compiler.

Assumption 3 (Simple Integrator). Let Pi be a JS program. Pi is a simple integrator, if and only if, for
any benign heap hg such that (♠, hin ⊕ hg,#global , Pi) −→∗ (♠, h, `,C[e]), the following conditions hold:

1. If e is of the form x = v and Scope(h, `, “x”) = `n, then either `n = null or “x” is a ♠-colored
property of h(`n).

2. If e is of the form `′[m] = v, then h(`′) is a ♠-single-colored object.

3. For any ` such that ` ∈ dom(h�♠) and h(`).@prototype = `n, either `n = null or h(`n) is a ♠-colored
object.

4. If e is of the form `f (`′) and h(`f ) is a V-colored function, then h(`′) is a simple object.

Example 11 (Simple integrator prototype chain). We illustrate why an integrator’s object can not have
a gadget’s object as its prototype object (bullet 3). Assume that in the heap of the original mashup,
h(`i) is a ♠-colored object, and h(`g) is a V-colored object such that

h(`i) = {@prototype : `g} h(`i) = {a : 3}

By reading the property “a” of `i in the original mashup we get 3. The heap of the compiled code will
contain a pointer to a handle:

h(`i) = {@prototype : `o} h(`o) =

{
“ id” n
“ is o” true

}
Hence, by reading the property “a” of `i in the compiled mashup we do not get 3.

5.2 Indistinguishability and Correctness

To define indistinguishability between the original heap and compiled heap, the structure of the scope
chain in the heap must be preserved. We start by defining the notion of scope object and scope chain.
We use #global as the address of the original global object.

Definition 10 (Scope Object). Let h be a heap, and ` be a location for a scope object. We say ` is a
scope object in h if one of the following conditions is satisfied:

1. ` = #global , and h(`).@scope = null ;

2. ` 6= #global , h(`).@scope = `′ 6= null , and `′ is also a scope object in h.
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Scope Object

Figure 11: Scope Indistinguishability

Definition 11 (Scope Chain). Let h be a heap, and `1 be a scope object in h, we say that `1`2 . . . `n is
the scope chain of `1 in h, if

1. For i < n, h(`i).@scope = `i+1;

2. h(ln).@scope = null

We use ` ∈ `1`2 . . . `n to denote that scope object ` is included in the scope chain `1`2 . . . `n w.r.t some
heap h. We define the β-indistinguishability ∼β on values, objects, and scope chains, where β : L ⇀ L
is a partial injective function between heap locations L.

Definition 12 (Scope Chain Indistinguishability). Let `1 be a scope object in h and `′1 be a scope object
in h′, and β : L ⇀ L be a partial injective function. Let `1`2 . . . `n be the scope chain of `1 in h, let
`′1`
′
2 . . . `

′
m be the scope chain of `′1 in h′, we say that the two scope chains are indistinguishable, denoted

(h, `1)≈β(h′, `′1) if and only if:

1. β(`1)β(`2) . . . β(`n) is a sub-sequence of `′1`
′
2 . . . `

′
m;

2. for ` 6∈ β(`1)β(`2) . . . β(`n), and ` ∈ `′1`′2 . . . `′m, ∀i ∈ dom(h′(`)),
i ∈ {@scope,@prototype,@this, “ k”, “ l”, “ m”, “ xi”}

The intuition of scope indistinguishability is that even if scope chains do not have a one to one
correspondence, the structure of scope chains is preserved by the CPS transformation, as illustrated in
Figure 11. In the figure, scope objects are represented by round points, and the solid arrows represent
the scope chain. The scope chain on the left is obtained by a normal execution of an integrator code. The
scope chain on the right is obtain by an execution of the corresponding CPS-transformed code, where there
are more CPS-administrative scope objects (gray-colored in the figure). The scope indistinguishability
does not take into consideration those CPS-administrative scope objects. The only constraint is that
administrative scope objects should only contain properties listed in bullet 2.

Two values are indistinguishable if they are equal or if they are both locations related by β. Even
assuming a deterministic allocator, we need β to relate two heaps since objects created in the original
mashup and compiled mashup will be necessarily different since the compiled heap will contain more
objects.

Definition 13 (Value Indistinguishability). Let v1 and v2 be two values, and β : L ⇀ L be a partial
injective function, value indistinguishability is defined as follows:

v 6∈ L
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2

Objects are related if they have the same properties with the same values. Exceptions are prop-
erties {@scope,@fscope,@this} and function objects. Properties {@scope,@fscope} are related via the
scope chain indistinguishability as explained above. Function objects are indistinguishable if the @body
property contains the same code in its original and compiled form.

Definition 14 (Object indistinguishability). Let o1 and o2 be two objects, and β : L⇀ L be a partial
injective function, we say o1 'β o2, if for every i ∈ dom(o1) one of the following holds:
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1. i ∈ {@scope,@fscope,@this};
2. i 6∈ {@body ,@scope,@fscope,@this} and if o1.i ∈ dom(β) then o1.i ∼β o2.i;
3. i = @this then o1.@this ∼β o2.“ this”;

4. i = @body then o1.@body = function(x){s}, then @body ∈ dom(o2) and o2.@body = function( fun cont , x){scps},
where

scps = var this;
this = this;

(C′〈s〉)( fun cont)

We give an examples illustrating the object indistinguishability.

Example 12 (Object indistinguishability). Let o1, o2 o3 be:

o1 =


a : 2
b : `1
@scope : `2

 o2 =


a : 2
b : β(`1)
@scope : `′2

 o3 =


a : 2
b : `′1
@scope : `′2


If `′1 6= β(`1) and `2 6= `′2, then we have o1 'β o2 and o1 6'β o3. We do not compare @scope property
between o1 and o2; but we do compare property b between o2 and o3.

Finally, heaps are indistinguishable if all objects are indistinguishable and respect scope chains are
indistinguishable.

Definition 15 (Heap indistinguishability). We say that (h1, `1) and (h2, `2), are indistinguishable with
respect to β : L⇀ L with dom(β) = dom(h1) and rng(β) ⊆ dom(h2), denoted (h1, `1) 'β (h2, `2), if and
only if:

1. h1(`) 'β h2(β(`)) for every ` ∈ dom(β)

2. if ` ∈ dom(β) and h1(`) has the @body property, then (h1, h1(`).@fscope) ≈β (h2, h2(β(`)).@fscope)

3. (h0, `0) ≈β (h1, `1).

The correctness theorem gives strong guarantees if the gadget is benign: behavior of original and
compiled mashup are equivalent in terms of the integrator’s heap. If the gadget is not benign there are
no correctness guarantees but only security guarantees described in the following section. We use in the
hypothesis that integrator and gadget do not declare the same variables var(Pi)∩ var(Pg) = ∅, where var
is defined by:

var(s) =


∅ if s = e or s = return e

var(s0) ∪ var(s1) if s = s0; s1 or s = if (e) s0 else s1

var(s) if s = while (e) s

{x} if s = var x

Notice that this definition of var refers only to declared variables, and the hypothesis does not assume
that integrator and gadget do not share variables.

Theorem 1 (Correctness). Let Pi be a simple integrator and Pg be a benign gadget such that var(Pi) ∩
var(Pg) = ∅. If 〈♠, ε,null , M̃(Pi, Pg), Qinit〉I −→∗ 〈2, h0, `0, ε, Qinit〉x then,

〈♠, ε,null , M̃c(Pi, Pg,V), Qinit〉I −→∗ 〈2, h1, `1, ε, Q1〉x

where Q1 has no message waiting, and there exists β such that

(h1�♠, `1) 'β (h0�♠, `0)

The proof proceeds by the help of an intermediate compilation where the integrator is CPS-transformed
but the gadget is not sandboxed. We show, by structural induction on statements and expressions, that
the behaviour of the original mashup is indistinguishable from that of the intermediate compilation; and
the intermediate compilation behaves indistinguishably from the mashic compilation.
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new e0(e1)
function( k){

C′〈e0〉(function( x0){
C′〈e1〉(function( x1){

if ( x0[“ is cps”]){
var x2, x3, x4;
x3 = function(x){};
x3[“prototype”] = x0[“prototype”];
x2 = new x3();
x4 = function( v){ k( x2); };
x0[“apply”]( x2, x4, x1);

} else {
k(new x0( x1));

}}); }); }

e0[e1](e2)
function( k){

C′〈e0〉(function( x0){
C′〈e1〉(function( x1){

C′〈e2〉(function( x2){
if ( x0[ x1][“ is cps”]){

x0[ x1]( k, x2);
} else {

k( x0[ x1]( x2));
}}); }); }); }

e0[e1]
function( k){

C′〈e0〉(function( x0){
C′〈e1〉(function( x1){

k( x0[ x1]);
}); }); }

e0(e1)
function( k){

C′〈e0〉(function( x0){
C′〈e1〉(function( x1){

if ( x0[“ is cps”]){
x0( k, x1);

} else {
k( x0( x1));

}}); }); }

e0[e1] = e2
function( k){

C′〈e0〉(function( x0){
C′〈e1〉(function( x1){

C′〈e2〉(function( x2){
k( x0[ x1] = x2);

}); }); }); }

Figure 12: CPS Transformation (Intermediate)

5.3 Auxiliary Definitions and Lemmas

In this section we give some auxiliary definitions and some useful lemmas to prove the main theorem.
First we define the notion of intermediate compilation which the gadget is not sandboxed by an iframe
and the integrator is compiled to CPS-only code without using the proxy and listener interface. The
intermediate compilation will be used in the proofs.

Definition 16 (Decorated Intermediate Compilation). We define decorated intermediate compilation
M̃i(Pi, Pg) as the follows:

<html>

<scriptV> Pg </script>

<script♠> C′〈Pi〉(function( x){ x}) </script>

</html>

where C′〈〉 is an intermediate CPS-transformation.

The intermediate CPS transformation are identical to the Mashic CPS transformation except for the
rules shown in Figure 12, where the proxy and the listener library are not used, since the gadget is not
sandboxed.

The following lemma shows that the Mashic compilation and the intermediate compilation preserve
simpleness of the integrator, since they will not introduce more behavior.

Lemma 4. If Pi is a simple integrator, then C〈Pi〉 and C′〈Pi〉 are both simple integrators.

The following lemma shows that the added decoration does not affect the semantics.

Lemma 5 (Erasing Decoration). The decorated semantics coincide with the original semantics by simply
erasing all the decorations and operations on decorations.

We define the notion of strong object indistinguishability, denoting ∼β , where we have a stronger
condition in item 2 comparing to object indistinguishability.

Definition 17 (Strong Object Indistinguishability). Let o1 and o2 be two objects, and β : L⇀ L be a
partial injective function, we say o1 ∼β o2, if for every i ∈ dom(o1) one of the following holds:

1. i ∈ {@scope,@fscope,@this};
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2. i 6∈ {@body ,@scope,@fscope,@this} and if o1.i ∈ dom(β) then o1.i ∼β o2.i otherwise o1.i = o2.i.

3. i = @this then o1.@this ∼β o2.“ this”;

4. i = @body then o1.@body = function(x){s}, then @body ∈ dom(o2) and o2.@body = function( fun cont , x){scps},
where

scps = var this;
this = this;

(C′〈s〉)( fun cont)

Accordingly, we update the definition of strong heap indistinguishability.

Definition 18 (Strong Heap indistinguishability). Two pairs of heap and scope object (h1, `1) and
(h2, `2), are indistinguishable with respect to a partial injective function β : L⇀ L such that dom(β) =
dom(h1) and rng(β) ⊆ dom(h2), denoted (h1, `1) ∼β (h2, `2), if and only if:

1. for every ` ∈ dom(β) with o1 = h1(`) and o2 = h2(β(`)):

(a) o1 ∼β o2
(b) if o1 has the @body property, then (h1, o1.@fscope) ≈β (h2, o2.@fscope)

2. (h0, `0) ≈β (h1, `1).

The following lemma shows given two indistinguishable scope chain, the scope looking-up process will
return indistinguishable heap location for any normal variable. By normal variable we mean variables
that do not start with a “ ”. Special case applies to resolving the @this identifier.

Lemma 6 (Scope look-up). Let h, g be two heaps, and `, j be two locations for scope objects, if h ∼β g
and (h, `) ∼β (g, j), then the following holds:

1. if i 6= @this, Scope(h, `, i) = `1 then Scope(g, j, i) = j1 and β(`1) = j1;

2. if Scope(h, `,@this) = `1 then Scope(g, j, “ this”) = j1 and β(`1) = j1;

Proof. Straightforward by Definition 12 and Definition of Scope( , , ) in semantics rules.

We formally define the shape of an opaque object handle.

Definition 19 (Opaque Object Handle). Let o be an object, o is an opaque object handle with id n if
and only if

o =

{
“ id” n
“ is o” true

}
We define a relation between two heaps up to a mapping from id of opaque object handles to heap

locations. The intuition is that if in one heap, a property points to an opaque object handle, then in the
other heap, it must points to a location corresponding to the opaque object handle by the mapping.

Definition 20. Let f : N 7→ L be a partial injective function from numbers to locations. We say that

hc
f
= hi if

1. hc =V hi;

2. dom(hc�♠) = dom(hi�♠);

3. ∀` ∈ dom(hc�♠), oc = hc(`) and oi = hi(`), such that

(a) if oc.i{♠} = `o, and hc(`o) is an opaque object handle with id n, then oi.i = f(n);

(b) otherwise oc.i{♠} = oi.i{♠}.

5.4 Proofs

The proof of the correctness theorem can be divided into two steps. First we prove the original mashup
behave indistinguishable with the intermediate compilation, then we prove the intermediate compilation
behave indistinguishable with the Mashic compilation.
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Proof of Theorem 1. By Lemma 7,

〈♠, ε,null , M̃i(Pi, Pg), Qinit〉I −→∗ 〈2, hi, `i, ε, Qinit〉x (1a)

and there exist β such that

(hi�♠, `i) ∼β (h0�♠, `0) (1b)

By Lemma 12 and (1a),

〈♠, ε,null , M̃c(Pi, Pg,V), Qinit〉I −→∗ 〈2, h1, `1, ε, Q1〉x

where Q1 has no message waiting, and there exists f , and h1
f
= hi. Therefore by Definition 15 and (1b),

(h1�♠, `1) 'β (h0�♠, `0)

In the following lemma we show that the original mashup behave indistinguishable with the in-
termediate compilation. Note that we actually prove a stronger statement by using the strong heap
indistinguishability in the lemma.

Lemma 7 (Original Mashup to Intermediate Compilation). Let Pi a simple integrator and Pg be a
benign gadget such that Pi does not conflict with Pg and V = var(Pg), if 〈♠, ε,null , M̃(Pi, Pg), Qinit〉I −→∗
〈♠, h0, `0, ε, Qinit〉x, then 〈♠, ε,null , M̃i(Pi, Pg), Qinit〉I −→∗ 〈♠, hi, `i, ε, Qinit〉x and there exists β such
that (h0�♠, l0) ∼β (hi�♠, li).

Proof. Since in M̃(Pi, Pg) and M̃i(Pi, Pg) the first script Pg is identical, by semantics rules we have

〈♠, ε,null , M̃(Pi, Pg), Qinit〉I −→∗〈♠, h,#global , Pi, Qinit〉x
〈♠, ε,null , M̃i(Pi, Pg), Qinit〉I −→∗〈♠, h,#global , C′〈Pi〉(function( x){ x}), Qinit〉x

where

(V, hin ,#global , Pg) −→∗ (V, h,#global , v)

Since Pg is a benign gadget, by Assumption 2, we have

h�♠ = ∅ (2a)

h�W = hin (2b)

h�V is a benign gadget’s heap. (2c)

By (2a), we have

(h�♠,#global) ∼β (h�♠,#global) (2d)

Without loss of generality, we assume that

∀l ∈ dom(h�V), h(l).@body{V} = function(x){S} ⇔ h(l).“ is o” = true (2e)

By (2c),(2d), (2e), Assumption 2, Assumption 3, and Lemma 9, we have

(♠, h,#global , Pi) −→∗ (♠, h0, `0, v0) (2f)

(♠, h,#global , C′〈Pi〉(function( x){ x})) −→∗ (♠, h1, `1, `f (v1)) (2g)

∃β, (h0�♠, `0) ∼β (h1�♠, `1) (2h)

By semantics rules, Definition 15, (2g), and (2h), we have

(♠, h1, `1, `f (v1)) −→∗ (♠, h2, `2, v1) (2i)

(h0�♠, `0) ∼β (h2�♠, `2) (2j)

(h0�♠,#global) ∼β (h2�♠,#global) (2k)
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By semantics rules and (2j) we can conclude with

〈♠, h,#global , Pi, Qinit〉x −→∗〈♠, h0,#global , v0, Qinit〉x
〈♠, h,#global , C′〈Pi〉(function( x){ x}), Qinit〉x −→∗〈♠, h2,#global , v1, Qinit〉x

We define a useful notion of compatibility between heaps to relate a normal heap with a corresponding
heap generated by the CPS transformation.

Definition 21. Let h and g be two decorated heaps , ` and j be two heap locations, (h, `) �β (g, j) if
and only if:

1. (h�♠, `) ∼β (g�♠, j);

2. h�V = g�V, and they are both benign gadget’s heaps;

3. h�W = g�W = hin ;

We use the syntactic sugar Lookup(h, `, x) = v in the proof to denote the following facts:

Scope(h, `, x) = `′ 6= null

h(`′).“x” = v

Remark 8. We can always simplify transitions in the form of (2, h, `, s) −→∗ (4, h′, `′,F[s′]) to the form
of (2, h, `, s) −→∗ (4, h′, `′, s′).

The following lemma shows that, under certain conditions, for any statement, the intermediate CPS-
transformation behaves the same as the original statement.

The proof of the above two lemmas follows a mutual structural inducntion on the definition of state-
ments and definition of expressions.

Lemma 9 (CPS Transformation Lemma - Statements). Let h and g be two decorated heaps, ` and j
be two heap locations, s be a statement. If there exists a β such that (h, `) �β (g, j), then the following
conditions hold.

1. (a) If (♠, h, `, s) ε−→
∗

(♠, h′, `′, v), then (♠, g, j, C′〈s〉(`f ))
ε−→
∗

(♠, g′, j′, `f (v′));

(b) Otherwise, if (♠, h, `, s) ε−→
∗

(♠, h′, `′, return v), and Lookup(g, j, fun cont) = `c then

(♠, g, j, C′〈s〉(`f ))
ε−→
∗

(♠, g′, j′, `c(v′));

2. there exists β′ such that (h′, `′) �β′ (g′, j′) and v ∼β′ v′.

Proof. The proof is by induction on the definition of CPS transformation C′〈s〉. For all cases, we have
some common hypothesis:

(h, `) �β (g, j) (3a)

By definition 21, (3a) implies

(h�♠, `) ∼β (g�♠, j) (3b)

h�V = g �V are benign gadget’s heaps. (3c)

h�W = g�W = hin (3d)

Case s = e : Since s = e is an expression, by semantics rules

(♠, h, `, e) ε−→
∗

(♠, h′, `′, v) (4a)

By Lemma 10, (3a) and (4a),

(♠, g, j, C′〈e〉(`f ))
ε−→
∗

(♠, g′, j′, `f (v′)) (4b)

∃β′.(h′, `′) �β′ (g′, j′) (4c)

v ∼β′ v′. (4d)

from which we can conclude this case.
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Case s = s0; s1 : By the definition of the CPS compiler,

C′〈s〉 = function( k){C′〈s0〉(f0)}
f0 = function( v){C′〈s1〉( k)}

Let us consider two different cases :

1. The evaluation of s0 does not involve a return statement,that is

(♠, h, `, s0)
ε−→
∗

(♠, h0, `0, v0) (5a)

On the CPS-transformation side, by semantics rules

(♠, g, j, C′〈s〉(`f ))
Fun, Fun-Call, Fun−−−−−−−−−−−−→

∗
(♠, g0, j0, C′〈s0〉(`f0)) (5b)

and g0(j0) =


@scope{♠} : j
@prototype{♠} : null
@this{♠} : #global
” k”{♠} : `f

 (5c)

By Definition 21, (5b) and (5c),

(h, `) �β (g0, j0) (5d)

By inductive hypothesis, (5d) and (5a),

(♠, g0, j0, C′〈s0〉(`f0)) −→∗ (♠, g1, j1, `f0(v′0))

(h0, `0) �β′ (g1, j1)

v0 ∼β′ v′0

Let us consider two different sub-cases again:

(a) The evaluation of s1 does not involve a return statement:

(♠, h0, `0, s1)
ε−→
∗

(♠, h1, `1, v1) (5e)

On the CPS-transformation side, by semantics rules

(♠, g1, j1, `f0(v′0))
Fun-Call−−−−−→

∗
(♠, g2, j2, C′〈s1〉( k)) (5f)

GetV-Var−−−−−−→
∗

(♠, g2, j2, C′〈s1〉(`f )) (5g)

and g2(j2) =


@scope{♠} : j0
@prototype{♠} : null
@this{♠} : #global
” v”{♠} : v′0

 (5h)

By Definition 21, (5f) and (5h),

(h0, `0) �β (g2, j2) (5i)

By inductive hypothesis, (5i) and (5e),

(♠, g2, j2, C′〈s1〉(`f )) −→∗ (♠, g3, j3, `f (v′1))

(h1, `1) �β′′ (g3, j3)

v1 ∼β′′ v′1

(b) The evaluation of s1 does involve a return statement:

(♠, h0, `0, s1)
ε−→
∗

(♠, h1, `1, return v1) (5j)

Lookup(g, j, fun cont) = `c (5k)
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By (5h) and (5k)

Lookup(g2, j2, fun cont) = `c (5l)

By inductive hypothesis, (5i), (5j) and (5l),

(♠, g2, j2, C′〈s1〉(`f )) −→∗ (♠, g3, j3, `c(v′1))

(h1, `1) �β′′ (g3, j3)

v1 ∼β′′ v′1

2. The evaluation of s0 does involve a return statement

(♠, h, `, s0)
ε−→
∗

(♠, h0, `0, return v1) (5m)

Lookup(g, j, fun cont) = `c (5n)

By (5c) and (5n)

Lookup(g0, j0, fun cont) = `c (5o)

By inductive hypothesis, (5d), (5m) and (5o),

(♠, g0, j0, C′〈s0〉(`f )) −→∗ (♠, g1, j1, `c(v′0))

(h0, `0) �β′′ (g1, j1)

v0 ∼β′′ v′0

Case s = if (e) s0 else s1 : By the definition of the CPS compiler,

C′〈s〉 = function( k){C′〈e〉(f0)}
f0 = function( v){if ( v) C′〈s0〉( k) else C′〈s1〉( k)}

Let us consider two different cases:

1. The condition expression e evaluates to true:

(♠, h, `, e) ε−→
∗

(♠, h0, `0, true) (6a)

By semantics rules,

(♠, h, `, if (e) s0 else s1)
ε−→
∗

(♠, h0, `0, s0) (6b)
ε−→
∗

(♠, h1, `1, v) (6c)

On the CPS-transformation side, by semantics rules

(♠, g, j, C′〈s〉(`f ))
Fun, Fun-Call, Fun−−−−−−−−−−−−→

∗
(♠, g0, j0, C′〈e〉(`f0)) (6d)

and g0(j0) =


@scope{♠} : j
@prototype{♠} : null
@this{♠} : #global
” k”{♠} : `f

 (6e)

By Definition 21, (6d) and (6e),

(h, `) �β (g0, j0) (6f)

By inductive hypothesis, Lemma 10, (6f) and (6b),

(♠, g0, j0, C′〈e〉(`f0)) −→∗ (♠, g1, j1, `f0(true)) (6g)

(h0, `0) �β′ (g0, j0) (6h)

true ∼β′ true (6i)
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By semantics rules:

(♠, g1, j1, `f0(true))
Fun-Call−−−−−→

∗
(♠, g2, j2, if ( v) C′〈s0〉( k) else C′〈s1〉( k)) (6j)

−→∗(♠, g2, j2, C′〈s0〉( k)) (6k)

−→∗(♠, g2, j2, C′〈s0〉(`f )) (6l)

and g2(j2) =


@scope{♠} : j0
@prototype{♠} : null
@this{♠} : #global
” v”{♠} : true

 (6m)

By Definition 21, (6j) and (6m),

(h0, `0) �β (g2, j2) (6n)

By inductive hypothesis, (6n) and (6c),

(♠, g2, j2, C′〈s0〉(`f )) −→∗ (♠, g3, j3, `f (v′))

(h1, `1) �β′′ (g3, j3)

v ∼β′′ v′

2. The condition expression e evaluates to false. The proof of this sub-case is similar to the proof of
previous sub-case. We omit the detail.

We omit the other case where the evaluation of the conditional involves a return statement.
Case s = while (e) s : By the definition of the CPS compiler,

C′〈s〉 = function( k){var c; c = f0; c(undefined)}
f0 = function( v){C′〈e〉(f1)}
f1 = function( b){if ( b) C′〈s〉( c) else k( b)}

By semantics rules, if the evaluation of the while loop terminates,

(♠, h, `,while (e) s) −→∗ (♠, h0, `0, s;while (e) s)

−→∗ (♠, h′0, `′0,while (e) s)

−→∗ (♠, h1, `1, s;while (e) s)

−→∗ (♠, h′1, `′1,while (e) s)

...

−→∗ (♠, h′n−1, `
′
n−1,while (e) s)

−→∗ (♠, hn, `n, false)

On the CPS-transformation side, by semantics rules

(♠, g, j, C′〈s〉(`f ))
Fun, Fun-Call−−−−−−−−→

∗
(♠, g0, j0, var c; c = f0; c(undefined)) (7a)

Var, Assign, GetV, Fun-Call−−−−−−−−−−−−−−−−−→
∗
(♠, g1, j1, C′〈e〉(lf1)) (7b)

and g0(j0) =


@scope{♠} : j
@prototype{♠} : null
@this{♠} : #global
” k”{♠} : `f
” c”{♠} : `c

 (7c)

and g1(j1) =


@scope{♠} : j0
@prototype{♠} : null
@this{♠} : #global
” v”{♠} : undefined

 (7d)

and g1(`c).@body = C′〈e〉(f1) (7e)
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By Definition 21, (7a) to (7d),

(h, `) �β (g1, j1) (7f)

Let us prove by induction on the length of the execution of the body of while-loop:

1. Case n=0 : The loop body is not executed. We have,

(♠, h, `, e) −→∗ (♠, h0, `0, false) (8a)

By inductive hypothesis, Lemma 10, (8a) and (7f),

(♠, g1, j1, C′〈e〉(`f1)) −→∗ (♠, g2, j2, `f1(false)) (8b)

(h0, `0) �β′ (g2, j2) (8c)

false ∼β′ false (8d)

By semantics rules and (7d),

(♠, g2, j2, `f1(false)) −→∗ (♠, g3, j3, if ( b) C′〈s〉( c) else k( b)) (8e)

−→∗ (♠, g3, j3, k( b)) (8f)

−→∗ (♠, g3, j3, `f (false)) (8g)

and g3(j3) =


@scope{♠} : j1
@prototype{♠} : null
@this{♠} : #global
” b”{♠} : false

 (8h)

(8i)

Furthermore, by (8e) and (8h) we have

(hn, `n) �β′ (g3, j3) (8j)

2. Case n > 0 :

(♠, h, `, e) −→∗ (♠, h0, `0, true) (9a)

(♠, h, `, s) −→∗ (♠, h′0, `′0, v) (9b)

By inductive hypothesis, Lemma 10, (9a) and (7f),

(♠, g1, j1, C′〈e〉(`f1)) −→∗ (♠, g2, j2, `f1(true)) (9c)

(h0, `0) �β′ (g2, j2) (9d)

true ∼β′ true (9e)

By semantics rules and (7d),

(♠, g2, j2, `f1(true)) −→∗ (♠, g3, j3, if ( b) C′〈s〉( c) else k( b)) (9f)

−→∗ (♠, g3, j3, C′〈s〉(`c)) (9g)

and g3(j3) =


@scope{♠} : j1
@prototype{♠} : null
@this{♠} : #global
” b”{♠} : false

 (9h)

(9i)

Furthermore, by (9f) and (9h) we have

(h0, `0) �β′ (g3, j3) (9j)
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By inductive hypothesis, (9b) and (9j),

(♠, g3, j3, C′〈s〉(`c)) −→∗ (♠, g4, j4, `c(v′)) (9k)

(h′0, `
′
0) �β′′ (g4, j4) (9l)

v ∼β′′ v′ (9m)

By semantics rule, we have

(♠, g4, j4, `c(v′)) −→∗ (♠, g5, j5, C′〈e〉(f1))

and g5(j5) =


@scope{♠} : j0
@prototype{♠} : null
@this{♠} : #global
” v”{♠} : v′


(h′0, `

′
0) �β′′ (g5, j5)

Now the configuration (♠, h′0, `′0,while (e) s) has n−1 execution of the while-loop body. By inductive
hypothesis,

(♠, g5, j5, C′〈e〉(f1)) −→∗ (♠, gm, jm, `f (false))

(hn, `n) �β′′′ (gm, jm)

We omit the other case where the evaluation of the while-loop involves a return statement.

Case s = return e : By the definition of the CPS compiler,

C′〈s〉 = function( k){C′〈e〉( fun cont)}

By semantics rules,

(♠, h, `, e) −→∗ (♠, h′, `′, v) (10a)

(♠, h, `, return e) −→∗ (♠, h′, `′, return v) (10b)

(10c)

By assumption,

Lookup(g, j, fun cont) = `c (10d)

On the CPS-transformation side, by semantics rules

(♠, g, j, C′〈s〉(`f ))
Fun, Fun-Call, Fun−−−−−−−−−−−−→

∗
(♠, g0, j0, C′〈e〉(`c)) (10e)

and g0(j0) =


@scope{♠} : j
@prototype{♠} : null
@this{♠} : #global
” k”{♠} : `f

 (10f)

By Definition 21, (10e) and (10f),

(h, `) �β (g0, j0) (10g)

By inductive hypothesis, Lemma 10, (10g) and (10a),

(♠, g0, j0, C′〈e〉(`x)) −→∗ (♠, g1, j1, `c(v′)) (10h)

(h′, `′) �β′ (g1, j1) (10i)

v ∼β′ v′ (10j)

from which we can conclude this case.
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The following lemma shows that, under certain conditions, for any expression, the intermediate CPS-
transformation behaves the same as the original expression.

Lemma 10 (CPS Transformation Lemma - Expressions). Let h and g be two decorated heaps, ` and j be

two heap locations such that (h, `) �β (g, j) for some β. If (♠, h, `, e) ε−→
∗

(♠, h′, `′, v), then the following
conditions hold:

1. (♠, g, j, C′〈e〉(`f ))
ε−→
∗

(♠, g′, j′, `f (v′))

2. there exists β′ such that (h′, `′) �β′ (g′, j′) and v ∼β′ v′.

Proof. The proof is by induction on the definition of the CPS transformer C′〈e〉. For all cases, we have
some common hypothesis:

(h, `) �β (g, j) (11a)

By Definition 21, (11a) implies

(h�♠, `) ∼β (g�♠, j) (11b)

h�V = g �V are benign gadget’s heaps. (11c)

h�W = g�W = hin (11d)

Case e = this : By definition of the CPS compiler, we have

C′〈this〉 = function( k){ k( this)}

By the semantics rules, we have

Lookup(h, `,@this) = `t (12a)

(♠, h, `, this) This−−→(♠, h, `, `t)

By the semantics rules,

(♠, g, j, (C′〈this〉)(`f ))
Fun−−→(♠, g0, j, `cps(`f ))

Fun-Call−−−−−→(♠, g1, j0, k( this))

GetV−−−→(♠, g1, j0, `f ( this))

GetV−−−→(♠, g1, j0, `f (`′t))

By semantics rules Fun and Fun-Call, we have

g1 = g ∪



`cps{♠} 7→


”prototype” : `p1
@prototype : #funprot
@call : true
@fscope : j
@body : function( k){ k( this)}

 ,

`p1{♠} 7→ {@prototype : #objprot} ,

j0{♠} 7→


@scope : j
@prototype : null
@this : #global
” k” : `f





(12b)

(12c)

By Definition 12, Definition 21, (11b) and (12b),

(h�♠, `) ∼β (g2�♠, j0) (12d)

(h, `) �β( g2, j0)
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By semantics rule GetV, (12a), (12d)

Lookup(g2, j0, “ this”) = `′t (12e)

`t ∼β `′t (12f)

from which we can conclude this case.
Case e = x : By definition of the CPS compiler, we have

C′〈x〉 = function( k){ k(x)}

By the semantics rules, we have

Scope(h, `, x) = l1 (13a)

h(`1).“x”{2} = v

(♠, h, `, x)
GetV−−−→(♠, h, `, v)

(13b)

By the semantics rules,

(♠, g, j, (C′〈x〉)(`f ))
Fun−−→(♠, g0, j, `cps(`f ))

Fun-Call−−−−−→(♠, g1, j0, k(x))

GetV−−−→(♠, g2, j0, `f (x))

GetV−−−→(♠, g2, j0, `f (v′))

By similar reasoning from (12b),

(h�♠, `) ∼β (g2�♠, j0) (13c)

(h, `) �β( g2, j0) (13d)

By semantics rule GetV,

Scope(g2, j0, “x”) = j1 (13e)

g2(j1).“x”{2} = v′

By Definition 12, Lemma 6, (13a), (13e), (13c) and (13d), we have the following two cases to discuss:

1. `1 = j1 = #global :

(a) “x” is a W or V-colored property, then v = v′;

(b) “x” is a ♠-colored property, then we have v ∼β v′;
2. `1 = j1 6= #global , we have v ∼β v′.

therefore in both case we have

v ∼β v′

from which we can conclude this case.
Case e = pv : Similar to the previous case.
Case e = {m0 : e0,m1 : e1} :
We prove the case for an object literal that contains two properties. Other cases can be easily extended.
By definition of the CPS compiler, we have

C′〈{m0 : e0,m1 : e1}〉 = function( k){(C′〈e0〉)(f0)}
f0 = function( x0){(C′〈e1〉)(f1)}
f1 = function( x1){ k({m0 : x0 op m1 : x1})}
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By the semantics rules, we have

(♠, h, `, e0) −→∗(♠, h0, `, v0) (14a)

(♠, h0, `, e1) −→∗(♠, h1, `, v1) (14b)

(♠, h, `, {m0 : e0,m1 : e1})
Obj-Literal−−−−−−−→(♠, h2, `, `0) (14c)

By the rule Obj-Literal, and (14c), we have

h2 = h1 ∪ {lo 7→ o} (14d)

By the semantics rules, we also have

(♠, g, j, (C′〈e〉)(f))
Fun−−→(♠, g0, j, `cps(`f ))

Fun-Call−−−−−→(♠, g1, j0, (C′〈e0〉)(f0))

Fun−−→(♠, g2, j0, (C′〈e0〉)(`f0))

By (14g),Fun-Call−−−−−−−−−−−→
∗
(♠, g3, j1, (C′〈e1〉)(f1))

Fun−−→(♠, g4, j1, (C′〈e1〉)(`f1))

By (14l),Fun-Call−−−−−−−−−−−→
∗
(♠, g5, j2, k({m0 : x0,m1 : x1}))

Fun-Call−−−−−→(♠, g6, j2, `f (`′o))

By similar reasoning from (12b), Definition 12, 21, and (11a),

(h�♠, `) ∼β (g2�♠, j0) (14e)

(h, `) �β( g2, j0) (14f)

By inductive hypothesis, (14a) and(14f),

(♠, g2, j0, (C′〈e0〉)(`f0)) −→∗ (♠, g3, j′1, `f0(v′0)) (14g)

v0 ∼β′ v′0 (14h)

(h0, `) �β′ (g3, j
′
1) (14i)

By semantics rules, similar reasoning from (12b), Definition 12 and (14i), we have

g4(j1) =


@scope : j0
@prototype : null
@this : #global
” x0” : v′0

 (14j)

(h, `) �β( g4, j1) (14k)

By inductive hypothesis and (14b), we have

(♠, g4, j1, (C′〈e1〉)(`f1)) −→∗ (♠, g5, j′2, `f1(v′1)) (14l)

v1 ∼β′′ v′1 (14m)

(h1, `) �β′′ (g5, j
′
2) (14n)

By similar reasoning from (12b), Definition 12 and (14l), we have

g5(j2) =


@scope : j1
@prototype : null
@this : #global
” x1” : v′1

 (14o)
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By semantics rules, we have

g6 = g5 ∪ {l′o{♠} 7→ o′} (14p)

o =


@prototype{♠} : #objprot
m1{♠} : v0
m2{♠} : v1

 (14q)

o′ =


@prototype{♠} : #objprot
m1{♠} : v′0
m2{♠} : v′1

 (14r)

(14s)

By definition 17,

o ∼β′′ o′ (14t)

Let β′′′ = β′′ ∪ {lo 7→ l′o}, by (14o), Definition 15 and Definition 21 we have

lo ∼β′′′ l′o (14u)

(h2, `) �β′′′ (g6, j2) (14v)

Case e = e0[e1] : By definition of the CPS compiler, we have

C′〈e0[e1]〉 = function( k){(C′〈e0〉)(f0)}
f0 = function( x0){(C′〈e1〉)(f1)}
f1 = function( x1){ k( x0[ x1])}

By the semantics rules, we have

(♠, h, `, e0[e1]) −→∗(♠, h0, `, v0[e1]) (15a)

−→∗(♠, h1, `, v0[v1]) (15b)

GetV−−−→(♠, h1, `, v) (15c)

By semantics rules and similar reasoning from (14l),

(g, j, C′〈e〉(`f )) −→∗(g0, j0, lf (v′1[v′2])) (15d)

(g0, j0, lf (v′)) (15e)

(15f)

such that the following conditions holds,

(h1, `) �β′ (g0, j0) (15g)

v1 ∼β′ v′1 (15h)

v2 ∼β′ v′2 (15i)

Let us analyze by the case of v1 and v′1, since v1 ∼β′ v′1, we have the following cases:

1. v1 6∈ dom(β′) and v1 = v′1, thus h1(v1) is a W or V-colored object. By (15g) we have h1(v1) = g0(v1),
therefore we have v = v′;

2. v1 = v′1 = #global ,

(a) If v2 is a ♠-colored property, by Definition 15 we have v ∼β′ v′;

(b) If v2 is a W or V-colored property, by similar reasoning we have v = v′.

3. β′(v1) = v′1, then by Definition 15 we have v ∼β′ v′.
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Therefore in all sub-cases we have

v ∼β′ v′ (15j)

The rest reasoning follows the same strategy of the previous case.

Case e = e0(e1) : By definition of the CPS compiler, we have

C′〈e0(e1)〉 = function( k){(C′〈e0〉)(f0)}
f0 = function( x0){(C′〈e1〉)(f1)}
f1 = function( x1){if ( x0. is ohandle) k( x0( x1)) else x0( k, x1)}

By the semantics rules, we have

(♠, h, `, e0(e1)) −→∗(♠, h0, `, v0(e1)) (16a)

−→∗(♠, h1, `, v0(v1)) (16b)

−→∗(♠, h2, `, v) (16c)

By semantics rules and similar reasoning from (14l),

(♠, g, j, (C′〈e〉)(`f ))
Fun−−→(♠, g0, j0, if (v′0. is ohandle) k( x0( x1)) else x0( k, x1)) (16d)

(h1, `) �β′(g0, j0) (16e)

v0 ∼β′ v′0 (16f)

v1 ∼β′ v′1 (16g)

Let us discuss by two different sub-cases:

1. g0(v0).“ is ohandle” = true: then v0 is a V-colored function object. Therefore by Assumption 3

v0 = v′0

h1(v1) = g0(v′1) = o is a simple object

h1�V = g0 �V is a benign gadget’s heap

then by Assumption 9,

(♠, g0, j0, if (v′0. is ohandle) k( x0( x1)) else x0( k, x1)) −→∗(♠, g0, j0, `f (v′0(v′1)))

−→∗(♠, g1, j0, `f (v′))

such that

h2�V = g1 �V is a benign gadget’s heap

(h2, `) �β′ (g1, j0)

v = v′

2. g0(v0).“ is ohandle” = true: then v0 is a ♠-colored function object. We have

(♠, h1, `, v0(v1)) −→∗(♠, h′1, `1,@FunExe(`, s)) (16h)

−→∗(♠, h′2, `1,@FunExe(`, v)) (16i)

−→∗(♠, h2, `, v) (16j)

h1(v0) =


”prototype” : `p0
@prototype : #funprot
@call : true
@fscope : `0
@body : function(x){s′}

 (16k)

h1(`1).@scope =`0 (16l)

h1(`1).“x” =v1 (16m)
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By Definition 15 and (16e), we have

g0(v′1) =


”prototype” : jp′0
@prototype : #funprot
@call : true
@fscope : j1
@body : function(x){s′′}

 (16n)

s′′ = var this;
this = this;

(C′〈s′〉)( fun cont)
(16o)

By semantics rules,

(♠, g0, j0, v′1(lf , v
′
2))

Fun-call,...−−−−−−−→
∗
(♠, g1, j2, (C′〈s′〉)(lf )) (16p)

Let β′ = β ∪ {`1 7→ j2}, by Definition 15,

(h′1, `1) �β′ (g1, j2) (16q)

g1(j2).“ fun cont” = `f (16r)

By Lemma 9,

(♠, g1, j2, (C′〈s′〉)(lf )) −→∗(♠, g2, j3, lf (v′))

(h′2, `1) �β′′(g2, j3)

v ∼β′′v′

Case e = e0[e1](e2) : Similar to previous case.
Case e = function(x0){s0} :
By definition of the CPS compiler, we have

C′〈function(x0){s0}〉 = function( k){ k(function( fun cont , x0){s′})}
s′ = var this;

this = this;
(C′〈s0〉)( fun cont)

We assume that e is a simple function, which has the following properties:

s0 does not contain variable declaration.

By the semantics rules, we have

(♠, h, `, function(x0){s0})
Fun−−→(♠, h0, `, lf0) (17a)

where

h0 = h ∪


`f0{♠} 7→


”prototype” : `p
@prototype : #funprot
@call : true
@fscope : `
@body : function(x0){s0}

 ,

`p{♠} 7→ {@prototype : #objprot}


(17b)

By the semantics rules, we also have

(♠, g, j, (C′〈e〉)(`f ))
Fun−−→(♠, g0, j, lcps(lf )) (17c)

Fun-Call−−−−−→(♠, g1, j0, k(function( fun cont , x0){s′})) (17d)

GetV−−−→(♠, g1, j0, lf (function( fun cont , x0){s′})) (17e)

GetV−−−→(♠, g2, j0, lf (l′f0)) (17f)
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By similar reasoning from (12d), we have

(h�♠, l) ∼β (g1�♠, j0) (17g)

(h, `) �β( g1, j0)

and we also have

g2 = g1 ∪


`′f0{♠} 7→


”prototype” : `′p
@prototype : #funprot
@call : true
@fscope : j0
@body : function( fun cont , x0){s′}

 ,

`′p{♠} 7→ {@prototype : #objprot}


(17h)

Let β′ = β ∪ {`f0 7→ `′f0 , `p 7→ `′p}, by Definition 12, we have.

(h0�♠, `) ∼β′ (g2�♠, j0) (17i)

(h0, `) �β( g2, j0)

`f0 ∼β′ `′f0

Case e = e0 op e1 : This case can be reasoned by similar strategy from the case of object literal.
Case e = x = e0 : By definition of the CPS compiler, we have

C′〈x = e0〉 = function( k){(C′〈e0〉)(f0)} (18a)

f0 = function( x0){k(x = x0)} (18b)

By the semantics rules, we have

(♠, h, l, x = e) −→∗(♠, h0, l, x = v0) (18c)

(18d)

By semantics rules, inductive hypothesis and similar reasoning from (14l),

(♠, g, j, (C′〈e〉)(f)) −→∗(♠, g0, j0, lf (x = v′0)) (18e)

−→∗(♠, g1, j0, lf (v′0)) (18f)

such that the following holds.

(h0, `) �β′ (g0, j0) (18g)

v0 ∼β′ v′0 (18h)

(18i)

By the semantics we have

Scope(h0, `, x) = `0 (18j)

Scope(g0, j0, x) = j2 (18k)

By Definition 12, Lemma 6, we have the following two cases to discuss:

1. `0 = j2 = #global : it must be the case that “x” is a ♠-colored property of the global object,
otherwise the simple-integrator assumption us violated.

2. β(`0) = j2, then h(`0) and g0(j2) are both ♠-colored.

therefore, for both case, by Definition 15, Definition 12 and 18h, we have

(h1�♠, `) ∼β′ (g1�♠, j0) (18l)

(h1, `) �β′ (g1, j0) (18m)

Case e = e0[e1] = e2 : By similar reasoning of the previous case.
Case e = typeof e0 : This case can be reasoned by similar strategy from the case of object literal.

42



Remark 11. If there is a frame, we can always separate the heap into two part where h = hi ⊕ hf , and
hi and hf does not contain any locations to each other.

In the following lemma we show that the intermediate compilation behave indistinguishable with the
Mashic compilation. The proof proceeds by a mutual structural induction on the definition of statements
and expressions.

Lemma 12 (Intermediate to Mashic Compilation). Let Pi be a simple integrator and Pg be a benign
gadget such that Pi does not conflict with Pg and V = var(Pg). If 〈♠, ε,null , M̃i(Pi, Pg), Qinit〉I −→∗
〈2, hi, `i, ε, Qinit〉x, then 〈♠, ε,null , M̃c(Pi, Pg,V), Qinit〉I −→∗ 〈2, hc, `c, ε, Qc〉x where Qc has no message

waiting, and there exist a mapping f : N 7→ L such that hc
f
= hi.

Sketch of Proof. Without of loss of generality, we assume that the Alloc function in the decorated se-
mantics are deterministic up to decorations, which means for three different decorations W,V,♠, the
Alloc function uses three non-overlap set of heap locations.

By semantics rules, we show transitions for M̃c(Pi, Pg,V) until the CPS-transformed code C〈Pi〉 is
evaluated.

〈♠, ε,null , M̃c(Pi, Pg,V), Qinit〉I −→∗〈♠, h0
c ,#global , C〈Pi〉(function( x){ x}), Q〉I

where h0
c = hint ⊕ hfra

hint = hin ⊕ hp
hfra = hf ⊕ hl ⊕ hg

where the heap h0
c can be separated into a frame part hfra and a non-frame part hint . Furthermore, we

have hint�W = hint = hin ⊕ hp, and hp is the initial heap and interfaces provided by the proxy library
Pp. For the frame part of the heap, we have hfra�W = hf ⊕hl, and hl which is the initial frame heap and
interfaces provided by the listener library Pl. The gadget’s heap is hfra�V = hg.

Assuming V = {x1, . . . xn}, by the definition of bootstrapping code BootstrapVi and BootstrapVg , for
each xi, hc(#global).“xi”{W} holds an opaque object handle with an id of i. The mapping from opaque ob-
ject handle to object maintained in hl by h0

c(#global f ).“handle list”{W} maps i to h0
c(#global f ).“xi”{V}.

Q is in the following form

Q = 〈`p, ε〉 ‖ 〈`l, ε〉

where h0
c(`p) is the proxy event handler, and h0

c(`l) is the listener event handler.
By semantics rules, we show transitions for M̃i(Pi, Pg), until the CPS-transformed code is evaluated.

〈♠, ε,null , M̃i(Pi, Pg), Qinit〉I −→∗ 〈♠, h0
i ,#global , C′〈Pi〉(function( x){ x}), Qinit〉I

h0
i = hin ⊕ hg

where h0
i �W = hin and h0

i �V = h′g. By Assumption 2, we have

h0
i �V = h0

c�V = hg = h′g

and hg is a benign gadget heap.
Let f0 = {1 7→ hg(#global f ).“x1”{V}, . . . , n 7→ hg(#global f ).“xn”{V}}, we have

h0
c
f0= h0

i

By Lemma 4, both C〈Pi〉 and C′〈Pi〉 are simple, which means that they will not try to assign to a
heap location not decorated with ♠.

We conclude the proof by the following inlined lemma.

Lemma 13. Let h0
c and h0

i be two heaps, f be a partial injective function such that h0
c
f
= h0

i , hp ⊆ h0
c

and hl ⊆ h0
c. If 〈♠, h0

i ,#global , C′〈Pi〉(function(x){si}), Qinit〉I −→∗ 〈♠, h′i, `, si, Qinit〉I , then we have

〈♠, h0
c ,#global , C〈Pi〉(function(x){sc}), Q〉I −→∗ 〈♠, h′c, `, sc, Q〉I and there exist f ′ such that h′c

f ′
= h′i,

hp ⊆ h′c and hl ⊆ h′c.
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Proof. We prove by induction on the definition of Pi. We exam important cases, other cases are trivial
since the CPS compilation for C〈Pi〉 and C′〈Pi〉 are identical.
Case this : By definition of the CPS compiler, we have

C〈this〉 = C′〈this〉 = function( k){ k( this)}

Since h0
c
f
= h0

i , therefore we have

`s = Scope(h0
c , `, “ this”) = Scope(h0

i , `, “ this”)

We have to case to analyze here:

1. If h0
c(`s) = `′ hold an opaque object handle with id i, then we have h0

i (`s) = `′′ = f(i);

2. If h0
c(`s) = `′ points to an normal object, then we have h0

i (`s) = `′;

3. If h0
c(`s) = pv for some pv, then we have h0

i (`s) = pv.

In all cases the continuation k will be applied to either identical values or f -related opaque object handle
and corresponding object, therefore the created scope object by applying k either contains same value
for x, or f -related opaque object handle and corresponding object.
Case e0[e1] : The only difference of the compilation in both side is the then-branch of if-test. By
semantics and inductive hypothesis, we have

〈♠, h0
i ,#global , C′〈Pi〉(function(x){si}), Qinit〉I −→∗ 〈♠, h1

i , `, s
′
i, Qinit〉I

〈♠, h0
c ,#global , C〈Pi〉(function(x){sc}), Q〉I −→∗ 〈♠, h1

c , `, s
′
c, Q〉I

such that h1
c
f1= h1

i for some f0, by inductive hypothesis, and

s′i = k( x1[ x2]);

s′c = if ( x1[“ is ohandle”]) GET PROPERTY( x1, x2, k) else k( x1[ x2])

Therefore there are 2 cases.

1. If-test in sc evaluate to false: meaning that x1 is not an object defined by gadget. Therefore, we
have:

〈♠, h1
c , `, s

′
c, Q〉I −→∗ 〈♠, h1

c , `, k( x1[ x2]), Q〉I
By similar reasoning from the case of this, x1[ x2] will either evaluated to same value or f1-related
object location in both configuration. After the application of the continuation k in both case,

〈♠, h1
c , `, k( x1[ x2]), Q〉I −→∗ 〈♠, h′c, `′, sc, Q〉I

〈♠, h1
i , `, k( x1[ x2]), Q〉I −→∗ 〈♠, h′i, `′, si, Q〉I

where h′c
f1= h′i.

2. If-test in sc evaluate to true, meaning that x1 in h1
i is an object defined by gadget. Therefore we

must have

〈♠, h1
i , `, s

′
c, Qinit〉I −→∗ 〈♠, h1

i , `, k(`o[m]), Qinit〉I
−→∗ 〈♠, h1

i , `, k(v), Qinit〉I
−→∗ 〈♠, h2

i , `
′, si, Qinit〉I

We now exam the execution for the proxy library GET PROPERTY and corresponding listener library.

〈♠, h1
c , `, s

′
c, Q〉I −→∗ 〈♠, h1

c , `, GET PROPERTY(`′o,m, k), Q〉I (19a)

−→∗ 〈W, h2
c , `c, ε, 〈`i, ε〉 ‖ 〈`l,msg1〉〉I (19b)

−→∗ 〈W, h3
c , `
′
c, ε, 〈`i,msg2〉 ‖ 〈`l, ε〉〉I (19c)

−→∗ 〈W, h4
c , `
′′
c , cont(v′), 〈`i, ε〉 ‖ 〈`l, ε〉〉I (19d)

−→∗ 〈♠, h5
c , `
′, sc, Q〉I (19e)
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By semantics, we have (19a). By inductive hypothesis, we have h1
c(`
′
o). id = n and f1(n) = `o.

Then the proxy library send a msg

msg1 = {"type":"GET PROPERTY", "obj":n, "prop":m}

to the frame. Since we have f1(n) = lo, therefore the listener library, upon receiving, can obtain lo

from handle list, and get the property m from h2
c(lo).m = v′. By hypothesis h1

c
f1= h1

i , we have

h1
c =V h

1
i

therefore we have v = v′. If v′ is a primitive value, then the listener library sends back a msg

msg2 = {"val":pv}.

Otherwise it sends back a msg

msg2 = {"val":{ id:n’, is ohandle:true}}.

where n′ is a unique id for new opaque object handle. We can extend f1 to f2 = f1 ∪ {n′ 7→ v′}.
Upon receiving this message from the frame, the proxy library now restore the execution by apply
the continuation cont to the received value or opaque object handle. Finally in (19e) x in the scope
is bind to either the primitive value pv or an opaque object handle with id n′, where f2(n′) = v.
We also have

h5
c
f2= h2

i

Case e0(e1) : The style of reasoning of this case is similar to the previous case. The only difference of
the compilation in both side is the then-branch of if-test. By semantics and inductive hypothesis, we
have

〈♠, h0
i ,#global , C′〈Pi〉(function(x){si}), Qinit〉I −→∗ 〈♠, h1

i , `, s
′
i, Qinit〉I

〈♠, h0
c ,#global , C〈Pi〉(function(x){sc}), Q〉I −→∗ 〈♠, h1

c , `, s
′
c, Q〉I

such that h1
c
f1= h1

i for some f1, by inductive hypothesis, and

s′i = if ( x1[“ is ohandle”]) k( x1( x2)) else x1( k, x2)

s′c = if ( x1[“ is ohandle”]) CALL FUNCTION( x1, x2, k) else x1( k, x2)

Therefore there are 2 cases.

1. If-test in sc evaluate to false, meaning that x1 is not an object defined by gadget. Therefore, we
have:

〈♠, h1
c , `, s

′
c, Q〉I −→∗ 〈♠, h1

c , `, x1( k, x2), Q〉I
〈♠, h1

i , `, s
′
i, Q〉I −→∗ 〈♠, h1

i , `, x1( k, x2), Q〉I

By similar reasoning from the case of this, since x1 is a CPS-style function defined by the integra-
tor, then by inductive hypothesis, we have the following transitions. After the application of the
continuation k in both case,

〈♠, h1
c , `, x1( k, x2), Q〉I −→∗ 〈♠, h′c, `′, sc, Q〉I

〈♠, h1
i , `, x1( k, x2), Q〉I −→∗ 〈♠, h′i, `′, si, Q〉I

where h′c
f2= h′i for some f2.
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2. If-test in sc evaluate to true, meaning that x1 in h1
i is an function object defined by gadget.

Therefore we must have

〈♠, h1
i , `, s

′
i, Qinit〉I −→∗ 〈♠, h1

i , `, k(`o(v0)), Qinit〉I (20a)

−→∗ 〈♠, h2
i , `, k(v), Qinit〉I (20b)

−→∗ 〈♠, h3
i , `
′, si, Qinit〉I (20c)

Since h2
i �V is a simple gadget’s heap, by Assumption 9 and 3, we have v0 is either a primitive a

value or it points to a simple object. We also have that h1
i �♠ = h2

i �♠. We now only exam the case
where v0 points to a simple object. The other case is straightforwardly similar to this case.

We now exam the execution for the proxy library CALL FUNCTION and corresponding listener library.

〈♠, h1
c , `, s

′
c, Q〉I −→∗ 〈♠, h1

c , `, CALL FUNCTION(`′o, v0, k), Q〉I (20d)

−→∗ 〈W, h2
c , `c, ε, 〈`i, ε〉 ‖ 〈`l,msg1〉〉I (20e)

−→∗ 〈W, h3
c , `
′
c, ε, 〈`i,msg2〉 ‖ 〈`l, ε〉〉I (20f)

−→∗ 〈W, h4
c , `
′′
c , cont(v′), 〈`i, ε〉 ‖ 〈`l, ε〉〉I (20g)

−→∗ 〈♠, h5
c , `
′, sc, Q〉I (20h)

By semantics, we have (20d). By inductive hypothesis, we have h1
c(`
′
o). id = n and f1(n) = `o.

Then the proxy library send a msg

msg1 = {"type":"CALL FUNCTION", "obj":n, "arg":{...}}

to the frame. Since we have f1(n) = lo, therefore the listener library, upon receiving, can obtain lo
from handle list. By the stringify-parse assumption, on the frame side, we can obtain an exactly

same simple object. By hypothesis h1
c
f1= h1

i , we have

h1
c =V h

1
i (20i)

which are benign gadget’s heap. By applying lo to the same simple object as in (20a). Therefore
we would obtain the same result v as in (20b). If v′ is a primitive value, then the listener library
sends back a messsage

msg2 = {"val":pv}.
Otherwise it sends back a msg

msg2 = {"val":{ id:n’, is ohandle:true}}.

where n′ is a unique id for new opaque object handle. We can extend f1 to f2 = f1 ∪ {n′ 7→ v′}.
Upon receiving this message from the frame, the proxy library now restore the execution by apply
the continuation cont to the received value or opaque object handle. Finally in (20h) x in the scope
is bind to either the primitive value pv or an opaque object handle with id n′, where f2(n′) = v.
We also have

h5
c
f2= h2

i (20j)

The proof of rest cases follows the same style of reasoning.

We conclude the proof of Lemma 12 with above inlined lemma.

6 Security Theorem

In this section we present the security theorem. In Mashic compiled code, the integrator has complete
access to gadget resources but the gadget only has access to resources offered by the integrator in the
proxy library. After Mashic compilation, the malicious gadget cannot scan properties of the integrator,
as e.g. in Listing 4, because the SOP policy prevents the iframed gadget from accessing the JS execution
environment of the integrator as shown in the DFrameInitrule in Figure 7.
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Example 13 (Gadget modifies native functions). For example, a native function that can commonly
appear in the integrator code is the setTimeout function. This function takes two parameters, the first
one is a function that will be executed when the time (in milliseconds) specified in the second parameter
has passed:

1 setTimeout("alert(timeout!!)",5);

In this example, after 5ms a pop-up window with caption “timeout!” appears.
This function, as all native JS functions, is associated as a property with the global object of the

document created when the HTML file is loaded. As many native functions the code associated to the
setTimeout function can be changed at execution time, changing in this way the assumed behavior for
setTimeout.

Suppose the untrusted gadget owned by the attacker writes a function of its own into the setTimeout

property:

1 setTimeout=function (x,y) { evil code here} ;

Then every call to setTimeout in the integrator’s code will be calling the attacker’s code with the
integrator privileges.

If instead the gadget is enclosed in a frame, the same code trying to affect the setTimeout property
of the global object will only affect the property of the global object of the frame, that is in a disjoint
part of the heap according to the SOP.

In order to state the security guarantee, we consider that all code coming from origin u is part of
the gadget principal V. In contrast to the decorations used for correctness, we now consider the listener
library and bootstrapping as gadget’s code. This is not surprising since the gadget can modify this code
and we want the security theorem to be valid still in this case.

We decorate all code residing in the integrator with ♠. This is also different from the correctness
theorem. Essentially, we are now interested in asserting that the gadget cannot change the proxy library
or bootstrapping in the integrator, whereas for the correctness theorem we were interested in heap
indistinguishability only for the integrator heap in original and compiled mashup. Furthermore, we
assume hin is decorated with ♠, and hf

in is decorated with V.
(Notice that decorations do not affect the compiler or semantics of JS code and are only used as

technical instrumentation for the theorems and their proofs.)

Definition 22 (Decorated Mashic Compilation (for security theorem)). Given an integrator script Pi
and a gadget script Pg, a set of variable V denoting global names exported by the gadget script, we define

the Mashic compilation
.

Mc(Pi, Pg,V) to be:

<html>

<iframe src=u></iframe>
<script♠>
Pp; BootstrapVi ; C〈Pi〉(function( x){ x})

</script>

</html>

where
Web(u) = <scriptV> Pl;Pg; BootstrapVg </script>

Example 14 (Integrity violation). In the example referred just above, the initial heap contains the native
function setTimeout. Since the initial heap is decorated with ♠, the shape of the global object of the
integrator is:

h(#global) =


...

“timeout”{♠} : `
...


By using decoration of Definition 22 and Rule DModify-Property, we get that the projection h�♠

of the integrator heap before execution of the gadget and projection h′�♠ after execution of the gadget
do not coincide. The setTimeout property of the integrator’s global object has been changed by the
gadget execution. This represents an integrity violation.
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Reflexivity

(2, h, `, s) −→∗ (2, h, `, s)

Transitivity
(2, h, `, s)−→(·, h0, `0, s0) (·, h, `, s) −→∗ (4, h′, `′, s′)

(2, h, `, s) −→∗ (4, h′, `′, s′)

Figure 13: Semantics Rules for Transitivity

Example 15 (Confidentiality violation). Recall variable secret in example of Section 2. Let us assume
that the gadget’s heap is h�V.

After execution of the non-benign gadget in Listing 4 with integrator’s global object:

h(#global) =


...

“secret”{♠} : “yes”
...


the gadget heap is h �V (#global f ).“steal” = “yes”.

but starting with integrator’s global object:

h(#global) =


...

“secret”{♠} : “no”
...


the gadget heap is h �V (#global f ).“steal” = “no”. This difference depends on the integrator’s heap and
this represents a confidentiality violation.

We show that for any gadget code Pg, and any integrator code Pi, the Mashic compilation
.

Mc(Pi, Pg,V)
provides integrity and confidentiality guarantees:

Theorem 2 (Security Guarantee of Integrator). Let Pg and Pi be gadget and integrator code respec-
tively, and let V be a set of variables. For any configuration reachable from initial Mashic compilation
.

Mc(Pi, Pg,V):

〈♠, ε,null ,
.

Mc(Pi, Pg,V), Qinit〉I −→∗ 〈V, h, `, s,Q〉F
if

〈V, h, `, s,Q〉F−→〈V, h′, `′, s′, Q′〉F
then we have

1. (integrity.) h�♠ = h′�♠ ;

2. (confidentiality.) For any h0 such that h0�V = h�V, we have 〈V, h0, `, s,Q〉F−→〈V, h′0, `′, s′, Q′〉F ,
and h′0�V = h′�V .

The proof of security proceeds by induction on the length of the execution and is simpler than the one
of the correctness theorem. It uses the SOP modeled in Rule DFrameInitof the semantics. Although
the ultimate goal of the Mashic compiler is to provide the security guarantees listed in the theorem,
the real technical challenge resided in providing this security result by preserving functionality under
hypotheses not affecting current practices in existing mashups code (correctness theorem).

6.1 Proofs

We define the transitivity rules of the semantics explicitly in Figure 13.
The following lemma shows the same-origin policy guaranteed by our semantics, that is, the execution

of the integrator and the frame does not interfere with each other.

Lemma 14 (Same-Origin Policy). Given a global configuration 〈h, `, s J,Q〉x reachable from any initial
configuration, the following facts hold:

48



1. h = hi ⊕ hf : The heap h can be separated into two non-overlapping part. hi is the heap of the
integrator, hf is the heap of the frame of different origin.

2. 〈hi ⊕ hf , `, s J,Q〉I−→〈h′i ⊕ hf , `
′, s′ J,Q′〉I or 〈hi ⊕ hf , `, s J,Q〉F−→〈hi ⊕ h′f , `′, s′ J,Q′〉I holds;

The following lemma shows that if a heap is uniformly colored with 2, and the configuration is
decorated with the same color 2, then after one semantics step the heap is still uniformly colored.

Lemma 15 (Color Preservation). Given a heap h such that h�2 = h, for any `, s,

(2, h, `, s)
lmq−−→(2, h′, `′, s′)

and h′�2 = h′. Further if `mq = `+mq or `, then h(`).@body{2} = function(x){s},

Proof. We prove by the height t of the derivation tree for the transition relation −→ and −→∗.
Case t = 0: The possible cases are rules Reflexivity, New-Finish, Call-Finish, Call-Return,

Var, Block-Next, Return. By the semantics rule we have h = h′ therefore h′�2 = h′.
Case t = 1: For rules This,Typeof, GetV-Identifier, Op-Num, GetV-Property, Stringify-

Function, PostMsg-Function, by the semantics rule we have h = h′ therefore h′�2 = h′.

For rule AddListener, we have s = C[`1(`l)] such that (2, h, `, s = C[`1(`l)])
`l−→(2, h, `, undefined).

By semantics rules we have `1 = #Addlistener or #Addlistener f , and h(`l).@body{2} = function(x){s}.
For rule New, we have

h′ = h ∪


`o{2} 7→ {@prototype : `p} ,

`s{2} 7→


@scope : `′s
@prototype : null
@this : `o
”x” : v




therefore we have h′�2 = h′.

For rule Call-Method, Call-Function, Asgn-Identifier, Asgn-Property, Parse-Function
we reason similarly.

Case t > 1: For rule Obj-Literal, we have

s = C[{m1 : e1, . . . ,mn : en}]

By the semantics rule, we have

(2, h, `, e1)
mq1−−−→

∗
(2, h1, `, v1)

...

(2, hn−1, `, en)
mqn−−−→

∗
(2, hn, `, vn)

The height of derivation tree of those transitions are at most t − 1, by inductive hypothesis we have
hi�2 = hi for i ∈ {1, . . . , n}. By semantics rule, we also have

h′ = hn ∪

`o{2} 7→


@prototype : #objprot
”m1” : v1

...
...

”mn” : vn




Therefore h′�2 = h′.
Other cases are similar by applying the inductive hypothesis.

The following lemma shows that, by the decorated Mashic compilation defined in this section, the
integrator’s heap is always uniformly ♠-colored. The frame’s heap is always uniformly V-colored. The
proof proceeds by examing the execution of a mashic compilation result.
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Lemma 16 (Heap Separation). Given a gadget code Pg, an integrator code Pi, a set of variable V, for

any configuration reachable from initial Mashic compilation
.

Mc(Pi, Pg,V):

〈♠, ε,null ,
.

Mc(Pi, Pg,V), Qinit〉I −→∗ 〈2, h, `, s,Q〉F

we have h = hi ⊕ hf , h�♠ = hi and h�V = hf .

Proof. By semantics rules, we have

〈♠, ε,null , <html> FJ </html>, Qinit〉I
rule Init−−−−−→〈♠, h0,#global , FJ,Qinit〉I

rule Frame−−−−−−−→〈♠, h1,#global f , F
′J,Qinit〉F

rule Script, Frame-Exec−−−−−−−−−−−−−−−→〈V, h1,#global f , F
′′J,Qinit〉F

where

h0 =hin

h1 =hin ⊕ hf
in

F =<iframe src=u></iframe>

F ′ =<frame><scriptV> Pl;Pg; BootstrapVg </script></frame>

F ′′ =<frame>Pl;Pg; BootstrapVg </frame>

J =<script♠> Pp; BootstrapVi ; C〈Pi〉(function( x){ x} </script>

By Lemma 14 and Lemma 15, we have

〈V, hf
in ,#global f , F

′J,Qinit〉F −→∗ 〈V, hf
2,#global f , <iframe> v </iframe>J,Q0〉F

〈V, hin ⊕ hf
in ,#global f , F

′J,Qinit〉F −→∗ 〈V, hin ⊕ hf
2,#global f , <iframe> v </iframe>J,Q0〉F

hf
2�V = hf

2

and Q0 = 〈ε, ε〉 ‖ 〈`f , ε〉 and `f ∈ dom(hf
2). By semantics rules,

〈V, hin ⊕ hf
2,#global f , <iframe> v </iframe>J,Q0〉F −→∗ 〈♠, hin ⊕ hf

2,#global , s, Q0〉I

By Lemma 14 and Lemma 15, we have

〈♠, hin ⊕ hf
2,#global , s, Q0〉I −→∗ 〈♠, h2 ⊕ hf

2,#global , v,Q1〉I
h2�♠ = h2

and Q1 = 〈`i, ε〉 ‖ 〈`f ,mqf 〉, and `i ∈ dom(h2). We now prove that for any Q = 〈`i,m+mqi〉 ‖ 〈`f ,mqf 〉,
for any hi ⊕ hf

i such that hi�♠ = hi, h
f
i �V = hf

i , `i ∈ dom(hi), and `f ∈ dom(hf
i ), we have

〈2, hi ⊕ hf
i ,#global , ε, Q〉x−→〈♠, hi ⊕ hf

i ,#global , `i(m), Q′〉I
−→∗〈♠, h′i ⊕ hf

i ,#global , v,Q′′〉I

By Lemma 14 and Lemma 15, we have h′i�♠ = h′i and Q′′ = 〈`′i,mqi〉 ‖ 〈`f ,mq′f 〉 such that `′i ∈ dom(h′i).
The reasoning of the symmetric case where the frame’s callback is executed is similar.

Now we can prove the main security theorem.

Proof of Theorem 2. By Lemma 16, we have

h = hi ⊕ hf (23a)

h�♠ = hi (23b)

h�V = hf (23c)
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By Remark 14, we have

h′ = hi ⊕ h′f (23d)

〈V, hf , `, s,Q〉F−→〈V, h′f , `′, s′, Q′〉F (23e)

It remains to show that h′�V = h′f , which is equivalent to h′f �V = h′f . By semantics rule, we have

(V, hf , `, s)−→(V, h′f , `
′, s′)

By Lemma 15, we have h′f �V = h′f .

7 Implementation and Case Studies

In this section we discuss practical issues regarding the implementations of the Mashic compiler and cases
studies with well-known gadget APIs. The Mashic compiler is written in Bigloo 3 (a dialect of Scheme)
and JS. It has 3.3k lines of Bigloo code and 0.8k lines of JS code.

Optimizations Since JS does not support any tail-recursive call optimization, CPS-transformed code
can easily run out of call stacks. In order to deal with this, we implement a trampoline mechanism as
proposed by Loitsch [2009]. We define a global variable counter to count the depth of current call stacks.
If the counter exceeds a certain limit (in the following example it is 30)a tail call will return a trampoline
object instead of invoking the function.

This is shown in Listing 15.

1 if (counter > 30)

2 return new Trampoline(fun, arg);

3 return fun(arg);

Listing 15: Trampoline of Tail Call

A guard loop, on the top level, detects if a trampoline object is returned, as shown in Listing 16. If a
trampoline object is detected, the loop restarts the execution of the tail call.

1 res_or_tramp=fun(arg);

2 while (res_or_tramp instanceof Trampoline)

3 res_or_tramp = res_or_tramp.restart();

Listing 16: Guard Loop of Trampoline Execution

Event Handler In mashups, we also find demands for registering integrator-defined functions as
event handlers of gadgets’ DOM objects. For example, the Google Maps API provides an interface to
set an integrator’s function as a handler of the event of clicking on the map. Every time the map is
clicked, the corresponding function will be invoked, to notify the integrator of the event. By SOP, the
integrator and the gadget in a Mashic compilation cannot exchange function references. Hence we design
and implement a mechanism called Opaque Function Handle to achieve the same functionality of event
handler. Similar to the opaque object handle, we associate opaque function handles with function objects
on the integrator side. When an iframe-sandboxed gadget receives a function handle, it creates a warp
function by using the function shown in Listing 17.

1 function wrap_fun(fhandle){

2 return function(arg){

3 var msg = { fun : fhandle,

4 msg_type : ’CALLBACK’,

5 argument : arg};

6 PostMessage(stringify(msg));

7 return;

8 };

9 }

Listing 17: Wraping Function Handle

3http://www-sop.inria.fr/mimosa/fp/Bigloo/
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(a) Map Directions (b) Youtube Player Controls

Figure 14: Case Studies

The wrapped function, upon each invocation, sends a message to notify the integrator to invoke the
function associated with the function handle.

Case Studies We have successfully applied our compiler to mashups which use well-known gadget
APIs, such as Google Maps API, Bing Maps API, Youtube API, and Zwibbler API4. Those examples
involve non-trivial interactions between the integrator and the gadget. In Figure 14 we show two concrete
examples. The first example is a mashup using Google Maps API to calculate driving directions between
two cities. The map gadget is sandboxed by the Mashic compiler in an iframe, as indicated by a black box
in the figure. The compiled integrator, as in the original integrator, permits to choose a starting point
and an ending point to display a route in the map. The gadget’s response displayed by the integrator, is
the distance between the two points. The latter example shows a sandboxed Youtube player, where one
can control the behavior of the player though buttons in the integrator.

From an end-user point of view, one can barely feel the latencies introduced by Mashic compilation,
compared to the original mashup.

For the 25 examples of Google Maps API we have studied, we have successfully compiled 23 of them.
The other 2 examples not supported by the Mashic compiler are overlay-remove and overlay-simple.
The example of overlay-remove uses the for-in construct which are not currently supported by our
compiler. In the overlay-simple example, the integrator uses some gadget’s object as the prototype of
an integrator’s object, which not allowed by Assumption 3 (The simple integrator assumption).

Unsupported Constructs Our CPS transformer in the Mashic compiler currently supports the full
JS language [ECMA, 2009] except for a few programming constructs. Specifically, the for-in construct
and exception construct are not supported.

8 Conclusion

We have proposed the Mashic compiler as an automatic process to secure existing real world mashups.
The Mashic compiler can offer a significant practical advantage to developers in order to effortlessly write
secure mashups without giving up on functionality.

Compiled code is guaranteed to satisfy integrity and confidentiality constraints of integrator’s sensitive
resources. We do not address in this paper analysis to prevent security vulnerabilities introduced by the
integrator’s code. Consider the following silly code:

1 CALL_METHOD(eval,opq_obj,"foo",{});

This integrator will eval the result from calling the foo method of the opaque object handle opq obj.
The gadget might return some string representing a malicious JS program. Then the integrator will
execute the malicious code with its own privilege.To avoid this kind of vulnerabilities, analysis of the
integrator’s code is required. This is orthogonal to the current Mashic compilation and we leave it as
future work.

4For instance, we have compiled several examples obtained from http://code.google.com/apis/maps/documentation/javascript

/examples/index.html
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Mashic offers correctness guarantess only if the untrusted gadget is benign. This is a goal of the
compiler and not a disadvantage: mashup behavior should not be the same if the gadget is malicious.
If the gadget is malicious the programmer does not get any alert that the compiled secured mashup
does not behave as the original mashup. Another interesting future direction will be to provide JS code
analyses that will conservatively detect non-benign gadgets in order to alert the programmer.
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A Mashic Run-time

Proxy Library

1 var _cont;

2
3 var _message_handler;

4 _message_handler = function(m){

5 _cont(parse(m));

6 _cont = function(){};

7 };

8
9 addeventlistener(_message_handler);

10
11 var _GET_GLOBAL_REF;

12 _GET_GLOBAL_REF = function(name,cont){

13 var msg;

14 msg = {"type" : "GET_GLOBAL_REF", "name" : name};

15 postMessage(msg);

16 _cont = cont;

17 };

18
19 var _GET_PROPERTY;

20 _GET_PROPERTY = function(id,prop,cont){

21 var msg;

22 msg = {"type" : "GET_PROPERTY", "obj" : id, "prop" : prop};

23 postMessage(msg);

24 _cont = cont;

25 };

26
27 var _PROPERTY_ASSIGN;

28 _PROPERTY_ASSIGN = function(id, prop, val, cont){

29 var msg;

30 msg = {"type" : "PROPERTY_ASSIGN", "obj" : id, "prop" : prop, "val" : val};

31 postMsg(msg);

32 _cont = cont;

33 };

34
35
36 var _CALL_FUNCTION;

37 _CALL_FUNCTION = function(id, arg, cont){

38 var msg;

39 msg = {"type" : "CALL_FUNCTION", "obj" : id, "arg" : arg};

40 postMsg(msg);

41 _cont = cont;

42 };

43
44 var _CALL_METHOD;

45 _CALL_METHOD = function(id, prop, arg, cont){

46 var msg;

47 msg = {"type" : "CALL_METHOD", "obj" : id, "prop" : prop, "arg" : arg};

48 postMsg(msg);

49 _cont = cont;

50 };

51
52 var _NEW_OBJECT;

53 _NEW_OBJECT = function(id, arg, cont){

54 var msg;

55 msg = {"type" : "_NEW_OBJECT", "obj" : id, "arg" : arg};

56 postMsg(msg);

57 _cont = cont;

58 };

Listing 18: Proxy Library
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Listener Library

1 var OHandle;

2
3 OHandle = function(){

4 var id;

5 id = handle_id_gen();

6 this._id = id;

7 this._is_ohandle = true;

8 };

9
10 var handle_list = {};

11 function add_handle(ohandle,obj){

12 handle_list[ohandle["_id"]] = obj;

13 }

14
15 var get_obj;

16 get_obj=function(id){

17 return handle_list[id];

18 }

19
20 var message_handler;

21 message_handler = function(m){

22 var recv;

23 recv = parse(m);

24 var resp;

25 dispatch(recv);

26 };

27
28 function dispatch(recv){

29 if (recv["type"] === "GET_GLOBAL_REF")

30 get_global_ref(recv);

31 if (recv["type"] === "GET_PROPERTY")

32 get_property(recv);

33 if (recv["type"] === "CALL_METHOD")

34 call_method(recv);

35 if (recv["type"] === "CALL_FUNCTION")

36 call_function(recv);

37 if (recv["type"] === "NEW_OBJECT")

38 new_object(recv);

39 if (recv["type"] === "OBJ_PROP_ASSIGN")

40 obj_prop_assign(recv);

41 }

42
43 function get_global_ref(recv){

44 var val;

45 val = window[recv["name"]];

46 return respond(val);

47 }

48
49 function get_property(recv){

50 var obj;

51 obj = get_obj(recv["obj"]);

52 var prop;

53 prop = recv["prop"];

54 return respond(obj[prop]);

55 }

56
57 function call_method(recv){

58 var obj;

59 obj = get_obj(recv["obj"]);

60 var prop;

61 prop = recv["prop"];

62 var arg;

63 arg = recv["arg"];
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64 val = obj[prop](arg);

65 return respond(val);

66 }

67
68 function call_function(recv){

69 var obj;

70 obj = get_obj(recv["obj"]);

71 var arg;

72 arg = recv["arg"];

73 val = obj(arg);

74 return respond(val);

75 }

76
77 function new_object(recv){

78 var obj;

79 obj = get_obj(recv["obj"]);

80 var arg;

81 arg = recv["arg"];

82 val = new obj(arg);

83 return respond(val);

84 }

85
86 function obj_prop_assign(recv){

87 var obj;

88 obj = get_obj(recv["obj"]);

89 var prop;

90 prop = recv["prop"];

91 var arg;

92 arg = recv["arg"];

93 val = obj[prop] = arg;

94 return respond(val);

95 }

96
97 var respond;

98 respond = function(val){

99 var handle;

100 var msg;

101 if (typeof val == "object"){

102 handle = new OHandle();

103 add_handle(handle,val);

104 msg = {"val" : ohandle};

105 } else if (typeof val == "function"){

106 handle = new OHandle();

107 add_handle(handle,val);

108 msg = {"val" : ohandle};

109 } else{

110 msg = {"val" : val};

111 };

112 postMessage(stringify(msg));

113 }

Listing 19: Listener Library
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