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Abstract. Recently, many approaches have been proposed for building
simple symbolic proofs of cryptographic protocols with computational
soundness. However, most of them support only bare-bone execution
model without any ideal setup, such as the existence of authenticated
channel, and only deterministic protocols. Thus many protocols are not
expressible in those models. Following the work of Canetti and Herzog [1],
we propose a probabilistic symbolic model for analyzing cryptographic
protocols and a general way of incorporating ideal setups by using a
probabilistic process calculus. Each ideal setup in the symbolic model
will correspond to an ideal functionality in the computational model.
Furthermore, we show the computational faithfulness of this symbolic
model with respect to a hybrid computational model in which ideal func-
tionalities are employed.

1 Introduction

Proving whether cryptographic protocols are secure is one of the central prob-
lems in modern cryptography. Over the last two decades, there are mainly two
views on analyzing these protocols. On the one hand, although the computa-
tional approach provides a rigorous framework for defining and proving security
properties, proofs often involve tedious reductions from probabilistic algorithms
to underlying cryptographic schemes, which are generally hard to be automated.
On the other hand, the formal method approach proposes a much simpler model
for describing and analyzing protocols by using abstract term algebra for mod-
eling perfect cryptography, opening doors to numerous automated tools (or par-
tially automated) in this area. However, the adversary’s behavior is restricted
by a pre-defined set of operations, which might not capture all possible attacks
in the computational model.

Recently, researchers have been making efforts on linking these two ap-
proaches, enjoying the simplicity of the formal approach and the rigor in the
computational approach at the same time. We confine us now on the method of
obtaining soundness results of Dolev-Yao [2] style model with respect to the com-
putational model. The seminal work is proposed by Abadi and Rogaway in [3].
They propose a simple language of encryption terms, and show that equivalence
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between symbolic terms implies computational indistinguishability between en-
sembles generated by replacing formal encryptions with concrete schemes. Their
work only addresses the case of symmetric encryption in the presence of a pas-
sive adversary. Subsequently, it is significantly extended to deal with public-key
encryption scheme, signature scheme even in the presence of an active adversary
[4–10].

Previous works focus on soundness results of symbolic abstraction of encryp-
tion or signature in deterministic protocol models. However, a large number of
protocols utilize randomization at their behavioral level, or employ basic cryp-
tographic protocols as building blocks, such as coin-tossing protocol, or even
assume the existence of authenticated channel or anonymous channel.

In this work, we consider to introduce probability into the symbolic model to
address the expressiveness of internal probabilistic behaviors in protocols. And
then we consider to introduce ideal setups for modeling network assumptions and
simple two-party protocols as cryptographic building blocks. The notion of ideal
setup is inspired by the ideal functionality in the Universally Composable (UC)
security framework [11], a computational framework for designing and analyzing
protocols. In that framework, ideal functionality can be used to characterize net-
work assumptions as well as specify security requirements of protocols. Similarly,
the ideal setups in our framework play two important roles:

– Modeling network assumptions, such as authenticated channel, anonymous
channel, and etc.

– Modeling cryptographic protocols as basic building blocks, such as coin-
tossing protocol, oblivious transfer protocol, and zero-knowledge proof pro-
tocol, for constructing large and complex protocols.

Ideal setups should capture appropriate intuitions for each tasks. It provides a
modular approach for analyzing symbolic protocols: when analyzing a protocol
which invokes basic cryptographic protocols mentioned above, we can analyze
only an “abstract” protocol using corresponding ideal setups, and then claim
that the original protocol satisfies same properties as the “abstract” protocol.
We follow the approach of Canetti and Herzog [1], using the UC framework as
the underlying computational framework.

The contributions of our paper are:

– We define a simple language for describing protocol programs which can be
both interpreted in the symbolic model and the computational model. By
the language, we are able to express multi-party protocols in which parties
can make internal probabilistic choice, employ public-key encryption and
signature, or use ideal setups. The language supports two ideal setups: au-
thenticated channel and coin-tossing protocol (Section 3).

– We show how to interpret protocol programs in our symbolic model by using
a subset of the Probabilistic Applied Pi (PAPi) calculus [12]. Each ideal setup
is implemented by an auxiliary process (Section 4).

– We also explain how to translate protocol programs into a certain hybrid
model of the UC framework, in which ideal functionalities corresponding to
ideal setups in the symbolic model (Section 5).



– We finally demonstrate the faithfulness of our symbolic model with respect
to the hybrid model. That is, almost all attacks in the hybrid model can be
interpreted in the symbolic model, except for negligible probability (Section
6).

Related works The efforts on linking the symbolic approach and the computa-
tional one, especially showing soundness results of Dolev-Yao model with respect
to certain computational model, were initiated by Abadi and Rogaway [3], and
were extended by [4–7] in several aspects. Backes, Pfitzmann and Waidner pro-
posed an abstract cryptographic library based on the reactive simutability set-
ting [13–15]. Their symbolic model supports nested operation of cryptographic
primitives, such as symmetric and public-key encryption, signature, and message
authenticated code under arbitrary active adversary. They also demonstrated for
several protocols that Dolev-Yao style proof implies the computational security
[16–18]. Based on the UC framework, Canetti and Herzog established the sound-
ness of symbolic analysis with respect to the UC framework [1]. However, they
only considered a restricted class of protocols and only support certified public-
key encryption. Patil extended it to handle also standard signature [19].

2 Background

This section provides necessary background information on the topic. We first in-
troduce a subset of the PAPi calculus. We then briefly review the UC framework
and the Universally Composable Symbolic Analysis (UCSA) framework

2.1 A Subset of PAPi calculus

The applied pi calculus is an extension of the pure pi calculus. It introduces
terms and equations over terms for modeling cryptographic primitives, and uses
techniques in process algebra to reason about distributed systems and proto-
cols. The PAPi extends it into a probabilistic framework, allowing analysis of
probabilistic processes.

The basics elements in the PAPi calculus are a set of names, a set variables,
and a signature Σ which consist of a finite set of function symbols with arities.
Terms can be defined by applying function symbols in Σ on names, variables
and terms. We can equip a given signature Σ with an equational theory E to
relate two terms which are syntactically different but semantically equivalent.

The grammar of plain processes and extended processes are given below:

P, Q ::= 0
∣∣ ū〈M〉.P

∣∣ u(x).P
∣∣ P ⊕ 1

2
Q

∣∣ !P
∣∣

P |Q ∣∣ νn.P
∣∣ if M = N then P else Q

A,B ::= P
∣∣ νn.A

∣∣ νx.A
∣∣ A|B ∣∣ {M/x}

Comparing to the original grammar of plain process in the PAPi calculus, we
omit the non-deterministic choice operator, and confine the probabilistic choice



operator ⊕p to only one half probabilistic operator ⊕ 1
2
. Extending the plain

processes with active substitution {M/x}, we are able to reason about the static
knowledge exposed by a certain process. An evaluation context C[ ] is a process
with a hole under restriction or parallel composition. For space reason, we do
not present the semantics of PAPi here, it can be found in [20, 12, 21]

2.2 The UC framework and UCSA framework

The UC framework provides a general methodology for designing and analyzing
cryptographic protocols, especially asserting whether a given protocol securely
realizes its security specification. The most salient feature of this framework is
the strong composable property, by which one can ensure that a protocol still
maintains its security properties when being executed in an arbitrary unpre-
dictable environment, or being composed in a modular way. An comprehensive
overview of the UC framework can be found in [11].

The UCSA framework facilitates the universal composition theorem to sim-
plify their framework of sound symbolic analysis. The symbolic Dolev-Yao model
is a simplified model for analyzing two-party deterministic protocol which uses
only public-key encryption. Each protocol peer is defined by a mapping from
current state and incoming messages to outgoing messages. The adversary is
only limited to a set of symbolic operations according to the rules representing
its limitation with respect to perfect cryptography.

Instead of establishing the computational faithfulness of the symbolic model
with respect to a concrete computational model using concrete public-key en-
cryption scheme, the UCSA shows that the symbolic model is faithful for a
hybrid model in the UC framework. The hybrid model uses FCPKE for ideal-
ized encryption service which is secure unconditionally, even in the presence
of a computational unbounded adversary. Since FCPKE can be UC-realized by
any CCA-secure1 encryption scheme, it serves as a “bridge” between the sym-
bolic model and the concrete model: when we obtain a sound symbolic proof
of protocol in the hybrid model, we can facilitate the UC theorem to replace
each instance of FCPKE to an instance of CCA-secure encryption scheme, while
maintaining the security in a computational sense at the same time.

3 A Simple Language for Probabilistic Protocols

We first present a simple language for describing behavior of probabilistic proto-
cols. The language can be used to describe high-level codes of protocols without
any implementation detail of network communication and underlying cryptogra-
phy. We could compile a protocol program either into symbolic model by using
abstract term algebra, or into computational model by using concrete crypto-
graphic schemes.

1 Chosen Ciphertext Attack



Definition 1 (Protocol Program). Fixed a finite set of identifier of parties
C = {A, B, . . . , M}, a protocol program is defined by a function P = {(A, PA), (B, PB),
. . . , (M, PM)}, mapping each identifer to a program defined by the grammar below,
where x,m, c, s, b represent variables for different types of values.

R ::= A | B | . . . | M
B ::= true | false
I ::= x := newnonce() | x := encrypt(m,R) | x := decrypt(c) |

x := sign(m) | x := verify(m, s, R) | x := pair(m1,m2) |
x := fst(m) | x := snd(m) | x := R | x := B

E ::= input(x) | output(m) | send(m) | recv(x) |
senda(m,R) | recva(x,R) | coini(b, R) | coinr(b,R)

P ::= I | E | P ;P | if x = y then P else P | prob(P ;P )

Internal Computations The grammar structure I defines atomic internal com-
putation for protocol parties. A party could generate a fresh random nonce by
command newnonce. It could also encrypt a message with someone’s public-key
by encrypt, or decrypt a ciphertext with its own private-key by decrypt. We
assume that each party’s identity is bound to its public-key, which cannot be
revealed to others. Thus, we use an identity of a party instead of a public-key
when encrypting. The commands for generating and verifying signatures, sign
and verify, are similar to the case of public-key encryption. pair, fst and snd
are standard paring operation.

External Interactions input and output are used to obtain input from the envi-
ronment and return output to it. send and recv model the sending and receiving
over an adversary-controlled network. Intuitively, it models an asynchronous net-
work, and the adversary could learn, intercept, modify, and re-schedule messages
over this network.

Ideal Setups In addition to common external interactions, we introduce two
ideal setups. The first one is the ideal setup of authenticated channel. A party
could send an authenticated message m to party B by command senda(m, B),
and could wait to receive an authenticated message from party B by recva(x, B)
and store it in x. By our assumption, the adversary should not be able to modify
or reproduce authenticated messages, but it can learn and intercept them. The
second one is the ideal setup of coin-tossing protocol. Commands coini and
coinr allow two parties to initiate an ideal coin-tossing protocol as initiator and
responder, respectively. By assumptions, the adversary should not be able to
influence the fairness of the common coin by any means.

Control Flows We provide three types of control flows here. The sequential exe-
cution (P1; P2) and conditional execution (if M = N then P1 else P2) are usual.
Command prob(P1, P2) means executing P1 with probability 0.5 and executing P2
with the rest. The reason why we only model one half choice here is that choices
with arbitrary probability could always be approximated by multiple one half
choices.



For example, a simple challenge-response protocol can be described as follows:

A’s program : B’s program :

Na = newnonce(); recv(m′
1);

x1 = pair(Na, B); x′1 = decrypt(m′
1);

m1 = encrypt(x1, B); N = fst(x′1);
send(m1); send(N);
recv(m2);
if m2 = Na then output(true);

Fig. 1. Protocol program for a simple challenge-response protocol

4 Symbolic Interpretation

In this section, we show how to translate a protocol program into a symbolic
protocol in our symbolic model which is described by the subset of PAPi calculus
introduced in Section 2.1. The abstract term algebra is modeled by an equational
theory. Each single party is modeled by a process in the calculus. Also, we
demonstrate how to characterize ideal setups by auxiliary processes.

Equational theory We use two types of function symbol for different purposes,
as showed below.

– Constant: true/0, false/0, garb/0.
– Cryptographic operator: enc/2, dec/2, pk/1, sign/2, ver/3, vk/1, pair/2,

fst/1, snd/1.

The number followed by each function symbol indicates its arity. The true and
false are boolean constants. grab refers to ill-formed terms such as an inap-
propriate decrypted term. The operations of encryption, signature and paring
are defined in a usual way. The cryptography is modeled in a Dolev-Yao style
as being perfect. The equations are given in Figure 2. These equations are fairly

fst(pair(x, y)) = x
snd(pair(x, y)) = y
dec(enc(x, pk(y)), y) = x
ver(x, sign(x, y), vk(y)) = true

Fig. 2. Equational theory E for symbolic protocols

standard for those primitives. The function symbol pk maps user’s private key



to its public key. One can use dec and its private key to decrypt a message en-
crypted under corresponding public key. Without the private key, the adversary
cannot learn anything about the message. The case for signature is similar. In
addition, we require that improperly operated terms equate to garb, such as
decryption of a non-encrypted term.

Translating protocol program Given a protocol program P for identity set C. For
every R ∈ C, we translate P(R) to a process SR which uses the following channel
names to interact with other processes.

– inputR, outputR: Obtaining inputs and returning outputs;
– sendR, recvR: Sending and receiving over the adversary-controlled network;
– senda

RA, recva
AR: Sending and receiving authenticated messages with A, for

A ∈ C;
– tossi

RA, tossr
AR: Initiating and responding coin-tossing with A, for A ∈ C.

First, internal computations in P(R) will be translated to operations of function
symbols according to the equational theory E. Then, external interactions will
be translated to interactions on channels defined above. Finally, control flows in
P(R) are expressible in PAPi calculus.

Definition 2 (Symbolic interpretation of protocol program). Given an
identity R ∈ C, a single protocol program P(R) can be inductively translated to a
process SR by rules defined in Appendix A.

In Appendix A, We also give the translation of the simple challenge-response
protocol in Figure 1.

Modeling ideal setups We construct auxiliary processes to capture the intuition
of our ideal setups of authenticated channel and coin-tossing protocols.

When channels are authenticated, if B receives a message m from A, A must
have sent m before. Furthermore, if A sent m to B only k times, then B will
not receive m more than k times. Notice that the secrecy of those transmitted
messages is not guaranteed, and messages are transmitted asynchronously. We
use the following process to help A and B to exchange a message over channel
senda

AB and recva
AB.

Aa
s(A, B) ::= senda

AB(x).
νc.(adva

AB〈(x, c)〉.
c(y).
if y = x then recva

AB〈x〉)

The channels senda
AB and recva

AB will be restricted between parties and the auxil-
iary process only, which are invisible to the adversary. Thus, the adversary can-
not modify or reproduce a message. However, it can learn the message through
channel adva

AB. The fresh channel name c is used to distinguish different instances



of the auxiliary processes between the same two participants. We use replica-
tion operator to allow each participant in set C being able to send and receive
unlimited number of messages.

Aa ::=
∏

A,B∈C,A6=B

!Aa
s(A, B)

For the ideal setup of coin-tossing protocol, it requires that two parties should
be able to generate an unbiased random bit value. The adversary should not be
able to influence the result by any means. The auxiliary processes for generating
a single bit can be defined as follows.

At
half (A, B, x) ::= νc.

(
tossi

AB().advi
AB〈c〉.c().tossi

AB〈x〉
)
|

νc.
(
tossr

AB().advr
AB〈c〉.c().tossr

AB〈x〉
)

At
s(A, B) ::= At

half (A, B, true)⊕0.5 At
half (A, B, false)

The participant A initiates an instance of the ideal protocol via the channel name
tossi

AB. Upon the request of the adversary, A receives an unbiased random bit.
Then, the participant B as a responder gets the same random bit via channel
tossr

AB upon the request of the adversary. It can be seen that the choice of the
random bit is independent to the behavior of the adversary. By using replication,
we obtain an ideal process enabling each pair of parties to generate arbitrary
long random strings.

At ::=
∏

A,B∈C,A 6=B

!At
s(A, B)

Adversary and executions Given all the processes of the participants in the
protocol, the process denoting whole protocol can be defined as follows, where
V contains channel name between parties and auxiliary processes, which should
not be observed by the adversary:

S = νV.
( SA | SB | . . . | SM | Aa | Ai

)

The adversary could freely interact with S by the following free channel
names:

– sendA, recvA: Controlling the insecure network;
– adva

AB: Influence the auxiliary process of an authenticated channel;
– advi

AB, advr
BA: Influence the auxiliary process of an instance of coin-tossing

protocol;

Naturally, the adversary can be modeled as a process Padv, which only contains
free channel name described above. Also, we could construct an environment
process Penv that provides input to each user process SR and receives outputs
from them. We require that Penv contains only channel name inputR and outputR,
for R ∈ C. Given the adversary process Padv, an environment process Penv, we can
construct a context Cenv

adv [ ] = (Padv|Penv| ). Thus the execution of the protocol
in the presence of the adversary can be seen as the interaction between S and
Cenv

adv [ ].



5 Computational (Hybrid) Interpretation

Next, we define the computational model in our framework. It is a hybrid model
in the UC framework which supports ideal functionalities. We elaborate ideal
functionalities for our ideal setups, and then present how to interpret protocol
programs in this model. Notice that we do not directly translate symbolic pro-
tocols to concrete protocols, avoiding implementation details in the symbolic
models.

Ideal functionalities for encryption and signature Recall that public-key encryp-
tion scheme and signature scheme denote cryptographic primitives which can be
implemented by local algorithms. Our formulation of these operations is the same
as the original UCSA framework [1, 19]. The public-key encryption is modeled by
the certified public-key encryption functionality FCPKE, and the digital signature
is modeled by the certification functionality FCERT. As we have assumed, these
functionalities do not deal with key issues, and provide unconditional security,
in which ciphertext (or signature) bears no computational relation to plaintext.
Each party uses identities during encrypting/decrypting and signing/verifying.
Note that FCPKE can be securely realized by a CCA-secure encryption scheme
with a trusted key-registration service. Similarly, FCERT can be securely realized
by a CMA-secure2. We do not give the detail definitions here, interested readers
are refer to [1, 19].

Ideal functionalities for ideal setups For the ideal setup of authenticated chan-
nel, we present the authenticated communication ideal functionality FAUTH, as
shown in Figure 3. It is originally formulated by Canetti in [11]. We omit the case

Functionality FAUTH

1. Upon receiving an input (Send, sid, m) from party P , do: If sid =
(P, R, sid′) for some R, then generate a public delayed output
(Send, sid, m) to R and halt. Otherwise ignore the input.

Fig. 3. Authenticated Communication Ideal functionality

of corrupted parties, since we do not consider party corruption in our symbolic
model. One could see that the behavior of an instance of FAUTH between A and
B is essentially identical to the ideal process Aa

s(A, B).
For the ideal setup of coin-tossing protocol. We present the coin-tossing ideal

functionality FCT, as shown in Figure 4. This functionality can be thought as a
“bridge” between a concrete cryptographic protocol of coin-tossing and the ideal

2 Chosen Message Attack



Functionality FCT

FCT proceeds as follows, running with parties P and R.

1. Upon receiving an input (Toss, sid, P, R) from party P , randomly choose
a bit value r, and send (Tossed, sid, P ) to the adversary S.

2. Upon receiving (Result, sid, P ), send (Tossed, sid, r) to P .
3. Upon receiving an input (Toss, sid, P, R) from party R, send

(Tossed, sid, R) to the adversary S.
4. Upon receiving (Result, sid, R), send (Tossed, sid, r) to R.

Fig. 4. Coin-tossing Ideal Functionality

process of coin tossing in our symbolic model. We can see that the coin is gen-
erated independently by FCT, which is certainly uncorrelated to the adversary’s
behavior.

Executing protocol program Given a protocol program P with a set of identity
C, we specify an Interactive Turing Machine to interpret for a single protocol
program P(R) for each R ∈ C.

We briefly sketch how this machine performs. Given a single protocol program
P(R), ITM MR maintains a memory state Σ which maps each variable occurred
in P(R) into a concrete bit-string, with PIDR as its concrete party identifier. Each
bit-string is tagged with its type in order to maintain a structure of each message
as in the abstract term algebra. For example, a bit-string c of ciphertext will be
recorded as 〈“ciphertext”, c〉, and bit-string r of random nonce will be recorded
as 〈“nonce”, r〉. At the beginning, each variable is mapped to an uninitiated
value. Then MR starts to interpret commands P(R) one by one, updating the
memory state. Commands related to cryptographic operations and ideal setups
will be executed as calls to appropriate instances of ideal functionalities.

– x = encrypt(m, A): Send (Encrypt, PIDA,m) to FCPKE, receive c, and up-
date x with 〈“ciphertext”, c〉.

– x = decrypt(c): If the value of c is 〈“ciphertext”, c′〉, then send (Decrypt, PIDR, c′)
to FCPKE, receive m, and update x with m.

– x = sign(m): Send (Sign, PIDR,m) to FCERT, receive s, and update x with
〈“signature”, s〉.

– x = verify(m, s, A): If the value of s is 〈“signature”, s′〉, then send (Verify, PIDA,m, s′)
to FCERT, receive b, and update x with 〈“boolean”, b〉.

– sendR(m, A): Send (Send, 〈R, A〉,m) to FAUTH.
– recvR(x, A): Receive m from FAUTH, and update x with m.
– coini(b, A): Send (Toss, 〈R, A〉) to FCT, receive b, and update x with 〈“boolean”, b〉
– coinr(b, A): Send (Toss, 〈A, R〉) to FCT, receive b, and update x with 〈“boolean”, b〉

Particularly, when it encounters a prob(P1, P2) command, it flips a coin and de-
cides which branch to follow. Rest of these commands are executed in a standard



way. Thus, we could obtain a set of ITMs Ph = {MA,MB, . . . , MM} for executing
the protocol program in the hybrid model.

6 Faithfulness of the Symbolic Model

In this section, we first define execution traces of symbolic protocol and hybrid
protocol, and then we show our symbolic model is faithful with respect to our
hybrid model.

Definition 3 (Trace of symbolic protocol). Let Ps = {SA,SB, . . . ,SM} be a
symbolic protocol. Given the adversary process Padv and the environment pro-
cess Penv, the execution of the protocol can be viewed as interaction between
the process S = νV.

( SA | SB | . . . | SM | Aa | Ai
)

and the context Cenv
adv [ ] =

(Padv|Penv| ) under a scheduler F for resolving non-determinism. Given a ter-
minating execution e = S α1−→µ1 S2

α2−→µ2 · · · αk−−→µk
Sk, the symbolic trace tr(e)

is defined as: tr(e) = tr(α1); tr(α2); . . . ; tr(αk). The definition of tr is given
in Appendix B3.
Let STRACEF,Padv

Ps,Penv
be the random variable of symbolic traces, such that for

every terminated execution e:

Pr[STRACEF,Padv

Ps,Penv
= tr(e)] = ProbF

S (e)

We show that the adversary’s power is limited by the equational theory in
our symbolic model.

Proposition 1 (Closure property). Given a symbolic trace t, such that

Pr[STRACEF,Padv

Ps,Penv
= t] > 0

Let ti in t be an adversary event with term M . Let φ be the frame recovered from
t1, . . . , ti−1. Then we have

φ `M

Proof. It is straightforward since the adversary Padv is also a legal PAPi process.
ut

For the execution trace of hybrid protocols, we record activations of each
entity in a sequential manner.

Definition 4 (Traces of hybrid protocols). Let P = {MA,MB, . . . ,MM} be a
hybrid protocol. Given the environment Z, the input z, a security parameter k.
Let rc be random inputs for Z, FCPKE, and FCERT, rb be random inputs for each
party and FCT. The execution trace TRACEP,Z(z, k, rc, rb) can be inductively
defined by rules given in Appendix C.
Let TRACEPh,Z(k, z)∗ be the random variable describing TRACEPh,Z(k, z, rc, rb)
when rc and rb are uniformly chosen.
3 The execution trace and its probability are defined in [12]



Then, we define a mapping from hybrid traces to symbolic traces, translating
each concrete event in hybrid traces into a symbolic event. Furthermore, we also
define the validity of translated trace.

Definition 5 (Mapping from hybrid trace to symbolic trace). Let t be
a hybrid trace of an execution of hybrid protocol Ph. We inductively define the
mapping of t to a symbolic trace symb(t) in two steps:

1. First, we translate each concrete string in each hybrid event ti to corre-
sponding symbolic terms, inductively by defining a partial mapping f from
bit-strings to symbolic terms. Recall that we use a type tag for different types
of values, this could help us to reconstruct symbolic terms using function
symbols. We map all ill-formed bit-string to garbage term garb.

2. Secondly, we convert each hybrid event Ei to a symbolic interaction ti, re-
placing concrete string in Ei into corresponding symbolic terms using f . If ti
is an adversary event with term M which does not satisfy closure property,
then set ti = [“fail”,M ]

If t is a random variable of hybrid traces, then symb(t) would be random variable
of symbolic traces.

Definition 6 (Valid symbolic traces). Given a symbolic protocol Ps and a
symbolic traces symb(t) generated from hybrid trace t. We say that t is valid for
Ps if and only if there exist an adversary process Padv, an environment processes
Penc, and a scheduler F , such that

Pr[STRACEF,Padv

Ps,Penv
= symb(t)] > 0

Otherwise, we say that t is not valid for Ps.

Now, we are ready to state the faithfulness theorem of our symbolic model.
Intuitively, the theorem says that all but a negligible fraction of hybrid traces can
be interpreted in our symbolic model. Therefore, the limited symbolic adversary
precisely captures the ability of a more powerful adversary in the hybrid model.
Relying on this, it is suffice to analyze protocols in the symbolic model, and
then claim that its hybrid counterpart satisfies same properties as the symbolic
protocol.

Theorem 1 (Faithfulness of the symbolic model). For all protocol program
P, environments Z, and inputs z of length polynomial in the security parameter
k,

Pr[t← TRACEPh,Z(k, z)∗ : symb(t) is not valid for Ps] ≤ ε(k)

where ε is negligible4.

4 ε is negligible if ∀c ≥ 0.∃kc s.t. ∀k ≥ kc.ε(k) ≤ k−c



7 Conclusions

In this paper, we have presented a probabilistic framework for computationally
sound symbolic analysis of security protocols. We introduced ideal setups for
modeling network assumptions as well as two-party cryptographic primitives,
and we then showed how to interpret them in both symbolic model and hybrid
model. Finally we demonstrated that our symbolic model is faithful with respect
to the hybrid model.

For future research directions, one promising direction is to introduce more
ideal setups to the symbolic model, such as anonymous channel, blind signa-
ture scheme, commitment protocol, or even zero-knowledge proof protocol. An-
other interesting direction is to develop automated verification technique for the
probabilistic symbolic model to obtain sound automated proof of cryptographic
protocols.
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A Translation Rules for Symbolic Interpretation

– Translating internal computations:
• symb(newnonce()) = νN.νx.({N/x}| )
• symb(encrypt(m, A)) = νx.({enc(m,PKA)/x}| )
• symb(decrypt(c)) = νx.({dec(m,SKA)/x}| )
• symb(sign(m)) = νx.({sign(m,SigKA)/x}| )
• symb(verify(m, s, A)) = νx.({ver(m, s, V erKA)/x}| )
• symb(pair(m1, m2)) = νx.({pair(m1,m2)/x}| )
• symb(fst(m)) = νx.({fst(m)/x}| )
• symb(snd(m)) = νx.({snd(m)/x}| )

– Translating external interactions:
• symb(input(x)) = inputR(x).( )
• symb(output(m)) = outputR〈m〉.( )
• symb(send(m)) = sendR〈m〉.( )
• symb(recv(x)) = recvR(x).( )
• symb(senda(m, A)) = sendRA〈m〉.( )
• symb(recva(x, A)) = recvAR(x).( )
• symb(coini(b, A)) = tossi

RA〈〉.tossi
RA(b).( )

• symb(coinr(b, A)) = tossr
RA〈〉.tossr

RA(b).( )
– Translating control flow:
• symb(P1; P2) = symb(P1)[symb(P2)]
• symb(if M = N then P1 else P2)

= if M = N then symb(P1) else symb(P2)
• symb(prob(P1; P2)) = symb(P1)⊕0.5 symb(P2)

– Key distribution:
• PKR[ ] ::= νSKR. ({pk(SKR)/PKR} | )
• SigKR[ ] ::= νSigKR. ({vk(SigKR)/V erKR} | )

– Finally, SR ::= SigKR [PKR [symb(P(R))[0]]]



Examples For protocol in Figure 1, the corresponding processes are:

SA ::= νN.νNa.({N/Na}| SB ::= recvB(m′
1).

νx1.({pair(Na, B)/x1}| νx′1.({dec(m,SKB)/x′1}|
νm1.({enc(x1, PKB)/m1}| νN.({fst(m′

1)/x′1}|
sendA〈m1〉. sendA〈N〉))
recvR(x).
if x = Na then sendA〈true〉)))

B Definition of tr(·) in Section 6

– tr
(
sendA〈M〉

)
= [“send”, A,M ]

– tr (recvA(M)) = [“adv-deliver”, A,M ]
– tr

(
adva

AB〈M, c〉) = [“auth-send”, A, B, M ]
– tr (inputA(M)) = [“input”, A,M ]; tr

(
outputA〈M〉

)
= [“output”, A, M ]

– tr
(
advi

AB〈c, b〉
)

= [“toss-i”, A, B, b]; tr
(
advr

AB〈c, b〉
)

= [“toss-r”, A, B, b]

– tr (c(M)) = [“adv-auth”, A, B,M ], if c occurs in adva
AB〈M, c〉 previously.

– tr (c()) = [“adv-tossed-i”, A, B, b], if c occurs in advi
AB〈c, b〉 previously.

– tr (c()) = [“adv-tossed-r”, A, B, b], if c occurs in advr
AB〈c, b〉 previously.

C Rules for Defining Hybrid Traces

– At the beginning, the trace t is empty.
– If the environment provides m as input to party R, then append trace t with

event E = 〈“input”, R,m〉.
– If the adversary is activated:
• If it delivers a message m to party R, then let E = 〈“adv-deliver”, R,m〉.
• If it delivers a authenticated message m from party S to R, then let
E = 〈“adv-auth”, S, R,m〉.

• If it delivers coin-tossing result b to initiator S with responder R, then
let E = 〈“adv-tossed-i”, S, R, b〉

• If it delivers coin-tossing result b to responder R with initiator S, then
let E = 〈“adv-tossed-r”, S, R, b〉

– If party R is activated:
• If it outputs to the environment message m, then let E = 〈“output”, R,m〉.
• If its send message m over insecure network, then let E = 〈“send”, R,m〉.

– If FAUTH is activated, and S wants to send m to R, then let E = 〈“send-auth”, S, R,m〉.
– If FCT is activated,
• S wants to initiate coin-tossing with R, then let E = 〈“toss-i”, S, R〉.
• R acts as the responder with S, then let E = 〈“toss-r”, S, R〉.

– If FCPKE is activated,
• If S encrypts with (Encrypt, PIDR,m), and FCPKE returns c, then let
E = 〈“ciphertext”, PIDR,m, c〉.

• If S decrypts with (Decrypt, PIDS, c), and FCPKE returns m, then let
E = 〈“decrypt”, PIDS, c, m〉.

– The case for FCERT is similar.


