
Automated Code Injection Prevention for Web
Applications

Zhengqin Luo, Tamara Rezk, and Manuel Serrano

INRIA Sophia Antipolis, France
{zluo,trezk,mserrano}@inria.fr

Abstract. We propose a new technique based on multitier compilation
for preventing code injection in web applications. It consists in adding an
extra stage to the client code generator which compares the dynamically
generated code with the specification obtained from the syntax of the
source program. No intervention from the programmer is needed. No
plugin or modification of the web browser is required. The soundness and
validity of the approach are proved formally by showing that the client
compiler can be fully abstract. The practical interest of the approach is
proved by showing the actual implementation in the Hop environment.

1 Introduction

The impact of the Web 2.0 on sensitive aspects of daily life (home banking,
e-commerce, social websites such as Facebook or Twitter, e-voting, etc.) has
triggered an unprecedented demand of means for writing highly secured web
applications. Unfortunately, their multitier architecture makes the security dif-
ficult to enforce. Usually web applications are written in a main language (e.g.,
PHP, JSP) that executes in the main-tier and dynamically generates programs
in a target language (e.g., SQL, Html, JavaScript) that executes in the target-
tier. Furthermore, to enhance the interaction experience between users and web
applications, main-tier programs may accept (untrusted) user input. The input
may be stored in a database or a persistent variable, and later on be used to
generate other target-tier programs. This dynamic generation of target-tier pro-
grams using untrusted inputs may represent a serious application vulnerability
when input is “confused” with the original code of the application to be exe-
cuted. This kind of attack is known as code injection and more generally, it can
be seen as an integrity violation [20]. In spite of several efforts from the security
community to avoid code injection attacks, recent statistics [6, 31] show that
these kind of attacks (e.g., cross-site scripting, SQL injection) are still the most
common security vulnerabilities for web applications.

Multitier languages [29, 8, 10, 7] have recently emerged as a response to the
need of simplifying the development of web applications. A multitier language
provides a unified syntax for server code and client code. Its runtime environ-
ment compiles the source into the various formats supported by the tiers. For
instance, the runtime system of the Hop programming language contains three

dynamic compilers. The first generates server-side byte code. The second gen-
erates JavaScript code. The third generates Html. Multitier languages provide
natural tools to solve code injection problems, as they allow global reasoning to
be applied to the web applications.

We propose a methodology for preventing code injection in multitier lan-
guages which consists in modifying the client code compilers at the point of
dynamic generation for comparing the generated code with the specification ex-
tracted from the syntax of the the source program. The methodology follows the
technique for SQL injection by Su and Wasserman [30], and it also applies to
other target-tier languages such as XQuery or LDAP. The methodology comple-
ments that of [30] by the following added value:

– The programmer is freed from making any intervention in order to achieve
security guarantees. Indeed the expected syntax structure is not provided
by the programmer, since it is already given by the syntax of the multitier
program.

– Proofs are given by means of standard language-based techniques and pro-
gramming language semantics. We use the multitier programming language
formal semantics in order to prove that the Hop compiler is certified regard-
ing code injection prevention. We formally prove the validity of our approach
by showing that the client compiler is fully abstract.

Related Work The WebSSARI [13], and Pixy [15, 16] tools propose tainted-flow
static analysis for PHP to identify where untrusted input should be validated.
Xie and Aiken [34] develop a finer approximation of tainted flow at the intra-
block, intra-procedural, and inter-procedural level. However, tainted flow does
not guarantee proper validation of untrusted data, since any pre-defined vali-
dation procedure or user-defined filter will be considered as correct. Based on
tainted flow analysis, other works propose sophisticated string analysis for as-
sessing the correctness of the validation procedure [23, 3, 33, 32] for SQL or web
applications. Those analysis are over-approximations of the possible set of output
strings that may be injection attacks. Those approaches above, whether sound or
not, require explicit intervention of programmers to deal with untrusted inputs
by proper validation. Our approach, on the other hand, does not require any
intervention of programmer to be sound with respect to injection attacks.

Other approaches dynamically detect and prevent injection attacks. Perl’s
tainted mode [25] is one of the earliest dynamic mechanisms for disallowing un-
trusted input to be used in a security-sensitive context. Xu and his colleagues
[35] present a policy-based solution for dynamic detection of insecure tainted
information flow, where a source-to-source translation instruments programs to
track tainted data. Nguyen-Tuong and his colleagues propose similar dynamic
flow monitoring with a modified PHP interpreter. Run-time instruction-set ran-
domization [17] prevents SQL injection by randomly masking SQL query key-
words, making it difficult to change the intended syntax structure of query by
untrusted input. Most of the solutions to prevent code injection (e.g., tainted
flow analysis, static string analysis, syntax embedding, etc) either do not free

the programmer from doing sanitization by themselves or require browser mod-
ifications. The work by Su and Wassermann [30] is the closest one to ours. They
prevent SQL injection by comparing constructed SQL queries with given policies
at run-time when the query is submitted to a database back-end. Besides the fact
that the syntactic structure of SQL code does not change dynamically as is the
case of generated JavaScript programs, the difference with respect to our work is
that they require a separate grammar specification, whereas our approach takes
source semantics directly as specification for programs to be executed in the
target-tier. The work by Robertson and Vigna [27] propose a framework that
uses typing to identify where untrusted inputs are used in an output HTML page,
therefore to use a sanitization function to prevent the structure of the output
page from being modified. However the sanitization function in their proposal
is not proved to be sound. There are other alternatives to tackle the code injec-
tion problem from the client side [14, 21, 36, 26, 19]. Swift [9] and SELinks [11]
use information flow security analysis to detect code injection attacks, among
other techniques such as partitioning of code (in the case of Swift) and typ-
ing or filtering (in the case of SELinks). Our technique is significantly different
from theirs since it does not require any integration of program static analysis.
Moreover, its implementation in multitier compilers is simple and no effort is
required to adapt to any target-tier language (it is not dependent of or limited
to Html+JavaScript) provided that the multitier language includes appropriate
target-tier language constructors at the source level and that a parser for the
target-tier language is available at compilation time.

Blueprint [22] and xJS [2] are two tools that focus on keeping the intended
syntax structure of server generated document when untrusted inputs are present.
In both systems, untrusted content is parsed at the server-side (eliminating dy-
namic content), and then encoded as a model in a safe alphabet which does
not trigger script evaluation. On the client-side, a safe library function is in-
voked to recover the untrusted content. As a result, no script evaluation will
be triggered by untrusted content. In contrast to our approach, their approach
works for existing developing framework of web applications, but requires the
programmer to identify untrusted inputs and the context where untrusted input
is output. Furthermore, there are performance penalties both on the server-side
and client-side. Our solution does not require any programmer’s intervention for
identifying untrusted sources or context and it has no performance penalty on
the client-side.

Contents In Section 2 we give an overview of the proposed compilation tech-
nique. In Section 3 we present the Hop language and its semantics for globally
describing web applications. This semantics can be thought as a high-level de-
scription of the server and (specially) the client code. In Section 4 we define a
compiler from Hop programs to client code (Html+JavaScript). In Section 4.2
we introduce the compilation extension that allows us to prove the result. We dis-
cuss the Hop implementation and some practical JavaScript issues in Section 5.
We conclude in Section 6.

2 Overview

In this section we give an overview of multitier web programs and informally
present our approach to prevent code injection by compilation.

Web 2.0 applications are commonly composed of three tiers: the server tier
or web server contains and executes server code, the client tier or browser ex-
ecutes client code, and the database tier contains a database and a database
management system (DBMS) to execute queries.

One of the characteristics of modern web applications is the dynamic gener-
ation of code. The web server may generate a particular Html page based on
input from the client for example. Typically, without using a multitier language,
dynamic generation of client code is obtained by manipulating strings. Generally
the server represents Html as a text template with holes that are to be filled
with dynamic content, as shown in the following example of server code written
in Java:

1 public class Greeting extends HttpServlet {

2 public void doGet(HttpServletRequest req,

3 HttpServletResponse res){

4 res.setContentType("text/html");

5 PrintWriter out = res.getWriter();

6 String name = req.getParameter("name");

7 out.println("<HTML>\n<BODY>\n");

8 out.println("Greeting from " + name + "\n");

9 out.println("</BODY>\n</HTML>\n");}}

The web service corresponding to the code above, after receiving a request
from a client with a parameter “name”, will respond with a Html page to be dis-
played in the browser, containing a greeting. Multitier programming languages,
such as Hop, follow a different path mainly to harmonize the programming of
the client and the server. They support a coherent unique syntax and semantics
for both ends of the applications. This in general, involves supporting a Doc-
ument Object Model (henceforth DOM) for Html on the client as well as on
the server as shown in Figure 1. This approach has proved to have some advan-
tages over Html textual representations. It eases the creation and manipulation
of Html documents that are represented as a regular data structures of the
language. It also allows to separate the creation of a document from its actual
external representation which can vary from one client to another. For instance,
a Html5 capable client might receive a document expressed in that particular
Html version while another one, less skilled, might receive it in Xhtml.

In a multitier language, a semantically equivalent program, can be written
using constructs from the language, as shown in the following Hop example:

1 (define-service (greeting name)

2 (<HTML>

3 (<BODY>

4 "Greeting from" name)))

HTML

BODY

Greeting from John

Hop AST

<HTML>

Greeting from John

<BODY>

DOM tree

<HTML>
 <BODY>
 Greeting from
 John
 </BODY>
</HTML>

HTML file

(<HTML>
 (<BODY>
 "Greeting from"
 name))

Hop program

HTML parsercompilation

Fig. 1. AST and DOM generated trees after client request

As before, the code above will respond to a client request by a Html page
containing a greeting, but the difference is that <HTML> and <BODY> are regular
library functions of the language.

In response to a client request, a Hop program generates a response which
can either be static, for example a simple static file or string, or dynamic. In that
case the server executes user code to dynamically generate the response content
as in the example above. Only this kind of response is liable to code injection
which occurs when the input of the server side computation is inserted in the
generated response as a client-side executable code. A typical attack consists in
stealing the client’s cookies and redirecting then to an adversary’s website (see
for instance Figure 2). In this example, the input name binds to a malicious string
"<script>win...</script>". Therefore the Hop AST (Abstract Syntax Tree)
obtained from server-side run-time environment is different from the DOM tree
obtained by parsing the generated Html document in the client’s browser. Pre-
vention of code injection only requires to add additional treatment to dynamic
responses, no special treatment being required for other responses.

HTML

BODY

Greeting from John

Hop AST

<HTML>

Greeting from John

<BODY>

DOM tree

<HTML>
 <BODY>
 Greeting from
 John
 </BODY>
</HTML>

HTML file

(<HTML>
 (<BODY>
 "Greeting from"
 name))

Hop program

HTML parsercompilation

Fig. 2. Mismatch between AST tree and DOM tree

Splitting apart dynamic Http requests and being provided with a server-side
Hop AST makes code injection detection easier: it is only needed to reproduce
the DOM tree that is generated on the client-side and compare it with the Hop
AST. This tree can be easily obtained by parsing the Html document generated
from the Hop AST on the server-side using a standard Html parser. Then it is
sufficient to compare the two trees to detect code injection attacks. If the two
trees have the same shape, the program is safe and the response is sent to the
client. If the two trees differ, code has been injected and an exception is raised.

In terms of compiler re-writing, code injection detection only requires to
extend the code of the compiler that is in charge of delivering dynamic content.

str ∈ String

p, q, r . . . ∈ Pointer

s ::= x | w | (s0 s1) | ∼t | (〈tag〉) | (dom-appchild! s0 s1)

t ::= x | (lambda (x) t) | () | str | p | (t0 t1) | $x

w ::= (lambda (x) s) | ∼c | () | str | p

c ::= x | v | (c0 c1)

v ::= (lambda (x) c) | () | str

tag ::= HTML | DIV | · · ·

Fig. 3. Simplified Hop Syntax

In order to prove that this eliminates unexpected behaviors from the dynam-
ically generated pages, we use the Hop program semantics, that abstracts away
from compilation processes, as the specification of what expected behavior is.

In the rest of the paper, we describe the formalization and code injection
soundness proofs (correspondence of the behavior of generated client code with
respect to the client Hop semantics) for a subset of the Hop language. However,
the implementation of the technique, that is made publicly available from the
Hop web page1, is applied to the full-fledged language, including a non-trivial set
of Html attributes and constructs, as well as CSS files and JavaScript functions.

3 A multitier language

We present a core of the Hop language limited to a minimal set of web pro-
gramming abstractions that are enough to present our compilation technique
and develop its formal correctness (a larger formal description of the language
that includes constructors for defining services on the server-side, calling services
from the client, events handler such as “onclick” in web pages, and event loops
as a form of cooperative multithreading [1], can be found in [5]).

3.1 Syntax

The syntax is given in Figure 3, where x denotes any variable. We assume given
a set String of strings; a set Pointer of pointers. Those sets are mutually disjoint,
and are also disjoint from the set of variables. Pointers are run-time values for
denoting Html tree nodes. The simplified Hop syntax is stratified into server
code s and tilde code t. The former is basically Scheme [18] code enriched with
a construct ∼t to ship (tilde) code t to the client, and constructs to dynamically
build Html trees. The latter may include references $x to server values, and will
be translated into client code c, before being shipped to the client.

1 http://hop.inria.fr.

A server expression usually contains sub-expressions of the form ∼t. As we
said, t represents code that will be executed on the clients. This code may use
values provided by the server, by means of sub-expressions $x. When the latter
are absent (that is, when they have been replaced by a value bound to x), a t ex-
pression reduces to a client expression c. Notice that for the server an expression
∼c is a value, meaning that the evaluation of code c is delayed until installed on
a client site. Server code syntax is enriched with some basic Html constructs,
written in Scheme style, and operations supported by the DOM. Here we con-
fine ourselves to consider the Html and DIV tags, and the (dom-appchild! s0 s1)
construct – the other ones are similar (see [12]). The general form of Html con-
structors in Hop is (〈tag〉 [:attr]) where attr is an optional list of attributes. For
simplicity, we only consider here the cases (〈tag〉) where there is no attribute. A
more general form of creating a node with an arbitrary number of children can
be defined as syntactic sugar. For example, creating a node with one child can
be defined as follows:

(〈tag〉 s) ::= ((lambda (x) (dom-appchild! (〈tag〉)x)) s)

Values also include strings and (), which is a shorthand for the unspecified
Scheme run-time value. As usual (lambda (x) s) binds x in the expression s.

A Hop program is a closed expression s, meaning that it does not contain
any free variable. We shall consider expressions up to α-conversion, that is up
to the renaming of bound variables, and we denote by s{y/x} the expression
resulting from substituting the variable y for x in s, possibly renaming y in
sub-expressions where this variable is bound, to avoid captures. The operational
semantics of the language will be described as a transition system, where at each
step a (possibly distributed) redex is reduced. As usual, this occurs in specific
positions in the code, that are described by means of evaluation contexts. The
syntax of evaluation contexts is as follows:

S ::= [] | (S s) | (w S) | (dom-appchild!S s) | (dom-appchild!w S)

C ::= [] | (C c) | (vC)

As usual, we denote by S[s] (resp. C[c]) the result of filling the hole [] in context
S (resp. C) with expression s (resp. c).

3.2 Hop Web Application Semantics

The semantics of a Hop web application is represented as a sequence of transi-
tions between configurations. Specific features that are modeled in the semantics
in order to capture the behaviour of web applications include: dynamic client
code generation and delivery, script nodes execution from a DOM tree, dynamic
DOM tree modification. A configuration consists in

– a server configuration S, together with an environment µ providing the values
for the variables occurring in the server configuration. For simplicity, we
consider that the server configuration consists in a single thread at the time
executing server’s code to answer client’s requests to services.

– a client configuration C, which consists in one running client (extension
to multiple clients is straightforward [5] but we prefer to simplify notation
here). A client is a tuple 〈c, µ, r〉 where c is the client code and µ is the local
environment for the client distinct from the one of the server (the client and
the server do not share any state). The pointer r is the root of the Html
page that is displayed at the client site by the browser.

– a Hop environment ρ, which binds URLs to services s (we assume given a
set Url of names denoting URLs);

Then a configuration Γ has the form ((S, µ), C, ρ). However, to simplify the
semantic rules, and to represent the concurrent execution of the various compo-
nents, we shall use the following syntax for configurations:

Γ ::= µ | ρ | s | 〈c, µ, r〉 | (Γ ‖ Γ)

We assume that parallel composition ‖ is commutative and associative, so that
the rules can be expressed following the “chemical style” of [4]:

Γ −→ Γ ′

(Γ ‖ Γ ′′) −→ (Γ ′ ‖ Γ ′′)

meaning that if the components of Γ are present in the configuration, which
can therefore be written (Γ ‖ Γ ′′), and if these components interact to produce
Γ ′, then we can replace the components of Γ with those of Γ ′.

Before introducing and commenting the reaction rules, we define an auxiliary
function transforming tilde code into client code. As we said a sub-expression ∼t
in server code is not evaluated at server side, but will be shipped to the client,
usually as the answer to a service request. Since the expression t may contain
references $x to server values, to define the semantics we introduce an auxiliary
function Ξ that takes as arguments an environment µ and an expression t,
and transforms it into a client expression c. The Ξ transformation consists in
replacing $x by the value bound to x in µ. For example, if µ = {x 7→ "text"},
then we have

Ξ(µ,∼((lambda (y) y) $x)) = ∼((lambda (y) y) "text")

(The interested reader can check for a formal definition in a previous paper [5]).
One should notice that a function, that is a (lambda (x) s), or client code c cannot
be sent to the client this way, because this would in general result in breaking
the bindings of free variables that may occur in such an expression. Then this
has to be considered as an error. The semantics of the (〈tag〉) construct is that
it builds a node of a tree in a forest. In order to define this, we assume given
a specific null pointer, denoted α, which is not in Pointer . We use π to range
over Pointer ∪ {α}. Then a forest maps (non null) pointers to pairs made of a
(possibly null) pointer and an expression of the form (〈tag〉 c1 + · · · + cn). The
pointer q ∈ Pointer assigned to p is the ancestor of the node, if it exists. If it
does not, this pointer is α. Such a node is labeled tag and has n children, which
are either leaves (labeled with some client code or value) or pointers to other

nodes in the tree. For simplicity we consider here the forest as joined to the
environment providing values for variables. That is, we now consider that µ is
a mapping from a set dom(µ) of variables and (non null) pointers, that maps
variables to values, and pointers to pairs made of a (possibly null) pointer and
a node expression. The syntax for node expressions a is as follows:

a ::= (〈tag〉 `)
` ::= ε | c | (`0 + `1)

where ε is the empty list. In what follows we assume that + is associative, and
that ε+ ` = ` = `+ ε. We shall also use the following notations in defining the
semantics, assuming that the pointers occurring in the list ` are distinct:

(〈tag〉 `) + p = (〈tag〉 `+ p)

(〈tag〉 `0 + p+ `1)− p = (〈tag〉 `0 + `1)

Given a forest µ, and p ∈ dom(µ), we denote by µ[p 7→ (π, a)] the forest obtained
by updating the value associated with p in µ. For r ∈ Pointer , we also define
µ d r to be the part of the forest that is reachable from r (a formal definition can
be found in [5]). For example:

µ =

 r 7→ (α, 〈HTML〉 "text" + p),
p 7→ (r, 〈DIV〉 "text"),
q 7→ (α, 〈DIV〉 "text")

 , µ d r =

[
r 7→ (α, 〈HTML〉 "text" + p),
p 7→ (r, 〈DIV〉 "text")

]

Ξ(µ, t) = c

S[∼t] ‖ µ −→ S[∼c] ‖ µ
(Tilde)

µ(r) = (α, (〈HTML〉 `))

r ‖ µ ‖ 〈(), ∅, α〉 −→ µ ‖ 〈(), µ d r, r〉
(ServRet)

ρ(u) = w v 6= (lambda (x) c)

ρ −→ (w v) ‖ 〈(), ∅, α〉 ‖ ρ
(Init)

R(r, p, µ) µ(p) = (q, (〈tag〉 `0 + c+ `1))

〈v, µ,W, r〉 −→ 〈c, µ[p 7→ (q, (〈tag〉 `0 + `1))],W, r〉
(Script)

p 6∈ dom(µ)

S[(〈tag〉)] ‖ µ −→ S[p] ‖ µ ∪ {p 7→ (α, (〈tag〉 ε))}
(TagS)

µ(p) = (π, a0) µ(q) = (q′, a1) µ(q′) = (π′, a2) p 6= q′ ¬R(q, p, µ)

S[(dom-appchild! p q)] ‖ µ −→ S[()] ‖ µ

p 7→ (π, a0 + q),
q 7→ (p, a1),
q′ 7→ (π′, a2 − q)


(AppendS1)

Fig. 4. Excerpt of Hop Semantics

An excerpt of the semantics rules is given in Figure 4. Rules for variable
look-up and function application are standard and left out (a complete set of
rules can be found in [5]) . The Tilde rule transforms tilde code containing $x
expressions into a server value. The ServRet rule is the key rule in the semantics
that, in the case of the high-level semantics, allows us to specify which code is
executed on the client site. The ServRet rule can be used once a service in
the server has finished its evaluation, and its result is shipped to the client. The
kind of service results we are interested in are pointers representing a Html
fragment or document, possibly containing one or more script nodes to execute.
In the high-level semantics, the Html document with script nodes is constructed
by Hop Html constructors. Tilde codes are dynamically evaluated by possibly
embedding values obtained with $x expressions. The ServRet rule sets the root
of the client document to be the result value pointer r and the client environment
to µ d r that represents exactly the Html tree that hangs from pointer r in the
server store.

The Init rule creates a new instance of a service and initializes its execution
with any argument v. This rule is intentionally made non-deterministic to model
that the client can provide any input to the service. This argument is (untrusted)
input provided by the client. On the client site, there is the Script rule that
models execution of script node contained in the client Html document. We use
the predicate R(r, p, µ) to state that pointer p is a descendant of r in µ, and that
the code that we find at node p, and which is to be triggered, is the leftmost one
in the tree µ d r determined by r. (We should also check that this tree is still
a valid Html document. We do not formally define this predicate here – this
is straightforward.) An example illustrates the predicate R in Figure 5. Finally
the AppendS1rule modifies the DOM by appending a child to an existing node
in the store. Notice that the rule preserves the uniqueness of pointers in list
presentation.

HTML

c'

DIV

DIV
DIV

c

Fig. 5. Example: The predicate R

3.3 A More Fine-grained Semantics

The high-level ServRet rule abstractly defines Hop client code and its in-
tended behavior, that is, the Html tree should be delivered intact to the client.

We present a more detailed semantics that consists in a dynamic compilation
phase compiling a Hop AST tree to Html + JavaScript code to transfer the
document constructed in the server’s store to a client thread. This appears in
a new version of the rule ServRet. At the client-side, the Html parser (in
the browser) interprets this Html document, possibly invoking the JavaScript
engine to execute script nodes.

Client-side JavaScript Syntax and Semantics We give a formal treatment to the
syntax and semantics of JavaScript in order to prove correctness in following
sections. The abstract syntax of a small core of JavaScript is shown in Fig-

str ∈ String string

cjs ::= x | vjs | cjs(c′js) code

vjs ::= function(x){return cjs} | () | str values

Fig. 6. JavaScript (abstract) Syntax

ure 6. Its syntax is self-explanatory. We omit usual definitions such as variable
substitution. The evaluation context is defined as follows:

J ::= [] | J(cjs) | vjs(J)

We overload notation C = 〈cjs, µ, r〉 for client configuration in the low-level
semantics, where cjs and µ are JavaScript code and store, respectively. The
definition of list ` for node representation is also updated, since in the low-level
semantics script nodes are now JavaScript expressions. The shape of a server
configuration and global configuration are left unchanged. As shown in Figure
7, rule VarJS and AppJS are unsurprising, which evaluate redex for client-side
JavaScript code.

Client Dynamic Compilation The dynamic compilation is parametrized with
a Hop client compiler C and a Html parser P. The Hop client compiler C
transforms a server Hop store and a pointer that represents an abstract Hop
tree with Hop client code (µ d r) into an actual Html document that contains
JavaScript code. The Html parser P (which includes a JavaScript parser), on
the client-side, will parse any Html document and produce a pair of store and
root pointer (µc, p) as the DOM tree to be rendered (see Figure 1). As shown in
Figure 7, instead of abstractly transferring part of the server’s store µ d r, the
new ServRetLow rule first use Hop client compiler to compile the abstract
tree into a Html document doc. Then it uses the Html parser P to parse doc,
in order to produce a DOM tree for the client. The network transmission of
the Html document is made implicit in the rule. The rest of the rules are left
unchanged from the high-level semantics.

µ(x) = vjs

〈J[x], µ, p〉 −→ 〈J[vjs], µ, p〉
(VarJS)

y 6∈ dom(µ)

〈J[function(x){return cjs}(vjs)], µ, p〉 −→ 〈J[cjs{y/x}], µ ∪ {y 7→ vjs}, p〉
(AppJS)

doc = C(µ, r) P(doc) = (µc, p) µc(p) = (α, (〈HTML〉 `))

µ ‖ 〈(), ∅, α〉 −→ µ ‖ 〈p, µc, p〉
(ServRetLow)

Fig. 7. Low-level semantics

4 Client-code Compilation

In this section we first show that a naive compiler may cause the fine-grained
semantics to have more undesired behaviors than the high-level semantics, which
are code injection attacks. Then we show how to modify the naive compiler by
using the tree-comparison technique to obtain a secured Hop client compiler that
prevents code injection attacks. We give formal proof that the secured compiler is
code-injection free, that is, it has no more behavior than the high-level semantics.

4.1 A Naive Client Compiler

The compiler Ca translates a server’s store and a pointer to a Html document
doc by simply concatenating Html tags and content. It also uses a JavaScript
compiler Cj that compiles Hop client code into JavaScript. This naive compiler
is defined in Figure 8(c), in which letters in typewriter font represent string
characters and “·” represent string concatenation (omitted when unambiguous)2.

Example Let us illustrate how the fine-grained semantics has more behaviors
than the high-level one. Figure 9(a) shows a Hop program constructing a simple
Html document depending on input name. The compilation using Ca is shown
in Figure 9(b), if the input provided is the string Alice. Furthermore, the initial
client configuration obtained by ServRetLow rule is 〈µc, ∅, p〉, where str =
Alice, and

µc = {p 7→ (α, (〈HTML〉 q)), q 7→ (p, (〈DIV〉 str))}

We can observe that the store obtained by ServRetLow rule and ServRet
are equivalent up to pointer renaming.

2 In JavaScript compiler Cj , we assume that the unquote function escapes a string
to its string literal representation (e.g., “a"b” is escaped to “a\"b”), and ident is a
bijection that maps each variable name to a unique string (e.g., variable name x is
mapped to x).

Cj (c) ::=

"unquote(str)" c = str

#unspec c = ()

ident(x) c = x

function(ident(x)) c = (lambda (x) c0)

{returnCj (c0)}
Cj (c0)(Cj (c1)) c = (c0 c1)

Ca(µ,w) ::=

str w = str

"" w = ()

ε ` = ε

Ca(µ, `0) · Ca(µ, `1) ` = `0 + `1

<tag>Ca(µ, `) w = p and

</tag> µ(w) = (q, (〈tag〉 `))

<script> w = ∼c

Cj (c)</script>

(a) JavaScript compilation (b) Html compilation

Fig. 8. Hop dynamic compilation

1 (lambda (name)

2 (<HTML>

3 (<DIV>

4 name)))

1 <HTML>

2 <DIV>

3 Alice

4 </DIV>

5 </HTML>

(a) Hop program (b) Compilation results

Fig. 9. Example: Fine-grained Semantics

However, the fine-grained semantics is not simulated by the high-level se-
mantics presented in the previous section, since more behaviors may appear on
the client side by means of a code injection attack 3. If input name is

<script>function(x){return x;}("str")</script>

we would obtain a Html page by compilation as follows:

1 <HTML><DIV><SCRIPT>

2 function(x){return x;}("str")

3 </SCRIPT></DIV></HTML>

Observe that the corresponding store µc obtained by ServRetLow rule and
the parser P is :

µc = {p 7→ (α, (〈HTML〉 q))}
∪{q 7→ (p, (〈DIV〉 str + function(x){return x}(str)))}

The same configuration cannot be obtained by the ServRet rule in the high-
level semantics.

3 This attack is not particular harmful. This is just for demonstrating that the adver-
sary has the ability to inject code.

4.2 A Secure Client Compiler

ε ≈ ε

Cjs(c) = cjs

c ≈ cjs

`0 ≈ `′0 `1 ≈ `′1

`0 + `1 ≈ `′0 + `′1

` ≈ `′

(p, (〈tag〉 `)) ≈ (p, (〈tag〉 `′))
dom(µ) = dom(µ′) ∀p ∈ dom(µ).µ(p) ≈ µ′(p)

µ ≈ µ′

Fig. 10. Tree indistinguishability

In order to define a secure Hop client compiler, we need to introduce a
relation ≈ between a high-level client store µ and a low-level client store µ′.
Informally, two stores are in the relation if their tree structures are the same.
Definition of ≈ is given in Figure 10. For simplicity, we assume in the definition
that two pointers are indistinguishable if they are equal (however, this assump-
tion could be easily relaxed by standard indistinguishability definitions up to a
bijection on pointer names). Note that pointers are used here just to describe
tree representations in the semantics. In the actual implementation, the parser
does not return a store but rather a DOM tree. The translation Cjs from Hop
client code to JavaScript is as follows:

Cjs(()) = () Cjs(str) = str

Cjs(c) = cjs Cjs(c′) = c′js

Cjs((c c′)) = cjs(c
′
js)

Cjs(c) = cjs

Cjs((lambda (x) c)) = function(x){return cjs}

The secure Hop client compiler is then defined as follows:

Cs(µ, r) =


Ca(µ, r) if P(Ca(µ, r)) = (µc, p) and µ d r ≈ µc

and p = r

⊥ otherwise

It is built on top of the naive compiler Ca. The secure version of the compiler
returns the result generated by Ca, only if the source tree (µ d r, r) is indis-
tinguishable from the tree (µc, p) obtained by parsing (on the server-side) the
generated document. Otherwise, it returns ⊥, which raises an exception on the
server-side.

Assumption on the Html parser Our technique requires just a standard Html
parser on the server-side. The implication is that only valid Html page is deliv-
ered. Therefore injection attacks caused by ill-formed Html and browser parsing
quirks are not possible in our approach, since ill-formed Html is never output
to the client.

Formal correctness We use →h to denote high-level semantics transitions, and
→l to denote low-level semantics transitions in order to distinguish them in the
following definition. We define the simulation Γ � Γ ′, where Γ is a high-level
configuration and Γ ′ is low-level configuration.

Definition 1. Let Γ0 = ((S0, µ0), C0, ρ0) and Γ1 = ((S1, µ1), C1, ρ1)). The sim-
ulation � is the largest relation S on configurations such that Γ0 S Γ1 implies:

1. µ0 = µ1

2. C0 = 〈c, µ, r〉, C1 = 〈cjs, µjs, r〉 such that µ ≈ µjs

and if Γ1 →l Γ
′
1,then there exists Γ ′0 such that Γ0 →h Γ

′
0 and Γ ′0 S Γ ′1.

Finally, we state a theorem that implies that the client secure compiler is fully
abstract, given the correctness of the Hop to JavaScript compiler.

Theorem 1. Let Γ = Γ ′ = ((ε, ε), ε, ρ), where Γ is a high-level configuration
and Γ ′ is a low-level configuration, and ρ is a Hop services environment. If the
fine-grained semantics use the secured client compiler Cs, we have Γ � Γ ′.

The theorem claims the soundness of our approach to eliminate code injection
attacks. The proof is a standard simulation proof: we show that the semantics
of delivered client code (standard Html+JavaScript) simulates the high-level
semantics of client Hop code. The proof can be found in an accompanying tech-
nical report4.

5 Practical Discussion

In this section we report about an experiment that evaluates the penalty imposed
by the integrity enforcement, and we discuss how the tree comparison technique
can be applied to traditional programming languages for Web applications. In
Appendix A we discuss some practical issues of the implementation.

Performance: We have compared the execution times of several Hop programs
with security enforcement enabled and disabled (Figure 11). We have measured
the time needed by the server to deliver dynamic contents. Using the httperf

tools [24], we have exercised the server with a repeated request up to an ex-
ecution time (usr + sys) of about 10 seconds for the unchecked version. All
requests are sent in the same HTTP connection using HTTP keep-alive annota-
tions. The server is executed on an Intel Xeon W3570 running at 3.2GHz with

4 http://www-sop.inria.fr/members/Zhengqin.Luo/papers/acipwa-long.pdf

6GB of memory. For each execution, we report on the execution time expressed
in seconds. Here is a short description of each tested program. Hoppanel (700
loc) generates a web page presenting all the installed Hop programs on a host.
Hopclock (1100 loc), is a web wall clock. Hoppmt (160 loc) is a web loan calcula-
tor. Hoptris (740 loc) is Tetris on a web browser. Hopstick (800 loc) provides
stickers on a web browser. Hopphoto (2130 loc) is a web photo browser. Hopfile
(550 loc) is a web server-side file browser.

benchmark secure unsecure δ

hoppanel 43.56s 10.29s 4.23

hopclock 31.77s 10.50s 3.02

hoppmt 34.68s 12.59s 2.75

hoptris 33.57 12.56s 2.67

hopsticker 14.43 9.98s 1.45

hopphoto 16.36 11.87s 1.38

hopfile 23.97s 10.44s 2.30

Fig. 11. This performance evaluation measures the impact of security enforcement in
Hop. The secure column reports on the execution times with security enforcement. The
unsecure column reports on the execution times in seconds without security enforce-
ment. The column δ shows the slowdown ratio.

The impact on the performance of security enforcement depends on the na-
ture of the executed programs, and can be noted only on the server side. Once
the code is installed on the browser, there is no performance cost with respect to
unsecure programs. The slowdown ratio in the server ranges from 1.38 to 4.23.
We believe, however, these are not significant performance penalty for several
following reasons.

1. It must be noted that at this early stage of the implementation no opti-
mization is applied to the tree comparison. The security manager writes and
parses the entire Html documents. This is expensive when the documents
are large. Minimizing this cost will be subject of future work and may include
sound sanitization techniques for untrusted inputs.

2. It must be observed that these measures represent worst cases because for
this experiment only the times to get the dynamic parts of the applications
have been measured. For displaying this page in the browser, there are several
other static content to be load, such as Hop run-time library and images.
Since those content are not dynamically generated, there is no run-time
penalty for these content. By counting the time that the server need to
deliver them, we can bring down the overall run-time penalty.

3. As already demonstrated in a previous experiment [28], Hop can be more
than one order of magnitude faster than common web platforms based on
Apache or Tomcat for delivering dynamic documents. Hence, even with secu-

rity enforcement enabled, Hop still is one of the fastest runtime environments
for delivering Web 2.0 content.

Remarks on Other Programming Languages The tree comparison technique pre-
sented in Section 4 can also be applied to other traditional programming lan-
guages for Web applications, with additional efforts. For example, to apply this
technique on a Web server that supports PHP requires to modify the Web server
in a non-trivial way:

1. For each PHP program that generates a Html page, associate it with a
separate function that computes an AST as specification depending on given
inputs.

2. Upon receiving a HTTP request from a client of a PHP program, the Web
server invokes the corresponding specification function on received input,
obtaining an AST. It then executes the PHP program with a PHP inter-
preter, and parses the output of the program with a Html parser, obtaining
another Html tree. The server delivers the Html output only if the trees
are of the same shape.

Comparing to the multitier programming languages approach, applying tree
comparison technique on traditional programming languages for the Web re-
quires further modification on Web servers and programmers’ intervention to
write specification function.

6 Conclusion

We have shown that multitier languages provide appropriate tools to eliminate
code injection. In particular these kind of languages provide an essential ingredi-
ent to detect code injection: the intended semantics of the web application. We
propose a compilation technique and prove its correctness in the Hop language.
The technique does not require any kind of browser modification nor any anno-
tation from the programmer. We believe that its simplicity makes it suitable for
any kind of multitier compiler.

References

1. M. Abadi and G. D. Plotkin. A model of cooperative threads. In Z. Shao and
B. C. Pierce, editors, POPL, pages 29–40. ACM, 2009.

2. E. et al.. Athanasopoulos. xJS: Practical XSS Prevention for Web Application De-
velopment. In Proceedings USENIX Conference on Web Application Development
(WebApps ’10), Boston, USA, June 2010.

3. D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In IEEE Symposium on Security and Privacy, pages 387–401,
2008.

4. G. Berry and G. Boudol. The chemical abstract machine. In Proceedings of the
ACM International Conference on Principle of Programming Languages (POPL),
pages 81–94, New York, 1990. ACM Press.

5. G. Boudol, Z. Luo, T. Rezk, and M. Serrano. Towards reasoning for web applica-
tions: an operational semantics for hop. In APLWACA ’10, pages 3–14, 2010.

6. Cenzic Inc. Web application security trends report Q1-Q2, 2009.
http://www.cenzic.com/, 2010.

7. A. Chlipala. Ur: Statically-Typed Metaprogramming with Type-Level Record
Computation . In PLDI, 2010.

8. S. Chong, J. Liu, A. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Building
secure web applications with automatic partitioning. Communications of the ACM,
52(2):79–87, 2009.

9. S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure
web application via automatic partitioning. In SOSP, pages 31–44, 2007.

10. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without
tiers. In 5th International Symposium on Formal Methods for Components and
Objects, Amsterdam, The Netherlands, Nov. 2006. Springer.

11. B. J. Corcoran, N. Swamy, and M. W. Hicks. Cross-tier, label-based security
enforcement for web applications. In SIGMOD Conference, pages 269–282, 2009.

12. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. DOM: Towards a formal
specification. In Proceedings of the ACM SGIPLAN workshop on Programming
Language Technologies for XML (PLAN-X), California, USA, Jan. 2008. ACM
Press.

13. Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
web application code by static analysis and runtime protection. In WWW, pages
40–52, 2004.

14. T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-
enforced embedded policies. In WWW, pages 601–610, 2007.

15. N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static detection
of web application vulnerabilities. In PLAS ’06: Proceedings of the 2006 workshop
on Programming languages and analysis for security, pages 27–36, New York, NY,
USA, 2006. ACM.

16. N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In IEEE Symposium on Security and
Privacy, pages 258–263, 2006.

17. G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks
with instruction-set randomization. In ACM Conference on Computer and Com-
munications Security, pages 272–280, 2003.

18. R. Kelsey, W. D. Clinger, and J. Rees. Revised5 report on the algorithmic language
scheme. SIGPLAN Notices, 33(9):26–76, 1998.

19. E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a client-side solution
for mitigating cross-site scripting attacks. In SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 330–337, New York, NY, USA,
2006. ACM.

20. P. Li, Y. Mao, and S. Zdancewic. Information integrity policies. In Proceedings of
the Workshop on Formal Aspects in Security & Trust (FAST), Spetember 2003.

21. V. B. Livshits and Ú. Erlingsson. Using web application construction frameworks
to protect against code injection attacks. In PLAS, pages 95–104, 2007.

22. M. T. Louw and V. N. Venkatakrishnan. Blueprint: Robust prevention of cross-
site scripting attacks for existing browsers. In IEEE Symposium on Security and
Privacy, pages 331–346, 2009.

23. Y. Minamide. Static approximation of dynamically generated web pages. In
WWW, pages 432–441, 2005.

24. D. MOSBERGER and T. JIN. httperf: A tool for Measuring Web Server Per-
formance. In In First Workshop on Internet Server Performance, pages 59–67.
Association for Computing Machinery (ACM), 1998.

25. The Perl Programming Language. http://www.perl.org.
26. C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browsershield:

Vulnerability-driven filtering of dynamic html. ACM Trans. Web, 1(3):11, 2007.
27. W. K. Robertson and G. Vigna. Static enforcement of web application integrity

through strong typing. In USENIX Security Symposium, pages 283–298, 2009.
28. M. Serrano. HOP, a fast server for the diffuse web. In 11th international conference

on Coordination Models and Languages (COORDINATION), LNCS 5521, pages
1–26, Lisbon, Portugal, June 2009. Springer.

29. M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for programming the web
2.0. In Proceedings of the First Dynamic Languages Symposium (DLS), Portland,
Oregon, USA, Oct. 2006.

30. Z. Su and G. Wassermann. The essence of command injection attacks in web
applications. In POPL, pages 372–382, 2006.

31. The MITRE Corporation. 2010 CWE/SANS top 25 most dangerous programming
errors.

32. G. Wassermann and Z. Su. Sound and precise analysis of web applications for
injection vulnerabilities. In PLDI, pages 32–41, 2007.

33. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities.
In ICSE, pages 171–180, 2008.

34. Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting lan-
guages. In USENIX Security Symposium, pages 179–192, 2006.

35. W. Xu, E. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A prac-
tical approach to defeat a wide range of attacks. In In 15th USENIX Security
Symposium, pages 121–136, 2006.

36. D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript instrumentation for browser
security. In POPL, pages 237–249, 2007.

A Practical Code Injection Prevention in Hop

A code is considered to be injected when a user input string ends up being
interpreted by the browsers as a client-side expression. To prevent this Hop
imposes that all client-side codes should be generated by the Hop client-side
compiler.

In Html there are two ways to specify client-side expressions: i) by using
SCRIPT nodes in the Html tree, and ii) by including JavaScript expressions in
the Html nodes attributes. Hop handles these two situations differently.

First, the tree comparison presented in this paper ensures that no SCRIPT

node is maliciously generated by the untrusted input in the server. The security
enforcement takes place during the compilation of the AST into HTML. Prior
to generating the actual text of a HTML response, a pre-processor first writes
that response into a temporary file, parses it back, and compares the spine of
the two trees. The response tree is immune to code injection if and only if the
spines of the two trees are equivalent.

Second, a simple filtering rejects all attributes of nodes. In the Html spec-
ification, those attribute strings as event handler will be interpreted as script
expressions. Hop imposes that these attributes are bound to Hop client-side
expressions, not to strings. For instance, it rejects

(<DIV> :onclick "alert(msg)" ...)

but it accepts
(<DIV> :onclick ~(alert msg) ...)

Since Hop offers no means for transforming a string of characters into a tilde
code expression, this simple filtering technique ensures that attributes as event
handlers cannot be used to inject arbitrary expressions.

Beyond the Html specification, most browsers interpret attributes values
prefixed with the string javascript: as listener attributes. For instance, the
following Html link, when clicked, evaluates the alert function call.

click me

Obviously this extension could also lead to code injection. To solve that problem
we have adopted a conservative solution that disables this extension by forbid-
ding the javascript: prefix for all attributes. This is enforced by Hop for Html
trees as well as for CSS declarations.

Finally, Hop also ensures that pure client-side manipulation cannot yield
to executing new codes. For that, the client-side runtime library only binds
JavaScript functions that are safe. For instance, if functions such as eval or
document.write were accessible in Hop they could be used to evaluate arbitrary
user forged code. The dangerous functions are either not included or slightly
modified. For instance facilities such as innerHTML that parses an inserted string
to a Html tree is kept, but its argument must be a Html node instead of a
string.

