
From Abstract to Executable BPEL Processes with Continuity Support

Zeina Azmeh, Marianne Huchard
LIRMM, CNRS & UM2

34095, Montpellier cedex 5, France
{firstname.lastname}@lirmm.fr

Fady Hamoui
LIG & UPMF

38041, Grenoble cedex 9, France
fady.hamoui@imag.fr

Naouel Moha
UQAM - CP 8888,

Montréal, H3C 3P8, Canada
moha.naouel@uqam.ca

Abstract—The real value of Web services under the SOA
paradigm lies in their ability to be assembled to obtain a new
functionality. Assembling Web services can be achieved through
a standard called BPEL, which creates executable processes
by orchestrating Web service invocations. The problem with
BPEL is the inability to separate the process description from
its realization. In other words, it requires a prior retrieval of
concrete Web services, which can be very challenging regarding
the issues surrounding service discovery and selection.

In this paper, we propose to separate a BPEL process de-
scription from its realization. We extend the notion of abstract
BPEL processes, in order to enable developers to describe their
desired orchestrations abstractly without identifying concrete
services, according to three levels: the needed functionality,
the expected QoS levels, and the composition flow. Then, the
abstract BPEL process is realized by a selection framework that
automatically discovers, classifies, and selects suitable services
to render the process executable. Backup services are also
discovered to assure the continuity of the realized process.

Keywords-SOA; Web service; abstract BPEL; QoS; Rela-
tional Concept Analysis (RCA).

I. INTRODUCTION

Web services represent an important realization of
Service-Oriented Architectures (SOA) [1]. Their real value
lies in their ability to interoperate and be assembled together
to obtain new composite services. Assembling Web services
together can be achieved by orchestrating their invocations
through a standard language, called BPEL [2]. BPEL is
an XML-based language that defines a new Web service
by orchestrating a set of existing services according to
a desired functionality. The resulting service is called a
business process, the involved services are called partners,
and the message exchange is referred to as an activity.
Constructing an executable BPEL process consists of:

- first, determining the needed functionality that cannot
be satisfied by a single Web service and dividing this
functionality into smaller pieces;

- then, discovering a set of services for each needed piece
of functionality;

- finally, selecting the needed services and orchestrating
them according to some flow logic to achieve the
process overall functionality.

The previous steps impose two principal problems: The
first problem is the inability to separate the process descrip-
tion from its realization. Consequently, it requires a prior

retrieval of concrete Web services, which can be very chal-
lenging. Current discovery mechanisms –embodied mainly
in Web service search engines like Seekda [3] and Service-
Finder [4]– limit the developer’s expression capability to
only keywords. They may return a large list of services
that may not be all related to the used keywords, and
thus might not match the searched functionality. We notice
that depending only on the syntactic information inside
the WSDL description may not be sufficient for guiding a
developer to select a suitable service. The textual description,
inside a WSDL interface, may not be enough to index a
service sufficiently. Thus, several irrelevant services may be
retrieved. This requires the developer to filter the services
by hand to check their functionality. Moreover, an important
factor for service selection is to take into consideration its
quality of service (QoS) values [5]. The QoS plays a crucial
role in determining a process quality.
According to the literature, the selection of a pertinent
Web service can sometimes depend on a shared knowledge
between the provider and the consumer (an ontology). This
kind of solution may solve the problem of selection, but
under the condition of having a unique ontology. If several
ontologies were used, ontology mapping must be carried out,
which is yet another challenge.
The second problem occurs after realizing the process.
If one of the involved services disappears, an equivalent
service must be identified to replace the missing piece of
functionality and to maintain the process continuity. This
may lead to the repetition of all the steps of constructing an
executable BPEL process, which we described earlier.

In this paper, we present an extension of a previous
work [6]. We propose a framework for achieving a separation
of concerns: a process description from its realization.
Process Description: enables a developer to describe his
desired business process abstractly, without identifying the
needed concrete services in advance.
Process Realization: is an extension and improvement of
what we presented in [6]. It enables the automatic realiza-
tion of an executable process that satisfies the developer’s
provided process description. It works according to three
main steps:

Discovery: including analyzing the process description,
searching, retrieving and filtering Web services, in addition



to parsing their WSDL descriptions.
Classification: according to functionality, composability,

and QoS. In order to have a better view of the services,
and so to make a better selection, especially when having
comparable services.

Selection: of suitable services to realize the desired pro-
cess. In addition to selecting backup services to support the
continuity of a process, by recovering the missing piece of
functionality of a broken service.

The paper is organized as follows: in the next section, we
describe our proposed solution. In Section III, we present our
conducted experiments to verify the validity of our solution.
In Section IV, we list the related work and compare between
them. Finally, in Section V, we conclude the paper with a
summary of our contributions and perspectives.

II. APPROACH

Our framework works according to two stages: process de-
scription and process realization. It transforms automatically
an abstract BPEL process into executable, by identifying
suitable Web services. It works also on supporting the real-
ized process with backup services, to ensure its continuity,
in case of service failures.

During the process description stage, a developer can
specify his process abstractly, without concrete services.
It can be described using an abstract specification of the
needed services. This specification indicates their function-
ality and their expected QoS. Then, the composition flow
between these specified services is expressed inside the
process description.

During the process realization stage, the specification of
the needed services is analyzed. Then, concrete services are
discovered and classified, in order to select the suitable ones.
Finally, an executable BPEL process is generated, by filling
the gaps inside the process description.

In the following, we describe in details each of the process
description and realisation.

A. Process Description

A developer works on providing an abstract description
of his desired BPEL process. We extend the notion of an
abstract BPEL that is proposed by the BPEL standard. We
define it as a process that is built on an abstract specification
of the needed services. While, in BPEL standard, an abstract
process specifies the external message exchange between
parties only. It does not contain the internal details of the
process flow, and it is not executable [2].
Thus, a developer starts by dividing the global needed
functionality into smaller pieces. Each small piece of func-
tionality requires a Web service to satisfy it. The set of
required Web services must be specified by the developer
inside an abstract WSDL interface (AWSDL). He uses this
abstract interface afterwards to describe an abstract BPEL
process (ABPEL).

Figure 1. Abstract WSDL structure.

1) Abstract WSDL Interface (AWSDL): An AWSDL in-
terface represents an utilization of the WSDL standard to
specify one or more needed services abstractly. It may spec-
ify several abstract services (PortTypes) by their functional
properties as well as their QoS properties, without speci-
fying concrete parts (bindings and endpoints). We exploit
the documentation tags, which can be defined for each
element inside a WSDL interface, in order to describe these
functional and QoS properties. AWSDL interface structure
is illustrated in Figure 1.

Functional properties for each service are characterized
by the operation it offers. We consider that a needed op-
eration can be characterized by its input/output parameters
and their types, but not by the operation name. We argue
that an operation name can be as much a good indicator
for the offered functionality as it can be bad. For exam-
ple, if someone is searching for an operation that returns
the capital city for a given country, an operation named
getCapital or getCapitalForCountry would be exactly
the required one. On the other hand, an operation named
getCountryInformation would be misleading. It may
even get discarded if we only consider its name, although it
returns the capital city among its outputs. Furthermore, we
give the developer the option to say whether the parameters
names are strict or flexible. If they are strict, this means that
we should only search for an exact match of the provided
parameters names. In the case of flexible names, we can
search for synonyms or names that semantically match the
requested ones (using WordNet for example). Hence, in case
of a strict matching, a developer is allowed to provide several
possible alternative names for each parameter name. For
example, if the requested parameter was city with strict
matching, a developer may also provide words like town
and/or metropolis. The same thing is done for the parameter
type. For example, if a developer is searching of a date
parameter, he can specify its type to be Date and/or String.

Expected QoS properties may also be expressed for each
needed service inside an AWSDL interface, inside its docu-
mentation tag. We propose to represent the space of actual
QoS numerical values by levels, ranging from V eryBad



QoS value to V eryGood QoS value. These levels are
calculated using a statistical technique called BoxP lot1 [7].
The benefits of using such levels are two: first, it avoids
developers from understanding the real meaning of a QoS
value. For example: the performance of a service is better
when it is lower, while the availability is better when it
is higher. Second, a developer might not be aware of the
actual values. He might request a service that is available
100%, while the best assured availability among the retrieved
services might be 90%. Using the QoS levels, a developer
can specify that he needs a certain service to have a
V eryGood level for a certain QoS property.
We also believe that specifying the expected QoS per service
is better than specifying a global QoS for the whole process.
This is because QoS properties vary in their importance
according to the service functionality. Therefore, developers
must be able to make a compromise between the QoS levels
according to each service. For example: a printing service
may have a bad availability and still be acceptable, unlike
a bank account service, which should have a very good
availability to be accepted.
Once all of the needed services are specified by their
functionality and QoS levels, a developer can define his
ABPEL process.

2) Abstract BPEL Process (ABPEL): An ABPEL
process can be built exactly like a BPEL process and
using any available development tool that supports Web
service orchestration using BPEL (like NetBeans 6.7.1,
for example). The only difference is that it is built using
abstract services defined in an AWSDL interface (Figure 2).

Figure 2. Abstract BPEL process.

Invoking an operation of a Web service begins by assign-
ing values to its input parameters. This is expressed in BPEL
language by the structures <assign> <copy> <from .. />
<to .. /> and then <invoke .. operation=”..” .. />. Parsing
these structures enables us to identify the composition links
between the services. Hence, we can identify two possible
composition modes, saying that service-A (source service)
and service-B (target service) are either:
Fully-Composable: when (some or all) of the output param-
eters of an operation (in service-A) are linked to all of the
input parameters of an operation (in service-B); or,
Partially-Composable: when the input parameters of an
operation (in service-B) are not only linked to output
parameters of an operation (in service-A), but also to others.

1Available online: http://www.lirmm.fr/∼azmeh/tools/boxplot.html

As soon as the ABPEL process is defined, the framework
starts searching and retrieving concrete services to instantiate
the process, in order to render it executable.

B. Process Realisation

Services will be retrieved, filtered, classified, and selected
(details in [6]), in order to instantiate the specified ABPEL
process and make it executable. Moreover, services that
are equivalent to the selected ones (backups) will also be
retrieved and kept, in order to support the continuity of the
process.
This stage starts functioning once it receives the AWSDL
interface and according to the three steps that we have iden-
tified in Section I: Discovery, Classification and Selection.

1) Discovery: the AWSDL interface is analyzed and the
set of requirements is extracted, including the needed func-
tionality (parameters names and types) and the expected QoS
for each specified service. The extracted words (parameters
names) for each needed service are used to query a Web
service search engine. Then, the returned set of services
is retrieved together with the QoS values for each service.
Each set is filtered, in order to identify the services that are
compatible with the needed functionality and discard the
rest. Therefore, each service WSDL description is parsed in
order to extract the operation signatures (input and output
parameters with their types). A service is functionally com-
patible if it offers an operation having the exact requested
signature. It is adaptable compatible if it has a matching
signature, but the types are not exactly the same. We use
rules for deciding adaptability, for example: an int value can
be converted to String but not the inverse.

2) Classification: the sets of filtered services are classi-
fied using a classifying method called Relational Concept
Analysis (RCA) [8], according to their QoS properties and
values, as well as the composability between them. In the
simplest case, the input of RCA can be one table of services
described by the QoS they provide. We remind here that we
calculate QoS levels from actual numerical values, using the
BoxPlot technique, as we explained earlier in Section II-A1.
For example, in Table I, four services of a set WS1 (possible
candidates for an abstract service) are described by their
availability (A) and performance (P ) levels. We can notice
that when a service has a good level of QoS, it also has
medium and bad. The explanation is very simple if we take
back the numerical values that these levels represent. For
example: if a BadA represents an availability that is higher
than 10%, MedA higher than 40%, and GoodA higher than
90%, then a service’s availability that is higher than 90%
is also higher than 40% and higher than 10%. An RCA-
based classification is represented by a concept lattice that
organizes services by their QoS, as illustrated in Figure 3.
In this lattice (generated using ConExp [9]), we can have a
general view of the services and the relations between them.
In order to interpret it, we have to follow some simple rules:



Table I
A TABLE OF SERVICES WS1 DESCRIBED BY THEIR QOS LEVELS.

WS1 BadA MedA GoodA BadP MedP GoodP
ws1.1 × × × × ×
ws1.2 × × × ×
ws1.3 × × × × × ×
ws1.4 × × ×

The nodes inside a lattice are called concepts. Each
concept represents a group of services sharing some QoS
levels. In our figures, the services appear in the white labels,
while QoS levels appear in the gray ones. Concepts have
generalization relations between them, represented by the
edges between them. We read the lattice from top to bottom.
Higher concepts are more general than lower ones. An edge
between two concepts means that the lower concept is a
sub-concept of the higher one. For example, in Figure 3, the
concept c5 is a super-concept for all the other concepts in the
lattice. They all inherit BadP and BadA. If we consider c0,
we notice that it is a sub-concept of c4 and a super-concept
of c1. So, the service ws1.1 is better than ws1.4, because
it inherits its properties and has better ones. Furthermore,
ws1.3 is the best service of all, because it is located at
the bottom concept (inheriting all the properties including
GoodA and GoodP ). Choosing between ws1.2 and ws1.1
requires doing a compromise between GoodA and GoodP .

Figure 3. The concept lattice for the services in Table I.

In our case, since we have several sets of services,
we have to link the tables by the composability relations
existing between the services of different sets. Evaluating
the composability is done by checking how the services
can be linked, compared to the composition modes extracted
from the ABPEL file, as we described in II-A2. So, if in the
ABPEL file, a service-A is supposed to be orchestrated with
service-B, then the set of services retrieved for service-A
will be checked for its composability with the set of services
retrieved for the service-B (Fully-Composable or Partially-
Composable). A table of services versus services will be
constructed for each composition mode. These tables are
then used by the RCA method to generate the classification
of services by both their QoS levels and composability
modes. For example, if we consider another set of services,
let us say WS2. In Table II, we find the services in WS2,
described by their QoS levels.

Table II
A TABLE OF SERVICES WS2 DESCRIBED BY THEIR QOS LEVELS.

WS2 B
a
d
A

M
e
d
A

G
o
o
d
A

B
a
d
P

M
e
d
P

G
o
o
d
P

′ w
s
2
.1

′

′ w
s
2
.2

′

′ w
s
2
.3

′

′ w
s
2
.4

′

′ w
s
2
.5

′

′ w
s
2
.6

′

ws2.1 × × × × ×
ws2.2 × × × × × × ×
ws2.3 × × × × × × ×
ws2.4 × × × × ×
ws2.5 × × ×
ws2.6 × × × ×
query2 × × × × ×

We notice that we added an attribute per service, for
example: ′ws2.1′. This attribute is considered as an identifier
that helps in having a concept per service, for the simplifying
lattice interpretation. We also added these attributes for the
services in the set WS1. We also notice an object called
query2, in the last line of this table. It is used to express
the expected QoS levels for the needed service (specified in
the AWSDL interface), which in our case, is MedA, MedP
for WS2 (we add also query1: MedA, GoodP into Table I
for WS1). This is further detailed in the selection step.

Moreover, considering that the needed composition mode
is fully-composable, having WS1 as the source and WS2
as the target, we express this relation between the two
sets of services in Table III. For example, ws1.1 is fully-
composable with ws2.2 and ws2.3.

Table III
THE FULLY-COMPOSABLE (FC) RELATION BETWEEN THE SERVICES OF

WS1 AND WS2.

FC ws2.1 ws2.2 ws2.3 ws2.4 ws2.5 ws2.6
ws1.1 × ×
ws1.2 ×
ws1.3 × ×
ws1.4 × ×

Consequently, RCA takes these three tables: WS1, WS2,
and FC, then generates the two lattices in Figure 4.

Figure 4. The concept lattices of WS1 and WS2 classifying services
by QoS levels and FC composability (calculated by Galicia [10] &
ConExp [9]).

3) Selection: is performed on the generated lattices, by
identifying the services that have the expected QoS levels.
These expected QoS levels are expressed as queries that



are classified into the lattices (by adding them into the
corresponding tables as new services), as we can notice in
the two previous lattices, query1 and query2 (Figure 4).
These queries help in navigating into the lattices, according
to an algorithm introduced in [11]. It extracts the most
suitable services that are composable and have the expected
QoS levels. This is especially important when considering
real business processes scenarios, where several lattices of
larger sizes are generated. In short, this algorithm works
on identifying a set of services for each lattice, in respect
to the requested query and the composition relations. These
services are located at the sub-concepts of the concept where
a query appears. For example: for query1 in the left lattice,
we can identify ws1.1 and ws1.3. Correspondingly, for
query2 in the right lattice, we can identify ws2.3, ws2.2,
and ws2.4, in the concepts c5, c3, and c8 respectively.
These services have the expected QoS levels or better. In
order to verify their composability, we have to follow their
relational attributes, appearing in the gray labels as FC : ci.
In our example: ws1.1 can be fully-composed with ws2.2
(FC : c3) and ws2.3 (FC : c5). Similarly, ws1.3 is fully-
composable with ws2.2 (FC : c3). In contrast, ws1.3 can be
fully-composed with ws2.5 (c10) but ws2.5 does not satisfy
query2. Moreover, ws2.4 (c8) satisfies query2, but can not
be fully-composed neither with ws1.1 not ws1.3.

Thus, the set of possible service selections can be for
example: either ws1.1 with ws2.3, having ws2.2 as a backup
for ws2.3. Or else, ws1.3 with ws2.2, having ws1.1 as a
backup for ws1.3.

III. VALIDATION

We carried out our experiments according to two parts: de-
scribing an abstract BPEL process called WeatherProcess,
which works on finding the weather information of a given
ip address; then realizing an executable copy of this process
using concrete Web services.

A. Describing the WeatherProcess
We divided the process functionality into three pieces:

getting the city corresponding to the given ip, getting the zip
code of this city, and finally, getting the weather information
for the obtained zip code.
We constructed an AWSDL interface and described three ab-
stract services (PortTypes): CityService, ZipcodeService,
and WeatherService. Each service of them provides
an operation: getCityByIP , getZipcodeByCity, and
getWeatherByZipcode, respectively. We specified for each
operation its input and output parameters together with their
types, in addition to possible alternative names. We also
specified the expected QoS levels2 for each service, as we
can see in Table IV3.

2We set our Web service search engine to be Service-Finder [4]. It
provides two QoS properties for each service, availability (A) & response
time (RT ).

3More details can be found on: http://www.lirmm.fr/∼azmeh/icws/

In Figure 5, we can see the corresponding AWSDL inter-
face. We expand the messages description for the operation
getWeatherByZipcode. We can see that for the input pa-
rameter (zipcode), the user provided a list of four equivalent
keywords, which are listed in the WSDL source code. They
are as follows: zipcode, zip, postal, and postalcode. The
parameter type is specified to be String. For the output
parameter, we can notice that its name is specified as
any. This means that the user is not asking for a specific
parameter name, but he is interested by the complex type,
which is in our case Weather. In this case, the user provided
a list of 5 equivalent keywords for the Weather type.
They are as follows: Weather, WeatherInfo, Forecast,
WeatherForecast, and WeatherReport.

Figure 5. The abstract WSDL describing the needed services for the
scenario WeatherProcess.

Afterwards, we defined our abstract process, the
WeatherProcess, by orchestrating the three abstract ser-
vices with fully-composable composition links.

B. Realizing the WeatherProcess

Using each set of keywords, we retrieved a corresponding
set of services (WSDL interfaces), after omitting repeated
and invalid endpoints. Then, we parse each WSDL inter-
face and filter by the requested functionality, to determine
whether it is compatible, adaptable, or has to be discarded.
In Table V, we can see the number of services for each set
and at each step.



Table IV
THE SPECIFICATION OF EACH ABSTRACT SERVICE NEEDED FOR THE WEATHERPROCESS DESCRIPTION.

Abstract WS Operation Input Output QoS
parameter alternatives type(s) parameter alternatives type(s) A RT

CityService (WS1.i) getCityByIP ip ipAddress String city cityName String Good Good
ZipcodeService (WS2.j) getZipcodeByCity city cityName String zipcode zip, postal, postalcode String Good Good
WeatherService (WS3.k) getWeatherByZipcode zipcode zip,postal, String any – Weather, WeatherInfo, Forecast, Good Good

postalcode WeatherForecast, WeatherReport

Table V
THE NUMBER OF FILTERED SERVICES FOR EACH SET.

WS1.i WS2.j WS3.k
Retrieved from Service-Finder 94 768 39
Filter1 (Valid) 94 748 37
Filter2 (Functionally-Compatible) 16 96 21

We calculated afterwards the QoS levels for the remaining
services of each set. We organized the services into tables
with their QoS levels, including the three QoS queries,
resulting into three tables (a table per set of services).
Then, we extracted the composition links from the ABPEL
file, and evaluated the composition modes between each
pair of services. This resulted into tables, showing the
composability between the services. The collection of tables
are finally used by the RCA method, and three concept
lattices are generated, as we can see in Figure 6.
Using the lattices navigation algorithm in [11], we extracted
the (highlighted) services in Table VI to be the best choices.

Table VI
INFORMATION ABOUT THE SERVICES SATISFYING THE QUERIES AND

THE SELECTED ONES (HIGHLIGHTED).

WS Name Operation A(%) RT(ms)
1.59 Ip2LocationWebService IP2Location 100 257

(in) IP:string
(out) CITY:string,..

1.5 GeoCoder IPAddressLookup 100 328
(in) ipAddress:string
(out) City:string,..

1.3 IP2Geo ResolveIP 100 798
(in) ipAddress:string
(out) City:string,..

2.198 MediCareSupplier GetSupplierByCity 85 304
(in) City:string
(out) Zip:string,..

2.8 ZipcodeLookupService CityToLatLong 100 439
(in) city:string
(out) Zip:string,..

3.1 USWeather GetWeatherReport 85 384
(in) ZipCode:string
(out) WeatherReport:string

3.23 Weather GetCityForecastByZIP 100 237
(in) ZIP:string
(out) ForecastReturn:complex

When selecting a service from an extracted set of services,
the other services in the set can play the role of backups.
For example, if we select the service WS1.59 for the first
abstract service, WS1.5 and WS1.3 will be backups for it.
In case it disappeared, one of them can replace it to fill the
missing functionality and assure the process continuity.

Finally, the selected services are used to generate the
desired executable BPEL process, and the backup services
are kept to be used when needed.

IV. RELATED WORK

In this section, we study the state of the art of Web
service composition, according to two categories: manual
and automatic composition. We conclude the section by a
comparison of the studied works.

A. Manual Composition

We may cite several graphical tools (Triana [12],
CAT [13], SWORD [14], WSTK [15], ZenFlow [16],
BPEL2B [17], which help users visually in building their
desired compositions. We describe only three of them.
In Triana [12], a composite service is created by dragging the
services and connecting them. Composed applications may
be written as BPEL4WS graphs. They may be executed from
within Triana or any Web services choreography engine or
published to the network.
CAT [13], which takes existing WSDL descriptions and
extends them with off-the-shelf domain ontologies. It uses
these ontologies in examining a user’s solution and generat-
ing suggestions about how to proceed.
SWORD [14] defines its own simple world model based
on defining for each Web service logic rules. A composite
service can be realized according to an execution plan.

B. Automatic Composition

In [18], the authors present an approach that extends the
heuristic-based approach proposed by [19] by adding QoS
constraints. The algorithm receives as input a request, which
consists of the provided input concepts, required output
concepts and QoS constraints. Each concept is defined in
a domain ontology. It produces as output a set of services.
In [20], the authors propose a semantic-based framework for
the automatic composition of Web services. They generate
composite services from high-level declarative descriptions.
The Web Services Composition Platform, StarWSCoP [21],
is introduced with several modules, in particular: a ser-
vice registry and a discovery engine, a composition en-
gine, a wrapper to achieve interoperability of heterogeneous
services and a QoS estimation. It focuses on QoS-based
dynamic Web services composition by extending WSDL
descriptions with QoS attributes.
In [22], Agflow is presented as a QoS-aware middleware
supporting quality-driven Web service compositions. A com-
posite service is specified as a collection of generic service
tasks described in terms of service ontologies and combined
according to a set of control and data flow dependencies.



c19

c29

c21c27

c26

c29

c0

c7

WS1.i WS2.j WS3.k

Figure 6. The concept lattices for the compatible sets of services with Good A, Good RT queries, and FC mode.

Very similar to the previous, [23] presents a broker-based
architecture to facilitate the selection of QoS-based ser-
vices. The objective of service selection is to maximize an
application-specific utility function under QoS constraints.
The problem is modeled in two ways: the combinatorial
model and the graph model.
Another similar work is presented in [24]. It proposes
an approach for achieving dynamic semantic Web service
composition. It is based on the METEOR-S WS composition
framework with an added-on constraint analyzer module.

C. Discussion
In the manual composition building, users can search by

keywords and retrieve services. They still have to check for
the composability manually. Such works do not provide QoS
information, nor enable searching by a required QoS level.

In the automatic composition building, the works we
presented are all based on semantics (which imposes other
issues, as we mentioned earlier). Furthermore, they assume
that Web services are annotated with semantic information
(beyond WSDL). Such semantic information might not be
available for current Web services, although it might become
available in the future [25]. Some of these works calculate
the global QoS value for the whole composition. Users
(meaning developers) are not allowed to specify a needed
QoS for a certain service. Moreover, QoS is specified by

only numeric values.
The manual and automatic composition approaches do not

support service backups. However, some of the automatic
composition works support dynamic reconfiguration for the
business process, when a service changes (disappear or have
different QoS values). This reconfiguration can cause an
overhead if a backup is needed, because of the several
remote interactions with the service registry.

We summarize the presented works in Table VII, accord-
ing to the following criteria: manual or automatic composi-
tion, using semantics, achieving service discovery, checking
the functional compatibility, identifying composable ser-
vices, considering QoS, discovering backup services.

V. CONCLUSION

In this paper, we discussed the problem of building a
business process using BPEL and the challenges surrounding
it. We proposed to separate a process description from
its realization. Process description is defined abstractly by
developers via an AWSDL interface and an ABPEL pro-
cess. An AWSDL specifies all the needed services by their
functionality and QoS, while an ABPEL defines their orches-
tration. Process realization is achieved automatically through
a framework for Web service discovery, classification (based
on RCA), and selection. We validated our proposition using
real Web services for a WeatherProcess scenario.



Table VII
WORKS COMPARISON ACCORDING TO THE SPECIFIED CRITERIA.

Work M
an

ua
l

A
ut

om
at

ic

Se
m

an
tic

W
S

D
is

co
ve

ry

Fu
nc

tio
na

lit
y

C
om

po
sa

bi
lit

y

Q
oS

(p
er

W
S)

Q
oS

(g
lo

ba
lly

)

B
ac

ku
ps

Triana [12] X × × X × × × × ×
CAT [13] X × X X × × × × ×

SWORD [14] X × X × × × × × ×
Oliveria et al. [18] × X X × × X × X ×

Medjahed et al. [20] × X X X X X × X ×
StarWSCoP [21] × X X × × X × X ×

AgFlow [22] × X X × × X X X ×
QoS-Broker [23] × X X × × X × X ×
METEOR-S [24] × X X × × X × X ×
Our Framework × X × X X X X × X

We studied the related work, by listing two kinds of
works, manual and automatic. When dealing with the manual
technique, the user must apply a functional filtration and
must check for the composability between two services.
Considering the automatic composition techniques, the re-
sulting compositions suffer from inflexibility because the
QoS is calculated globally for the whole composition and
they do not support backups identification.

In a future work, we plan to enrich the specification of
the needed functionality with semantic descriptions. We also
intend to realize dynamic Web service substitution and to
conduct further experiments on more complex scenarios.

REFERENCES

[1] E. Newcomer and G. Lomow, Understanding SOA with Web
Services. Addison-Wesley Professional, 2004.

[2] “Web Services Business Process Execution Language Version
2.0”, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[3] “Seekda, WS search engine”, http://webservices.seekda.com

[4] D. Cerizza, A. Funk, A. Turati, A. Beffani, E. D. Valle,
H. Lausen, I. Celino, N. Steinmetz, S. Brockmans,
W. Schoch: “D1.4: Service-finder refined design of service-
finder as a whole”, Tech. Rep., April 2009. [Online].
Available: http://www.service-finder.eu/attachments/D1.4.pdf

[5] D. A. Menascé, “Qos issues in web services.” IEEE Internet
Computing, vol. 6, no. 6, pp. 72–75, 2002.

[6] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha,
and C. Tibermacine, “Selection of composable web services
driven by user requirements.” In Proceedings of ICWS’11.
IEEE Computer Society, 2011, pp. 395–402.

[7] W. A. Larsen and J. Tukey, “Variations of box plots,” vol. 32,
1978, pp. 12–16.

[8] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev,
“Relational concept discovery in structured datasets.” Ann.
Math. Artif. Intell., vol. 49, no. 1-4, pp. 39–76, 2007.

[9] Conexp. [Online]: http://conexp.sourceforge.net/

[10] GaLicia, “Galois lattice interactive constructor,” 2002,
http://www.iro.umontreal.ca/ galicia.

[11] Z. Azmeh, M. Huchard, A. Napoli, M. Rouane Hacene,
and P. Valtchev, “Querying Relational Concept Lattices,”
in CLA’11: The 8th International Conference on Concept
Lattices and their Applications, France, 2011, pp. 377–392.

[12] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang, “Triana:
A graphical web service composition and execution toolkit.”
In Proceedings of ICWS’04. IEEE, 2004, pp. 514–.

[13] J. Kim and Y. Gil, “Towards interactive composition of
semantic web services.” National Conference on Artificial
Intelligence, 2004.

[14] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit
for web service composition’,’ in Proceedings of the 11th
International WWW Conference (WWW2002), Honolulu, HI,
USA, 2002.

[15] “The web services toolkit (wstk)”,
http://www.alphaworks.ibm.com/tech/webservicestoolkit.

[16] A. Martı́nez, M. Patiño-Martı́nez, R. Jiménez-Peris, and
F. Pérez-Sorrosal, “Zenflow: A visual web service composi-
tion tool for bpel4ws,” Visual Languages and Human-Centric
Computing, IEEE Symposium on, vol. 0, pp. 181–188, 2005.

[17] I. Aı̈t-Sadoune and Y. A. Ameur, “Stepwise design of
bpel web services compositions: An event-b refinement
based approach.” in SERA (selected papers), ser. Studies
in Computational Intelligence, R. Y. Lee, O. Ormandjieva,
A. Abran, and C. Constantinides, Eds., vol. 296. Springer,
2010, pp. 51–68.

[18] F. G. A. de Oliveira Jr. and J. M. P. de Oliveira, “Qos-based
approach for dynamic web service composition.” J. UCS,
vol. 17, no. 5, pp. 712–741, 2011.

[19] T. Weise, S. Bleul, D. E. Comes, and K. Geihs, “Different
Approaches to Semantic Web Service Composition.” in
Proceedings of The Third International Conference on
Internet and Web Applications and Services (ICIW’08),
A. Mellouk, J. Bi, G. Ortiz, K. W. D. Chiu, and M. Popescu,
Eds. IEEE Computer Society Press: Los Alamitos, CA,
USA, 2008, pp. 90–96.

[20] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid,
“Composing Web services on the Semantic Web.” The VLDB
Journal, vol. 12, no. 4, Springer-Verlag, pp. 333–351, 2003.

[21] H. Sun, X. Wang, B. Zhou, and P. Zou, “Research and
implementation of dynamic web services composition.” in
APPT, ser. Lecture Notes in Computer Science, X. Zhou,
S. Jähnichen, M. Xu, and J. Cao, Eds., vol. 2834. Springer,
2003, pp. 457–466.

[22] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware for
web services composition.” IEEE Trans. Software Eng.,
vol. 30, no. 5, pp. 311–327, 2004.

[23] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web
services selection with end-to-end qos constraints.” TWEB,
vol. 1, no. 1, 2007.

[24] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor,
“Constraint driven web service composition in meteor-s.” in
IEEE SCC. IEEE Computer Society, 2004, pp. 23–30.

[25] M. D. Ernst, R. Lencevicius, and J. H. Perkins, “Detection of
web service substitutability and composability.” in WS-MaTe
2006: International Workshop on Web Services — Modeling
and Testing, Palermo, Italy, June 9, 2006, pp. 123–135.


