
Using Concept Lattices to Support Web Service Compositions with Backup Services

Zeina Azmeh, Marianne Huchard, Chouki Tibermacine
LIRMM - CNRS & Univ. Montpellier II - France
{azmeh, huchard, tibermacin}@lirmm.fr

Christelle Urtado, Sylvain Vauttier
LGI2P - Ecole des Mines d’Alès - Nı̂mes (France)
{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract—In SOA, composite applications can be developed
on the basis of collections of interacting web services. A
service’s functionality is exposed to the external world by an
abstract interface, described by the standard WSDL language,
which must be published by service providers to public
registries where service consumers can find them. Nowadays,
web service discovery has become a real problem, because
of the lack of public registries to publish and organize the
fairly huge number of existing services. In this paper, we
propose an approach based on formal concept analysis (FCA)
for classifying and browsing web services. Using this approach,
the web services are organized into a lattice structure, to
facilitate their browse and selection. A service lattice reveals the
invisible relations between the services, enabling the discovery
of a needed service as well as the identification of its possible
alternatives. Thus, service discovery may be achieved more
easily using the service lattice. This facilitates the construction
of service compositions and supports them with backup services
to ensure a continuous functionality.

Keywords-Web service discovery; formal concept analysis;
service backups.

I. INTRODUCTION

Web services represent an important realization of service-
oriented architectures (SOA). In SOA, composite applica-
tions can be developed on the basis of collections of inter-
acting services offering well-defined interfaces [1]. When
a service is accessed and used through the internet and
by open internet-based standards, it results in the concept
of web services. A web service exposes its functionality
to the external world by an abstract interface expressed
by WSDL [23] (Web Service Description Language). A
WSDL interface is a uniform mechanism for describing a
service’s available operations, parameters, data types, and
access protocols.

According to the functionalities described in the WSDL
interfaces, web services can be assembled to serve a par-
ticular function, solve a specific problem, or deliver a
particular solution. They represent the building blocks for
creating composite applications. When creating a composite
application, each selected web service must fulfil a part
of the application’s functionality. Therefore, each service’s
WSDL interface must be analyzed to verify its provided
operations, and so to decide whether to select the service or
not. Due to the big number of web services that exist on the
web nowadays, the task of finding an appropriate service to
use becomes hard and time-consuming. After identifying the

needed services, they can be assembled together in order to
form the functionality of the aimed composite application.
This application will be functional as long as each of its
composing services is functional, but once one of its services
breaks, the part of the application represented by this service
will break too, causing a total or partial dysfunctionality to
the application. The obvious solution in this case, will be to
search for another web service to replace the broken one and
recover the missing functionality. Thus, the task of finding
an appropriate web service to use has to be repeated every
time a service breaks and has to be replaced by an equivalent
one.

In this paper, we propose an approach for web service
classification and browsing, in order to facilitate the dis-
covery of a web service, the identification and conservation
of its candidate backups. This facilitates the construction of
service compositions as well as ensuring their continuous
functionality, by supporting them with backup services.
We use the formal concept analysis formalism to organize
web services into lattices according to their functionality
domain and depending on the similarity estimated between
their operations. The constructed web service lattices group
the services into sets of services with similar operations
and order these sets according to the number of similar
operations they have and according to how similar these
operations are. In this way the generated service lattices
offer a browsing mechanism that facilitates the discovery
of a needed service, along with a set of possible backup
services.

The rest of the paper is organized as follows. Section II
gives the problem statement with an example of composing
web services. Section III gives an overview about formal
concept analysis with the basic definitions. In Section IV,
we present our approach based on FCA to classify web
services. In Section V, we give a case study to explain
the use of our approach. Section VI lists and discusses the
existing approaches concerning web service classification
and discovery. Finally, Section VII concludes the paper and
gives some perspectives.

II. PROBLEM STATEMENT

Web services face several challenging issues coming from
several factors. Since, they are offered by various providers,
remotely accessed, and sometimes provided for free, there



is no guarantee of a continuous execution. An available
functioning web service may crash and become unavailable
at any time, which necessitates finding an equivalent one to
replace it. Unfortunately, this can be hard to achieve since
there is a lack of WSDL organizing facilities, especially after
the deficiency of the UDDI [24] registries: ”UDDI did not
achieve its goal of becoming the registry for all Web Services
metadata and did not become useful in a majority of Web
Services interactions over the Web” [3].

Thus, a mechanism for finding service backups becomes
indispensable, especially when a service represents a part of
a composite application.

Let’s consider the following travel scenario: a traveller
needs to reserve a plane ticket to a desired city. Supposing
that this traveller lives in a small city that has no airport,
then, he should also travel to the city where the airport is
located, in order to take the plane he reserved. Thus, he must
also reserve a train ticket, from his home city to the airport
city, taking into consideration the flight exact time with the
time needed to travel between the two cities. This scenario
can be achieved by a travel composite service (TCS), in
which 3 functionalities must be satisfied:
• reserve a flight from home city, or airport city, towards

a desired city,
• if a train reservation is needed (in case that the home

city is not the airport city), then calculate the needed
time (duration) to travel between the two cities by train,

• reserve a train ticket, regarding the exact flight time and
the calculated duration.

The TCS can be realized by discovering services offering
the described functionalities and composing them. It may
look like the orchestration in Figure 1. In this orchestration,
if the service TrainWS crashes, for example, an equivalent
service offering at least the two used operations calcDura-
tion() and resTrain() must be searched and discovered, in
order to recover the missing functionality, and ensure the
continuity of the composition.

In the following sections, we describe our FCA-based ap-
proach that facilitates the construction of such composition
and illustrate how to support it with backup services.

III. FCA OVERVIEW

In our approach, we use the FCA formalism in order
to construct a classification of web services. FCA is a
mathematical theory that permits the identification of groups
of objects having common attributes [6]. FCA takes as input
a given data set represented as a formal context and produces
the set of all the formal concepts which form a concept
lattice. A formal context is denoted by K = (G, M, I) where
G is a set of objects, M is a set of attributes, and I is a
binary relation between G and M (I ⊆ G ×M ). (g,m) ∈
I denotes the fact that object g ∈ G is in relation through I
with attribute m ∈M (also read as g has m).

Figure 1. The travel composite service (TCS).

Table I shows an example of a formal context (G, M, I)
where G = {o1, o2, o3} and M = {a, b, c, d, e}.

Having a set A ⊆ G,

A′ = {m ∈M | ∀ g ∈ A : (g,m) ∈ I}

is the set of common attributes. In the same way, having the
set of attributes B ⊆M ,

B′ = {g ∈ G | ∀ m ∈ B : (g, m) ∈ I}

is the set of common objects.
In our example, ({o1, o3})′ = {a, b, d} and ({c})′ =
{o2, o3}.

a b c d e
o1 × × ×
o2 × × ×
o3 × × × ×

Table I
A FORMAL CONTEXT FOR G×M

A concept is a pair of sets (A, B) where A ⊆ G is called
the extent, B ⊆ M is called the intent, and B = (A)′,



A = (B)′. Meaning that, a concept is a maximal collection
of objects sharing similar attributes. The set of all concepts
is denoted by B(G, M, I).
In our example, ({o1, o3}, {a, b, d}) is a concept while
({c}, {o2, o3}) is not. In fact, while ({c})′ = {o2, o3},
({o2, o3})′ = {b, c}. A concept (A1, B1) is a sub-concept
of a concept (A2, B2) if A1 ⊆ A2, which imposes a partial
order relation on B(G, M, I) expressed as (A1, B1) ≤
(A2, B2). The partial order relation ≤ can be used to build
a structure, which is called a concept lattice and is denoted
by B(G, M, I). A concept lattice defines a hierarchical
representation of objects and attributes, in which a certain
concept inherits all the extents (objects) of its descendants
and all the intents (attributes) of its ascendants. Figure 2
illustrates the lattice built for the context1 shown in table
I, we notice that upper labels are the reduced intent sets
(attributes) and bottom labels are the reduced extent sets
(objects).

Figure 2. The concept lattice for the context in tableI.

In this lattice we can reveal the relationships between the
present objects, some of them are the following:
• o1, o2 and o3 share the attribute {b}, thus, they can

replace each other for this attribute,
• o1 and o3 share the attributes {a, b, d},
• o3 can replace o1 since it shares all of its attributes in

addition to c,
• o2 and o3 share together the attributes {b, c},
• o2 can replace o1 for the attribute b.

IV. THE APPROACH

Figure 3 gives a general overview of the main steps
of our approach, during which two lattices are generated
consecutively:
• a lattice for indexing the services by keywords extracted

from their WSDLs,
• a lattice for service classification, which organizes

the services according to the similar operations they
provide.

As a start, WSDL files coming from various repositories
are analysed and automatically tagged with the significant

1The lattices are generated by Conexp - http://conexp.sourceforge.net/

Figure 3. The main steps of our approach.

keywords [7]. The extracted keywords are used to generate
the first lattice, which represents an indexation of services
by keywords. Supposing a set of random web services for
travel facilities, the corresponding lattice may resemble the
lattice in Figure 4. In lattices, some intermediate concepts
(white nodes) can be removed without losing information,
which makes the structure more scalable [6].

Figure 4. The concept lattice for a set of services and their keywords.

From this lattice, we can retrieve services in a certain
domain by enquiring the lattice using keywords. Such a
query returns a sub-lattice of services sharing the specified
set of keywords, which are highly probable to provide
similar functionalities. We extract these services, and apply
a similarity measure on their operations, pair by pair. We
will not consider the similarity between operations provided
by the same service, because when a service becomes



dysfunctional, all of its operations become dysfunctional too.
Several similarity measures for web services exist in

the literature. They evaluate the similarity according to the
syntactic and semantic levels, such like [18], [4], [5].

Measuring the similarity between the operations enables
us of identifying groups of similar operations, in order to
build a context of service × operation. This results in a
new lattice that reveals the relations between the services
according to the provided functionality. Searching for a
certain operation returns a sub-lattice of services providing
the operation and showing the replaceable services. We
better explain the presented approach using a case study
described in the next section.

V. CASE STUDY

In this section, we return to the scenario of TCS described
in Section II, and we explain how to build such a composi-
tion and support it with backups using the generated lattices.
Figure 4 illustrates the lattice of services and their keywords
as explained before. We want to use this lattice to discover
the required services in order to build the TCS. We begin by
specifying the set of keywords describing the needed com-
posite service. They are of two categories, plane reservation
and train reservation. Thus, we form two queries, we perform
a query on a lattice by expressing the set of keywords as
a new line, added to the context service × keyword. This
results in a new concept in the lattice, labelled query. The
services that answer the specified query are represented by
the sub-concepts of the concept query. In our scenario, we
perform two keyword queries: query1 = {reserve, plane}
and query2 = {reserve, train, duration}. This results in
the lattice shown in Figure 5, in which, we extract the
services answering the two queries and they are:
• for query1: ws1, ws2, ws3, ws4, ws9 and ws10,
• for query2: ws5, ws6, ws8, ws9, ws10.
We further analyse the two sets of services corresponding

to the two queries. We apply a similarity measure on the
operations according to each set and we identify the groups
of similar operations. For example, an operation labelled
reserveF in the lattice, represents a group of similar
operations for performing a flight reservation. This way, we
can build a new context of service×operation for each set
of services. The lattice that corresponds to query1 is shown
in Figure 6 (top), and the one corresponding to query2 in
Figure 6 (bottom).

Using these two lattices, the selection of services offering
required operations is straightforward. In our scenario, we
need three functionalities as indicated before in Section II:
flight reservation, train reservation (if needed), and calcu-
lating the duration needed to travel by train to the aimed
destination. By regarding the lattice in Figure 6 (top), we
notice that all of the services offer an operation for plane
reservation. In this case, a service selection might be done
regarding the extra operations that the services provide,

Figure 5. Queries as concepts in the service× keyword lattice.

like for example the operation rentCar. When we select
a certain service, we can immediately extract the set of
backup services that are able to replace it if it fails. In the
same way, we can select a service for train reservation with
obtaining the duration information. Thus, the composition in
Figure 1 can be easily achieved and supported with backups,
as in Figure 6. Supposing that we selected the service

Figure 6. The TCS composition with its corresponding backups.

ws4 named PlaneWS, and used its operation resF light



(which is grouped with other similar operations under the
name reserveF in the lattice). We can notice that for the
operation resF light, any other service in the lattice can be
a backup for ws4. In case where all of the operations of
ws4 were used, we notice that only ws10 and ws1 can be
backups for ws4. Similarly, we selected the service ws6,
named TrainWS, and used two of its provided operations:
calcDuration and resTrain. We notice that ws6 can be
replaced by the services ws10, ws8 and ws5. Thus, we have
discovered immediate backups for the service TrainWS
as we did for the service PlaneWS. We can notice that
the service ws10 exists in the two lattices, as a backup
for TrainWS and PlaneWS together. In this case, if
both of these services crash, we can replace them both by
only one service, which is ws10. This service provides the
same functionalities of the two services, with three extra
operations that are priceT , rentCar and durationF as can
be seen in the lattices in Figure 6.

Our approach has enabled us of an easy service discovery
and selection, in order to build our aimed scenario. It
has also facilitated the discovery of backup services to
support our service composition and ensure its continuous
functionality.

VI. RELATED WORK

Several works have been proposed for web service clas-
sification, in order to facilitate browsing, discovery and
selection. A quick overview of some of the works can be
obtained from [8], [9]. Below, we describe a selection of
works, classified according to their adapted techniques.

A. Using formal concept analysis (FCA)

In [10], Aversano et al. classify web services using FCA
as a means for WSDL browsing. Their formal contexts are
composed according to three levels, service level, opera-
tion level and type level, together with keywords. These
keywords are identified from the WSDL files by applying
vector space metrics with the help of WordNet to discover
the synonyms. The resulting service lattice represents an
indexing of web services, it highlights the relationships be-
tween the services and permits the identification of different
categorizations of a certain service.

In [11], Bruno et al. also use keywords extracted from
services’ interfaces together with FCA to build a web ser-
vices lattice. They analyze the extracted words, process them
using WordNet and other IR techniques. Then, they classify
them into vectors using support vector machines (SVM).
The obtained vectors categorize the services into domains,
then service lattices can be obtained for each category using
FCA.

In Peng et al. [12], similarity values are calculated for
service operations, and depending on a chosen threshold, a
service lattice is built.

B. Using machine learning

Many approaches adapt techniques from machine learning
field, in order to discover and group similar services. In
[13], [14], service classifiers are defined depending on
sets of previously categorized services. Then the resulting
classifiers are used to deduce the relevant categories for new
given services. In case there were no predefined categories,
unsupervised clustering is used. In [15], CPLSA approach
is defined that reduces a services set then clusters it into
semantically related groups.

C. Using service matching

In [16], a web service broker is designed relying on
approximate signature matching using XML schema match-
ing. It can recommend services to programmers in order
to compose them. In [17], a service request and a service
are represented as two finite state machines then they are
compared using various heuristics to find structural sim-
ilarities between them. In [18], the Woogle web service
search engine is presented, which takes the needed operation
as input and searches for all the services that include
an operation similar to the requested one. In [19], tags
coming from folksonomies are used to discover and compose
services.

D. Using vector space model techniques

The vector space model is used for service retrieval in
several existing works as in [20], [21], [22]. Terms are
extracted from every WSDL file and the vectors are built for
each service. A query vector is also built, and similarity is
calculated between the service vectors and the query vector.
This model is sometimes enhanced by using WordNet,
structure matching algorithms to ameliorate the similarity
scores as in [21], or by partitioning the space into subspaces
to reduce the searching space as in [22].

E. Discussion on the related work

In FCA approaches based on keywords, similar operations
can’t be determined and thus, web service substitutes can’t
be identified either. In our approach, we use the lattice
based on keywords as a preliminary index together with
operation similarity measuring, in order to generate our
concept lattices. We have proposed several uses of the
generated lattices, as for service discovery, selection and
supporting service compositions with backup services. One
of our main contributions is the idea of supporting the
continuity of service compositions.

A service lattice is an organization of services that reveals
the relations between them according to the operations
provided in common. It offers a structure of navigation that
enables better discovery and browsing than in structures
such as lists and sets in other approaches (described in
subsections VI-B, VI-C and VI-D). New services can be
classified in existing lattices by incremental algorithms for



lattice generation. Thus, there is no need to regenerate the
whole lattice, if a new service is to be added. A query
represents a new concept in the lattice, and the services
that offer the minimum required functionality represent the
concepts that are closest to the query concept, while further
situated services offer extra functionalities. In the lattice,
when selecting a service, a sub-lattice that is descendant
from this service can be extracted. This sub-lattice contains
the possible backups that can replace this service to ensure
a recovered functionality.

VII. CONCLUSION

In this paper, we proposed an approach based on formal
concept analysis (FCA) for classifying web services. A web
service lattice reveals the invisible relations between web
services in a certain domain, showing the services that
are able to replace other ones. Thus, facilitating service
browsing, selecting and identifying possible substitutions.
We explained how to exploit the resulting lattices to build
orchestrations of web services and supporting them with
backup services. An obvious drawback of current web
services is the lack of a common definition, which hardens
the identification of similar services and necessitates more
adaptations when replacing a service with another.

Our work in progress is to enrich the service lattices
with quality of service (QoS) aspects, in order to enable
an automatic selection of a service that corresponds to a
requested level of QoS. We are also working on the dynamic
substitution of a web service by one of its backups, to ensure
a continuous functionality of a service orchestration.

REFERENCES

[1] M. P. Papazoglou, Web Services: Principles and Technology.
Pearson, Prentice Hall, 2008.

[2] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In VLDB ’04: Proc. of
the 30th int. conf. on Very large data bases, pages 372–383.
2004.

[3] E. Newcomer and G. Lomow, Understanding SOA with Web
Services (Independent Technology Guides). Addison-Wesley
Professional, 2004.

[4] E. Stroulia and Y. Wang. Structural and semantic matching
for assessing web-service similarity. Int. J. Cooperative Inf.
Syst., 14(4):407–438, 2005.

[5] N. Kokash. A comparison of web service interface similarity
measures. In Proceeding of the 2006 conference on STAIRS
2006, pages 220–231, Amsterdam, The Netherlands, The
Netherlands, 2006. IOS Press.

[6] B. Ganter and R. Wille, Formal Concept Analysis - Mathe-
matical Foundations, Springer, 1999.

[7] J.-R. Falleri, Z. Azmeh, M. Huchard, and C. Tibermacine,
“Automatic tag identification in web service descriptions,” in
proceedings of WEBIST2010. To appear.

[8] S. Brockmans, M. Erdmann, and W. Schoch, “Service-finder
deliverable d4.1. research report about current state of the art
of matchmaking algorithms,” Tech. Rep., October 2008.

[9] H. Lausen and N. Steinmetz, “Survey of current means to
discover web services,” Semantic Technology Institute (STI),
Tech. Rep., August 2008.

[10] L. Aversano, M. Bruno, G. Canfora, M. D. Penta, and D. Dis-
tante, “Using concept lattices to support service selection,”
Int. J. Web Service Res., vol. 3, no. 4, pp. 32–51, 2006.

[11] M. Bruno, G. Canfora, M. D. Penta, and R. Scognamiglio,
“An approach to support web service classification and anno-
tation,” in EEE. IEEE Computer Society, 2005, pp. 138–143.

[12] D. Peng, S. Huang, X. Wang, and A. Zhou, “Concept-based
retrieval of alternate web services,” in DASFAA, ser. Lecture
Notes in Computer Science, L. Zhou, B. C. Ooi, and X. Meng,
Eds., vol. 3453. Springer, 2005, pp. 359–371.

[13] M. Crasso, A. Zunino, and M. Campo, “Awsc: An approach
to web service classification based on machine learning tech-
niques,” Revista Iberoamericana de Inteligencia Artificial,
vol. 12, No 37, pp. 25–36, 2008.

[14] A. Heßand N. Kushmerick, “Learning to attach semantic
metadata to web services,” in International Semantic Web
Conference, 2003, pp. 258–273.

[15] J. Ma, Y. Zhang, and J. He, “Efficiently finding web services
using a clustering semantic approach,” in CSSSIA ’08. New
York, NY, USA: ACM, 2008, pp. 1–8.

[16] J. Lu and Y. Yu, “Web service search: Who, when, what, and
how,” in WISE Workshops, 2007, pp. 284–295.

[17] A. Günay and P. Yolum, “Structural and semantic similarity
metrics for web service matchmaking,” in EC-Web, 2007, pp.
129–138.

[18] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in VLDB ’04: Proceed-
ings of the international conference on Very large data bases.
VLDB Endowment, 2004, pp. 372–383.

[19] E. Bouillet, M. Feblowitz, H. Feng, Z. Liu, A. Ranganathan,
and A. Riabov, “A folksonomy-based model of web services
for discovery and automatic composition,” in (SCC). IEEE
Computer Society, 2008, pp. 389–396.

[20] C. Platzer and S. Dustdar, “A vector space search engine for
web services,” in Third IEEE European Conference on Web
Services, ECOWS 2005., 2005, pp. 62–71.

[21] Y. Wang and E. Stroulia, “Semantic structure matching for
assessing web service similarity,” in 1st International Confer-
ence on Service Oriented Computing (ICSOC03). Springer-
Verlag, 2003, pp. 194–207.

[22] M. Crasso, A. Zunino, and M. Campo, “Query by example
for web services,” in SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing. New York, NY, USA:
ACM, 2008, pp. 2376–2380.

[23] http://www.w3.org/TR/wsdl, last access 10-02-24

[24] http://www.uddi.org/pubs/uddi v3.htm, last access 10-02-24


