
Backing Composite Web Services Using
Formal Concept Analysis

Zeina Azmeh1, Fady Hamoui1,3, Marianne Huchard1, Nizar Messai2,
Chouki Tibermacine1, Christelle Urtado3, and Sylvain Vauttier3

1 LIRMM - CNRS & Univ. Montpellier II, France,
{azmeh, hamoui, huchard, tibermacin}@lirmm.fr

2 MAS - Ecole Centrale Paris, France
nizar.messai@ecp.fr

3 LGI2P - Ecole des Mines d’Alès - Nı̂mes, France
{Fady.Hamoui, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract. A Web service is a software functionality accessible through the net-
work. Web services are intended to be composed into coarser-grained applica-
tions. Achieving a required composite functionality requires the discovery of a
collection of Web services out of the enormous service space. Each service must
be examined to verify its provided functionality, making the selection task nei-
ther efficient nor practical. Moreover, when a service in a composition becomes
unavailable, the whole composition may become functionally broken. Therefore,
an equivalent service must be retrieved to replace the broken one, thus spend-
ing more time and effort. In this paper, we propose an approach for Web service
classification based on FCA, using their operations estimated similarities. The
generated lattices make the identification of candidate substitutes to a given ser-
vice straightforward. Thus, service compositions can be achieved more easily and
with backup services, so as to easily recover the functionality of a broken service.

Key words: Web service classification, Formal Concept Analysis (FCA), service
composition, service backups.

1 Introduction

A Web service is a software functionality accessible through the network. It exposes its
functionalities to the external world by an abstract interface expressed in Web Service
Description Language (WSDL) [1]. A WSDL interface is an XML-based document that
describes a service’s available operations, parameters, data types, and access protocols.

Web services represent the building blocks for creating composite applications.
When creating a composite application, each selected Web service must fulfill a part
of the application’s functionality. Therefore, each service’s WSDL must be analyzed
to verify its provided operations, and so to decide whether to select the service or not.
Then, after identifying the needed services, they can be assembled together in order to
meet the desired functionality of the whole composite application.

The task of finding an appropriate service to use is hard and time-consuming, be-
cause of the large number of existing Web services nowadays. This may become even

2 Zeina Azmeh et al.

harder knowing that Web services are not guaranteed to have a continuous execution.
This is due to their dynamic nature, being offered by various providers, remotely ac-
cessed, and having different quality of service (QoS) levels. Therefore, an available
functioning Web service may crash and become unavailable at any time, which requires
finding an equivalent one to replace it, in order to maintain the application functionality.

The real challenge lies in the fact that there is a lack of WSDL management facil-
ities, especially after the deficiency of UDDI [2], which was originally proposed as a
core Web service registry standard: ”UDDI did not achieve its goal of becoming the
registry for all Web Services metadata and did not become useful in a majority of Web
Services interactions over the Web” [3]. Thus, a mechanism for organizing and indexing
Web services is significantly required. This leads us to our proposition for Web service
classification, which is based on Formal Concept Analysis (FCA)[4].

In our proposed approach, we consider the objects to be Web services and the at-
tributes to be the operations offered by these services. We construct Web service lattices
using many-valued contexts of similarity values calculated for each pair of operations.
The generated service lattices provide us with browsing and navigation capabilities.
This allows the retrieval of more general to more specific sets of services [5, 6]. More
general sets have lesser common operations while more specific sets have more com-
mon operations. Therefore, applying FCA to Web services provides us with a retrieval
mechanism, which facilitates both selection of Web services and identification of their
possible substitutes. Accordingly, it helps building composite applications as well as
supporting them with backup services.

The rest of the paper is organized as follows: Section 2 defines how we adapt FCA
to web services. Section 3 explains our approach along with examples and formal defi-
nitions. Section 4 demonstrates a case study using real web services. Section 5 lists and
discusses the related work. Finally, Section 6 concludes the paper and describes some
of our perspectives.

2 An FCA-Based Approach for Web Service Classification

In our approach, we use FCA [4] in order to construct a classification of Web services.
We consider that the objects are Web services and the attributes are operations. In this
way, a formal context of Web services and operations becomes K = (W,O, I), where:
W = {wsi | 1 ≤ i ≤ nW , nW > 1} is the set of Web services. We suppose that it must
contain more than one Web service. Each service offers a set of one or more operations,
and the union of all of the sets of operations offered by all of the services forms the total
set of operations:

wsi = {opi j | 1≤ i≤ nW , 1≤ j ≤ nwsi}

O=
i=nW⋃
i=1

wsi

(ws,op) ∈ I denotes the fact that the service ws ∈W provides the operation op ∈O
(also read as ws has op). Table 1 shows an example of a formal context (W,O, I) where
W= {Calc1,Calc2,Calc3} and O= {add,sub,mul,div, pow}.

Backing Composite Web Services Using Formal Concept Analysis 3

add sub mul div pow
Calc1 × × ×
Calc2 × × × ×
Calc3 × × ×

Table 1: A formal context for W×O
Fig. 1: The service lattice for the context in
Table 1

Having a set of Web services X ⊆W, X ′ = {op ∈ O | ∀ ws ∈ X : (ws,op) ∈ I} is
the set of common operations. In the same way, having the set of operations Y ⊆ O,
Y ′ = {ws ∈W | ∀ op ∈ Y : (ws,op) ∈ I} is the set of common Web services. In our
example, ({Calc1,Calc2})′ = {add,sub, pow} and ({div})′ = {Calc2,Calc3}.

A concept, for example ({Calc1,Calc2},{add,sub, pow}), is thus a maximal col-
lection of services offering similar operations. The concept lattice defines a hierarchical
organization of services and operations, in which a certain concept inherits all the ex-
tents (services) of its descendants (subconcepts) and all the intents (operations) of its
ascendants (super-concepts). Fig. 1 illustrates the lattice built for the context shown in
Table 1, using the ConExp tool [7].

From the lattice in Fig. 1, we can reveal the relationships between the presented
services. We list some of them as follows:

– Calc1, Calc2 and Calc3 offer the operation {add}. Thus, they can replace each
other for this operation;

– Calc1 and Calc2 offer the operations {add,sub, pow};
– Calc2 can replace Calc1 since it offers all of its operations in addition to div;
– Calc2 and Calc3 offer together the operations {add,div}.

Using binary contexts to classify Web services by their operations reflects two cases:
the service either offers a given operation or not. Substitution can only be handled when
services offer strictly identical operations which is not the case for real Web services.
This is why we need to introduce the notion of operation similarity and use many-valued
contexts of similarity values, as in the following section.

3 Using Many-Valued Contexts

Web services in a certain business domain may offer similar operations. In order to
classify these services by their operations using FCA, we need to calculate the operation
similarity and to use many-valued contexts. We explain our approach using the set of

4 Zeina Azmeh et al.

services illustrated in Table 1. For clarity, we use only the first 3 operations of each
service. We use the actual operations signatures. The set of services with their signatures
are given unique identifiers, as listed in Table 2.

Table 2: A set of calculation services with their operations
Services Id Operations Id

Calc1 ws1 add(a,b) op11
sub(a,b) op12

Calc2 ws2 add(a,b,c) op21
Calc3 ws3 add(a,b,c,d) op31

sub(a,b,c) op32
mult(a,b) op33
add(a,b,c) op34

Next, a similarity measure must be chosen, and applied on pairs of operation sig-
natures extracted from the WSDL files. There are several similarity measures for Web
services that evaluate similarity according to syntax and semantics, such as [8–10].
Similarity is assessed in the form of values in the range [0,1]. If two operations are
sufficiently similar, the similarity value will approach 1, otherwise it will approach 0.
The similarity measure is applied on pairs of operations provided by distinct services.
We do not evaluate similarity between distinct operations provided by the same service
(we suppose that it is equal to 0), because when a service becomes dysfunctional, all of
its operations become dysfunctional too.

A similarity measure Sim : O×O→ [0,1] can be defined as follows:

∀ opi j ∈O=⇒ Sim(opi j,opi j) = 1 (an operation with itself)
∀ opi j,opik ∈O, j 6= k =⇒ Sim(opi j,opik) = 0 (operations in the same service)
∀ opi j,opnm ∈O, i 6= n=⇒ Sim(opi j,opnm)∈ [0,1] (operations in different services)

The calculated similarity values can be presented by a symmetric square matrix that
we will call SimMat, as shown in Table 3. This matrix is of size n = |O|, and its diago-
nal elements are all equal to 1 (similarity of an operation with itself).

From the similarity matrix SimMat, we can extract several binary contexts, by spec-
ifying threshold values θ ∈]0,1]. Thus, the values of SimMat that are greater or equal
to the chosen threshold θ are scaled to 1, while other values are scaled to 0. The binary
context that corresponds to θ = 0.75 is shown in Table 4, we call it SimCxt.

Backing Composite Web Services Using Formal Concept Analysis 5

Table 3: The similarity matrix (SimMat).

op11 op12 op21 op31 op32 op33 op34
op11 1 0 0.75 0.5 0 0 1
op12 0 1 0 0 0.75 0 0
op21 0.75 0 1 0.75 0 0 0.75
op31 0.5 0 0.75 1 0 0 0
op32 0 0.75 0 0 1 0 0
op33 0 0 0 0 0 1 0
op34 1 0 0.75 0 0 0 1

Table 4: The context (SimCxt) for θ = 0.75.

op11 op12 op21 op31 op32 op33 op34
op11 × × ×
op12 × ×
op21 × × × ×
op31 × ×
op32 × ×
op33 ×
op34 × × ×

The SimCxt context is a triple (O,O,RSimθ), where RSimθ is a binary relation indi-
cating whether an operation is similar to another operation or not.

(opi j,opnm) ∈ RSimθ⇐⇒ Sim(opi j,opnm)≥ θ

We use the SimCxt context to generate a lattice of operations (Fig. 2), B(O,O,RSimθ).
This lattice helps in discovering groups of similar operations, which are used later on
to construct the service lattice.

In the resulting operation lattice, groups of mutually similar operations can be iden-
tified by the concepts having equal extent and intent sets. We call such concepts square
concepts [11], because they form square gatherings on the binary context matrix. We
define a group Gop of mutually similar operations OpSim as:

Gop = {OpSim | (OpSim,OpSim) ∈B(O,O,RSimθ)}

The notion of square concepts can be better recognized by performing a mutual
column-line interchange in the SimCxt. The resulting interchanged context is shown in
Table 5.

Table 5: The interchanged (SimCxt) con-
text.

op11 op34 op21 op31 op12 op32 op33
op11 × × ×
op34 × × ×
op21 × × × ×
op31 × ×
op12 × ×
op32 × ×
op33 ×

Fig. 2: The generated lattice for (SimCxt)
shown in Table 4.

From the lattice in Fig. 2 as from the interchanged context in Table 5, we can iden-
tify the groups of similar operations, and they are the following:

6 Zeina Azmeh et al.

– {op11,op34,op21} that we label (11,34,21);
– {op21,op31} labelled (21,31);
– {op12,op32} labelled (12,32);
– {op33} labelled (33).

The groups of similar operations, denoted as G, are used to define the final binary
context. This context is a triple (W,G,R), in which the relation R indicates whether or
not a service offers the functionality represented by the corresponding group of similar
operations. We use the labels representing the groups of operations to build the final
context, which is shown in Table 6. Using this context, we generate the corresponding
service lattice that is shown in Fig. 3.

(11,34,21) (21,31) (12,32) (33)
ws1 × ×
ws2 × ×
ws3 × × × ×

Table 6: The final services × groups con-
text.

Fig. 3: The final service lattice with possible
backups.

From the final generated service lattice, shown in Fig. 3, we can notice the following:

– ws1, ws2, and ws3 offer the functionality denoted by (11,34,21), so they can replace
each other for this specific functionality;

– ws3 can replace ws1 and ws2, and it offers an additional functionality (33).

We can also infer immediately which services offer a specific functionality (denoted
by a specific label), by considering the indices in the label. For example, the label
(11,34,21) makes it possible to directly deduce that (11) is provided by ws1, (34)
by ws3 and (21) by ws2.

4 Case Study

In this section, we demonstrate the use of service lattices for both building composite
Web services and supporting them with backup services in a real world context.

We consider the example of a composite service for currency conversion, composed
of two Web services: a currency converter service Currency and a calculation service
Calculator. The Currency service offers an operation that returns the exchange rate be-
tween two entered currencies: getRate(fromCurr,toCurr). The Calculator service offers
an operation that calculates the multiplication of two entered numbers: mul(a,b). We

Backing Composite Web Services Using Formal Concept Analysis 7

compose these two operations in order to build the composite currency service that con-
verts a given amount from one currency to another. We describe a service composition
using the Business Process Execution Language (BPEL) [12]. We use the BPEL editor
of NetBeans IDE [13] to design and describe the specified CompositeCurrencyService
as shown in Fig. 4.

We used the Seekda [14] and Service-Finder [15] Web service search engines to
search for the needed services. We describe this case study on two parts: first we illus-
trate the use of the approach, then we validate it.

Fig. 4: The composite currency service.

4.1 Using the Approach

We use a set of services for currency conversion shown in Table 7 and another set for
calculation as shown in Table 8. We limit the number of services in this example, in
order to simplify it and clearly explain the idea of lattice use.

8 Zeina Azmeh et al.

Table 7: The set of currency converter services.
Services Id Operations Id

CurrencyConverter ws1 GetConversionRate(fromCurrency,toCurrency) op11
CurrencyConvertor ws2 ConversionRate(FromCurrency,ToCurrency) op21

DOTSCurrencyExchange ws3 GetExchangeRate(ConvertFromCurrency,ConvertToCurrency) op31
ConvertCurrency(Amount,ConvertFromCurrency,ConvertToCurrency) op32

GetCountryCurrency(Country) op33
CurrencyRates ws4 GetRate(CurrencyCode) op41

GetConversion(FromCurrencyCode,ToCurrencyCode) op42
RadixxFlights ws5 GetExchange(FromCurrency,ToCurrency) op51

ConvertCurrency(Amount,FromCurrency,ToCurrency) op52
rates ws6 Convert(CurrencyFrom,CurrencyTo,ValueFrom) op61

Conversion ws7 CelciusToFahrenheit(fCelsius) op71
FahrenheitToCelcius(fFahrenheit) op72

Currency(fValue,sFrom,sTo) op73
CurConvert ws8 GetCurrencySign(CountryName) op81

ConvertCurrency(FromCountry,ToCountry,Amount) op82
ConverterService ws9 Convert(sourceCurrency,targetCurrency,value) op91

Table 8: The set of calculation services.
Services Id Operations Id

Calc ws1 add(a,b) op11
div(a,b) op12
mul(a,b) op13
pow(b,a) op14
sub(a,b) op15

Service ws2 add(a,b) op21
sqrt(a) op22

sub(a,b) op23
MathService ws3 Add(A,B) op31

Divide(A,B) op32
Multiply(A,B) op33
Subtract(A,B) op34

CalculatorService ws4 add(y,x) op41
divide(denominator,numerator) op42

multiply(y,x) op43
subtract(y,x) op44

CalcService ws5 Divide(A,B) op51
Multiply(A,B) op52

OperationAdd(A,B) op53
Subtract(A,B) op54

Calculate ws6 Add(dbl1,dbl2) op61
Divide(dbl1,dbl2) op62

Multiply(dbl1,dbl2) op63
Subtract(dbl1,dbl2) op64

For dealing with this illustration, we assess manually the similarity for the obtained
services’ operations of each set (an automatic approach is described later in the pa-
per). This is achieved by comparing operation signatures (operation names, parameter
names and types). Using the operations lattice and its square concepts, we identify the
following groups of mutually similar operations for the currency services in Table 7:

– {op11,op21,op31,op51} that we label (CR : 11,21,31,51);
– {op32,op42,op52,op61,op73,op82,op91} labelled (CC : 32,42,52,61,73,82,91);
– {op33,op81} labelled (CS : 33,81);
– {op41} labelled (R : 41);
– {op72} labelled (FC : 72);

Backing Composite Web Services Using Formal Concept Analysis 9

– {op71} labelled (CF : 71).

We extract also the groups of mutually similar operations for the calculation services
in Table 8, and they are as follows:

– {op15,op23,op34,op44,op54,op64} labelled (sub : 15,23,34,44,54,64);
– {op11,op21,op31,op41,op53,op61} labelled (add : 11,21,31,41,53,61);
– {op13,op33,op43,op52,op63} labelled (mul : 13,33,43,52,63);
– {op12,op32,op42,op51,op62} labelled (div : 12,32,42,51,62);
– {op14} labelled (pow : 14);
– {op22} labelled (sqrt : 22).

These extracted groups of similar operations lead to a binary context for each set of
services as shown in Tables 9 and 10.

Table 9: The formal context corresponding to the currency converter services.
(CR:11,21,31,51) (CC:32,42,52,61,73,82,91) (CS:33,81) (R:41) (FC:72) (CF:71)

ws1 ×
ws2 × ×
ws3 × × ×
ws4 × ×
ws5 × ×
ws6 ×
ws7 × × ×
ws8 × ×
ws9 ×

Table 10: The formal context corresponding to the calculator services.
(sub:15,23,34,44,54,64) (add:11,21,31,41,53,61) (mul:13,33,43,52,63) (div:12,32,42,51,62) (pow:14) (sqrt:22)

ws1 × × × × ×
ws2 × × ×
ws3 × × × ×
ws4 × × × ×
ws5 × × × ×
ws6 × × × ×

We generate the two corresponding lattices as shown in the right side of Fig. 5. We
can exploit these service lattices to build our composite service as well as to support it
with backup services. Thus, we decide to select operation op11 : (CR : 11) from service
ws1 for exchange rate (currency lattice), and operation op13 : (mul : 13) from service
ws1 for multiplication (calculation lattice). From these lattices (Fig. 5), we can also

10 Zeina Azmeh et al.

Fig. 5: The composite currency service, supported by backups from the service lattices.

extract some backup services for our composite service according to the selected oper-
ations. For example, we used operation op11 : (CR : 11) from service ws1, which has
3 equivalent operations: op21 : (CR : 21), op31 : (CR : 31) and op51 : (CR : 51) appear-
ing clearly in the lattice. This means that if service ws1 breaks down, we can replace it
by any of the services ws2 (equivalent to ws1 being in the same concept), ws3 or ws5
(services introduced in subconcepts).

Moreover, if we go down in the lattice, we get the set of services that provide
the operations used together with extra operations, like service ws5 and service ws3.
They can help if the composite service evolves and needs other operations. In the same
way, we can extract the backup services for the calculation service ws1 that we are
using. According to the calculation service lattice, service ws1 as a whole set of opera-
tions cannot be replaced by any service. But, regarding the multiplication functionality,
op13(mul : 13), it can be replaced by operations op33 : (mul : 33), op43 : (mul : 43),
op52 : (mul : 52), and op63 : (mul : 63), which are offered by services ws3, ws4, ws5,
and ws6 respectively. This gives us a replacement possibility in case of unavailability of
ws1 in the framework of the composite currency service.

Backing Composite Web Services Using Formal Concept Analysis 11

4.2 Validation

In this section, we validate our approach using the entire number of retrieved Calculator
and Currency services4. We queried Service−Finder to collect service endpoints (ad-
dresses), then we downloaded the corresponding WSDL interfaces via Seekda. For the
Calculator service, we searched using multiply as keyword. This returned a set WS1
of 29 services, among which we found one unrelated service.

For the Currency service, we used a combination of the following keywords ex-
change, rate, currency, converter. After eliminating the repeated services, we found a
set of 81 services. From this set, we also eliminated the services that we were unable to
parse. This resulted in a set WS2 of 64 services.

We parsed each service of the two sets (WSDL parser5), to extract its operation
signatures. The set WS1 has a total of 142 operations, while WS2 has 935 operations.

In order to calculate the SimMat (explained in Section 3) for both sets of services,
we make use of Jaro−Winkler [16] similarity measure, to assess the similarity be-
tween the extracted signatures according to each set. This metric gave convenient simi-
larity values that were calculated efficiently, compared to another tested technique that
used a combination of syntactic and semantic metrics. After a number of experiments,
we found that a relatively pertinent similarity value starts from 80%. By applying this
threshold on the SimMat, we obtained the binary SimCxt corresponding to each set.

We tried to compute the lattices corresponding to each SimCxt using Galicia [17].
The lattices could not be generated due an ”out of memory” error (on a machine with
limited resources). Therefore, we computed the Galois Sub Hierarchy (GSH), (order
induced by attribute and object concepts). Using GSH, we obtained a suborder of 155
concepts for SimCxt (142× 142) and another suborder of 1724 concepts for SimCxt
(935× 935). The second suborder may be reduced depending on the functionality fil-
tering techniques.

Hereby, we restrict our analysis on WS1 regarding the limited paper space. From the
GSH calculated for SimCxt (142×142), we extracted 65 square concepts. Among these
65 square concepts, we had 13 non-trivial concepts and 52 concepts reduced to one
operation. Each square concept represents a functionality, for example: c82 represents
the multiply functionality. It contains {op15.2,op18.3,op2.3,op6.3,op8.2}, which are
mutually substitutable operations for calculating the multiplication of two numbers.

Afterwards, we constructed the lattice of services (as objects) and these square con-
cepts (as attributes). The generated lattice is shown in Fig. 6, and contains 21 concepts.
By regarding the right half of the lattice, we can notice services that can be entirely
replaced by other ones. For example: if we consider ws15, it contains the multiply
functionality (being a subconcept of c82). This service can be replaced by three other
services: ws18, ws6 and ws2.

5 Related Work

Software engineering research has long benefitted from using FCA-based techniques in
various ways, as attested by [18] which indexes and classifies 42 such scientific papers

4 Retrieved services: http://www.lirmm.fr/∼azmeh/icfca11/CaseStudy.html
5 Available online: http://www.lirmm.fr/∼azmeh/tools/WsdlParser.html

12 Zeina Azmeh et al.

Fig. 6: The lattice corresponding to the Calculator services set.

published between 1992 and 2003 using FCA. These works go from early development
phases (requirement engineering) to late ones (maintenance or legacy system analysis).
Many have focused on refactoring and reingineering, especially in object-oriented lan-
guages [19–22]. Although our approach can be used and understood as a Web service
refactoring method (since operations are factorized in the lattice), this paper chooses
to focus on the classification of Web services inside backup service libraries. Among
the works that ambition to browse or request software libraries using FCA, some rely
mainly on syntax [23, 24], extending type theory [25] to recent paradigms (Component-
based development or SOA). Others have studied the use of FCA [26] to structure
keyword-based indexes that enable to browse software libraries [27, 28]. In the liter-
ature, we can find several works that more specifically focus on Web service classifi-
cation and selection. A quick overview can be obtained from [29, 30]. In sections 5.1
and 5.2 we list a selection of works based respectively on FCA and on other techniques.
Then we discuss comparatively our contribution in Section 5.3.

5.1 Approaches Based on FCA

In [31], Web services are classified using FCA to facilitate WSDL browsing. The for-
mal contexts are composed according to three levels, service level, operation level and
type level, together with keywords. These keywords are identified from the WSDL files
by applying vector space metrics with the help of WordNet to discover the synonyms.
The resulting service lattice represents an indexing of Web services, it highlights the
relationships between the services and permits the identification of different categoriza-
tions of a certain service. In [32], FCA is used together with keywords extracted from
services’ interfaces to build a Web services lattice. The extracted words are processed
using WordNet and other IR techniques, and are classified into vectors using support
vector machines (SVM). The obtained vectors categorize the services into domains, and
service lattices are obtained for each category using FCA.

In [33, 34], pairs of similar operations, depending on a chosen threshold, are merged
together and the services are described by a representative operation of the pair in order

Backing Composite Web Services Using Formal Concept Analysis 13

to build the service lattice. They do not approach the issue that in a set of operations,
op1 can be similar to op2 and op2 similar to op3 but op1 might be not similar to op3
because similarity is in general not a transitive operation. We solve this issue using an
intermediate operation lattice based on the SimCxt to merge the maximal sets of mutu-
ally similar operations. Our mining of mutually similar operations is another application
of the use of tolerance relations jointly with FCA, as is also done in [35].

5.2 Approaches Based on Other Techniques

Many approaches use machine learning techniques, in order to discover and group sim-
ilar services. In [36, 37], service classifiers are defined depending on sets of previously
categorized services. The resulting classifiers are then used to deduce relevant cate-
gories for new services. In case there are no predefined categories, unsupervised clus-
tering is used. In [38], the CPLSA approach is defined that reduces a service set then
clusters it into semantically related groups.

In [39], a Web service broker is designed relying on approximate signature match-
ing using XML schema matching. It can recommend services to programmers in order
to compose them. In [40], a service request and a service are represented as two fi-
nite state machines. Then, they are compared using various heuristics to find structural
similarities between them. In [8], the Woogle Web service search engine is presented,
which takes the needed operation as input and searches for all the services that include
an operation similar to the requested one. In [41], tags coming from folksonomies are
used to discover and compose services.

The vector space model is used for service retrieval in several existing works as
in [42–44]. Terms are extracted from every WSDL file and vectors are built for describ-
ing service. A query vector is also built, and similarity is calculated between the service
vectors and the query vector. This model is sometimes enhanced by using WordNet
structure matching algorithms to ameliorate similarity scores as in [43], or by partition-
ing the search space into smaller subspaces as in [44].

5.3 Discussion

In FCA approaches based on keywords, similar operations can not be determined and
thus, Web service substitutes can not be identified either. In our approach, we generate
an intermediary lattice to group mutually similar operations. Thus, sets of equivalent
operations appear in each concept of the final lattice. This serves for several purposes
such as service retrieval, selection and support for service compositions with backup
services. Indeed, one of our main contributions is the idea of supporting the continuity
of service compositions. When selecting a service, a sub-lattice that is descendant from
this service can be extracted. This sub-lattice contains the possible backups that can
replace this service to ensure a recovered functionality.

A service lattice is a structure that reveals relations between services according to
the operations provided in common. It offers a navigation facility that enables better
discovery and browsing than in structures such as lists and sets used in the other ap-
proaches. New services can be classified in existing lattices using incremental lattice
generation algorithms. Thus, there is no need to regenerate the whole lattice.

14 Zeina Azmeh et al.

Moreover, our approach can be tuned to have similarity thresholds set to consider
finer-grained to coarser-grained comparisons. Indeed, the threshold values set during
the process set the sizes of the sieves used to keep similar operations. These thresholds
are set empirically. They condition the number of candidate backups our approach will
discover. If there are too much candidate services, selection might as well be harder
(only very similar services should be kept): the threshold can be raised. If there are few
services proposed as backups, the threshold can be lowered. Backup candidates will
be more dissimilar, probably requiring some little manual adaptations, but such setting
would find backup possibilities where others would not. Finally, systematically calculat-
ing lattices for several threshold values might provide an interesting zoom-in / zoom-out
capability that would provide several finer to coarser-grained classifications as in [45].

6 Conclusion and Future Work

In this paper, we proposed an approach based on Formal Concept Analysis (FCA) for
building Web service lattices according to functionality domains. We make use of sim-
ilarity measures for Web services to form our formal contexts in order to build the
lattices according to threshold values.

A Web service lattice reveals the invisible relations between Web services in a cer-
tain domain, showing the services that are able to replace other ones. Thus, facilitating
service browsing, selecting and identifying possible substitutions. We explained how
to exploit the resulting lattices to build orchestrations of Web services and supporting
them with backup services.

The quality of our generated lattices depends on the chosen similarity measure [8–
10] and the similarity threshold. The more accurate the measure is, the more precise the
obtained lattice is. The chosen values of threshold will give us a variation of lattices,
and they reflect the level of the required adaptations. Thus, a high value of threshold
means similar services with a low number of required adaptations.

Our work in progress is to enrich the service lattices with quality of service (QoS)
aspects, in order to enable an automatic selection of a service that responds to a re-
quested level of QoS. We are also working on the dynamic substitution of a Web service
by one of its backups, to ensure a continuous functionality of a service orchestration.
Besides, the construction of a composite web service could benefit from Relational
Concept Analysis [46]. Several context families could be considered that would encode
relations between operations, operations and services, or services in the composition.

Another challenge is the dynamic update of the classification. As algorithms exist
that incrementally build lattices, we believe adding services might be possible without
reconsidering the whole calculus. When the disappearance of services is concerned,
dismissing the indexing information immediately might not be a good idea as services
might be frequently unavailable for temporary periods of time (as a crashed web server
reboots, for instance). More observation still is necessary for us to evaluate if disappear-
ances should be handled as immediate removals (or, maybe, as lazy removals, based on
their being unavailable for too long). This dynamic aspect is an interesting field for
future research.

Backing Composite Web Services Using Formal Concept Analysis 15

Acknowldegements Authors would like to thank anonymous reviewers for their
relevant comments that helped to clarify and enrich our paper.

References

1. Web Services Description Language (WSDL) 1.1. (http://www.w3.org/TR/wsdl)
2. UDDI Version 3.0.2. (http://www.uddi.org/pubs/uddi v3.htm)
3. Newcomer, E., Lomow, G.: Understanding SOA with Web Services (Independent Technol-

ogy Guides). Addison-Wesley Professional (2004)
4. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical foundations edn. Springer

(1999)
5. Godin, R., Mineau, G.W., Missaoui, R.: Méthodes de classification conceptuelle basées sur

les treillis de Galois et applications. Revue d’intelligence artificielle 9 (1995) 105–137
6. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to

browsing retrieval. Machine Learning 24 (1996) 95–122
7. The Concept Explorer. (http://conexp.sourceforge.net/)
8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services.

In Proc. of VLDB ’04, VLDB Endowment (2004) 372–383
9. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service similarity.

Int. J. Cooperative Inf. Syst. 14 (2005) 407–438
10. Kokash, N.: A comparison of web service interface similarity measures. In Proc. of STAIRS

2006, Amsterdam, The Netherlands, IOS Press (2006) 220–231
11. Azmeh, Z., Huchard, M., Messai, N., Tibermacine, C., Urtado, C., Vauttier, S.: Many-Valued

Concept Lattices for Backing Composite Web Services. Technical report, LIRMM (2010)
12. Web Services Business Process Execution Language Version 2.0. (http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html)
13. NetBeans IDE. (http://www.netbeans.org/)
14. Seekda Web Services Search Engine. (http://webservices.seekda.com)
15. Service-Finder Web Services Search Engine. (http://demo.service-finder.eu)
16. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for

name-matching tasks. In Kambhampati, S., Knoblock, C.A., eds.: IIWeb. (2003) 73–78
17. Galicia. (http://www.iro.umontreal.ca/ galicia/)
18. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for

software engineering activities. In Ganter, B., Stumme, G., Wille, R., eds.: Formal Concept
Analysis: Foundations and Applications. LNCS–LNAI (3626). Springer (2005) 250–271

19. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using galois
lattices. In: OOPSLA. (1993) 394–410

20. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM Trans.
Program. Lang. Syst. 22 (2000) 540–582

21. Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify building class
hierarchies algorithms. ITA 34 (2000) 521–548

22. Godin, R., Valtchev, P.: Formal concept analysis-based class hierarchy design in object-
oriented software development. In Ganter, B., Stumme, G., Wille, R., eds.: Formal Concept
Analysis. Volume 3626 of Lecture Notes in Computer Science., Springer (2005) 304–323

23. Aboud, N.A., Arévalo, G., Falleri, J.R., Huchard, M., Tibermacine, C., Urtado, C., Vauttier,
S.: Automated architectural component classification using concept lattices. In Proc. of
WICSA/ECSA’09, Cambridge, UK, IEEE Computer Society Press (2009)

24. Arévalo, G., Desnos, N., Huchard, M., Urtado, C., Vauttier, S.: FCA-based service classifi-
cation to dynamically build efficient software component directories. International Journal
of General Systems 38 (2009) 427–453

16 Zeina Azmeh et al.

25. Liskov, B.: Keynote address - data abstraction and hierarchy. SIGPLAN Not. 23 (1987)
17–34

26. Lindig, C.: Concept-based component retrieval. In Köhler, J., Giunchiglia, F., Green, C.,
Walther, C., eds.: Working Notes of the IJCAI’95 Workshop: Formal Approaches to the
Reuse of Plans, Proofs, and Programs, Montréal, Canada (1995) 21–25

27. Fischer, B.: Specification-based browsing of software component libraries. In Proc. of
ASE’98, Honolulu, USA (1998) 74–83

28. Sigonneau, B., Ridoux, O.: Indexation multiple et automatisée de composants logiciels.
Technique et Science Informatiques 25 (2006) 9–42

29. Brockmans, S., Erdmann, M., Schoch, W.: Service-finder deliverable d4.1. research report
about current state of the art of matchmaking algorithms. Technical report (2008)

30. Lausen, H., Steinmetz, N.: Survey of current means to discover web services. Technical
report, Semantic Technology Institute (STI) (2008)

31. Aversano, L., Bruno, M., Canfora, G., Penta, M.D., Distante, D.: Using concept lattices to
support service selection. Int. J. Web Service Res. 3 (2006) 32–51

32. Bruno, M., Canfora, G., Penta, M.D., Scognamiglio, R.: An approach to support web service
classification and annotation. In: EEE, IEEE Computer Society (2005) 138–143

33. Peng, D., Huang, S., Wang, X., Zhou, A.: Concept-based retrieval of alternate web ser-
vices. In Zhou, L., Ooi, B.C., Meng, X., eds.: DASFAA. Volume 3453 of Lecture Notes in
Computer Science., Springer (2005) 359–371

34. Azmeh, Z., Huchard, M., Tibermacine, C., Urtado, C., SylvainVauttier: Using concept lat-
tices to support web service compositions with backup services. In: Proc. of ICIW’10, IEEE
Computer Society (2010) 363–368

35. Kaytoue, M., Assaghir, Z., Napoli, A., Kuznetsov, S.O.: Embedding tolerance relations in
formal concept analysis: an application in information fusion. In Huang, J., Koudas, N.,
Jones, G., Wu, X., Collins-Thompson, K., An, A., eds.: CIKM, ACM (2010) 1689–1692

36. Crasso, M., Zunino, A., Campo, M.: Awsc: An approach to web service classification based
on machine learning techniques. Inteligencia Artificial, Revista Iberoamericana de Interli-
gencia Artificial 12, No 37 (2008) 25–36

37. Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services. In: Inter-
national Semantic Web Conference. (2003) 258–273

38. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic ap-
proach. In Proc. of CSSSIA ’08, New York, USA, ACM (2008) 1–8

39. Lu, J., Yu, Y.: Web service search: Who, when, what, and how. In: WISE Workshops. (2007)
284–295

40. Günay, A., Yolum, P.: Structural and semantic similarity metrics for web service matchmak-
ing. In: EC-Web. (2007) 129–138

41. Bouillet, E., Feblowitz, M., Feng, H., Liu, Z., Ranganathan, A., Riabov, A.: A folksonomy-
based model of web services for discovery and automatic composition. In: IEEE Interna-
tional Conference on Services Computing (SCC), IEEE Computer Society (2008) 389–396

42. Platzer, C., Dustdar, S.: A vector space search engine for web services. In: Third IEEE
European Conference on Web Services, 2005. ECOWS 2005. (2005) 62–71

43. Wang, Y., Stroulia, E.: Semantic structure matching for assessing web service similarity. In
Proc. of ICSOC’03, Springer-Verlag (2003) 194–207

44. Crasso, M., Zunino, A., Campo, M.: Query by example for web services. In Proc. of SAC
’08, New York, NY, USA, ACM (2008) 2376–2380

45. Messai, N., Devignes, M.D., Napoli, A., Smaı̈l-Tabbone, M.: Using domain knowledge to
guide lattice-based complex data exploration. In Proc. of ECAI 2010, IOS Press, 847–852

46. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery in struc-
tured datasets. Ann. Math. Artif. Intell. 49 (2007) 39–76

