Querying Relational Concept Lattices

Z. Azmeh¹, M. Huchard¹, A. Napoli², M. Rouane-Hacene³, P. Valtchev³
¹LIRMM (CNRS-UM2), ²LORIA (CNRS-INRIA Nancy Grand Est), ³UQAM (Montreal)

Introduction
Relational Concept Analysis (RCA) constructs conceptual abstractions from a relational context family (RCF). An RCF is a set of objects described by both own properties and inter-object links. It generates several lattices that are connected via relational attributes. Navigating such interrelated lattice family in order to find concepts of interest is not a trivial task due to the potentially large size of the lattices and the need to move the expert’s focus from one lattice to another. We propose a query-based navigation approach that helps an expert to explore a concept lattice family, according to a navigation schema.

Definition: Relational Context Family
An RCF is a pair \((K, R) \) where \(K \) is a set of formal (object-attribute) contexts \(K_i = (O_i, A_i, L_i) \) and \(R \) is a set of relational (object-object) contexts \(R_{ij} \subseteq O_i \times O_j \) where \(O_i \) (domain of \(R_{ij} \) and \(O_j \) (range of \(R_{ij} \)) are the object sets of the contexts \(K_i \) and \(K_j \), respectively.

Example RCF
An RCF of countries, restaurants, Mexican dishes, ingredients, and salsas, together with relations between them.

Definition: Relational Query
A relational Q on a relational context family \((K, R) \) is a pair \(Q = (A_q, O_q, R_q) \), where: \(A_q = \{q_{K_i} | q_{K_i} \} \) is a simple query on \(K_i \in K \) composed of a set of attributes from \(A_i \); \(O_{qK} \) is the set of query objects \(R_q \) is a set of relational constraints \(R_q = \{(o_{i1}, r_{ij}) | O_j\} \).

Example: Query
Find a country described by “fr”, a restaurant of this country that serves a dish containing “chicken”, “cheese”, and “corn-tortilla”, and a salsa that is “hot” and suitable with this dish.

Navigating a Concept Lattice Family with a Query
A human expert query defines a natural path (that guides an algorithm) for navigating a lattice family. Starting from country lattice, we can locate “France” as the answer for “q-country”. We extract its relational attributes \(has:Concept_{16}, has:Concept_{17}, has:Concept_{20} \). In restaurant lattice, “Hard Rock” in Concept_{17} cannot be an answer to “q-restaurant”. Like this for “q-restaurant”, we have two restaurants [Old el Paso, El Sombrero]. They serve at least a dish answering “q-dish” and “q-salsa”.

Conclusion
The query approach is a guiding method that enables a human expert to navigate a lattice family to locate interesting solutions. Each selected object is a departure point for inspecting the objects of the selected concept, exploring the neighborhood, going up by relaxing constraints or going down by adding constraints.