

Acknowledgments

i

Contents

1 Introduction 1

1 Context . 1
2 Problem Statement - Web Service Selection . 3

2.1 Describing User Requirements . 4
2.2 Web Service Discovery . 4
2.3 Web Service Classification . 5
2.4 Web Service Selection . 5

3 Contributions . 5
4 Thesis Outline . 6

I State of the Art 9

2 Web Service Basics 11

1 Introduction . 11
2 What are Web Services? . 11

2.1 Describing a Web Service . 12
2.1.1 Functional Properties . 13
2.1.2 Non-Functional Properties . 15

2.2 Discovering a Web Service . 16
2.3 Invoking a Web Service . 17

3 Web Service-Oriented Architectures (WSOA) . 18
3.1 Orchestration . 18
3.2 Choreography . 19
3.3 Business Process Execution Language (BPEL) 19

4 Summary . 21

3 Related Work 23

1 Introduction . 23
2 Works about Selecting an Independent Web Service 24

2.1 Information Retrieval based Classification 24
2.2 Concept Lattice based Classification . 24
2.3 QoS-based Classification . 25
2.4 Semantic-based Classification . 26

3 Works about Selecting Composable Web Services 26
3.1 Manual Composition . 26

iii

Contents

3.2 Automatic Composition . 27
4 Discussion . 28
5 Summary . 30

4 FCA and RCA Basics 33

1 Introduction . 33
2 Formal Concept Analysis (FCA) . 33

2.1 Case Study . 33
2.2 Definitions . 34

3 Relational Concept Analysis (RCA) . 37
3.1 Case Study . 37
3.2 Definitions . 37

4 Simple and Relational Queries . 39
4.1 Simple queries . 39
4.2 Relational queries . 41
4.3 Lattice Navigation by Relational Queries 49
4.4 A Query-Based Navigation Algorithm . 50
4.5 Variations about the Algorithm . 52

5 Summary . 58

II Contributions 65

5 The Selection Framework 67

1 Overview . 67
2 The Selection Framework . 67

2.1 User Requirements Layer . 68
2.1.1 Abstract WSDL File . 68
2.1.2 Abstract BPEL File . 71

2.2 Discovery Layer . 71
2.2.1 Web Service Retriever . 72
2.2.2 WSDL Parser . 72

2.3 Classification Layer . 73
2.4 Selection Layer . 73

3 Contribution Outline . 73

6 Web Service Selection by Tags 75

1 Introduction . 75
2 The Selection Framework: Use Case 1 . 76

2.1 Discovery Layer . 76

iv

Contents

2.2 Classification Layer . 77
2.2.1 Automatic tagger . 79
2.2.2 Creation of the training corpus 79
2.2.3 Pre-processing of the WSDL files 80
2.2.4 Selection of the candidate tags 80
2.2.5 Computation of the features . 82
2.2.6 Training and using the classifier 83
2.2.7 WordNet for semantically related tags 83
2.2.8 FCA Classifier . 84

2.3 Selection Layer . 84
3 Summary . 87

7 Web Service Selection by Functionality 89

1 Introduction . 89
2 The Selection Framework: Use Case 2 . 90

2.1 Discovery Layer . 91
2.2 Classification Layer . 91

2.2.1 Similarity Evaluator . 93
2.2.2 Threshold Calculator . 93
2.2.3 Scaler . 93
2.2.4 Square Concept Extractor . 94

2.3 Selection Layer . 96
3 Summary . 96

8 Web Service Selection According to Multi- User Requirements 99

1 Introduction . 99
2 The Selection Framework: Use Case 3 . 101

2.1 Discovery Layer . 103
2.2 Classification Layer . 104

2.2.1 Compatibility Checker . 104
2.2.2 QoS Level Calculator . 105
2.2.3 Composability Evaluator . 105
2.2.4 RCA Classifier . 105

2.3 Selection Layer . 106
3 Summary . 107

9 Experimentation 109

1 Introduction . 109
2 Web Service Selection by Tags . 109

2.1 Methodology . 110

v

Contents

2.2 Validation . 110
3 Web Service Selection by Functionality . 112

3.1 Methodology . 113
3.2 Validation . 116

4 Web Service Selection According to Multi- User Requirements 119
4.1 Methodology . 120
4.2 Validation . 121

5 Summary . 126

III Conclusion and Perspectives 129

10 Conclusion 131

1 Conclusion . 131
2 Perspectives . 134

2.1 Improving our Framework . 134
2.2 Towards Defining a Structure of a Smart Web Service Registry 135

Bibliography 137

IV Appendices 145

A BoxPlot++ 147
1 Definition . 147
2 Utilization . 147
3 BoxPlot++ . 149
4 Related work . 150

4.1 k -means clustering . 150
4.2 The k -medians clustering . 150

5 Conclusion . 151

vi

Chapter 1

Introduction

Contents
1 Context . 1

2 Problem Statement - Web Service Selection 3

2.1 Describing User Requirements . 4

2.2 Web Service Discovery . 4

2.3 Web Service Classification . 5

2.4 Web Service Selection . 5

3 Contributions . 5

4 Thesis Outline . 6

1 Context

Web services move us beyond information exchange, towards the interoperation between differ-
ent applications on a network [1]. The interoperability of software applications enables us of
defining new software systems by the integration of existing applications, which are accessible
through well-defined services. The idea of creating new software systems by loosely coupling ser-
vices over a network is the heart of the Service-Oriented Architectures (SOA) paradigm [2, 3, 4].
Although SOA is not necessarily based on Web services, they represent an important realiza-
tion of these architectures. Web services are also important because they are based upon open
internet standards for description and invocation.

Dealing with Web services recognizes three fundamental actions, each of which is related to a
standard: Web service description, the action using which, a service can be represented(exposed
and advertised) to the external world. A functionality of a service is represented to the ex-
ternal world by the means of an abstract interface described using the standard Web Service
Description Language (WSDL) [5]; Web service discovery, which is associated to registries and
repositories, where one can search for a needed service. A registry must provide a fairly precise
search capability to render the discovery action more efficient and less time-consuming. Initially,
Web service registries were supposed to be built upon a standard called UDDI [6], but discovery
mechanisms are not limited to this standard, as we shall in more details see later on; Web ser-
vice invocation, which describes a client-server communication and is embodied in the messages
exchanged between a service provider and a service consumer. These messages are described by
a standard called SOAP [7], and are transmitted over an HTTP connection.

1

Chapter 1. Introduction

Performing the three previous actions is done by three actors, a provider, a registry, and a
consumer, as illustrated in Figure 1.1. This figure represents what we call the SOA triangle [3].
It illustrates the interaction between the three actors, as well as the used standards.

Figure 1.1: The SOA triangle.

A service provider publishes his service at a service UDDI registry using a publishing in-
terface. The public interfaces and binding information of the registered services are clearly
defined in the WSDL standard language. A registry organizes the published services and pro-
vides a query interface that enables a service consumer to search for a needed service, and obtain
its provider’s location information. A service consumer then interacts with a service provider
through the SOAP protocol.

In our days, Web service discovery is not limited to UDDI-based registries. Service discovery
can be carried out through either Web service portals (service search engines) or through websites
of certain service providers. The previous SOA triangle can be rather represented as in Figure 1.2.

Figure 1.2: The SOA triangle nowadays.

Web portals are basically search engines that use focused crawlers as well as manual reg-

2

2. Problem Statement - Web Service Selection

istration to gather WSDL interfaces and index them. Web services can be used following the
cycle in Figure 1.3, which involves several actions, as follows:

Figure 1.3: The Web service utilization cycle and its activities.

A Web service utilization cycle starts by describing a service before exposing it to the exter-
nal world. A service is described using a standard language called WSDL. Exposing a service
to the external world is done by publishing it to a public registry built using a standard called
UDDI. Using such a public registry, a service can be discovered among many others, then be
selected if it meets the required functionality. Once a service is selected, it can be either invoked
inside an application using a standard called SOAP, or can be composed with other services
to form a composite service, which itself can be considered as a new service that can follow
the utilization cycle. Sometimes, a service that is selected to be used inside an application or a
composition, may become no longer functional for some reason. In such a case, we can substitute
this service by another discovered and selected one.

In the next section, we discuss the issues and difficulties surrounding the consumer’s part of
this Web service utilization cycle.

2 Problem Statement - Web Service Selection

In this thesis, we deal with the consumer related part for Web service utilization, which is
illustrated previously in Figure 1.3.

3

Chapter 1. Introduction

The main question to answer is:
How can a consumer select a suitable service to use, according to some desired
requirements?

We define the service selection problem as a four-levels problem, as illustrated in Figure 1.4.

Figure 1.4: Overview of the problematic of service selection.

2.1 Describing User Requirements

Current discovery mechanisms limit the user expression capability to only keywords. This dis-
ables the user from specifying his needs for a certain functionality (one or more operations),
for an accepted level of QoS per each service, and for composable services. Thus, there is a
lack of a requirement description language that enables the user of specifying all of the previous
requirements.

2.2 Web Service Discovery

There is a large number of Web services nowadays that is increasing everyday (Seekda Web
service search engine [8] indexes more than 28,000 services). They are described using WSDL
language, inside which, the description is restricted to syntactic information. The only available
semantic information is the name of each parameter, which may not always be clear [9].

Current discovery mechanisms are embodied in Web service search engines, especially after
the deficiency of UDDI registries: "UDDI did not achieve its goal of becoming the registry for

4

3. Contributions

all Web Services metadata and did not become useful in a majority of Web Services interactions
over the Web" [10]. The Web service search engines index services by the keywords found in their
WSDL interfaces. This is not efficient nor adequate, because of the insufficient amount of words
that can be extracted from the WSDL interfaces, especially when they are not documented.
Such search engines return a large list of services that are not all related to the used keywords,
nor to the searched functionality, and who might have invalid WSDL syntax. Thus, this raises
a need for validity and functional filtration for verifying each returned service.

2.3 Web Service Classification

Before selecting a service, there is a need for services organization and browsing techniques,
according to which, services can be ranked. This is an effort- and time- consuming task for the
user to do by hand, especially when having a large number of returned services that are not
necessarily documented. There is also a need for tools to determine whether two services provide
similar functionality, and to decide which service offers a better compromise of QoS levels. The
last important thing to consider is deciding which services can be composed with others.

2.4 Web Service Selection

The selection of a proper Web service to use is not straightforward, according to the previous
problems of expressing user requirements, service discovery and classification techniques. It even
becomes a real challenge when building a service composition.

Web services have various characteristics of QoS due to several factors, like the dynamic
nature of the internet and the various service providers (individuals and professionals). Services
are remotely accessed, and sometimes they can be provided by non-professional individuals for
free. Therefore, their continuous execution might not be guaranteed nor their QoS levels.

If a user succeeds in discovering, selecting, and composing all of the services he needs, his
service composition might be threatened by the fail of one or more services at any moment. In
such a case, there is a need for a mechanism of selecting service substitutes (backups) to recover
the missing functionality and maintain the composition’s continuity.

Thus, there is a need to determine which services to select, based on identifying which ones
provide the needed functionality, offer the best compromise of QoS levels, and are composable
with others.

3 Contributions

We propose a framework that assists users during design-time, in the selection of a needed Web
service either for individual invocation, or for composition. In addition to considering possible
service substitutions to maintain a continuous functionality.

The framework takes into consideration several criteria for performing the selection. These
criteria represent the user requirements for functionality, QoS, and composition. Thus, the

5

Chapter 1. Introduction

framework tackles the consumer related part of Web service utilization, including Web service
discovery, selection for independent or composition utilization, and substitution. Therefore, each
layer of our framework corresponds to a level of the described problem in the previous section,
and they are as follows:

� User requirements layer: in which, we propose to extend the WSDL standard to define
an abstract WSDL description of the needed services. In such description file, we can
specify several needed services by their functionality, along with their accepted QoS levels.
We also propose to use the BPEL standard to define an abstract process, in which, a user
can use the services that he described in the abstract WSDL file.

� Discovery layer: in which, we propose to have several components for the retrieval of
the needed services. We propose to have an analyzer for user requirements specified in the
abstract WSDL and abstract BPEL files; a service retriever that searches for the needed
services using a Web service resource; and a WSDL parser that extracts the information
inside each retrieved WSDL file, and checks the service’s validity.

� Classification layer: in which, we adopt two classification techniques based on concept
lattices. The first technique is called Formal Concept Analysis (FCA) and the second
is Relational Concept Analysis (RCA). We classify services using these techniques into
lattices to facilitate the selection.

� Selection layer: in which, we propose methods for lattice navigation, in order to identify
and select the services that best match user requirements, together with their potential
substitutes (backups).

4 Thesis Outline

This thesis contains a background and state of the art study, a description of our proposed
framework with several use cases, and an overview of the obtained experimental results. The
following chapters are organized as follows:

> Chapter 2 gives a background about Web services along with their related standards.

> Chapter 3 studies the related work, lists the different used technologies, and puts the
light on the current issues.

> Chapter 4 gives a background about the Formal and Relational Concept Analysis (FCA,
RCA), together with their formal definitions illustrated by examples. It also proposes an
original algorithm for querying and navigating a concept lattice family [A].

> Chapter 5 presents an overview about our proposed framework that handles the problem
of Web service selection, as well as a description of its main layers and components.

> Chapter 6 describes Web service selection by tags [B], the first use case of our framework.
In this use case, we show the utility of our framework for the selection of one or more
independent services, along with their possible substitutes. We use formal concept anal-
ysis (FCA) to classify Web services into concept lattices according to their automatically

6

4. Thesis Outline

extracted tags (the significant keywords appearing in their documentations) [C]. A service
lattice reveals the invisible relations between the services. It is considered as a browsing
mechanism that facilitates the selection of a needed service, and the identification of its
candidate backups. This enables a continued functionality of a Web service, which becomes
indispensable, especially when a service represents a part of a composite application.

> Chapter 7 describes Web service selection by functionality [D], the second use case of our
framework. In this use case, we enable browsing Web services by their functionality, in
order to facilitate the selection of a service offering needed operations, and the identification
of its possible backups. We accomplish this by constructing Web service lattices using
many-valued contexts of similarity values calculated for each pair of operations. This
enables us of extracting groups of mutually similar operations. Each one of these groups
represents a functionality, according to which, a new service lattice can be generated. The
generated service lattices provide us with navigation capabilities.

> Chapter 8 describes Web service selection according to multi- user requirements [E],
the third and final use case of our framework. In this use case, we aim at providing
a facility for building business processes transparently, according to user requirements.
This means that a user can model his business process in an abstract way, without being
aware of the concrete services existing on the Web. This is realized by considering three
levels of user requirements: the needed functionality, the accepted QoS levels, and the
composition. Then, identifying the services that satisfy these requirements. We specialize
our framework in order to facilitate Web service selection according to user requirements.
We use the Relational Concept Analysis (RCA) to characterise the services by their QoS
levels and to express the composition relations between them. The generated lattices help
in identifying the services that match the specified requirements, with the help of RCA
relational queries.

> Chapter 9 presents the set of experiments that were conducted using real Web services
to validate our framework. We present each experiment on two parts: a methodology
part, where we explain the steps that we followed for conducting the experiment; and a
validation part, where we show and discuss the obtained results.

> Chapter 10 concludes with a summary about the proposed framework with its use cases.
It also draws the future trends and perspectives.

7

Chapter 1. Introduction

Related Publications

[A] Zeina Azmeh, Mohamed Hacene Rouane, Marianne Huchard, Amedeo Napoli and Petko
Valtchev: Lessons Learned in Querying Relational Concept Lattices to Locate Concepts of
Interest. Submitted to the eighth International Conference on Concept Lattices and their
Applications (CLA’11), Nancy, France, October 2011. (Notification on August 22, 2011).

[B] Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Urtado and Sylvain
Vauttier: Using Concept Lattices to Support Web Service Compositions with Backup
Services. In Proceedings of the 5th International Conference on Internet and Web Ap-
plications and Services (ICIW’10), pages 363-368. Barcelona, Spain, May 2010. IEEE
Computer Society.

[C] Zeina Azmeh, Jean-Rémy Falleri, Marianne Huchard and Chouki Tibermacine: Automatic
Web Service Tagging Using Machine Learning and WordNet Synsets. Revised selected
papers from (WEBIST’10). Lecture Notes in Business Information Processing (LNBIP)
75, pages 46-59. June 2011. Springer-Verlag.

[D] Zeina Azmeh, Fady Hamoui, Marianne Huchard, Nizar Messai, Chouki Tibermacine,
Christelle Urtado and Sylvain Vauttier: Backing Composite Web Services Using Formal
Concept Analysis. In Proceedings of the 9th International Conference on Formal Concept
Analysis (ICFCA’11), pages 26-41. Nicosia, Cyprus, May 2011. LNCS/LNAI, Springer-
Verlag.

[E] Zeina Azmeh, Maha Driss, Fady Hamoui, Marianne Huchard, Naouel Moha and Chouki
Tibermacine: Selection of Composable Web Services Driven by User Requirements. In the
Proceedings of the 9th International Conference on Web Services (ICWS’11). Washington
DC, USA, July 2011. IEEE Computer Society.

8

Part I

State of the Art

9

Chapter 2

Web Service Basics

Contents
1 Introduction . 11

2 What are Web Services? . 11

2.1 Describing a Web Service . 12

2.1.1 Functional Properties . 13

2.1.2 Non-Functional Properties . 15

2.2 Discovering a Web Service . 16

2.3 Invoking a Web Service . 17

3 Web Service-Oriented Architectures (WSOA) 18

3.1 Orchestration . 18

3.2 Choreography . 19

3.3 Business Process Execution Language (BPEL) 19

4 Summary . 21

1 Introduction

Service-Oriented Architecture (SOA) [3] is a design paradigm that suggests the construction of
applications by the composition of existing software modules that are called services. In this
vision, Web services are considered an important realization of this application design paradigm.

In this thesis, we are proposing a solution for Web service selection, for facilitating Web
services utilization. This is especially important for the realization of Web Service-Oriented
Architectures (WSOA).

In this chapter, we give the key basics and definitions surrounding the Web service technology.
We also explain the principles of Web service composition for achieving a WSOA. We conclude
by listing the problems that are related to Web services and their standards.

2 What are Web Services?

In the literature, we can find several definitions for Web services. We expose a definition from [1]
that introduces a Web service as follows:

11

Chapter 2. Web Service Basics

"A Web service is a platform-independent, loosely coupled, self-contained, pro-
grammable Web-enabled application that can be described, published, discovered, co-
ordinated, and configured using XML artifacts (open standards) for the purpose of
developing distributed interoperable applications."

Indeed, a Web Service is an application that is accessible through the Internet. It is self-
contained, meaning that it functions independently without external support. It is self-describing
through an XML-based public interface containing a URL for service binding, and a specifica-
tion of the functionality. This public interface can be discovered by other software systems.
Then, they may interact with the Web service in a manner prescribed by its definition, using
XML-based messages conveyed by Internet protocols [11, 2].

Dealing with Web services involves three actors, a provider, a registry, and a consumer, as
illustrated in Figure 2.1. This figure represents the SOA triangle [3]. It illustrates the interaction
between the three actors, as well as the used standards. A service provider publishes his service
description at a service UDDI registry using a publishing interface. The public interfaces and
binding information of the registered services are clearly defined in the WSDL standard language.
A registry organizes the published services and provides a query interface that enables a service
consumer to search for a needed service, and obtain its provider’s location information. A service
consumer can then interact with a service provider through the SOAP protocol.

Figure 2.1: The SOA triangle.

The three previous actors perform three fundamental Web services actions, each of which is
related to a standard.

2.1 Describing a Web Service

Describing a Web service is the action using which, a service can be represented (exposed and
advertised) to the external world. A functionality of a service is represented to the external world
by the means of an abstract interface described using the standard Web Service Description
Language (WSDL) [5].

12

2. What are Web Services?

2.1.1 Functional Properties

WSDL is an XML-based language that contains several elements to describe a Web service’s
functionality. It can be regarded as two parts: an abstract part and a concrete one. The abstract
part describes the service interface, i.e. the operations together with their parameters and data
types. The data types are described as XML schema elements. The concrete part describes how
to bind to and invoke the concerned service, by specifying the binding protocol together with
the service’s endpoint. For example, in Figure 2.2, we can see the WSDL interface for a math
service, called MathService.

Figure 2.2: The WSDL interface of the MathService.

We notice that it has a root definitions element <wsdl:definitions>, which is structured into
five sections. We list them bottom-up, as follows:

� service section <wsdl:service>, which specifies the service name, together with its endpoint
location for each of the provided interface (portType). For example, in Figure 2.3, we notice
that the MathService has two interfaces "MathServiceSoap" and "MathServiceHttpGet",
for which it specifies two distinct endpoints.

Figure 2.3: The service part inside the MathService WSDL interface.

� bindings section <wsdl:binding>, which specifies the protocol for each binding, together
with the provided operations. For example, in Figure 2.4, we see that the MathService

13

Chapter 2. Web Service Basics

provides two bindings "MathServiceSoap" and "MathServiceHttpGet" corresponding to
the two interfaces it provides. For the "MathServiceSoap" interface, the binding specifies
that the used protocol is SOAP using <soap:binding>.

Figure 2.4: The binding part inside the MathService WSDL interface.

� portTypes section <wsdl:portType>, which specifies the interfaces (portTypes) that the
service provides. For example, in Figure 2.5, we see that the MathService provides two
portTypes "MathServiceSoap" and "MathServiceHttpGet". We see also that the "Math-
ServiceSoap" provides an operation called "Add", which takes an input message called
"AddSoapIn" and returns an output message "AddSoapOut".

Figure 2.5: The portType part inside the MathService WSDL interface.

� messages section <message>, where the input/output parameters are specified for each
operation. For example, in Figure 2.6, we see the input/output messages for the "Add"
operation. The input message "AddSoapIn" has one parameter of type "AddRequest",
and the output message "AddSoapOut" that has one parameter of type "AddResponse".

Figure 2.6: The messages defined for the "Add" operation inside the MathService.

� types sections <wsdl:types>, where the parameter types of each operation inside the
WSDL file are specified as an XML schema element. For example, the MathService de-

14

2. What are Web Services?

fines a schema of two elements "AddRequest" and "AddResponse", as shown in Figure 2.7.
They represent the parameters types for "AddSoapIn" and "AddSoapOut" messages, re-
spectively. The "AddRequest" element is a sequence of two elements of type float, while
the "AddResponse" has only one element of type float.

Figure 2.7: The WSDL types defined for the MathService.

2.1.2 Non-Functional Properties

Non-functional properties of a Web service are mainly used to model Quality of Service (QoS)
attributes. QoS refers to the ability of the Web service to respond to expected invocations and
to perform them at a level that corresponds to the mutual expectations of both its provider and
its consumer [1]. The QoS is influenced by the Internet’s dynamic and unpredictable nature.
Therefore, delivering good QoS is a critical and significant challenge.

QoS attributes such as constant availability, connectivity, and high responsiveness are the
key to keeping a service competitive and viable. They represent important criteria to determine
the service usability and utility, which influence the Web service’s popularity. Especially with
the ever increasing number of functionally similar Web services being made available on the
internet, there is a need to be able to distinguish between them using a set of well-defined QoS
attributes and values. Thus, QoS has become an important part of service description, for a
better service selection [12] and composition [13].

Some of the QoS attributes can be calculated by the consumer of a Web service (like: response
time), while other attributes must be calculated and provided by the Web service’s provider (like:
scalability and security). Below, we list some of the main QoS attributes:

� Availability: which indicates the Web service’s presence during a period of time, as a
percentage.

� Performance: which is measured in terms of throughput and latency. Throughput rep-

15

Chapter 2. Web Service Basics

resents the number of Web service requests served at a given time period. Latency is the
time between sending a request and receiving the response.

� Reliability: Reliability is the quality aspect of a Web service that represents the degree
of being capable of maintaining the service and service quality. The number of failures per
month or year represents a measure of reliability of a Web service.

� Response time: which is the average time (in milliseconds) that is needed to obtain a
response from a Web service.

� Security: which represents the provider’s approaches and levels of providing security, by
authenticating the parties involved, encrypting messages, and providing access control.

2.2 Discovering a Web Service

Web service discovering is associated to registries and repositories, where one can search for a
needed service. A registry must provide a fairly precise search capability to render the discovery
action more efficient and less time-consuming. Initially, Web service registries were supposed
to be built upon a standard called UDDI [6], but discovery mechanisms are not limited to this
standard.

Universal Description, Discovery and Integration (UDDI)

UDDI [6] is an XML-based standard that was proposed for Web service registries, for allowing
providers to publish their services, so that they can be located afterwards by consumers.

A UDDI registry is structured into three layers, as illustrated in Figure 2.8:

� businessEntity or white pages, which list the providers and their related information;

� businessService or yellow pages, which provide a classification of services based on standard
taxonomies;

� bindingTemplate or green pages, which provide information about the service bindings and
their types tModel.

These layers permit searching a UDDI registry according to the three data types: busi-
nessEntity, businessService, and tModel. Thus, the possible searching queries are: search for
business by (business name, identifier, category, discovery URL); search for service by (service
name, category), and search for service type by (service type name, category).

In our days, Web service discovery is not limited to UDDI-based registries. Service discovery
can be carried out through either Web service portals (service search engines) or through websites
of certain service providers. The previous SOA triangle can be rather represented as in Figure 2.9.

Web Service Search Engines

Web service search engines use focused crawlers as well as manual registration to gather WSDL
interfaces and index them. They index Web services by the keywords they extract from their

16

2. What are Web Services?

Figure 2.8: Overview of UDDI data structure.

WSDL interfaces. We mention two popular service search engines: Seekda [8] and Service-
Finder [14]. These two search engines enable also some Web 2.0 features, like: user tagging, user
textual description adding, and user rating. They also provide us with calculated values for two
QoS attributes: availability and response time.

Figure 2.9: The SOA triangle nowadays.

2.3 Invoking a Web Service

Web service invocation describes a client-server communication and is embodied in the messages
exchanged between a service provider and a service consumer. These messages are described by
a standard called SOAP [7], and are transmitted over an HTTP connection.

17

Chapter 2. Web Service Basics

Object Access Protocol (SOAP)

SOAP [7] is an XML-based standard for exchanging structured messages for invocation and
result response. A SOAP message is an XML document consisting of a SOAP envelope, an
optional SOAP header, and a SOAP body. The SOAP message header contains information
that allows the message to be routed to its final destination. The envelope is the root element
of the message. It defines how the message should be handled and by whom. The header can be
used to add features to a SOAP message. The body is a container for mandatory information
intended for the ultimate recipient of the message.

3 Web Service-Oriented Architectures (WSOA)

Web services represent an important realization of SOA. We cite [3] for a definition of a con-
temporary SOA:

"Contemporary SOA represents an open, extensible, federated, composable architecture
that promotes service-orientation and is comprised of autonomous, QoS-capable, vendor
diverse, interoperable, discoverable, and potentially reusable services, implemented as
Web services."

Service Composition [15] is the process of developing a composite service. Service composi-
tion can be either performed by composing elementary or composite services. Composite services
in turn are recursively defined as an aggregation of elementary and composite services. A client
invoking a composite service can itself be exposed as a Web service. Service composition is
a very complex and challenging task. It becomes necessary to develop a Service Composition
Middleware to support composition in terms of abstractions and infrastructure as well.

Service composition could be static or dynamic. These two types of composition strategies
concern the time when Web services are composed. They are equivalent to design-time and
run-time composition, respectively. Static composition takes place during design-time when the
architecture and the design of the software system are planned. The components to be used
are chosen, linked together and finally compiled and deployed. This may work fine as long as
the Web service environment business partners and service components does not or only rarely
change. Microsoft Biztalk and Bea WebLogic are examples of static composition engines [16].

Service composition can be of two types, either orchestration or choreography [17]. Orches-
tration is where a central or master element controls all aspects of the process. Choreography
is where each element of the process is autonomous and controls its own behavior.

3.1 Orchestration

In orchestration, the involved web services are under control of a single endpoint central process
(another web service). This process coordinates the execution of different operations on the Web
services participating in the process. The invoked Web services neither know and nor need to
know that they are involved in a composition process and that they are playing a role in a busi-
ness process definition. Only the central process (coordinator of the orchestration) is conscious

18

3. Web Service-Oriented Architectures (WSOA)

of this aim, thus, the orchestration is centralized through explicit definitions of operations and
the invocation order of Web services [18].

Today’s standards for orchestration include BPMN (Business Process Modeling Notation) [19]
for defining the visual representation of the sequence, and BPEL (business process execution
language) as the ’code’ that executes the sequence. Almost all SOA infrastructures provide some
type of run-time BPEL engine, and most BPM products already support, or are in the process
of supporting these standards in their modeling and run-time.

3.2 Choreography

Choreography, in contrast, does not depend on a central orchestrator. Each Web service that
participates in the choreography has to know exactly when to become active and with whom to
interoperate. Choreography is based on collaboration and is mainly used to exchange messages
in public business processes. All Web services which take part in the choreography must be
conscious of the business process, operations to execute, messages to exchange as well as the
timing of message exchanges [18]. In Figure 2.10, we show orchestration versus choreography.

Figure 2.10: Orchestration vs. choreography.

3.3 Business Process Execution Language (BPEL)

BPEL is an XML-based language that defines a new Web service by orchestrating a set of ex-
isting services according to a desired functionality. The resulting Web service orchestration is
called a business process, the involved services are called partners, and the message exchange is
referred to as an activity.

A partner represents both a consumer of the service that is provided by the business process,
and a provider of a service to the business process. Thus, it can be a Web service that a process
invokes, or any client that invokes a process. It represents a mapping to a WSDL portType
description of a partner’s Web service.

19

Chapter 2. Web Service Basics

A BPEL process interacts with each partner using a partnerLink construct, which represents
a channel for establishing a conversation with a partner. In other words, a business process
contains a set of activities and invokes external partner services, and can be exposed as a Web
service by a WSDL description file.

A BPEL process contains several elements, we list and define the main ones:

� The process element: It is the root element of BPEL process definition. It has a name
attribute and it is used to specify the definition’s related namespaces.

� Partner Links elements: These elements in a BPEL process define the interaction of par-
ticipating services with the process. They describe the process and services roles in the
flow, as well as defining the kind of data to be handled by the parties defined in those
roles.

� Variables elements: A BPEL process allows to declare variables in order to receive, ma-
nipulate, and send data. These variables hold the state of a business process, to facilitate
stateful interactions among Web services.

� Activities elements: Activities are the processing steps, performed in a BPEL body. BPEL
supports basic as well as structured activities.

The main basic activities are:

� <invoke>: invoking Web service operations.

� <receive>: waiting for a process operation to be invoked by an external client.

� <reply>: generating a response for synchronous operations.

� <assign>: copying data between variables.

The main structured activities are:

� <sequence>: defining a set of activities that will be executed in an ordered sequence.

� <flow>: defining a group of activities which will be invoked in parallel.

� <switch>: Case-switch construct for implementing branches

� <while>: defining loops.

� <pick>: selecting one of several alternative paths.

� <if>: expressing a condition.

In Figure 2.11, we illustrate an overview of a BPEL process structure. Inside this process,
we can see several activities that define the business logic, the data flow, and the order of Web
services invocation. The process is exposed to the external world as a new Web service. It can
be invoked by a client, who links to its portType through a partnerLink. The process execution
starts at the activity <receive>, it invokes the participating partners (Web services), and the
execution ends at the <reply> activity, which returns the process response.

20

4. Summary

Figure 2.11: The structure of a BPEL process with some activities.

BPEL distinguishes between two levels of process description abstract and executable. An
abstract business process specifies the external message exchange between parties only. It does
not contain the internal details of the process flow, and it is not executable. While, an executable
process describes both the external message exchange and the complete internal details of the
process flow and business logic. It is executable, as its name implies.

4 Summary

In this chapter, we presented the basic definitions for Web services, their description, discovery,
and invocation, along with their main standards. We also presented the notion of building com-
posite functionality based on interacting services.

As we have seen so far, the standards on which Web services are built cause the main
challenges surrounding the utilization of Web services. We discuss these challenges according to
each Web service standard:

� WSDL description: depends on syntactic information only. It does not support semantics,
nor it does support providing information related to the service’s QoS. In addition to that,
it does not impose any constraints on the providers for supporting a textual documentation
about the service functionality, nor for following naming conventions.

� UDDI discovery: has failed to be the primary discovery mechanism. Alternatives are
embodied in Web service search engines and providers’ catalogs. They support searching
by keywords only, which may not be adequate for an efficient and precise service retrieval.
Especially that WSDL interfaces have a small quantity of text inside them, according to
which, they can be indexed. These search engines do not allow searching for a needed
operation, nor searching along with QoS constraints.

� BPEL composition: is built statically at design-time. This means that the user must
have a previous knowledge about the existing services, and must select the services prior

21

Chapter 2. Web Service Basics

to composition. This imposes going through the hard and time-consuming issue of Web
service discovery and selection.

Thus, service selection considering current mechanisms and circumstances is not efficient nor
practical. In the following chapter, we study the literature’s proposed solutions for this problem,
with their advantages and shortcomings.

22

Chapter 3

Related Work

Contents
1 Introduction . 23
2 Works about Selecting an Independent Web Service 24

2.1 Information Retrieval based Classification 24
2.2 Concept Lattice based Classification . 24
2.3 QoS-based Classification . 25
2.4 Semantic-based Classification . 26

3 Works about Selecting Composable Web Services 26
3.1 Manual Composition . 26
3.2 Automatic Composition . 27

4 Discussion . 28
5 Summary . 30

1 Introduction

In this chapter, we study the state of the art dealing with the selection of a Web service to use.
We evaluate the studied works according to the following criteria:

� design-time or run-time: whether the studied work presents a static or dynamic solution,

� semantics: whether the studied work uses semantic Web services or not,

� discovery: whether the studied work depends on a registry or a predefined set of services,

� functionality: whether the studied work proposes a filter for checking the compatibility of
a discovered service with the required functionality,

� composability: whether the studied work can identify composable services,

� QoS: whether the studied work considers the QoS for ranking the services,

� backups: whether the studied work offers facilities to discover similar services that can
replace each other.

We group the studied works into two categories. The first category represents the works
that propose a solution for the selection of a single independent service. The second category
represents the works support the selection of a set of services for building a composition. We
conclude the chapter by a comparison of the studied works, according to the previous criteria.

23

Chapter 3. Related Work

2 Works about Selecting an Independent Web Service

We list the works in this category according to four sets of classification-based works.

2.1 Information Retrieval based Classification

A quick overview of some of the works can be acquired from [20, 21]. These works propose
several approaches, based mainly on information retrieval (IR) [22] mechanisms.

The vector space model is used for service retrieval in several existing works as in [23, 24, 25].
Terms are extracted from every WSDL file and vectors are built for describing services. A query
vector is also built, and similarity is calculated between the service vectors and the query vector.
This model is sometimes enhanced using WordNet structure matching algorithms to ameliorate
similarity scores as in [24], or by partitioning the search space into smaller subspaces as in [25].

Many approaches use machine learning techniques, in order to discover and group similar
services. In [26, 27], service classifiers are defined depending on sets of previously categorized
services. The resulting classifiers are then used to deduce relevant categories for new services.
In case there are no predefined categories, unsupervised clustering is used. In [28], the CPLSA
approach is defined that reduces a service set then clusters it into semantically related groups.

In [29], the Woogle Web service search engine is presented, which takes a needed operation as
input and searches for all the services that offer a similar operation. Woogle supports similarity
search for Web services, like finding similar Web service operations and finding operations that
compose with a given one. It considers similarity between the textual descriptions of both the
operations and the entire Web services, as well as the similarity between parameter names. It
clusters parameter names in the collection of Web services into semantically meaningful con-
cepts. These concepts can be used instead of parameters to achieve good similarity measures by
comparing the concepts that input/output parameters belong to.

2.2 Concept Lattice based Classification

In [30], Aversano et al. classify Web services using FCA as a means for WSDL browsing. Their
formal contexts are composed according to three levels: service level, operation level and type
level, together with keywords. These keywords are identified from the WSDL files by applying
vector space metrics with the help of WordNet to discover synonyms. The resulting service
lattice indexes Web services: it highlights the relationships between the services and permits the
identification of different categorizations of a certain service.

In [31], Bruno et al. also use keywords extracted from services’ interfaces together with FCA
to build a Web services lattice. They analyze the extracted words, process them using WordNet
and other IR techniques. Then, they classify them into vectors using support vector machines
(SVM). The obtained vectors categorize the services into domains. Then, service lattices can be
obtained for each domain using FCA.

24

2. Works about Selecting an Independent Web Service

In [32], Peng et al. present an approach to classify and select services. They build lattices
upon contexts where objects are Web services and attributes represent the operations of these
services. The approach allows similar services clustering by applying similarity search techniques
that compare operation descriptions and input/output messages data type. In Peng et al. [33],
similarity values are calculated for service operations, and depending on a chosen threshold, a
service lattice is built.

Fenza and Senatore [34] describe a system for supporting the user in the discovery of seman-
tic Web services that best fit personal requirements and preferences. Through a concept-based
navigation mechanism, the user discovers conceptual terminology associated to the Web services
and uses it to generate an appropriate service request which syntactical matches the names of
input/output specifications. The approach exploits fuzzy FCA [35] for modelling concepts and
relative relationships elicited from Web services. After request formulation and submission, the
system returns the list of semantic Web services that match the user query.

In [36, 37], Chollet et al. propose an approach based on FCA to organize the service registry
at runtime and provide the best service selection among heterogeneous and secured services. The
service registry is viewed as a formal context where the services are the objects and the services
types, functional, and non-functional characteristics (security characteristics) are attributes.

In [38], Driss et al. propose a requirement-centric approach to Web service, modelling,
discovery, and selection. They consider formal contexts with services as objects and QoS char-
acteristics as attributes. The obtained lattices are used to check out relevant (that best fit
functional requirements) and high QoS Web services.

2.3 QoS-based Classification

In addition to these works [36, 37, 38], we can find more works that took into consideration QoS
information, as below.

In [39], the authors present a model for discovering Web services based on QoS constraints.
They extend the basic Web service model (provider - registry - consumer), by adding another
entity called the QoS certifier. This QoS certifier verifies the service provider’s QoS claims before
the registration of a service in the UDDI registry. A service consumer may add some QoS con-
straints to the functional requirements. The UDDI data structure is extended by an additional
element called qualityInformation, which provides the description of different QoS aspects, such
as availability, reliability or performance.

Several other works propose to extend the basic Web service model in a similar way to the
previous work. The works presented in [40, 41, 42, 43, 44] propose to add a QoS broker for
Web services selection and QoS management. The model is now (provider - registry - consumer
- broker). The role of this QoS broker is to support Web services QoS verification, certification,
confirmation, selection and monitoring. It acts as an intermediary third party for Web services
selection and QoS negotiation on behalf of the consumer.

25

Chapter 3. Related Work

2.4 Semantic-based Classification

In [45], they use a semantic registry for semantic Web services, which are equipped with an
exploitation language for supporting semantic based process discovery. Semantic Web services
are being described in an ontology of services, with a subsumption relationship. Their input
and output parameters refer to concepts of a domain ontology.

In [46], They propose an approach based on service ontologies and semantic indexations.
They propose a persistent architecture centred around ontology-based database to store and
index the various services, as well as their compositions. The prototype implements semantic
concepts for service and workflow. This enables storing, retrieving, reusing existing services and
workflows, and building new ones incrementally.

In [47], the authors propose a QoS based semantic Web service selection mechanism. They
use the Web Service Modeling Ontology (WSMO) [48] to describe a QoS model, including specific
quality metrics, value attributes, and their respective measurements. They take into considera-
tion user quality requirements.

In [49], the authors propose a powerful algorithm for semantic Web service matching which
considers service specialization. However, this method assumes that both services and requests
are specified using the same ontology.

In [50], Benatallah et al. propose a matchmaking algorithm. It takes as input a service
request and an ontology, then finds a set of services whose descriptions contain as much common
information with the query as possible, and as little extra information with the query as possible.

3 Works about Selecting Composable Web Services

In this section, we describe two sets of works, according to the considered composition (manual
or automatic).

3.1 Manual Composition

In this section, we cite several tools (Triana [51], CAT [52], SWORD [53], WSTK [54], Zen-
Flow [55], BPEL2B [56], GWE [46]), which help users in building their desired composition. We
choose to describe the three following tools: Triana [51], which is based on WSDL; CAT [52],
which is based on WSDL that is supported by an ontology; and SWORD [53], which defines its
own model for service description and selection.

Triana [51] is a graphical Web service composition toolkit that help users graphically and
transparently create Web services workflows. A composite service is created by dragging the
services and connecting them. Triana supports loops and conditional constructs. Composed
applications may be written as BPEL4WS graphs by using the Triana pluggable architecture
and executed from within Triana or any Web services choreography engine. Triana also includes

26

3. Works about Selecting Composable Web Services

a facility which allows users to publish composite services to the network.

CAT [52] is a tool that guides users in sketching a composition of services by exploiting their
semantic description. It first takes existing service descriptions (WSDL) and extends them with
off-the-shelf domain ontologies. Parameters from WSDL messages can then be mapped to terms
in the domain ontology. It then use a task ontology to describe abstract types of operations
and services. It uses these ontologies in examining a user’s solution and generating suggestions
about how to proceed.

SWORD [53] is a toolset that allows service developers to quickly compose base Web services
to realize new composite Web services. SWORD does not rely on the actual deployment of any
specific semantic markup language by service providers. It defines its own simple world model
based on defining for each Web service logic rules. Then, the analysis of functionality and
composition is based on these rules. A composite service can be realized by existing services
and to generate the execution plan that when executed instantiates the composite service.

3.2 Automatic Composition

In [57], the authors present an approach for dynamic Web service composition that takes into
account the composition’s overall quality. The proposed approach extends the heuristic-based
approach for dynamic Web service composition proposed by [58] by adding QoS constraints to
the heuristic. The approach takes into account both the semantic description of a service and its
non-functional properties that compose the quality it delivers. The algorithm receives as input
a request, which consists of the provided input concepts, required output concepts and QoS con-
straints. It produces as output a set of services that can provide together the required concepts
specified in the request. Each concept in the request input or output is defined in a domain
ontology. Each QoS constraint consists of a triple: the quality criterion, a value representing a
constraint on this criterion, and a weight representing the user’s preference for this criterion.

The Web Services Composition Platform, StarWSCoP (Star Web Services Composition Plat-
form) [16], is introduced with several modules: an intelligent system to decompose user require-
ments; a service registry to provide a Web service repository; a service discovery engine to find
proper services; a composition engine; a wrapper to achieve interoperability of heterogeneous
services; a QoS estimation; and an event monitor to monitor events and notify the composition
engine. It focuses on QoS-based dynamic Web services composition by extending WSDL de-
scriptions with QoS attributes, such as time, cost or reliability.

In [13], is presented Agflow, a QoS-aware middleware supporting quality-driven Web service
compositions. User satisfaction is expressed as utility functions over QoS attributes, while sat-
isfying the constraints is set by the user and by the structure of the composite service. Two
selection approaches are described and compared: one based on local (task-level) selection of
services, and the other based on global allocation of tasks to services using integer program-
ming. A composite service is specified as a collection of generic service tasks described in terms
of service ontologies and combined according to a set of control flow and data flow dependencies.
AgFlow uses statecharts to represent these dependencies. Services are created using IBM’s Web

27

Chapter 3. Related Work

Services Toolkit (WSTK) [54].

Very similar to previous, [59] presents a broker-based architecture to facilitate the selection
of QoS-based services. The objective of service selection is to maximize an application-specific
utility function under QoS constraints. The problem is modeled in two ways: the combinatorial
model and the graph model. The combinatorial model defines the problem as a multi-dimension
multi-choice 0-1 knapsack problem (MMKP) [60]. The graph model defines the problem as a
multi-constraint optimal path (MCOP) problem.

Another similar work presented in [61]. It proposes an approach for achieving dynamic
semantic Web service composition. It is based on the METEOR-S Web service composition
framework, on which is added a constraint analyzer module. This module uses an integer linear
programming solver for process optimization based on process and business constraints. It
proposes a workflow QoS model to enable a global optimization and dynamic composition of
service processes.

4 Discussion

In the previous sections, we presented several works for Web service selection and providing help
to users for building their desired compositions. We presented the works according to two main
categories: works for the selection of a single Web service, and works for the selection of a set
of services for building a composition.

We notice that the works that depend only on the syntactic information inside the WSDL
description may not be sufficient for guiding a user to select a suitable service. This is basically
because inside a WSDL interface, there may not exist enough textual description, which can be
used to index a service sufficiently. Thus, when retrieving services depending on such an index,
several impertinent services may be retrieved. This complicates the selection of a needed service.

To face the insufficient syntactic side of Web services, several approaches were proposed for
dealing with semantic Web services. In this field of works, the selection of a pertinent Web
service depends on a shared knowledge between the provider and the consumer. This shared
knowledge is embodied in an ontology. This kind of works may solve the problem of selection,
but under the condition of having a unique ontology. If several ontologies were used, ontology
mapping must be carried out, which is yet another challenge.

In order to have a better refined selection, several works took into consideration QoS infor-
mation. QoS is an important factor for distinguishing between Web services, especially when
having several functionally similar services.

The previous category of works support Web service discovery but do not allow users to
specify the needed parameters types. Moreover, they do not support the retrieval of composable
services. Thus, they do not facilitate building service compositions.

In the second category of works, we listed a set of works for supporting manual composition

28

4. Discussion

of services, and another one for automatic composition.

In the manual composition building, users can search by keywords and retrieve services to
be composed in a graphical interface. Users still have to check for the composability between
the services in order to build their composition. Such works do not provide users with QoS
information, nor enable searching by a required QoS level.

In the automatic composition building, the works we presented are all based on semantics
(which imposes other issues, as we mentioned earlier). Furthermore, they assume that Web
services are annotated with semantic information (beyond WSDL). Such semantic information
might not be available for current Web services, although it might become available in the fu-
ture [9]. Some of these works calculate the global QoS value for the whole composition. Users
are not allowed to specify a needed QoS for a certain service. Moreover, QoS is specified by
numeric values, which may not always be so significant and easy to be determined by users.

The manual and automatic composition approaches that we studied do not support service
backups. However, some of the automatic composition works support dynamic reconfiguration
for the business process, when a service changes (disappear or have different QoS values). This
reconfiguration can cause an overhead if a backup is needed, because of the several remote in-
teractions with the service registry. Thus, the efficiency can become low.

In the following, we summarize the presented works in Table 3.1, according to the criteria
presented in the beginning of this chapter. We classify the works in Table 3.1 using FCA, and
we show the corresponding lattice in Figure 3.1.

In this lattice (built using ConExp [62]), we can identify the distinguished works, which can
be considered better than the others, according to our defined criteria. The interesting concepts
to look directly at, are the concepts at the bottom, since they verify more parts of the criteria.
Thus, we can identify four interesting works:

� Woogle, which offers four parts of the criteria {Functionality, Backups, Discovery, Design-
time}. Hence (according to our criteria), it is better than {Concept Lattices, Machine
Learning, Vector Space Model, Triana};

� Semantic-based works, offering {Backups, Discovery, Design-time, Semantics}. Hence,
they are better than {Concept Lattices, Machine Learning, Vector Space Model, Triana,
CAT, SWORD};

� UDDI + QoS, offering {Backups, Discovery, Design-time, QoS - per service}. Hence, it
is better than {Concept Lattices, Machine Learning, Vector Space Model, Triana};

� AgFlow, offering {QoS - global, Composability, Run-time, Semantics, QoS - per service},
and thus, it is better than {Oliveria et al., StarWSCoP, QoS-Broker, METEOR-S}.

29

Chapter 3. Related Work

Table 3.1: Works comparison according to the specified criteria.

Work D
es

ig
n-

ti
m

e

R
un

-t
im

e

Se
m

an
ti

c
W

S

D
is

co
ve

ry

Fu
nc

ti
on

al
ity

C
om

po
sa

bi
lit

y

Q
oS

B
ac

ku
ps

per service global
Vector Space Model X ⇥ X ⇥ ⇥ ⇥ ⇥ X
Machine Learning X ⇥ ⇥ X ⇥ ⇥ ⇥ ⇥ X

Woogle [29] X ⇥ ⇥ X X ⇥ ⇥ ⇥ X
UDDI + QoS X ⇥ ⇥ X ⇥ ⇥ X ⇥ X

Concept Lattice X ⇥ ⇥ X ⇥ ⇥ ⇥ ⇥ X
Semantic-based X ⇥ X X ⇥ ⇥ ⇥ ⇥ X

Triana [51] X ⇥ ⇥ X ⇥ ⇥ ⇥ ⇥ ⇥
CAT [52] X ⇥ X X ⇥ ⇥ ⇥ ⇥ ⇥

SWORD [53] X ⇥ X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Oliveria et al. ⇥ X X ⇥ ⇥ X ⇥ X ⇥

StarWSCoP [16] ⇥ X X ⇥ ⇥ X ⇥ X ⇥
AgFlow [13] ⇥ X X ⇥ ⇥ X X X ⇥

QoS-Broker [59] ⇥ X X ⇥ ⇥ X ⇥ X ⇥
METEOR-S [61] ⇥ X X ⇥ ⇥ X ⇥ X ⇥

5 Summary

In this chapter, we presented several works for Web service discovery and selection. These works
are based on several techniques like information retrieval, semantic-based, FCA-based, or QoS-
based, as we have seen.

In this thesis, we focus on non-semantic Web services, which exist in a large number on the
Internet nowadays. We prefer to propose solutions to make use of these services and their large
number. We are interested by two main problems: the selection of a single service, and the
selection of a set of services for composition.

Concerning the first problem, we have listed a number of works that are based on informa-
tion retrieval techniques. They depend on the syntactic data that are present inside the WSDL
descriptions. Such techniques may not be sufficiently precise, for performing a direct selection.
Users still have to filter the retrieved services, searching for the one offering the functionality
that he needs. These techniques were improved in another set of works that took QoS infor-
mation as a criterion for ranking the retrieved services. This can be considered as a quite good
enhancement for IR-based approaches, but when considering several QoS attributes, it becomes
hard to decide which service offers the best compromise. This is where FCA-based approaches
can play a good role. FCA can classify Web services into concept lattices, in which, each concept
represents a group of equivalent Web services regarding the shard attributes. Therefore, these

30

5. Summary

Figure 3.1: The lattice revealing the relations between the works of the state of the art.

concept lattices offer a browsing mechanism that reveals the relations between the services, and
enables the identification of a service that is perhaps better than expected. A concept lattice
also enables the identification of substitutes (backups) of a certain service. These backups share
the same or more attributes of the service that they can substitute. This is quite useful regarding
the dynamic nature of Web services.

Concerning the second problem, we have listed two kinds of works. Either manual or auto-
matic composition techniques. When dealing with the manual technique, the user must apply a
functional filtration and must check for the composability between two services. Considering the
automatic composition techniques, the resulting compositions suffer from inflexibility regarding:

� the QoS, which is calculated globally for the whole composition. This does not allow for
users to specify the needed QoS for each service separately;

� they do not support backups identification. Thus, they are hard to maintain in case of
failures, because the selection of a replacing service is restricted by the global QoS.

In this thesis, we aim at providing a framework based on several techniques, in order to
contribute in providing a solution for Web service selection. Our framework is based on Formal
and Relational Concept Analysis (FCA, RCA), which are two classification techniques that are
presented in the next chapter.

31

Chapter 4

FCA and RCA Basics

Contents
1 Introduction . 33

2 Formal Concept Analysis (FCA) . 33

2.1 Case Study . 33

2.2 Definitions . 34

3 Relational Concept Analysis (RCA) . 37

3.1 Case Study . 37

3.2 Definitions . 37

4 Simple and Relational Queries . 39

4.1 Simple queries . 39

4.2 Relational queries . 41

4.3 Lattice Navigation by Relational Queries 49

4.4 A Query-Based Navigation Algorithm . 50

4.5 Variations about the Algorithm . 52

5 Summary . 58

1 Introduction

In this chapter, we present the Formal Concept Analysis (FCA) classification technique, as well
as its extension called the Relational Concept Analysis (RCA). We use these two techniques
as a basis for our approach for Web service classification. We give the basic formal definitions
for these two techniques, supported with illustrative examples. Then, we define the notions of
queries and relational queries, as tools for navigating and exploiting the lattices.

2 Formal Concept Analysis (FCA)

FCA is a classification technique that takes data sets of objects and their attributes, and extracts
relations between these objects according to the attributes they share [63].

2.1 Case Study

We explain the FCA technique along with a case study about Mexican dishes and their ingredi-
ents. We suppose the data set in Table 4.1.

33

Chapter 4. FCA and RCA Basics

Table 4.1: Mexican dishes and their ingredients.
Mexican dish Ingredients

Burritos chicken, beef, pork, vegetables, beans, rice, cheese, guacamole,
sour-cream, lettuce, and flour-tortilla

Enchiladas chicken, cheese, sour-cream, and corn-tortilla

Fajitas chicken, beef, vegetables, cheese, guacamole, sour-cream, lettuce,
and flour-tortilla

Nachos vegetables, beans, cheese, and guacamole

Quesadillas chicken, beef, cheese, corn-tortilla, and flour-tortilla

Tacos chicken, beef, beans, cheese, lettuce, corn-tortilla, and flour-tortilla

2.2 Definitions

Definition 1 A formal context is denoted as K = (O,A, I) where O is a set of objects, A
is a set of attributes, and I is a binary relation between O and A (I ✓ O ⇥ A). (o, a) 2 I

denotes the fact that the object o 2 O is in relation through I with the attribute a 2 A (also read
as o has a).

A formal context is represented as a cross table in which, objects appear as row labels and
attributes as column labels. A cross in the cell (o,a) of this table indicates that the object o has
the attribute a.

From our case study, we can build a formal context of Mexican dishes O = {Burritos,

Enchiladas, Fajitas,Nachos,Quesadillas, Tacos} and their ingredients A = {chicken, beef,
pork, vegetables, beans, rice, cheese, guacamole, sour-cream, lettuce, corn-tortilla, f lour-tortilla}.

ch
ic

ke
n

be
ef

po
rk

ve
ge

ta
bl

es

be
an

s

ri
ce

ch
ee

se

gu
ac

am
ol

e

so
ur

-c
re

am

le
tt

uc
e

co
rn

-t
or

ti
lla

flo
ur

-t
or

ti
lla

Burritos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Enchiladas ⇥ ⇥ ⇥ ⇥

Fajitas ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Nachos ⇥ ⇥ ⇥ ⇥

Quesadillas ⇥ ⇥ ⇥ ⇥ ⇥
Tacos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Table 4.2: A formal context for Mexican dishes and their ingredients (O ⇥A).

34

2. Formal Concept Analysis (FCA)

Definition 2 For a set X ✓ O of objects, we define the set X 0 ✓ A of attributes, which are
common to the objects in X, as follows:

X 0 = {a 2 A | oIa, 8 o 2 X}

We define correspondingly, for a set Y ✓ A of attributes, the set Y 0 ✓ O of objects, which have
all the attributes in Y , as follows:

Y 0 = {o 2 O | oIa, 8 a 2 Y }

For example, if we take the set X = {Enchiladas,Quesadillas, Tacos} from Table 4.2, the
set of common attributes is X 0 = ({Enchiladas,Quesadillas, Tacos})0 = {chicken, cheese, corn�
tortilla}. In the same way, ({pork, rice})0 = {Burritos}.

Definition 3 A formal concept of the context K = (O,A, I) is a pair (X,Y), where X ✓ O

is called the extent, Y ✓ A is called the intent, X 0 = Y (or equivalently Y 0 = X), meaning that
a concept is a maximal collection of objects sharing a maximal collection of attributes. The set
of all concepts of the context K is denoted as B(G,M, I). The closure operator of X is defined
as X 00 = X.

For example, ({Enchiladas,Quesadillas, Tacos}, {chicken, cheese, corn-tortilla}) is a con-
cept, while ({Nachos}, {vegetables, beans, cheese, guacamole}) is not, because ({Nachos})0 =
{vegetables, beans, cheese, guacamole} while ({vegetables, beans, cheese, guacamole})0 =
{Burritos, Nachos}.

Definition 4 For an object o 2 O, we define its object intent as o0 = {a 2 A | oIa}. Corre-
spondingly, we also define for an attribute a 2 A its attribute extent as a0 = {o 2 O | oIa}.
Thus, an object concept (o00, o0) is denoted as �o, while an attribute concept (a0, a00) is de-
noted as µa.

For example, the object concept �(Nachos) is ((Nachos)00, (Nachos)0) = ({Burritos,Nachos},
{vegetables, beans, cheese, guacamole}).

Definition 5 Having two concepts (X1, Y1) and (X2, Y2), we say that (X1, Y1) is a subconcept

of (X2, Y2), when X1 ✓ X2 (equivalently Y2 ✓ Y1). Inversely, we say that (X2, Y2) is a super-

concept of (X1, Y1). We denote the relation between these two concepts as (X1, Y1) (X2, Y2),
and we call the relation the order relation of the concepts.

For example, ({Burritos}, {chicken, beef, pork, vegetables, beans, rice, cheese, guacamole,

sour-cream, lettuce, flour-tortilla}) is a subconcept of ({Burritos,Nachos}, {vegetables, beans,
cheese, guacamole}).

Definition 6 B(O,A, I) provided with the order relation is a concept lattice and is denoted
as B(O,A, I).

Figure 4.1 illustrates the lattice built for the context shown in Table 4.2. In this lattice
we can reveal many facts, as well as the relationships between the presented mexican dishes,
according to the ingredients they share, for example:

35

Chapter 4. FCA and RCA Basics

� all of the mexican dishes contain cheese, since it appears in the top concept c5 that has
all the dishes in its extent;

� a concept having only one object in its extent, has in its intent the attributes character-
izing this object, for example: the concept c14 lists all the ingredients contained in an
Enchiladas dish;

� a concept having more than one object in its extent, lists the equivalent objects regarding
the attributes in its intent, for example: in concept c6, the dishes Burritos, Enchiladas,

and Fajitas contain three shared ingredients, which are cheese, chicken, and sour-cream;

� when regarding the super and sub relations between the concepts, we can know for exam-
ple that: since concept c14 is a subconcept of c8, then an Enchiladas dish resembles a
Quesadillas dish but has an extra ingredient (sour-cream).

Figure 4.1: The concept lattice (built using Galicia [64]) for the context in Table 4.2.

In a concept lattice, labels can be simplified by putting down each object and each attribute
only once. Like this, a lattice with reduced labels (simplified intents and extents) can be read
in the same way without losing any information. In Figure 4.2, we can see the precedent lattice
after reducing its labels.

Definition 7 The Galois Sub-Hierarchy (GSH) of a concept lattice L is the sub-order of L made
out of the set of attribute concepts and the object concepts. The order relation of concepts in
GSH is the same as in the lattice.

The GSH of the lattice in Figure 4.2 is illustrated in Figure 4.3. Using the GSH, we get the
same lattice but without the concepts having empty simplified extent and intent (c7, c8, c11,
c12, c18).

36

3. Relational Concept Analysis (RCA)

Figure 4.2: The concept lattice with simplified labels.

3 Relational Concept Analysis (RCA)

RCA [66] is an iterative version of FCA in which, the objects are classified not only according
to the attributes they share, but also according to the relations between them.

3.1 Case Study

Let us take the previous case study and extend it. We suppose now having a list of countries, a
list of restaurants, a list of Mexican dishes, a list of ingredients, and finally a list of salsas. We
impose some relations between these entities{Country, Restaurant, MexicanDish, Ingredient,

Salsa}, such that: a Country "has" a Restaurant; a Restaurant "serves" a MexicanDish; a
MexicanDish "contains" an Ingredient; and finally a Salsa is "suitable-with" a MexicanDish.
We express these entities and their relations by the directed acyclic graph in Figure 4.4. Below,
we instantiate this entity-relationship diagram into a relational context family (RCF).

3.2 Definitions

Definition 8 A relational context family RCF is a pair (K, R) where K is a set of formal
(object-attribute) contexts Ki = (Oi, Ai, Ii) and R is a set of relational (object-object) contexts

37

Chapter 4. FCA and RCA Basics

Figure 4.3: The GSH (built using erca [65]) for the context in Table 4.2.

rij ✓ Oi⇥Oj, where Oi (domain of rij) and Oj (range of rij) are the object sets of the contexts
Ki and Kj, respectively.

The RCF corresponding to our example consists of four formal contexts, illustrated in Ta-
ble 4.3; and five relational contexts, illustrated in Table 4.4.

An RCF is used in an iterative process to generate at each step a set of concept lattices, as
illustrated in Figure 4.5. First concept lattices are built using the formal contexts only. Then,
in the following steps, formal contexts are concatenated with the relational contexts enriched
with knowledge obtained at a previous step. This enrichment is based on the notion of scaling
operators that produce scaled relations. Hereafter, there are two examples of scaled relations.

Definition 9 Let us define rij(oi) = {oj 2 Oj |(oi, oj) 2 rij}. The exists scaled relation r9ij
associated to rij ✓ Oi⇥Oj is defined as r9ij ✓ Oi⇥B(Oj , A, I), such that: (oi, c) 2 r9ij () 9 x 2
rij(oi) : x 2 Extent(c). Thus, 9 is a scaling operator (existential). Let us note that in this
definition, B(Oj , A, I) is any lattice built on the objects of Oj.

Definition 10 The covers scaled relation r�ij associated to rij ✓ Oi ⇥ Oj is defined as r�ij ✓
Oi ⇥B(Oj , Aj , Ij), such that: (oi, c) 2 r�ij =) 8 x 2 Extent(c) : x 2 rij(oi). Thus, � is a
scaling operator (covers).

38

4. Simple and Relational Queries

Figure 4.4: The entities of the Mexican food example.

The scaled relations are the relational contexts that are enriched with new attributes resulting
from the scaling operator (exists or covers). These attributes are called relational attributes:

Definition 11 A relational attribute results from scaling a relation rij 2 R where rij ✓ Oi ⇥
Oj. It expresses the relation between the objects o 2 Oi with the concepts of B(Oj , A, I). An
existential (exists) relational attribute is denoted by r9ij : cm where cm 2 B(Oj , A, I). A covers

relational attribute is denoted by r�ij : cm. Alternatively, we write 9rij cm or �rij cm to evoke
notations of description logics.

For example: 9has Concept_5, or 9contains Concept_12 are examples of relational at-
tributes.

Definition 12 A concept lattice family CLF is a set of lattices that correspond to the formal
contexts, after enriching them with relational attributes.

For example, we used the exists scaled relation to generate the concept lattice family corre-
sponding to our case study. It consists of five lattices: country lattice in Figure 4.6, restaurant
lattice in Figure 4.7, mexican dish in Figure 4.8, ingredient lattice in Figure 4.9, salsa lattice in
Figure 4.10.

4 Simple and Relational Queries

In this section, we define the notion of query and answer to a query, which will help us to find
solutions to our problem of selecting a suitable Web service, according to certain requirements
(queries). First (Section 4.1) we remind of simple queries that help in navigating concept lattices.
Then (Section 4.2), we generalize to relational queries that guide the navigation between lattices
of a concept lattice family along relational attributes.

4.1 Simple queries

Definition 13 A query on a context K = (O,A, I), denoted by q|K (or q when it is not am-
biguous), is a pair q = (oq, aq). oq is the query object(s): the set of objects satisfying the query.
aq is the set of attributes defining (the constraint) of the query. By definition, we have: o0q ◆ aq,
where aq ✓ A.

39

Chapter 4. FCA and RCA Basics

Table 4.3: The formal contexts of the Mexican Food RCF.

ca en fr lb m
x

es us A
m

er
ic

a

A
si

a

E
ur

op
e

Canada ⇥ ⇥
England ⇥ ⇥
France ⇥ ⇥
Lebanon ⇥ ⇥
Mexico ⇥ ⇥
Spain ⇥ ⇥
USA ⇥ ⇥

r1 r2 r3 r4 r5 r6 r7

Chili’s ⇥
Chipotle ⇥
El Sombrero ⇥
Hard Rock ⇥
Mi Casa ⇥
Taco Bell ⇥
Old el Paso ⇥

d1 d2 d3 d4 d5 d6

Burritos ⇥
Enchiladas ⇥
Fajitas ⇥
Nachos ⇥
Quesadillas ⇥
Tacos ⇥

i1 i2 i3 i4 i5 i6 i7 i8 i9 i1
0

i1
1

i1
2

chicken ⇥
beef ⇥
pork ⇥
vegetables ⇥
beans ⇥
rice ⇥
cheese ⇥
guacamole ⇥
sour-cream ⇥
lettuce ⇥
corn-tortilla ⇥
flour-tortilla ⇥

s1 s2 s3 s4 m
ild

m
ed

iu
m

-h
ot

ho
t

Fresh Tomato ⇥ ⇥
Roasted Chili-Corn ⇥ ⇥
Tomatillo-Green Chili ⇥ ⇥
Tomatillo-Red Chili ⇥ ⇥

For example q|K
country

= ({England, France, Spain}, {Europe}) is a query on the country
context (in Table 4.3), asking for countries in Europe.

The answer set of a query q|K = (oq|K , aq|K) is the set of objects oq|K . {England, France,

Spain} is the answer set of q|K
country

.

When aq is closed, solving the query consists in finding the concept C = (a0q, aq). To ensure
that such a concept exists, a virtual query object ovq that satisfies ov0q = aq can be added to
the context (as an additional line). Then, three types of answers can be interesting: the more
precise answers are in a0q, less constrained (with less attributes) answers are in extents of super-
concepts of C, more constrained (with more attributes) answers are in extents of sub-concepts

40

4. Simple and Relational Queries

Table 4.4: The relational contexts of the Mexican Food RCF.

ch
ic

ke
n

b
ee

f

p
or

k

ve
ge

ta
bl

es

b
ea

ns

ri
ce

ch
ee

se

gu
ac

am
ol

e

so
ur

-c
re

am

le
tt

uc
e

co
rn

-t
or

ti
lla

flo
ur

-t
or

ti
lla

Burritos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Enchiladas ⇥ ⇥ ⇥ ⇥
Fajitas ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Nachos ⇥ ⇥ ⇥ ⇥
Quesadillas ⇥ ⇥ ⇥ ⇥ ⇥
Tacos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

C
hi

li’
s

C
hi

p
ot

le

E
l
So

m
br

er
o

H
ar

d
R

oc
k

M
i
C

as
a

T
ac

o
B

el
l

O
ld

el
P
as

o

Canada ⇥ ⇥ ⇥ ⇥ ⇥
England ⇥ ⇥ ⇥
France ⇥ ⇥ ⇥
Lebanon ⇥ ⇥ ⇥
Mexico ⇥ ⇥ ⇥
Spain ⇥ ⇥
USA ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Burritos Enchiladas Fajitas Nachos Quesadillas Tacos
Chili’s ⇥ ⇥ ⇥
Chipotle ⇥ ⇥
El Sombrero ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Hard Rock ⇥ ⇥
Mi Casa ⇥ ⇥ ⇥ ⇥ ⇥
Taco Bell ⇥ ⇥ ⇥ ⇥
Old el Paso ⇥

Burritos Enchiladas Fajitas Nachos Quesadillas Tacos
Fresh Tomato ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Roasted Chili-Corn ⇥ ⇥
Tomatillo-Green Chili ⇥ ⇥
Tomatillo-Red Chili ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

of C. When aq is not closed, and we don’t use the virtual query object, searching for answers
needs to find the more general concept C whose intent contains aq.

Then, answers are dispatched similarly relatively to C.
More formally, in all the cases, if ovq has been added to the context, oq|K = {o | o 2

Extent(c) where ovq 2 Extent(c), c 2 B(O [{ovq}, A, I [{(ovq, a) | a 2 aq|K})}

4.2 Relational queries

In this study, a relational query is composed of several simple queries, to which we add relational
constraints. The relational constraints are expressed via virtual query objects, one for each
formal context, where we want to find an object. A virtual query object may have relations
(according to the relational contexts) with objects of other contexts, as well as with other
virtual query objects.

41

Chapter 4. FCA and RCA Basics

Figure 4.5: RCA Iterations.

42

4. Simple and Relational Queries

Figure 4.6: The country concept lattice.

Definition 14 A relational query Q on a relational context family (K, R) is a pair Q = (Aq, Ovq, Rq),
where:

1. Aq is a set of simple queries, Aq = {q|K
i

= (oq|K
i

, aq|K
i

) | q|K
i

is a query on Ki 2 K}

2. There is a one-to-one mapping between Aq and Ovq.

3. Rq is a set of relational constraints, Rq = (ovq|
K

i

, rij , Oq), where ovq|
K

i

is the virtual object
associated with q|K

i

, Oq ✓ Oj [{ovq|
K

j

}, with ov
q|
K

j

is the virtual object associated with

43

Chapter 4. FCA and RCA Basics

Figure 4.7: The restaurant concept lattice.

44

4. Simple and Relational Queries

Figure 4.8: The mexican dish concept lattice.

Kj.

45

Chapter 4. FCA and RCA Basics

Figure 4.9: The ingredient concept lattice.

46

4. Simple and Relational Queries

Figure 4.10: The salsa concept lattice.

For example, let us consider the following query: I am searching for a country which is
described by the attribute "fr", a restaurant of this country that serves a Mexican dish containing
(chicken, cheese, and corn-tortilla), and a salsa which is "hot" and suitable with the dish. This
query can be translated into a relational query Qexample = (Aq, Ovq, Rq) as follows:
Aq = {qcountry, qrestaurant, qdish, qsalsa}, aq

country

= {fr}, aq
restaurant

= aq
dish

= ;, aq
salsa

= {hot}.
Ovq = {ovq

dish

, ovq
country

, ovq
restaurant

, ovq
salsa

}
Rq = {(ovq

dish

, contains, {chicken, cheese, corn-tortilla}), (ovq
country

, has, {ov
q

restaurant

}),
(ovq

restaurant

, serves, {ov
q

dish

}), (ovq
salsa

, suitable-with, {ov
q

dish

})}.
By definition, a query corresponds to the data model (Fig. 4.11), thus must respect the schema
of the RCF.

A maximal answer to the relational query is composed of the answers of the simple queries.
For our example, it would be oq

country

= {France}, oq
restaurants

contains all the restaurants,
oq

dish

contains all the dishes, oq
salsa

= {Tomatillo � Red Chili}. If we consider these objects

47

Chapter 4. FCA and RCA Basics

Figure 4.11: Query schema.

connected with the relations, this forms what we call the maximal answer graph. In this graph,
we are interested in the subgraphs that cover the query (they have at least one object per
element of Aq). These subgraphs are included in the graph of the Figure 4.12. There are various
interesting forms of answer: having exactly one object per element of Aq, or having several
objects per element of element of Aq.

Figure 4.12: The subgraph containing interesting objects for the relational query example.

Definition 15 An answer to a relational query Q = (Aq, Ovq, Rq) is a set of objects X having
a unique object per each context that is involved in the query:

X = {oi | oi 2 Oi with 1 i n}

These objects satisfy the query Q = (Aq, Ovq, Rq), when they have the requested attributes:
8 aq|

K

i

2 Aq, 9 oi 2 X : o0i ◆ aq|
K

i

and they are connected as expected:
8 (ovq|

K

i

, r, Oq) 2 Rq with r ✓ Oi⇥Oj , (and thus : Oq ✓ Oj[{ovq|
K

j

}) and 8 o 2 Oq, we have :

1. if o 2 Oj , we have (oi, o) 2 r

2. if o = ov
q|
K

j

, we have (oi, oj) 2 r with oj 2 X \Oj

48

4. Simple and Relational Queries

For example, an answer to the query Qexample can be the set:
{France,El Sombrero, Enchiladas, Tomatillo-RedChili}

For our example, the set of answers to the relational query, is:
{{France, El Sombrero, Enchiladas, Tomatillo-Red Chili}, {France, El Sombrero, Quesadillas,

Tomatillo-Red Chili}, {France,El Sombrero, Tacos, Tomatillo-Red Chili}, {France, Old el Paso,

Tacos, Tomatillo-Red Chili}}.

Answers can be provided with an aggregated form which can be found in lattices, as we
explain below. They allow us to discover sets of equivalent objects relatively to the answer. E.g.
{Enchiladas,Quesadillas, Tacos} are equivalent objects if we choose France and El Sombrero.

Definition 16 An aggregated answer to a query Q = (Aq, Ovq, Rq) is the set:
AR = {Si |

� there is a one-to-one mapping between AR and Aq which maps each q|K
i

to a set Si

� 8 q|K
i

2 Aq, 8 oi 2 Si, o0i ◆ q|K
i

(objects of Si have the requested attributes)

� when (ov
q|
K

i

, r, Oq) 2 Rq

– if ovq|
K

j

2 Oq, r ✓ Oi ⇥Oj , thus : 8 oi 2 Si, 8 oj 2 Sj , Sj 2 AR,

we have (oi, oj) 2 r (virtual objects are connected if requested)

– for each oj 2 Oq \Oj we have : (oi, oj) 2 r (connections with particular objects are
satisfied).

}

For example, (see Figure 4.12), an aggregated answer for our query is France (having the
attribute {fr}) that has the restaurant {ElSombrero}, which serves the dishes {Enchiladas,

Quesadillas, Tacos}, which contain {chicken, cheese, corn-tortilla}, with which {Tomatillo-
RedChili} that is {hot} is suitable.

{Scountry, Srestaurant, Sdish, Ssalsa}
= {{France}, {ElSombrero}, {Enchiladas,Quesadillas, Tacos}, {Tomatillo-RedChili}}

Another aggregated answer is = {{France}, {OldelPaso}, {Tacos}, {Tomatillo-RedChili}}

4.3 Lattice Navigation by Relational Queries

In this section, we explain how the navigation between the concept lattices can be guided by
a relational query. Following relational attributes that lead us from one lattice to another, we
navigate a graph whose nodes are the concept lattices. In a first subsection, we propose an
algorithm which gives a general browsing schema that applies to concept lattices built with the
existential scaling. Then we present several variations of this navigation algorithm.

49

Chapter 4. FCA and RCA Basics

4.4 A Query-Based Navigation Algorithm

Our approach for navigating the concept lattices along the relational attributes is based on the
observations made during an experimental use of RCA, for finding the appropriate Web services
to implement an abstract business process (as we shall see in Chapter 8). We consider an RCF
and a query that respects the RCF relations. From our experience, we observed that an expert
often expresses his query by a phrase, where chronology in introduction of principal verbs (re-
lations) gives a natural path for the query flow. This will be our guiding hypothesis. Let us
consider the query specified previously: I am searching for a country, called "fr", that has a
restaurant which serves dishes containing chicken, cheese and corn-tortilla; I am searching for
a hot salsa suitable with this dish. In order to simplify the notation, we use the same notation
for queries q|k

i

and the corresponding virtual objects ovq|
K

i

.

We can formalize the query path by a totally ordered set of arcs, and sometimes specific sets
of objects. For our example, the path is a total order for Rq = {(qcountry, has, {qrestaurant}),
(qrestaurant, serves, {qdish}), (qdish, contains, {chicken, cheese, corn-tortilla}), (qsalsa, suitable-
with, {qdish})}. Each arc corresponds to a relation used in the query. All the relations involved
inside a query are covered by this path. This translation of the expert query determines a
composition on the relations. The query path does not always correspond to a directed chain
in the object graph (e. g. dishes are the end of two of the considered relations (serves and
suitable-with).

We propose the algorithms 1 to 4 for navigating through a concept lattice family using
queries. During the exploration, we fill a set X by objects that will constitute an answer at the
end (at most one object for each formal context). In this section, the algorithm is presented
as an automatic procedure, its use to guide an expert in its manual exploration of the data is
discussed afterwards.

Algorithm 1 identifies three main cases:

� line 2, the arc connects two query objects, e.g. (qcountry, has, {qrestaurant});

� line 5, the arc connects a query object to original objects e.g. (qdish, contains, {chicken,
cheese, corn-tortilla});

� line 8, the arc connects a query object to another query object and to original objects e.g.
(qdish, contains, {qingredient, chicken, cheese, corn-tortilla}).

Each of these cases considers, for a given arc a, whether the partial answer X already contains
an object source or (inclusively) an object target.

When the arc connects a query object to another query object a = (q|K
s

, rst, q|K
t

), (Algo-
rithm 2), four cases are possible.

� X does not contain any object for Ks and any ot for Kt: we identify the highest concept
that owns the attributes of q|K

s

and we select an object in its extent (lines 3-5). Then we
continue on the next conditional statement (to find a target).

50

4. Simple and Relational Queries

� X contains an object os for Ks and an object ot for Kt selected in previous steps: we just
check if os owns the relational attribute pointing at the object concept introducing ot, that
is �ot (line 8)1.

� X contains only an object os for Ks. We should find a target. We identify, under the
highest concept that owns the attributes of q|K

t

, one of the lowest concepts to which os
points (lines 12-14). We select a target in its extent.

� X contains only an object ot for Kt. We should find a source. We identify the highest
concept that owns the attributes of q|K

s

and the relational attribute that points to ot (lines
20-23). We select a source in its extent.

When the arc connects a query object to original objects a = (q|K
s

, rst, Oq) (Algorithm 3):

� Either X contains an object for Ks and we need to check if the relational attributes confirm
that this object is connected to all the original objects in Oq) (line 4);

� Or we have to select an object for Ks, owning the attributes of the query q|K
s

and owning
the relational attributes ending in the concepts introducing the original objects (line 9-11).

Algorithm 4 is a composition of the two others cases. Note that whenever a condition is not
verified, we have to backtrack, this is not specified in the algorithm for simplicity sake. If the
query path forms also a directed chain in the entity-relationship diagram, the main algorithm is
a depth-first search. But in the general case, in some steps, when we consider an arc, we filled
X with an object for the end of the arc, and we need to find a source object.

For example, we start with the arc (qcountry, has, {qrestaurant}) where the query path begins.
We have to identify a source object os satisfying the query {fr} (Definition 13). For example,
we choose the object France appearing the extent of Concept_4, whose intent contains fr.

We extract the relational attributes of os = France, they have the form (9rst C) and
they are in pratice in the lattices denoted by r : C. For example, we obtain has:Concept_19,
has:Concept_15, has:Concept_60, has:Concept_16, etc. We keep the relational attributes with
the concepts satisfying the target query in the corresponding lattice and discard the rest. In our
example, the qrestaurant is empty. A relational attribute with the smallest concept (Ct) is the
one to consider that leads us to find a solution. We choose Concept_15 among the available
smallest concepts. Let 9 rst Ct be the selected relational attribute (if it exists). The object ot
must be in the extent of Ct. In our example, we select El Sombrero.

Then we consider the query-to-query arc (qrestaurant, serves, {qdish}). Given that an object is
selected for Krestaurant, we look for a possible target object, lead by the query qdish = ; and the
relational attributes owned by the concept object Concept_15 which introduces El Sombrero.
Suppose we choose (line 13) a relational attribute that goes to one of the minimum concepts,
namely serves : Concept_23 (but serves : Concept_26 or serves : Concept_25 are also possi-
ble). This leads us to Concept_23, in the extent of which we select Enchiladas.

1
We remind that �o is the object concept introduced by o.

51

Chapter 4. FCA and RCA Basics

Dealing with the next arc (qdish, contains, {chicken, cheese, corn-tortilla}) involves, since we
have already selected a dish, to verify (Algorithm 3, line 4) that, the object concept �Enchiladas

owns all the relational attributes that go to object concepts introducing chicken, cheese, and corn-
tortilla. These are contains : � chicken = Concept_29, contains : � cheese = Concept_36 and
contains : � corn � tortilla = Concept_40 and they are indeed inherited by �Enchiladas =
Concept_23.

When the arc (qsalsa, suitable-with, {qdish}) is considered, the target (Enchiladas) is in X.
Thus we identify a source in the extent of the Concept_47 which satisfies the target query
{hot}. Its intent contains suitable� with : Concept_23 which is Enchiladas. A target object
(Tomatillo-Red Chili) is selected in the extent of Concept_47. The answer is now complete.

The process is different if we use a different path and even with the considered path it may
fails. For example, when dealing with the edge (qrestaurant, serves, {qdish}), if we choose serves :
Concept_25, we get Nachos in the extent of Concept_25. For the next arc (qdish, contains,
{chicken, cheese, corn-tortilla}), it appears that Concept_25 does not inherit contains :
� corn� tortilla = Concept_40 and we need to backtrack to the choice of a dish.

Algorithm 1 Navigate(RCF,Q, PQ) //PQ = (ak) | ak = rij and rij 2 RQ

Data: (K, R): an RCF; Q = (Aq, Ovq, Rq): a query on (K, R); and a query path
Result: X: an object set (answer for Q) or fail

1foreach arc a 2 PQ do
2if a = (q|K

s

, rst, q|K
t

) then
3Case_pure_query
4else
5if a = (q|K

s

, rst, Oq) with Oq ✓ Ot then
6Case_pure_objects
7else
8if a = (q|K

s

, rst, q|K
t

) with q|K
t

2 Oq then
9Case_query_and_objects

4.5 Variations about the Algorithm

Integrating queries into the contexts One approach that has been investigated in the
case of simple queries consists to integrate the virtual query object in the context, then to
build the concept lattice. This can also be done for relational queries. A relational query
Q = (Aq, Ovq, Rq) can be integrated into an RCF by adding the virtual query objects ov

q|
K

i

into
the context Ki. Each virtual query object ovq|

K

i

owns the attributes of the query aq|
K

i

and for
each arc (ov

q|
K

i

, rij , ov
q|
K

j

), the relational context of rij is enriched by a line for ov
q|
K

i

, a column
for ov

q|
K

j

and the relation (ov
q|
K

i

, ov
q|
K

j

).
We integrated the relational query into our Mexican Food RCF. The formal contexts with

queries are in Table 4.5, and relational contexts with queries are in Table 4.6.

52

4. Simple and Relational Queries

Algorithm 2 Case_pure_query
1Let a = (q|K

s

, rst, q|K
t

)
2if // X does not contain a source and a target for the current arc a

X \Os = ; and X \Ot = ; then
// select a source in the extent of a concept that verifies the source query

3Let Cs be the highest concept having Intent (Cs) ◆ q|K
s

4select os 2 Extent(Cs)
5X X [{os}
6if // X contains a source and a target for the current arc a
7X \Os = {os} and X \Ot = {ot} then

// verify that the source is connected to the target
8check 9rst �o

t

2 Intent(�o
s

) 9

else
10if // X contains a source for the current arc a

X \Os = {os} then
11//select a target in the extent of a concept that verifies the target query and is connected

to the source
12Let Ct be the highest concept having Intent (Ct) ◆ q|K

t

13and Ct 2 min(C | 9 (9rst C) 2 Intent(�os))
14select ot 2 Extent(Ct)
15X X [{ot} 16

else
17// X contains a target for the current arc a
18// select a source in the extent of a concept that verifies the source query
19and is connected to the target
20Let ot 2 X \Ot

21Let Cs be the highest concept having Intent (Cs) ◆ q|K
s

22and 9rst �ot 2 Intent(Cs)
23select os 2 Extent(Cs)
24X X [{os}

53

Chapter 4. FCA and RCA Basics

Algorithm 3 Case_pure_objects
1Let a = (q|K

s

, rst, Oq) with Oq ✓ Ot

2if // X contains a source for the current arc a
X \Os = {os} then

3// verify that the source is connected to the objects in Oq

4check 8o 2 Oq, 9rst �o 2 Intent(�o
s

) 5

else
6// X does not contain a possible source
7// select a source in the extent of a concept that verifies the source query
8// and is connected to the target objects
9Let Cs be the highest concept having Intent (Cs) ◆ q|K

s

10and 8o 2 Oq, 9rst �o 2 Intent(Cs)
11select os 2 Extent(Cs)
12X X [{os}

We generate the corresponding concept lattice family, considering the existential scaling.
The set of lattices are shown in Figures 4.13, 4.14, 4.15, 4.16, 4.17.

Locating the highest concept that introduces all the attributes of each query of each con-
cerned context, now is much more easy because it introduces the virtual query object. Then,
we can navigate in a similar way as before.

Variations of Navigation According to Scaling Operators The scaling operators of Re-
lational Concept Analysis offer various other opportunities to browse the data. In our web
service application, we used the scaling operator covers which captures the following informa-
tion. If an object os is connected to a set of objects T , then in the scaled relation, os will be
connected to the concepts whose extent is included in T . This is used to form for example a
group of restaurants, which serve all the dishes containing sour cream, by contrast to the exis-
tential scaling operator which rather forms a group of restaurants, which serve at least one of
the dishes containing sour cream.

With the covers scaling (Definition 10), we know that an object belonging to some concepts
is connected to all the objects of the target concept according to the relational attribute. Thanks
to this property, it is easier to find aggregate answers in the concept lattice family because all the
objects in a concept have a same set of properties (attributes and connections)2. It is clear that
on large data, it is not practical to build many different concept lattice families using different
operators. But the approach can be valuable on a small subset of the data as it was our case
after filtering the huge set of web services by quality and functionality requirements.

2
For reader interested to see the lattices: http://www.lirmm.fr/~huchard/RCA_queries/

mexicoCoversWithoutQuery.rcft.svg

54

http://www.lirmm.fr/~huchard/RCA_queries/mexicoCoversWithoutQuery.rcft.svg
http://www.lirmm.fr/~huchard/RCA_queries/mexicoCoversWithoutQuery.rcft.svg

4. Simple and Relational Queries

Algorithm 4 Case_query_and_objects
1Let a = (q|K

s

, rst, Oq) with q|K
t

2 Oq

2if // X does not contain a source and a target for the current arc a
X \Os = ; and X \Ot = ; then

3// select a source in the extent of a concept that verifies the source query // and is connected
to the objects of Oq

4Let Cs be the highest concept having Intent (Cs) ◆ q|K
s

5and 8o 2 Oq, 9rst �o 2 Intent(Cs)
6select os 2 Extent(Cs)
7X X [{os}
8if // X contains a source and a target for the current arc a

X \Os = {os} and X \Ot = {ot} then
9// verify that the source is connected to the target and to all objects of Oq

10check 9rst �o
t

2 Intent(�o
s

)
11and 8o 2 Oq, 9rst �o 2 Intent(�os)

else
if // X contains a source for the current arc a
X \Os = {os} then

12// verify that the source is connected to all objects of Oq

13check 8o 2 Oq, 9rst : �o 2 Intent(�os)
14// and select a target in the extent of a concept that verifies the target query and is

connected to the source
15Let Ct be the highest concept having Intent (Ct) ◆ q|K

t

16and Ct 2 min(C | 9 (9rst C) 2 Intent(�os))
17select ot 2 Extent(Ct)
18X X [{ot}

else
19// X contains a target for the current arc a
20// select a source in the extent of a concept that verifies the source query
21and is connected to the target and to the objects in Oq

22Let ot 2 X \Ot

23Let Cs be the highest concept having Intent (Cs) ◆ q|K
s

24and 9rst �ot 2 Intent(Cs)
25and 8o 2 Oq, 9rst �o 2 Intent(Cs) 26select os 2 Extent(Cs)
27X X [{os}

55

Chapter 4. FCA and RCA Basics

Table 4.5: The formal contexts of the Mexican Food RCF with the integrated relational query.

ca en fr lb m
x

es us A
m

er
ic

a

A
si

a

E
ur

op
e

Canada ⇥ ⇥
England ⇥ ⇥
France ⇥ ⇥
Lebanon ⇥ ⇥
Mexico ⇥ ⇥
Spain ⇥ ⇥
USA ⇥ ⇥
q-country ⇥

r1 r2 r3 r4 r5 r6 r7

Chili’s ⇥
Chipotle ⇥
El Sombrero ⇥
Hard Rock ⇥
Mi Casa ⇥
Taco Bell ⇥
Old el Paso ⇥
q-restaurant

d1 d2 d3 d4 d5 d6

Burritos ⇥
Enchiladas ⇥
Fajitas ⇥
Nachos ⇥
Quesadillas ⇥
Tacos ⇥
q-dish

i1 i2 i3 i4 i5 i6 i7 i8 i9 i1
0

i1
1

i1
2

chicken ⇥
beef ⇥
pork ⇥
vegetables ⇥
beans ⇥
rice ⇥
cheese ⇥
guacamole ⇥
sour-cream ⇥
lettuce ⇥
corn-tortilla ⇥
flour-tortilla ⇥

s1 s2 s3 s4 m
ild

m
ed

iu
m

-h
ot

ho
t

Fresh Tomato ⇥ ⇥
Roasted Chili-Corn ⇥ ⇥
Tomatillo-Green Chili ⇥ ⇥
Tomatillo-Red Chili ⇥ ⇥
q-salsa ⇥

Opportunities of browsing offered by the exploration As we explained before, the al-
gorithm described in the previous section can be understood as an automatic procedure to
determine a solution to a query. Nevertheless, it is more interesting to use it as a guiding
method for the exploration of data by a human expert. Each object selection is a departure
point for inspecting the objects of the selected concept, and, explore the neighborhood, going
up by relaxing constraints or going down by adding constraints.

56

4. Simple and Relational Queries

Table 4.6: The relational contexts of the Mexican Food RCF with the integrated relational
query.

ch
ic

ke
n

b
ee

f

p
or

k

ve
ge

ta
bl

es

b
ea

ns

ri
ce

ch
ee

se

gu
ac

am
ol

e

so
ur

-c
re

am

le
tt

uc
e

co
rn

-t
or

ti
lla

flo
ur

-t
or

ti
lla

Burritos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Enchiladas ⇥ ⇥ ⇥ ⇥
Fajitas ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Nachos ⇥ ⇥ ⇥ ⇥
Quesadillas ⇥ ⇥ ⇥ ⇥ ⇥
Tacos ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
q-dish ⇥ ⇥ ⇥

C
hi

li’
s

C
hi

p
ot

le

E
l
So

m
br

er
o

H
ar

d
R

oc
k

M
i
C

as
a

T
ac

o
B

el
l

O
ld

el
P
as

o

q-
re

st
au

ra
nt

Canada ⇥ ⇥ ⇥ ⇥ ⇥
England ⇥ ⇥ ⇥
France ⇥ ⇥ ⇥
Lebanon ⇥ ⇥ ⇥
Mexico ⇥ ⇥ ⇥
Spain ⇥ ⇥
USA ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
q-country ⇥

B
ur

ri
to

s

E
nc

hi
la

da
s

Fa
ji
ta

s

N
ac

ho
s

Q
ue

sa
di

lla
s

T
ac

os

q-
di

sh

Chili’s ⇥ ⇥ ⇥
Chipotle ⇥ ⇥
El Sombrero ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Hard Rock ⇥ ⇥
Mi Casa ⇥ ⇥ ⇥ ⇥ ⇥
Taco Bell ⇥ ⇥ ⇥ ⇥
Old el Paso ⇥
q-restaurant ⇥

B
ur

ri
to

s

E
nc

hi
la

da
s

Fa
ji
ta

s

N
ac

ho
s

Q
ue

sa
di

lla
s

T
ac

os

q-
di

sh

Fresh Tomato ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Roasted Chili-Corn ⇥ ⇥
Tomatillo-Green Chili ⇥ ⇥
Tomatillo-Red Chili ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
q-salsa ⇥

A point in favor of the lattices is that they not only give us a solution: besides they classify
the objects of the solutions and provide a navigation structure. They also give other information
about the objects which can be useful for the expert: attributes that objects of the answer set
have necessarily, attributes that appear in the same time as attributes of the answer, etc.

In our web service application, we preferred the solution which integrates the query in the
RCF because we found easier to identify the answers. The lattices show how the existing
objects match and differ from the query, thanks to the factorization of attributes between the
query and the existing objects. Nevertheless, having several queries at the same time would not
be efficient. Thus the solution has be used only for specific problems. An incremental algorithm
can be used to introduce the query, which enlightens the process of modifying the lattice and
gives information to the expert about the structure of data. We can conserve the original lattice
(before query integration), and save the query objects together with the resulting concepts in
an auxiliary structure. This way, we can always easily go back to the original lattices.

57

Chapter 4. FCA and RCA Basics

5 Summary

In this chapter, we gave a comprehensive background about the Formal and Relational Concept
Analysis (FCA, RCA), together with their formal definitions illustrated by examples. We also
defined the notions of queries and relational queries, as a mechanism for lattice navigation. These
two classification techniques are used in our framework for solving the problems surrounding
Web service classification and selection. We point that there are several algorithms for FCA
and RCA. The complexity of these algorithms varies according to the input contexts and their
density [67, 68].

58

5. Summary

Figure 4.13: The country concept lattice with query q-country.

59

Chapter 4. FCA and RCA Basics

Figure 4.14: The restaurant concept lattice with query q-restaurant.

60

5. Summary

Figure 4.15: The mexican dish concept lattice with query q-dish.

61

Chapter 4. FCA and RCA Basics

Figure 4.16: The ingredient concept lattice.

62

5. Summary

Figure 4.17: The salsa concept lattice with query q-salsa.

63

Part II

Contributions

65

Chapter 5

The Selection Framework

Contents
1 Overview . 67

2 The Selection Framework . 67

2.1 User Requirements Layer . 68

2.1.1 Abstract WSDL File . 68

2.1.2 Abstract BPEL File . 71

2.2 Discovery Layer . 71

2.2.1 Web Service Retriever . 72

2.2.2 WSDL Parser . 72

2.3 Classification Layer . 73

2.4 Selection Layer . 73

3 Contribution Outline . 73

1 Overview

Building a business process requires a multi criteria-based service selection model. This selection
model must enable a user to efficiently identify services that satisfy the required functionality,
by being compatible and composable, as well as having the expected QoS values.

In this thesis, we propose a framework for achieving such a selection model based on both
functional and non-functional properties. It enables a user to express his functional and non-
functional requirements for building his desired business process. It works on analysing these
requirements, discovering candidate services and classifying them (see Figure 5.1). This enables
an efficient selection of the needed services as well as their potential substitutes. In the following,
we present our framework in more details. We describe its various layers, and we explain the
components involved in each of them.

2 The Selection Framework

Our framework assists users to select Web services efficiently during design-time, in order to
achieve their desired Web service-based applications. We illustrate our framework in Figure 5.2,
in which we see a general overview that can be specialized according to the needed use case.

67

Chapter 5. The Selection Framework

Figure 5.1: The framework’s main layers.

This framework consists of four main layers: user requirements, discovery, classification, and
selection. In this chapter, we focus on describing in details the user requirements layer and the
discovery layer. The remaining layers are described briefly here, and are further detailed in the
following chapters (according to some considered use cases).

2.1 User Requirements Layer

In the user requirements layer, a user is able to express his requirements for Web services
according to the needed functional as well as non-functional properties. According to the desired
service-based application, a functionality can be either an individual service providing a needed
operation, or several services that can be composed together. The requirements can be expressed
by specifying an abstract WSDL (AWSDL) that describes the needed services. This AWSDL
file can be also used to define an abstract BPEL (ABPEL). The ABPEL describes the desired
business process by specifying the interactions between the services described in the AWSDL
file. These two files are analyzed in the discovery layer by the analyzer component, as we shall
see shortly.

2.1.1 Abstract WSDL File

A user is allowed to define an abstract WSDL interface, inside which he describes all of the
needed services by specifying functional and non-functional requirements. A needed service is
characterised by the needed operation(s) that it provides, together with the expected QoS levels
for every supported attribute.

68

2. The Selection Framework

Figure 5.2: A general overview of the framework and its layers.

69

Chapter 5. The Selection Framework

An abstract WSDL interface contains information about one or more needed services, to-
gether with the accepted QoS levels. Services are described by their operations together with
their input/output parameters names and types. The functional and non-functional require-
ments are described by enriching the documentation tags of the WSDL description, as illus-
trated in Figure 5.3. An abstract WSDL does not have a concrete part, which usually provides
information about the service’s location and the supported protocol for invocation.

Figure 5.3: Abstract WSDL interface.

We consider that a needed operation can be characterized by its input/output parameters
and their types. Thus, when defining an operation inside an abstract WSDL, a user is sup-
posed to provide for each input/output parameter a set of relevant keywords for its name,
and another set for its type. For example, for a parameter named city the user may provide
{city, town,metropolis}. This can be expressed using the documentation tags in a WSDL in-
terface, which can be defined for each WSDL element such as service, operation, message, part,
type, etc. Like this, it is not necessary to extend the WSDL standards with new elements to
fulfil our needs.

We suppose also that the user must not provide a specific operation name, he can provide
any operation identifier, like for example op1, which will be discarded when parsed. We argue
that an operation’s name can be as much a good indicator for the operation’s functionality as it
can be bad. For example, if someone is searching for an operation that takes as input a country
name and returns its capital, an operation named getCapital or getCapitalForCountry would
be exactly the required one. On the other hand, an operation named getCountryInformation
would be misleading. It may even get discarded if we consider its name, although it takes a
country name as input and returns the capital as one of its outputs. Let us consider another
example of an operation for weather information called getWeather that takes a city name and
returns information about temperature, humidity, wind speed, etc. If someone is searching for

70

2. The Selection Framework

an operation called getTemperature, it is for sure that he will miss the getWeather operation,
although it provides the functionality he is asking for.

2.1.2 Abstract BPEL File

An abstract BPEL in literature specifies the external message exchange between Web services
and does not contain any internal details of the business process, as we mentioned previously in
Chapter 4.

We define the concept of an abstract BPEL as a normal concrete BPEL, which is based on
a locally defined abstract WSDL, instead of services retrieved from the Web. In this way, a
user aiming at building a business process does not have to be aware of the existing services
on the Web. Nevertheless, he should have enough knowledge about dividing the functionality
of the desired process into linked smaller pieces that can be represented as orchestrated Web
services. These imagined Web services can then be specified by an AWSDL file, which can be
used afterwards to define the desired process by an ABPEL file.

The difference between defining a normal BPEL and an ABPEL lies in specifying partner
links. They reference portTypes from the abstract WSDL, instead of referencing external port-
Types (see Figure 5.4). This can be done by creating a wrapper for each portType, that defines
a new partnerLinkType with the role "processRole".

Figure 5.4: The abstract BPEL file.

Thus, an abstract WSDL allows the user to define an abstract BPEL process transparently,
without being aware of the actual services, nor by whom they are being provided.

2.2 Discovery Layer

In this layer, the AWSDL and ABPEL files are analyzed in order to extract the specified func-
tional and non-functional requirements. The keywords specifying the functional requirements
are exploited by the service retriever, which retrieves a set of services (WSDL interfaces) using
a Web service resource. These retrieved services are filtered and parsed. Then, the set of speci-
fied input/output parameters are used for checking the compatibility of each retrieved service.
Concerning the non-functional requirements, they will be represented as queries to be processed
in the classification layer. They are used to identify the services satisfying them.

71

Chapter 5. The Selection Framework

2.2.1 Web Service Retriever

The requirements analyzer sends to this component the keywords specified for the parameter
names input/output for each needed operation. The service retriever works also on retrieving
the QoS information, when it is provided by the service resource. The retrieved WSDL interfaces
are then parsed, in order to extract their operations signatures including their parameters names
and types.

2.2.2 WSDL Parser

Each set of the retrieved services is passed to this parser, in order to extract for each service its
operations with their input/output parameters. The parser works on resolving the references
found inside each passed WSDL interface. It formulates the service signatures by extracting
the operation name together with the input/output parameters together with their types. In
WSDL interfaces, parameters are specified as elements of an XML schema, they may be either
simple or complex. Simple types are the XML schema primitive types as int, float, string,
etc. Complex types contain several elements having either complex or simple types. The parser
works on unfolding these complex types, in order to extract all of its sub elements. The unfolded
complex type forms a string of concatenated sub elements, representing a type hierarchy. In this
way, all of the elements are conserved and none of the semantics conveyed by them is lost. For
example, in Figure 5.5, we can see a WSDL interface for a Weather service with one operation
"GetWeatherInfo". This operation returns a parameter of a complex type called Weather.

Figure 5.5: A WSDL interface describing a weather service.

72

3. Contribution Outline

The result returned by the parser is shown in Figure 5.6.

Figure 5.6: The operation signature returned by the WSDL parser.

2.3 Classification Layer

In the classification layer, the extracted service signatures, the retrieved QoS, as well as the
specified queries are processed inside the handler component. The handler component can be
very variable according to the use case, as we shall see in the following chapters. In general, it
prepares the collected services with their data, in order to generate the corresponding contexts for
FCA/RCA classifier. This classifier analyzes the generated contexts and builds the corresponding
FCA/RCA lattices according to the considered use case.

2.4 Selection Layer

Finally, in the selection layer, the lattice interpreter navigates the generated lattices, and extracts
the candidate (substitutable) services that best match the specified user requirements. This
interpreter implements the algorithm specified in Section 4-4.3, which navigates the resulting
lattices and identifies the services that best match the user specified requirements.

3 Contribution Outline

In this thesis, we validated our proposed framework according to three different use cases, which
are presented respectively in the following chapters. Each use case represents a specialization of
this general framework for the realization of a certain purpose. Therefore, each one of these use
cases can be read and understood independently of the others.

In Chapter 6, we present the first framework’s use case, which illustrates a browsing mech-
anism that facilitates the selection of Web services by keywords, and the identification of their
backups.

In Chapter 7, we present the second use case, in which, we propose using the framework
to extract groups of mutually similar operations. Each one of these groups is considered as a

73

Chapter 5. The Selection Framework

functionality. This enables classifying the services by their functionality, and reveals the substi-
tutability relations between them.

In Chapter 8, we present the third and final use case, which clarifies the framework utiliza-
tion as an assistant for building Web service orchestrations. In this use case, we deal with Web
service selection according to user requirements, specified by an abstract WSDL and an abstract
BPEL files. These requirements are specified on three levels: the services’ functionality, their
QoS, and their composability.

In Chapter 9, we demonstrate the experiments that are conducted for each one of the frame-
work’s use cases. In these experiments, we use real Web services retrieved from Web service
search engines, in order to validate our framework and its various components.

74

Chapter 6

Web Service Selection by Tags

Contents
1 Introduction . 75

2 The Selection Framework: Use Case 1 . 76

2.1 Discovery Layer . 76

2.2 Classification Layer . 77

2.2.1 Automatic tagger . 79

2.2.2 Creation of the training corpus . 79

2.2.3 Pre-processing of the WSDL files 80

2.2.4 Selection of the candidate tags . 80

2.2.5 Computation of the features . 82

2.2.6 Training and using the classifier 83

2.2.7 WordNet for semantically related tags 83

2.2.8 FCA Classifier . 84

2.3 Selection Layer . 84

3 Summary . 87

1 Introduction

In this chapter, we present the first use case of our framework. In this use case, we show the
utility of our framework for the selection of one or more independent services, along with their
possible substitutes.

We use Formal Concept Analysis (FCA) to classify Web services into concept lattices accord-
ing to their automatically extracted tags (the significant keywords appearing in their documen-
tations). A service lattice reveals the invisible relations between the services. It is considered as
a browsing mechanism that facilitates the selection of a needed service, and the identification of
its candidate backups. The dynamic use of such backups to replace a defecting service enables a
continued functionality of a Web service, which becomes indispensable, especially when a service
represents a part of a composite application.

We explain this chapter using a scenario for travel reservation, which we call the Travel
Composite Service (TCS). Afterwards, we describe the components used in this specialization
of our framework, especially in the classification layer.

75

Chapter 6. Web Service Selection by Tags

Scenario

Let us consider the following travel scenario: a traveller needs to reserve a plane ticket to a
desired city. Supposing that this traveller lives in a small city that has no airport, then, he
should also travel to the city where the airport is located, in order to take the plane he reserved.
Thus, he must also reserve a train ticket, from his home city to the airport city, taking into
consideration the flight’s exact time with the time needed to travel between the two cities. This
scenario can be achieved by a Travel Composite Service (TCS), in which three functionalities
must be satisfied:

� reservation of a flight from home city, or airport city, towards a desired city,

� if a train reservation is needed (in case that the home city is not the airport city), then
calculation of the needed time (duration) to travel between the two cities by train,

� then reservation of a train ticket corresponding to the previous duration. The depart time
of this train must considers the exact flight time and the calculated duration.

The TCS can be realized by discovering two services offering the described functionalities
and composing them. It may look like the composition in Figure 6.1. In this composition, if
the TrainWS service crashes, for example, an equivalent service offering at least the two used
calcDuration() and resTrain() operations must be searched and discovered, in order to recover
the missing functionality, and ensure the continuity of the composition.

2 The Selection Framework: Use Case 1

In Figure 6.2, we can see the different layers of our framework, which are specialized according
to the current use case. We explain this use cases on several steps. We start by retrieving a
set of WSDL interfaces according to some user requirements specified in an AWSDL file. Then,
from the retrieved WSDL interfaces, we extract a set of service documentations. We pass the ex-
tracted documentations to the classification layer, where we automatically tag the services with
significant keywords. Finally, the services with their tags are used to build the corresponding
service lattice using FCA, from which, the needed service along with its backups can be selected.

In the following, we clarify the layers and the components that are used to achieve the desired
service classification.

2.1 Discovery Layer

In this layer, the analyzer parses the AWSDL file in order to extract the set of keywords describing
each needed service. These keywords are located in the documentation element of the portType.
In our scenario, the AWSDL file would contain two portTypes: one for plane reservation, and
one for train reservation. The documentation element of the plane portType would have the
keywords {reserve, plane}, while they would be {reserve, train, duration} for the train portType.
Then, the service retriever fetches a set of services corresponding to the extracted keywords.
The service retriever also gathers the user tags associated to the retrieved services (if there is

76

2. The Selection Framework: Use Case 1

Figure 6.1: The travel composite service (TCS).

any). The WSDL parser extracts the documentation elements in each retrieved service (WSDL
interface). Finally, the extracted documentation elements along with the retrieved tags are
passed to the classification layer to be processed as described below.

2.2 Classification Layer

In the classification layer, the documentation elements and the user tags are processed, as we
mentioned above. They are passed through an automatic services tagger, which is based on text
mining and machine learning techniques. This tagger learns from the user tags how to handle the
words in documentation elements, in order to automatically extract tags for untagged services.

After having extracted tags for each retrieved service, the set of tags are used to generate a
formal context. This formal contexts consist of service identifiers as its objects, and the extracted
tags as its attributes. We also insert two keywords queries in the context, which are previously
extracted in the discovery layer. This context is passed to the FCA classifier that generated the
corresponding lattice.

77

Chapter 6. Web Service Selection by Tags

Figure 6.2: The main steps of our approach.

78

2. The Selection Framework: Use Case 1

2.2.1 Automatic tagger

In this component, we model the tag extraction problem as the following classification problem:
classifying a word into one of the two tag and no tag classes. Our overall process is divided into
two phases: the training phase and the tag extraction phase.

Figure 6.3: The training phase

Figure 6.3 summarizes the behavior of the training phase. In this phase we dispose of a
corpus of WSDL files and associated tags. The creation of this training corpus is described in
Section 2.2.2. From this training corpus, we first extract a list of candidate words by using text-
mining techniques. The extraction of these candidates is described in Sections 2.2.3 and 2.2.4.
Then several features are computed on every candidate. A feature is a common term in the
machine learning field. It can be seen as an attribute that can be computed on the candidates
(for instance the frequency of the words in their WSDL file). Finally, since manual tags are
assigned to those WSDL files, we use them to classify the candidate words coming from our
WSDL files. Using this set of candidate words, computed features and assigned classes, we train
a classifier. This trained classifier will then be used to classify words coming from subsequent
WSDL files during the tag extraction phase.

Figure 6.4: The tag extraction phase

Figure 6.4 describes the tag extraction phase. First, like in the training phase, a list of
candidate words is extracted from an untagged WSDL file. The same features as in the training
phase are then computed on those words. The only difference with the training phase is that we
do not know in advance which of those candidates are true tags. Therefore we use the previously
trained classifier to automatically perform this classification. Finally the tags extracted from the
WSDL file are the words that have been classified in the tag class. It is noteworthy to remark
that the training phase is only performed once, while the tag extraction phase can be applied
an unlimited number of times.

2.2.2 Creation of the training corpus

As explained above, our approach requires a training corpus, denoted by T . Since we want to
extract tags from WSDL files, T has to be a set of couples (wsdl, tags), with wsdl a WSDL file,
and tags a set of corresponding manually assigned tags.

79

Chapter 6. Web Service Selection by Tags

To clean the tags of the training corpus, we performed the three following operations:

� We removed the non alpha numeric characters from the tags (we found several tags like
_onsale or :finance),

� We removed a meaningless and highly frequent tag (the _unkown tag),

� We divided the tags with length n > 1 into n tags of length 1, in order to have only tags
of length 1. The length of a tag is defined as the number of words composing this tag.

Now that we have this training corpus, we will shortly describe the approach upon which
our work is built.

2.2.3 Pre-processing of the WSDL files

As we have seen before, a WSDL file contains several element definitions optionally containing
a plain-text documentation. The left side of Figure 6.5 shows such a data structure. In order
to simplify the WSDL XML representation in a format more suitable to apply text mining
techniques, we decided to extract two documents from a WSDL description:

� A set of couples (type, ident) representing the different elements defined in the WSDL. We
have type 2 (Service,Port,PortType,Message,Type,Binding) the type of the element and
ident the identifier of the element. We call this set of couples the identifier set.

� A plain text containing the union of the plain-text documentations found in the WSDL
file, called the global documentation.

This pre-processing operation is summarized in the Figure 6.5.

Figure 6.5: WSDL pre-processing

2.2.4 Selection of the candidate tags

As seen in the previous section, we dispose now of two different sources of information for a
given WSDL: an identifier set and a global documentation. Unfortunately, those data are not
yet usable to compute meaningful metrics. Firstly because the identifiers are names of the form

80

2. The Selection Framework: Use Case 1

MyWeatherService, and therefore are very unlikely to be tags. Secondly because this data con-
tains a lot of obvious useless tags (like the you pronoun). Therefore, we will now apply several
text-mining techniques on the identifier set and the global documentation.

Figure 6.6 shows how we process the identifier set. Here is the complete description of all
the performed steps:

Figure 6.6: Processing of the identifiers

1. Identifier type filtering: during this step, the (type,ident) couples where type 2 (Port-
Type,Message,Binding) are discarded. We applied this filtering because very often, the
identifiers of the elements in those categories are duplicated from the identifiers in the
others categories.

2. Tokenization: during this step, each couple (type, ident) is replaced by a couple (type, tokens).
tokens is the set of words appearing in ident. For instance, (Service,MyWeatherService)
would be replaced by (Service,[My,Weather,Service]). To split ident into several tokens,
we created a tokenizer that uses common clues in software engineering to split the words.
Those clues are for instance a case change, or the presence of a non alpha-numeric char-
acter.

3. POS tagging: during this step each couple (type, tokens) previously computed is re-
placed by a couple (type, ptokens). ptokens is a set of couples (tokeni, posi) derived from
tokens where tokeni is a token from tokens and posi the part-of-speech corresponding
to this token. We used the tool tree tagger [69] to compute those part-of-speeches. Ex-
ample: (Service,[My,Weather,Service]) is replaced by (Service,[(My,PP),(Weather,NN),(S-
ervice,NN)]). NN means noun and PP means pronoun.

4. Stopwords removal: during this step, we process each couple (type, ptokens) and remove
from ptokens the elements (tokeni, posi) where tokeni is a stopword for type. A stopword
is a word too frequent to be meaningful. We manually established a stopword list for each
identifier type. Example: (Service,[(My,PP),(Weather,NN),(Service,NN)]) is replaced by
(Service,[(My,PP)(Weather,NN)]) because Service is a stopword for service identifiers.

81

Chapter 6. Web Service Selection by Tags

5. POS filtering: during this step, we process each couple (type, ptokens) and remove from
ptokens the elements (tokeni, posi) where posi /2 (Noun,Adjective,Verb,Symbol). Exam-
ple: (Service,[(My,PP),(Weather,NN)) is replaced by (Service,[(Weather,NN)]) because
pronouns are filtered.

Figure 6.7 shows how we process the global documentation. Here is the complete description
of all the performed steps:

1. HTML tags removal: the HTML tags (words begining by < and ending by >) are
removed from the global documentation.

2. POS tagging: similar to the POS tagging step applied to the identifier set.

3. POS filtering: similar to the POS filtering step applied to the identifier set.

Figure 6.7: Processing of the global documentation

The union of the remaining words in the identifier set and in the global documentation are
our candidate tags. When defining those processing operations, we took great care that no
correct candidate tags (i.e. a candidate tag that is a real tag) of the training corpus have been
discarded. The next section describes how we adapted the features of a technique for keyphrase
extraction called Kea [70], for the candidate tags.

2.2.5 Computation of the features

After having applied our text mining techniques on the identifier set and the global documenta-
tion, we dispose now of different well separated words. Therefore we can now compute the tfidf

feature [71]. But words appearing in documentation or in the identifier names are not the same.
We decided (mostly because it turns out to perform better) to separate the tfidf value into a
tfidfident and a tfidfdoc which are respectively the tfidf value of a word over the identifier set
and over the global documentation. Like in Kea, we used the method in [72] to discretize those
two real-valued features.

The distance feature still has no meaning over the identifier set, because the elements of a
WSDL description are given in an arbitrary order. Therefore we decided to adapt it by defining
five different features: in_service, in_port, in_type, in_operation and in_documentation.
Those features take their values in the (true, false) set. A true value indicates that the word has

82

2. The Selection Framework: Use Case 1

been seen in an element identifier of the corresponding type. For instance in_service(weather) =
true means that the word weather has been seen in a service identifier. in_documentation(wea-
ther) = true means that the word weather has been seen in the global documentation.

In addition of these features, we compute another feature called pos. We added this feature,
not used in Kea, because it significantly improves the results. pos is simply the part-of-speech
that has been assigned to the word during the POS tagging step. If several parts-of-speech have
been assigned to the same word, we choose the one that has been assigned in the majority of the
cases. The different values of pos are: NN (noun), NNS (plural noun), NP (proper noun), NPS
(plural proper noun), JJ (adjective), JJS (plural adjective), VV (verb), VVG (gerundive verb),
VVD (preterit verb), SYM (symbol).

2.2.6 Training and using the classifier

We applied the previously described technique to all the WSDL files of T . In addition to
the previously described features, we compute the is_tag feature over the candidates. This
feature takes its values in the (true, false) set. is_tag(word) = true means that word has
been assigned as a tag by Seekda users for its service description. We have serialized all those
results in an ARFF file compatible with the Weka tool [73]. Weka is a machine learning tool
that defines a standard format for describing a training corpus and furnish the implementation
of many classifiers. One can use Weka in order to train a classifier or compare the performances
of different classifiers regarding a given classification problem. Table 6.1 shows an extract of the
ARFF file we produce. In this table, words are displayed for the sake of clarity, but in reality,
they are not present in the ARFF file. The ARFF file only contains features.

Table 6.1: Extract of the ARFF file
Word TFIDF

id

TFIDF
doc

IN_SERV ICE . . . IN_DOC POS IS_TAG

Weather [0, 0.01]]0.01, 0.04] ⇥ NN ⇥
Location]0.03, 0.1]]0.04, 0.15] ⇥ JJ

Code]0.03, 0.1]]0.01, 0.04] ⇥ V V

With this ARFF file, we used Weka to train a naive Bayes classifier, shown as optimal for
our kind of classification task [74]. This trained classifier can now be used in the tag extraction
phase. As previously said, the beginning of this phase is the same as the one of the training
phase. It means that the WSDL file goes through the previously described operations (pre-
processing, candidates selection and features computation). Only this time, the value of the
is_tag feature is not available. This value will be automatically computed by the previously
trained classifier.

2.2.7 WordNet for semantically related tags

In our approach, the classifier that we built determines whether a word in a WSDL file is a tag
or not. Thus, it extracts the tags appearing inside the WSDL files only. This way, we miss some
other interesting tags like associated words or synonyms. In order to solve this issue, we used
the WordNet lexical database [75]. In WordNet a word may be associated with many synsets
(synonym sets), each corresponding to a different sense of a word.

83

Chapter 6. Web Service Selection by Tags

Each WSDL file of our corpus is assigned two sets of tags: user tags and our automatically
extracted tags. Our objective is to enrich each set of tags with semantically similar words
extracted from WordNet. Thus, for each tag we identify the possible senses and the synonyms
set related to each sense. We add the extracted synonyms to the corresponding set of tags, and
we perform some experiments to evaluate the obtained tags.

2.2.8 FCA Classifier

This classifier takes as input a formal context of services characterized by the tags extracted by
the automatic tagger. The keywords queries specified in the AWSDL file are inserted into the
context. The context is then analyzed by the classifier, in order to generate the corresponding
lattice of services and tags.

In our scenario, we suppose retrieving ten services and extracting their tags. The formal
context corresponding to these services would be similar to the context in Table 6.2. The lattice
corresponding to this context is shown in Figure 6.8.

Table 6.2: Formal context...
plane train ticket reserve distance duration taxi car travel cancel meal airport cheap rent

ws1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws2 ⇥ ⇥ ⇥ ⇥ ⇥
ws3 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws4 ⇥ ⇥ ⇥ ⇥
ws5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws6 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws7 ⇥ ⇥ ⇥ ⇥ ⇥
ws8 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws9 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
ws10 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

We want to use this lattice to discover the required services. We navigate a lattice by
integrating a query into the context, and classify it into the lattice. The services that answer
the specified query are located in the sub-concepts of the lowest concept in the lattice, where
the query appears, as explained in Chapter 4. In our scenario, we have two keywords queries:
query1 = {reserve, plane} and query2 = {reserve, train, duration}. These queries are inserted
into the context as two new lines, as in Table 6.3. This context containing the inserted queries
results in the lattice shown in Figure 6.9.

Table 6.3: Formal context...
plane train ticket reserve distance duration taxi car travel cancel meal airport cheap rent

query1 ⇥ ⇥
query2 ⇥ ⇥ ⇥

2.3 Selection Layer

This lattice is interpreted in the selection layer, which extracts the services satisfying the two
queries and they are:

� for query1: ws1, ws2, ws3, ws4, ws9 and ws10,

84

2. The Selection Framework: Use Case 1

Figure 6.8: The concept lattice for a set of services and their keywords.

� for query2: ws5, ws6, ws8, ws9, ws10.

In the next chapter, we present the second use case, in which we explain how to classify the
services by the functionality they provide. Using this specialization of the framework, we will be
able to further analyse the two sets of services corresponding to the two queries, in our scenario.
We apply a similarity measure on the operations according to each set and we identify the groups
of similar operations. For example, an operation labelled reserveF in the lattice, represents a
group of similar operations for performing a flight reservation. This way, we can build a new
context of service ⇥ operation for each set of services. The lattice that corresponds to query1
is shown in Figure 6.10 (top), and the one corresponding to query2 in Figure 6.10 (bottom).

Using these two lattices, the selection of services offering required operations is straight-
forward. In our scenario, we need three functionalities as indicated before in Section 1: flight
reservation, train reservation (if needed), and calculating the duration needed to travel by train
to the aimed destination. By regarding the lattice in Figure 6.10 (top), we notice that all of the
services offer an operation for plane reservation. In this case, a service selection might be done
regarding the extra operations that the services provide, like for example the operation rentCar.
When we select a certain service, we can immediately extract the set of backup services that are
able to replace it if it fails. In the same way, we can select a service for train reservation with
obtaining the duration information. Thus, the composition in Figure 6.1 can be easily achieved
and supported with backups, as in Figure 6.10.

Supposing that we selected the service ws4 named PlaneWS, and used its operation resF light

(which is grouped with other similar operations under the name reserveF in the lattice). We

85

Chapter 6. Web Service Selection by Tags

Figure 6.9: Queries as concepts in the service⇥ keyword lattice.

can notice that for the operation resF light, any other service in the lattice can be a backup for
ws4. In case where all of the operations of ws4 were used, we notice that only ws10 and ws1
can be backups for ws4. Similarly, we selected the service ws6, named TrainWS, and used two
of its provided operations: calcDuration and resTrain. We notice that ws6 can be replaced by
the services ws10, ws8 and ws5. Thus, we have discovered immediate backups for the service
TrainWS as we did for the service PlaneWS. We can notice that the service ws10 exists in the
two lattices, as a backup for both TrainWS and PlaneWS. In this case, if both of these services
crash, we can replace them both by a single service, which is ws10. This service provides the
same functionalities of the two services, with three extra operations that are priceT , rentCar

and durationF as can be seen in the lattices in Figure 6.10.

Our approach has enabled us of an easy service discovery and selection, in order to build
our aimed scenario. It has also facilitated the discovery of backup services to support service
composition and ensure its continuous functionality.

86

3. Summary

Figure 6.10: The TCS composition with its corresponding backups.

3 Summary

In this chapter, we presented a specialization of our framework that is based on FCA for classi-
fying web services by their tags. In this use case, we showed the utility of our framework for the
selection of one or more independent services, along with their possible substitutes. We made
use of the keywords specified in the documentation element of each portType inside the AWSDL
file, to retrieve services. We retrieve a set of corresponding services and we extract their tags,
using our automatic service tagger. The extracted tags are then used to classify Web services,
using FCA. The generated lattice offers a browsing mechanism, which enable us to identify a
set of services (with their backups) for a set of given keywords. In Chapter 9, we show the
experiments that were carried out, in order to validate the current use case.

In the next chapter, we present the second use case of our framework. We consider that
the second use case is complementary to the first one. We explain how to extract groups of
similar operations, in order to classify Web services by their functionality. We also base our
classification on FCA, but using many valued contexts of similarity values, as we shall see next.

87

Chapter 7

Web Service Selection by Functionality

Contents
1 Introduction . 89

2 The Selection Framework: Use Case 2 . 90

2.1 Discovery Layer . 91

2.2 Classification Layer . 91

2.2.1 Similarity Evaluator . 93

2.2.2 Threshold Calculator . 93

2.2.3 Scaler . 93

2.2.4 Square Concept Extractor . 94

2.3 Selection Layer . 96

3 Summary . 96

1 Introduction

In this chapter, we present the second use case of our framework. In this use case, we enable
browsing Web services by their functionality, in order to facilitate the selection of a service of-
fering needed operations, and the identification of its possible backups. We accomplish this by
constructing Web service lattices using many-valued contexts of similarity values calculated for
each pair of operations. This enables us of extracting groups of mutually similar operations.
Each one of these groups represents a functionality, according to which, a new service lattice
can be generated. The generated service lattices provide us with browsing and navigation ca-
pabilities. This allows the retrieval of more general to more specific sets of services [76, 77].
More general sets have lesser common operations while more specific sets have more common
operations. Therefore, applying FCA to Web services provides us with a retrieval mechanism,
which facilitates both selection of Web services and identification of their possible substitutes.
Accordingly, Web service selection becomes more efficient regardless of the aimed utilization.

We explain this chapter using a scenario for currency conversion, which we call the Composite
Currency Service (CCS). Afterwards, we describe the components used in this specialization of
our framework, with more concentration on the classification layer.

89

Chapter 7. Web Service Selection by Functionality

Scenario

Let us consider the two following services: a currency converter service and a calculation service.
The currency converter service offers an operation that returns the exchange rate between two
entered currencies. The calculation service offers several operations for calculation, one of them
returns the multiplication of two entered numbers. We link the exchange rate operation with the
multiplication operation in order to build a composite service of the two mentioned services, we
call it the Composite Currency Service (CCS). This new composite service gives us a converted
amount from one currency to another. Figure 7.1 shows us an overview of this composite service.

Figure 7.1: The composite currency service.

In this composition, if the service Calc crashes, for example, a service offering a multiplication
operation equivalent to mul() must be searched and discovered. Thus to recover the missing
functionality, and ensure the continuity of the composition.

2 The Selection Framework: Use Case 2

In Figure 7.2, we can see the different layers of our framework, which are specialized according to
the current use case. We explain this use case on two parts. In the first part, we retrieve a set of
WSDL interfaces according to some user requirements specified in an AWSDL file. Nevertheless,

90

2. The Selection Framework: Use Case 2

in this use case, we use only the keywords that describe each needed service. From the retrieved
WSDL interfaces, we extract a set of service documentations that are passed to the second part.

In the second part, we focus on the classification layer, and we clarify the components that
are used to achieve the desired service classification.

2.1 Discovery Layer

In this layer, the AWSDL file gets analyzed, in order to extract the set of keywords describing
each needed service. These keywords are located in the documentation element of the portType.
In our scenario, the AWSDL file would contain two portTypes: one for currency conversion,
and one for calculation. The documentation element of the plane portType would have the
keywords {currency, converter, exchange, rate}. The documentation element of the calculator
portType would have the keyword {multiply}. Then, the service retriever returns a set of services
corresponding to the extracted keywords. The WSDL parser extracts the operation signatures
in each retrieved service (WSDL interface), and passes them to the classification layer to be
processed as described below.

2.2 Classification Layer

In the classification layer, we aim at classifying the services by their operations using FCA. The
formal context that should be defined for such classification is based on the relation: "a service
provides an operation". The problem in determining this relation is that Web services may offer
similar operations but not necessarily with identical signatures. For example, if we have the
following operations: add(x, y) =? addition(a, b), they may provide the same functionality,
but without having the exact signature. Therefore, we decided to build the service ⇥ operation
classification following several steps:

� measuring the similarity between operation signatures for the set of retrieved services;

� generating a many-valued context of operation ⇥ operation, containing the similarity val-
ues (in the range [0,1]);

� scaling this many-valued context into several binary contexts, according to threshold val-
ues;

� generating the operations lattices (a lattice for each threshold), and extracting the groups
of mutually similar operations;

� then finally, building the contexts service ⇥ operation, according to the extracted groups
of operations, and generating the corresponding lattices.

We explain the components of this layer using an imaginary example, for the sake of clarity.
This example consists of a set of services illustrated with their signatures in Table 7.1.
We calculate the similarity between each pair of signatures of each pair of distinct services, using
the following component.

91

Chapter 7. Web Service Selection by Functionality

Figure 7.2: The main steps of our approach.

92

2. The Selection Framework: Use Case 2

Table 7.1: A set of calculation services with their operations.
Services Id Operations Id

Calc1 ws1 add(a,b) op11
sub(a,b) op12

Calc2 ws2 add(a,b,c) op21
Calc3 ws3 add(a,b,c,d) op31

sub(a,b,c) op32
mult(a,b) op33
add(a,b,c) op34

2.2.1 Similarity Evaluator

There are several similarity measures for Web services that evaluate similarity according to syn-
tax and semantics, such as [29, 78, 79]. Similarity is assessed in the form of values in the range
[0,1]. If two operations are sufficiently similar, the similarity value will approach 1, otherwise
it will approach 0. In this component, we make use of the Jaro-Winkler string distance mea-
sure [80] as a similarity measure. This measure calculates the similarity between two strings, and
has proved to be efficient and accurate [81]. Although, this is a primary solution for similarity
measuring, which we plan to improve in future work. As we mentioned above, we measure the
similarity between each pair of signatures of each pair of distinct services. We do not evalu-
ate similarity between operations provided by the same service (we suppose that it is equal to
0), because when a service becomes dysfunctional, all of its operations become dysfunctional too.

Formally, a similarity measure Sim : O⇥O! [0, 1] can be defined as follows:
8 opij 2 O =) Sim(opij , opij) = 1 (an operation with itself)
8 opij , opik 2 O, j 6= k =) Sim(opij , opik) = 0 (operations in the same service)
8 opij , opnm 2 O, i 6= n =) Sim(opij , opnm) 2 [0, 1] (operations in different services)

The calculated similarity values forms a many-valued context, which is a symmetric square
matrix that we will call SimMat, as shown in Table 7.2. This matrix is of size n = |O|, and its
diagonal elements are all equal to 1 (similarity of an operation with itself).

From the similarity matrix SimMat, we can extract several binary contexts, by specifying
threshold values ✓ 2]0, 1]. These threshold values are calculated using the following component.

2.2.2 Threshold Calculator

This component implements a statistical technique called BoxPlot++ (Appendix A). It extracts
the distinct similarity values in the SimMat and determines several thresholds representing
these values.

2.2.3 Scaler

According to the determined thresholds passed from the previous component. The scaler works
on converting the SimMat into a binary context. Thus, the values of SimMat that are greater

93

Chapter 7. Web Service Selection by Functionality

or equal to the chosen threshold ✓ are scaled to 1, while other values are scaled to 0. For example,
the binary context that corresponds to ✓ = 0.75 is shown in Table 7.3, we call it SimCxt.

Table 7.2: The similarity matrix (SimMat).
op11 op12 op21 op31 op32 op33 op34

op11 1 0 0.75 0.5 0 0 1

op12 0 1 0 0 0.75 0 0

op21 0.75 0 1 0.75 0 0 0.75

op31 0.5 0 0.75 1 0 0 0

op32 0 0.75 0 0 1 0 0

op33 0 0 0 0 0 1 0

op34 1 0 0.75 0 0 0 1

Table 7.3: The context (SimCxt) for ✓ = 0.75.
op11 op12 op21 op31 op32 op33 op34

op11 ⇥ ⇥ ⇥
op12 ⇥ ⇥
op21 ⇥ ⇥ ⇥ ⇥
op31 ⇥ ⇥
op32 ⇥ ⇥
op33 ⇥
op34 ⇥ ⇥ ⇥

Formally, the SimCxt context is a triple (O,O, RSim✓), where RSim✓ is a binary relation
indicating whether an operation is similar to another operation or not.

(opij , opnm) 2 RSim✓ () Sim(opij , opnm) � ✓

We use the SimCxt context to generate a lattice of operations (B(O,O, RSim✓)) by the FCA
classifier. This lattice is illustrated in Figure 7.3. This lattice helps in discovering groups of
similar operations, using the following component.

2.2.4 Square Concept Extractor

In the resulting operation lattice (Figure 7.3), groups of mutually similar operations can be
identified by the concepts having equal extent and intent sets. We call such concepts the square
concepts, because they form square gatherings on the binary context matrix. We define a group
Gop of mutually similar operations OpSim as:

Gop = {OpSim | (OpSim, OpSim) 2 B(O,O, RSim✓)}

The notion of square concepts can be better recognized by performing a mutual column-line
interchange in the SimCxt. The resulting interchanged context is shown in Table 7.4.

From the lattice in Figure 7.3 as from the interchanged context in Table 7.4, we can identify
the groups of similar operations, and they are the following:

94

2. The Selection Framework: Use Case 2

Table 7.4: The interchanged (SimCxt) context.
op11 op34 op21 op31 op12 op32 op33

op11 ⇥ ⇥ ⇥
op34 ⇥ ⇥ ⇥
op21 ⇥ ⇥ ⇥ ⇥
op31 ⇥ ⇥
op12 ⇥ ⇥
op32 ⇥ ⇥
op33 ⇥

Figure 7.3: The generated lattice for (SimCxt) shown in Table 7.3.

� {op11, op34, op21} that we label (11, 34, 21);

� {op21, op31} labelled (21, 31);

� {op12, op32} labelled (12, 32);

� {op33} labelled (33).

The groups of similar operations, denoted as G, are used to define the final binary context.
This context is a triple (W,G, R), in which the relation R indicates whether or not a service
offers the functionality represented by the corresponding group of similar operations. We use
the labels representing the groups of operations to build the final context, which is shown in
Table 7.5. Using this context, the FCA classifier generates the corresponding service lattice,
which is shown in Figure 7.4.

Table 7.5: The final services ⇥ groups context.
(11,34,21) (21,31) (12,32) (33)

ws1 ⇥ ⇥
ws2 ⇥ ⇥
ws3 ⇥ ⇥ ⇥ ⇥

95

Chapter 7. Web Service Selection by Functionality

Figure 7.4: The final service lattice with possible backups.

2.3 Selection Layer

From the final generated service lattice, shown in Figure 7.4, we can notice the following:

� ws1, ws2, and ws3 offer the functionality denoted by (11, 34, 21), so they can replace each
other for this specific functionality;

� ws3 can replace ws1 and ws2, and it offers an additional functionality (33).

We can also infer immediately which services offer a specific functionality (denoted by a specific
label), by considering the indices in the label. For example, the label (11, 34, 21) makes it pos-
sible to directly deduce that (11) is provided by ws1, (34) by ws3 and (21) by ws2.

As we shall see later in the experiments (Chapter 9), the resulting service lattices for our
scenario can be exploited to build the desired composition, and support it with backup services.

3 Summary

In this chapter, we presented a specialization of our framework that is based on FCA for clas-
sifying Web services by their functionality. We achieved this classification by extracting groups
of mutually similar operations, identified by what we called square concepts.

The generated lattice reveals the invisible relations between Web services according to their
functionality (the operations groups), enabling the identification of substitutable services. This
facilitates the selection of needed services and supports them with backups, in order to assure a
continuous execution.

The quality of our generated lattices depends on the chosen similarity measure [29, 78, 79]
and the similarity threshold. The more accurate the measure is, the more precise the obtained
lattice is. The chosen values of threshold will give us a variation of lattices, and they reflect the
level of the required adaptations. Thus, a high value of threshold means similar services with a
low number of required adaptations.

96

3. Summary

In Chapter 9, we show the experiments that were conducted, in order to validate the current
use case. In the next chapter, we present the third and last studied use case in this thesis. We
deal with selection of services considering three levels of user requirements: functionality, QoS,
and composition.

97

Chapter 8

Web Service Selection According to

Multi- User Requirements

Contents
1 Introduction . 99

2 The Selection Framework: Use Case 3 . 101

2.1 Discovery Layer . 103

2.2 Classification Layer . 104

2.2.1 Compatibility Checker . 104

2.2.2 QoS Level Calculator . 105

2.2.3 Composability Evaluator . 105

2.2.4 RCA Classifier . 105

2.3 Selection Layer . 106

3 Summary . 107

1 Introduction

In this chapter, we present the third and final use case of our framework. In this use case, we aim
at providing a facility for building business processes transparently, according to user require-
ments. This means that a user can model his business process in an abstract way, without being
aware of the concrete services existing on the Web. This is realized by considering three levels
of user requirements: the needed functionality, the accepted QoS levels, and the composition.
Then, identifying the services that satisfy these requirements.

We specialize our framework in order to facilitate Web service selection according to user
requirements. We use the Relational Concept Analysis (RCA) to characterize the services by
their QoS levels and to express the composition relations between them. The generated lattices
help in identifying the services that match the specified requirements, with the help of RCA
relational queries.

We explain our approach along with a scenario of an abstract process composed of three
services, for providing the weather information for a given ip address. We call this process the
WeatherProcess.

99

Chapter 8. Web Service Selection According to Multi- User Requirements

Scenario

Let us consider a process for providing weather information. We call it WeatherProcess. It pro-
vides weather information for a given ip address. This process is illustrated in Figure 8.1. It or-
chestrates the invocation of three operations: ipToCity, cityToZipcode, and zipcodeToWeather.
The needed services are described inside an abstract WSDL file, which is illustrated in Fig-
ure 8.2. It describes three PortTypes (services): CityServicePortType, ZipcodeServicePortType,
and WeatherServicePortType. Each service has an expected QoS level for the availability and
response time attributes. In Figure 8.2, we expanded the messages description for the operation
getWeatherByZipcode. We can see that for the input parameter (zipcode), the user provided a
list of four equivalent keywords, which are listed in the WSDL source code. They are as follows:
zipcode, zip, postal, postalcode. The parameter type is specified to be string. For the output
parameter, we can notice that its name is specified as "any". This means that the user is not
asking for a specific parameter name, but he is interested by the complex type, which is in our
case Weather. In this case, the user provided a list of 5 equivalent keywords for the Weather type.
They are as follows: Weather, WeatherInfo, Forecast, WeatherForecast, and WeatherReport.

Figure 8.1: The abstract BPEL describing the orchestration of the services in the abstract
WSDL.

100

2. The Selection Framework: Use Case 3

We use the framework in order to instantiate the needed abstract process with concrete
services. We aim at facilitating the selection of the services offering the needed functionality for
each task, and satisfying the expected QoS together with the composition links. In the following,
we explain our final use case that is studied in this thesis.

Figure 8.2: The abstract WSDL describing the needed services for the scenario in 1.

2 The Selection Framework: Use Case 3

Using our framework, a user can define an abstract process transparently (without a previous
knowledge about the concrete services). The framework works on retrieving the set of services
that best match the user’s specified requirements, in order to instantiate the described process
with concrete services, as well as identify backup services to ensure process continuity.

101

Chapter 8. Web Service Selection According to Multi- User Requirements

Below, we explain the framework and its functionality according to the components in each
layer (see Figure 8.3).

Figure 8.3: An overview of the approach’s components.

102

2. The Selection Framework: Use Case 3

2.1 Discovery Layer

The user starts by specifying the needed functionality (operations) along with the QoS for each
service inside an abstract WSDL file (see Figure 8.2). The composition links are extracted from
an abstract BPEL file defined by the user, which specifies the orchestration of the services de-
scribed in the abstract WSDL (see Figure 8.1).

The analyzer extracts the keywords specifying the required parameters and passes them to
the service retriever. It also extracts the QoS required levels and passes them as queries to be
integrated into the RCA relational contexts. Concerning the abstract BPEL file, the analyzer
works on extracting the composition links between the specified services.

Composing two Web services is finding two operations (one of each) that can be linked. Two
operations can be linked when the output parameters of the first (source) matches one or more
of the input parameters of the second (target). We can define two composition modes according
to the coverage of the input parameters of a target operation, in addition to two other modes
according to the needed adaptations. These composition modes are Fully-Composable (FC),
Partially-Composable (PC), Adaptable-Fully-Composable (AFC), and
Adaptable-Partially-Composable (APC) (as described below).

Thus, the composition links represent the assignment of parameters of a source operation to
the parameters of a target operation. Actually, each invoke activity has a pre and post assign-
ments of parameters. The composition links can be recognized by regarding the invoke activity,
together with the copyfrom� to structure in the pre- and post- assign activities. The pre-assign
describes the composition link of the service to be invoked with its preceding service in the
orchestration, while the post-assign describes the composition link with the next service. For
example, in Figure 8.4, we can see an invocation of the operation getZipcodeByCity, which has
one input parameter GetZipCodeByCityIn and one output parameter GetZipcodeByCityOut.
From the pre-assign (named "city"), we recognize that the composition between the operation
getZipcodeByCity and the operation getCityByIP has an FC mode. The extracted composition
links are used afterwards to specify the relational contexts to be used, when generating the
services relational lattices, as explained shortly after.

The service retriever receives the list of keywords specified for the parameters of each required
operation from the analyzer. Then it retrieves a set of services together with the QoS properties
that are supported by the Web service resource. In our case, the retriever gets the availability and
response time values for each retrieved service. The retrieved WSDL interfaces are passed to the
WSDL parser to be parsed, while the QoS values are passed to the QoS level calculator, which is
explained in the classification layer section. The WSDL parser, extracts the operation signatures
and passes them to the compatibility checker, which is also explained in the classification layer
section below.

103

Chapter 8. Web Service Selection According to Multi- User Requirements

Figure 8.4: Pre and post assign for each invoke activity in BPEL.

2.2 Classification Layer

The components of this layer work on filtering the retrieved services, to ensure their compat-
ibility with the requested functionality. Then, the obtained QoS values are processed and the
composability between the retrieved services is evaluated, in order to build RCA contexts. From
the built contexts, the service are classified into relational concept lattices according to pro-
cess composition links, and after integrating the QoS queries. The generated lattices are then
used to realize an efficient selection of services that best match and satisfy the user specified
requirements. In this layer, we have the following components:

2.2.1 Compatibility Checker

This component checks whether a service provides an operation that can satisfy the correspond-
ing task. An operation satisfies a task when it contains the requested input/output parameters
names. We verified this by using the Jaro-Winkler string distance measure [80]. This measure
calculates the similarity between two strings, and has proved to be efficient and accurate [81].
Although, this is a primary solution for similarity measuring, which we plan to improve in future
work. By doing so, we discovered three possible cases:

� compatible, there exists one operation at least that satisfies the corresponding task and
has the same parameters types; or it may become:

� adaptable compatible, meaning that none of the satisfying operations has the same param-
eter types (either for input, or output, or both), thus type adaptations need to be done;
otherwise:

� incompatible, the service does not satisfy the corresponding task.

The compatibility checker reduces the number of the retrieved services, by omitting the
incompatibles ones, while keeping a detailed list of the compatible ones together with their
satisfying operations.

104

2. The Selection Framework: Use Case 3

Once we identified the compatible services, we can measure the composition mode and the
QoS levels using the two following components.

2.2.2 QoS Level Calculator

This component takes into consideration the QoS values for all the sets of compatible services. It
extracts these values from the ones returned by the service retriever, according to the list returned
by the compatibility checker. Web services have many QoS attributes and different ranges of
numerical values for each one of these attributes. In order to have a better overview of these
values, we apply a statistical technique called BoxPlot++ (Annex A) to cluster the convergent
values together. The BoxPlot++ is an extension of the original boxplot [82] technique. It takes
as input a given set of numerical values, and produces one to seven corresponding levels of
values: L = {BadOutlier, VeryBad, Bad, Medium, Good, VeryGood, GoodOutlier}1. The
technique is applied on each QoS attribute. Then, it generates for each set of services a non-
relational context having all of its QoS attributes levels. These contexts are exploited afterwards
by the RCA classifier, in order to classify the services according to these different QoS levels.

2.2.3 Composability Evaluator

We define four composition modes as mentioned before. We list them again as follows:

� Fully-Composable (FC), when a source operation covers by its outputs all of the expected
inputs of a target operation;

� Partially-Composable (PC), when one or more input parameters of a target operation
are not covered;

� Adaptable-Fully-Composable (AFC), when the source and target operations have an FC
mode, but need some type adaptations either for the output of the source or the input of
the target, or both of them; and

� Adaptable-Partially-Composable (APC), similar to AFC but when having a PC mode.

The composability evaluator determines the mode of composition between the services according
to the specified orchestration. Then, it generates four relational contexts (corresponding to the
composition modes). These contexts are exploited by the RCA classifier to clarify which services
can be composed and following which modes.

2.2.4 RCA Classifier

This component takes into consideration the relational contexts of composition modes and the
non-relational contexts of QoS levels. It also uses the QoS queries extracted by the analyzer
component, which are integrated into the corresponding contexts.

Finally, the RCA classifier [64] generates all the corresponding service lattices and passes
them to the final component.

1
Available online: http://www.lirmm.fr/~azmeh/tools/BoxPlot.html

105

http://www.lirmm.fr/~azmeh/tools/BoxPlot.html

Chapter 8. Web Service Selection According to Multi- User Requirements

2.3 Selection Layer

By integrating the non-functional queries into the contexts, they appear inside the concepts
of the corresponding lattices. This enables this component to locate the services that satisfy
the queries and to navigate between the different solutions. These services are present at the
sub-concepts of the queries concepts. This is better illustrated in Section 9-4.2.

In case of multiple possible selections of Web services having approximating levels of QoS,
can use the following technique for performing an optimal selection. This technique is an en-
hancement for the lattice interpreter. We call it optimizing by triangles, and it works as follows:
From the extracted services, we can have several combinations that satisfy our desired orches-
tration. We have to select the combination of services that meet the optimal compromise of QoS
levels and composability. In order to meet this issue, we propose to represent the services by
vectors. A vector per set of services, on which, services are ordered according to their QoS. We
also define a vector for composability levels. Each composition can be regarded as a triangle,
having a head corresponding to the composability level, and the two other heads corresponding
to the pair of services to be composed, as shown in Figure 8.5.

Figure 8.5: Optimizing the service selection using triangles.

The optimal selection would be the triangle that has the minimal area, in case of a two
services composition. Otherwise, it will be the minimal sum of the services triangles according to
an orchestration. Thus, for example, by regarding the triangles in Figure 8.5, we notice that the
triangle (FC, s25, s33) represents an optimized composition between S2j and S3k (corresponding
to Task2 and Task3, respectively). Accordingly, if we consider the triangle (FC, s13, s25) that
shares an edge with the previous triangle, it represents a composition between S1i and S2j

(corresponding to Task1 and Task2, respectively). These two triangles together may be an
optimized combination for the required orchestration, after comparing them with all the existing
triangles2.

2
We haven’t shown all the triangles in Figure 8.5, for the sake of simplicity.

106

3. Summary

3 Summary

In this chapter, we presented the third and final use case of our framework. It facilitates building
Web service orchestrations, by enabling a straightforward identification of composable services
that satisfy the user’s functional and non-functional requirements.

Users can specify their required functionality by an AWSDL file, where they can also specify
the needed QoS for each required service. The desired service orchestration can be defined by
an ABPEL file, which specifies the interaction between the abstract services inside the AWSDL
file. Using our framework, we can analyze these requirements, retrieve compatible services, then
classify them using RCA. The resulting RCA-based lattices group services that have common
QoS and composition levels. They enable the selection of the required services, by performing
lattice navigation by QoS queries (we explained the navigation by query algorithm in Chapter 4).
For an optimized selection, we proposed a simple triangles-approach that works on identifying
the services offering the best compromise for QoS and composability. We envisage to look at
other techniques like skylines operators [83].

In the next chapter, we demonstrate our conducted experiments for the current use case, as
well as for previously presented use cases.

107

Chapter 9

Experimentation

Contents
1 Introduction . 109

2 Web Service Selection by Tags . 109

2.1 Methodology . 110

2.2 Validation . 110

3 Web Service Selection by Functionality 112

3.1 Methodology . 113

3.2 Validation . 116

4 Web Service Selection According to Multi- User Requirements 119

4.1 Methodology . 120

4.2 Validation . 121

5 Summary . 126

1 Introduction

In the previous chapters, we presented several theoretical descriptions of our framework through
three distinct use cases. In this chapter, we present the experiments that we conducted to val-
idate each of the described use cases. We used for each experiment, real sets of Web services
that were retrieved using the Seekda [8] and Service-Finder [14] Web service search engines. We
present each experiment on two parts: a methodology part, where we explain the steps that we
followed for conducting the experiment; and a validation part, where we show and discuss the
obtained results.

In Section 2, we validate our automatic service tagger, which is a component of the selection
of Web services by tags, presented in Chapter 6. In Section 3, we validate the selection of Web
services by functionality, presented in Chapter 7. In Section 4, we validate the selection of Web
services according to multi- user requirements, presented in Chapter 8.

2 Web Service Selection by Tags

This section provides a validation of our automatic tagger (presented in Chapter 6) using real
Web services retrieved from Seekda. This engine allows its users to manually assign tags to its
indexed services. Using the service retriever, we retrieved a set of 146 WSDL files together with

109

Chapter 9. Experimentation

their associated tags.

We cleaned the tags of the training corpus, as explained in Section 6-2.2.2. Finally, our corpus
T contained 146 WSDL files and 1393 tags (average of 9.54 tags per WSDL). An analysis of T
showed that about 35% of the user tags are already contained in the WSDL files.

2.1 Methodology

We carried out our experiments on three stages. In the first one, the trained classifier is applied
on the training corpus T and its output is compared with the tags given by Seekda users (ob-
tained as described in Section 6-2.2.2).

After having conducted the first experiment, a manual assessment of the tags produced by
our approach revealed that many tags not assigned by the user seemed highly relevant. This
phenomenon has also been observed in several human evaluations of Kea [84, 85], that inspired
our approach. It occurs because tags assigned by the users are not the absolute truth. Indeed,
it is very likely that users have forgotten many relevant tags, even if they were in the service
description. To show that the real efficiency of our approach is better than the one computed
in the first experiment, we perform a second experiment. In this experiment, we manually
augmented the user tags of our corpus with additional tags we found relevant and accurate by
analyzing the WSDL descriptions of the services. In the final experiment, we enriched the user
tags as well as our automatically extracted tags with semantically related tags using WordNet.

Metrics: In the evaluation, we used precision and recall. First, for each web service s 2 T ,
where T is our training corpus, we consider: A the set of tags produced by the trained classifier,
M the set of the tags given by Seekda users and W the set of words appearing in the WSDL. Let
I = A\M be the set of tags assigned by our classifier and Seekda users. Let E = M \W be the
set of tags assigned by Seekda users present in the WSDL file. Then we define precision(s) = |I|

|A|

and recall(s) = |I|
|E| , which are aggregated in precision(T) =

P
s2T precision(s)

|T | and recall(T) =
P

s2T recall(s)
|T | . The recall is therefore computed over the tags assigned by Seekda users that are

present in the descriptions of concerned services. We did not compute the recall for the WordNet
extracted tags, because these tags may not be present in the WSDL descriptions.

2.2 Validation

Figure 9.1 (left) gives results for the first experiment where the output of the classifier is com-
pared with the tags of Seekda users, while in Figure 9.1 (right), enriched tags of Seekda users are
used in the comparison (curated corpus). In this figure, our approach is called ate (Automatic
Tag Extraction). To clearly show the concrete benefits of our approach, we decided to include in
these experiments a straightforward (but fairly efficient) technique. This technique, called tfidf
in Figure 9.1, consists in selecting, after the application of our text-mining techniques, the five
candidate tags with the highest tfidf weight.

In Figure 9.1 (left), the precision of ate is 0.48. It is a significant improvement compared
to the tfidf method that achieves only a precision of 0.28. Moreover, there is no significant dif-

110

2. Web Service Selection by Tags

Raw Seekda corpus

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ate tfidf ate tfidf

Precision Recall

0.48

0.28

0.47

0.53

Curated Seekda corpus

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ate tfidf ate tfidf

Precision Recall

0.80

0.41

0.61 0.62

Figure 9.1: Results on the original and manually curated Seekda corpus

ference between the recall achieved by the two methods. To show that the precision and recall
achieved by ate are not biased by the fact that we used the training corpus as a testing corpus,
we performed a 10 folds cross-validation. In a 10 folds cross-validation, our training corpus is
divided in 10 parts. One is used to train a classifier, and the 9 other parts are used to test this
classifier. This operation is done for every part, and then, the average recall and precision are
computed. The results achieved by our approach using cross-validation (precision = 0.44 and
recall = 0.42) are very similar to those obtained in the first experiment.

In Figure 9.1 (right), we see that the precision achieved by ate in the second experiment is
much better. It reaches 0.8, while the precision achieved by the tfidf method increases to 0.41.
The recall achieved by the two methods remains similar. The precision achieved by our method
in this experiment is good. Only 20% of the tags discovered by ate are not correct. Moreover,
the efficiency of ate is significantly higher than tfidf.

WordNet for semantically related tags

The classifier that we built determines whether a word in a WSDL file is a tag or not. Thus, it
extracts the tags appearing inside the WSDL files only. This way, we miss some other interesting
tags like associated words or synonyms. In order to solve this issue, we used the WordNet lexical
database [75]. In WordNet a word may be associated with many synsets (synonym sets), each

111

Chapter 9. Experimentation

corresponding to a different sense of a word.

Our corpus consists of 146 WSDL files, each of which is assigned two sets of tags: user
tags and our automatically extracted tags. Our objective is to enrich each set of tags with
semantically similar words extracted from WordNet. Thus, for each tag we identify the possible
senses and the synonyms set related to each sense. We add the extracted synonyms to the
corresponding set of tags, and we perform some experiments to evaluate the obtained tags.

Evaluation after using WordNet

We enriched the tags sets with semantically similar words extracted using the WordNet, as
described above. We recalculated the precision value, considering these new sets of enriched
user tags and automatically extracted tags. The precision value has increased by 9%, reaching
the value of 89% of correctness. Thus, using the WordNet has improved the precision value and
enriched the services with tags that are not necessarily present in the WSDL descriptions.

Observation

Our experiments use real world services, obtained from the Seekda service search engine. Our
training corpus contains services extracted randomly with the constraint that they contain at
least 5 user tags. We assumed that Seekda users assign correct tags. Indeed, our method
admits some noise but would not work if the majority of the user tags were poorly assigned. In
the second experiment, we manually added tags we found relevant by examining the complete
description and documentation of the concerned services. Unfortunately, since we are not “real”
users of those services, some of the tags we added might not be relevant.

3 Web Service Selection by Functionality

In this section, we validate our scenario presented in Chapter 7. We demonstrate the use of
service lattices for both building composite Web services and supporting them with backup ser-
vices in a real world context.

We consider the Composite Currency Service (CCS) (presented in Chapter 7), which is com-
posed of two Web services: a currency converter service Currency and a calculation service
Calculator. The Currency service offers an operation that returns the exchange rate between
two entered currencies: getRate(fromCurr,toCurr). The Calculator service offers an operation
that calculates the multiplication of two entered numbers: mul(a,b). We compose these two op-
erations in order to build the composite currency service that converts a given amount from one
currency to another. We describe a service composition using the Business Process Execution
Language (BPEL) [86]. We use the BPEL editor of NetBeans IDE [87] to design and describe
the specified CompositeCurrencyService as shown in Figure 9.2.

We used the Seekda and Service-Finder to search for the needed services. We describe this
scenario on two parts: first we illustrate the use of the approach, then we validate it.

112

3. Web Service Selection by Functionality

Figure 9.2: The composite currency service.

3.1 Methodology

We use a set of services for currency conversion shown in Table 9.1 and another set for calcula-
tion as shown in Table 9.2. We limit the number of services in this example, in order to simplify
it and clearly explain the idea of lattice use.

For dealing with this illustration, we assess manually the similarity for the obtained services’
operations of each set. This is achieved by comparing operation signatures (operation names,
parameter names and types). Using the operations lattice and its square concepts, we identify
the following groups of mutually similar operations for the currency services in Table 9.1:

� {op11,op21,op31,op51} that we label (CR : 11, 21, 31, 51);

� {op32,op42,op52,op61,op73,op82,op91} labelled (CC : 32, 42, 52, 61, 73, 82, 91);

� {op33,op81} labelled (CS : 33, 81);

� {op41} labelled (R : 41);

� {op72} labelled (FC : 72);

� {op71} labelled (CF : 71).

113

Chapter 9. Experimentation

Table 9.1: The set of currency converter services.
Services Id Operations Id

CurrencyConverter ws1 GetConversionRate(fromCurrency,toCurrency) op11
CurrencyConvertor ws2 ConversionRate(FromCurrency,ToCurrency) op21

DOTSCurrencyExchange ws3 GetExchangeRate(ConvertFromCurrency,ConvertToCurrency) op31
ConvertCurrency(Amount,ConvertFromCurrency,ConvertToCurrency) op32

GetCountryCurrency(Country) op33
CurrencyRates ws4 GetRate(CurrencyCode) op41

GetConversion(FromCurrencyCode,ToCurrencyCode) op42
RadixxFlights ws5 GetExchange(FromCurrency,ToCurrency) op51

ConvertCurrency(Amount,FromCurrency,ToCurrency) op52
rates ws6 Convert(CurrencyFrom,CurrencyTo,ValueFrom) op61

Conversion ws7 CelciusToFahrenheit(fCelsius) op71
FahrenheitToCelcius(fFahrenheit) op72

Currency(fValue,sFrom,sTo) op73
CurConvert ws8 GetCurrencySign(CountryName) op81

ConvertCurrency(FromCountry,ToCountry,Amount) op82
ConverterService ws9 Convert(sourceCurrency,targetCurrency,value) op91

Table 9.2: The set of calculation services.
Services Id Operations Id

Calc ws1 add(a,b) op11
div(a,b) op12
mul(a,b) op13
pow(b,a) op14
sub(a,b) op15

Service ws2 add(a,b) op21
sqrt(a) op22
sub(a,b) op23

MathService ws3 Add(A,B) op31
Divide(A,B) op32

Multiply(A,B) op33
Subtract(A,B) op34

CalculatorService ws4 add(y,x) op41
divide(denominator,numerator) op42

multiply(y,x) op43
subtract(y,x) op44

CalcService ws5 Divide(A,B) op51
Multiply(A,B) op52

OperationAdd(A,B) op53
Subtract(A,B) op54

Calculate ws6 Add(dbl1,dbl2) op61
Divide(dbl1,dbl2) op62

Multiply(dbl1,dbl2) op63
Subtract(dbl1,dbl2) op64

We extract also the groups of mutually similar operations for the calculation services in
Table 9.2, and they are as follows:

� {op15,op23,op34,op44,op54,op64} labelled (sub : 15, 23, 34, 44, 54, 64);

� {op11,op21,op31,op41,op53,op61} labelled (add : 11, 21, 31, 41, 53, 61);

� {op13,op33,op43,op52,op63} labelled (mul : 13, 33, 43, 52, 63);

� {op12,op32,op42,op51,op62} labelled (div : 12, 32, 42, 51, 62);

� {op14} labelled (pow : 14);

114

3. Web Service Selection by Functionality

� {op22} labelled (sqrt : 22).

These extracted groups of similar operations lead to a binary context for each set of services
as shown in Tables 9.3 and 9.4.

Table 9.3: The formal context corresponding to the currency converter services.
(CR:11,21,31,51) (CC:32,42,52,61,73,82,91) (CS:33,81) (R:41) (FC:72) (CF:71)

ws1 ⇥
ws2 ⇥ ⇥
ws3 ⇥ ⇥ ⇥
ws4 ⇥ ⇥
ws5 ⇥ ⇥
ws6 ⇥
ws7 ⇥ ⇥ ⇥
ws8 ⇥ ⇥
ws9 ⇥

Table 9.4: The formal context corresponding to the calculator services.
(sub:15,23,34,44,54,64)(add:11,21,31,41,53,61)(mul:13,33,43,52,63)(div:12,32,42,51,62)(pow:14)(sqrt:22)

ws1 ⇥ ⇥ ⇥ ⇥ ⇥
ws2 ⇥ ⇥ ⇥
ws3 ⇥ ⇥ ⇥ ⇥
ws4 ⇥ ⇥ ⇥ ⇥
ws5 ⇥ ⇥ ⇥ ⇥
ws6 ⇥ ⇥ ⇥ ⇥

We generate the two corresponding lattices as shown in the right side of Figure 9.3. We
can exploit these service lattices to build our composite service as well as to support it with
backup services. Thus, we decide to select operation op11 : (CR : 11) from service ws1 for
exchange rate (currency lattice), and operation op13 : (mul : 13) from service ws1 for multipli-
cation (calculation lattice). From these lattices (Figure 9.3), we can also extract some backup
services for our composite service according to the selected operations. For example, we used
operation op11 : (CR : 11) from service ws1, which has 3 equivalent operations: op21 : (CR : 21),
op31 : (CR : 31) and op51 : (CR : 51) appearing clearly in the lattice. This means that if service
ws1 breaks down, we can replace it by any of the services ws2 (equivalent to ws1 being in the
same concept), ws3 or ws5 (services introduced in subconcepts).

Moreover, if we go down in the lattice, we get the set of services that provide the operations
used together with extra operations, like service ws5 and service ws3. They can help if the
composite service evolves and needs other operations. In the same way, we can extract the
backup services for the calculation service ws1 that we are using. According to the calculation
service lattice, service ws1 as a whole set of operations cannot be replaced by any service.
But, regarding the multiplication functionality, op13(mul : 13), it can be replaced by operations
op33 : (mul : 33), op43 : (mul : 43), op52 : (mul : 52), and op63 : (mul : 63), which are offered by

115

Chapter 9. Experimentation

Figure 9.3: The composite currency service, supported by backups from the service lattices.

services ws3, ws4, ws5, and ws6 respectively. This gives us a replacement possibility in case of
unavailability of ws1 in the framework of the composite currency service.

3.2 Validation

We validate our approach using the entire number of retrieved Calculator and Currency ser-
vices1 from Service � Finder and Seekda. We queried Service � Finder to collect service
endpoints (addresses), then we downloaded the corresponding WSDL interfaces via Seekda.
For the Calculator service, we searched using multiply as keyword. This returned a set WS1
of 29 services, among which we found one unrelated service.

For the Currency service, we used a combination of the following keywords exchange, rate,
currency, converter. After eliminating the repeated services, we found a set of 81 services. From
this set, we also eliminated the services that we were unable to parse. This resulted in a set
WS2 of 64 services.

We parsed each service of the two sets (WSDL parser2), to extract its operation signatures.
The WS1 set has a total of 142 operations, while WS2 has 935 operations.

1
Retrieved services: http://www.lirmm.fr/~azmeh/icfca11/CaseStudy.html

2
Available online: http://www.lirmm.fr/~azmeh/tools/WsdlParser.html

116

http://www.lirmm.fr/~azmeh/icfca11/CaseStudy.html
http://www.lirmm.fr/~azmeh/tools/WsdlParser.html

3. Web Service Selection by Functionality

In order to calculate the SimMat (explained in Section 7-2.2.1) for both sets of services,
we make use of Jaro �Winkler [80] similarity measure, to assess the similarity between the
extracted signatures according to each set. This metric gave convenient similarity values that
were calculated efficiently, compared to another tested technique that used a combination of
syntactic and semantic metrics. After a number of experiments, we found that a relatively per-
tinent similarity value starts from 80%. By applying this threshold on the SimMat, we obtained
the binary SimCxt corresponding to each set.

We tried to compute the lattices corresponding to each SimCxt using Galicia [64]. The
lattices could not be generated due to an "out of memory" error (explosion of the number of
generated concepts). Therefore, we computed the Galois Sub Hierarchy (GSH) (see Chapter 4),
(order induced by attribute and object concepts). Using GSH, we obtained a suborder of 155
concepts for SimCxt (142⇥142) and another suborder of 1724 concepts for SimCxt (935⇥935).
The second suborder may be reduced depending on the functionality filtering techniques.

Hereby, we show our analysis for WS1. From the GSH calculated for SimCxt (142⇥142), we
extracted 65 square concepts. Among these 65 square concepts, we had 13 non-trivial concepts
and 52 concepts reduced to one operation. Each square concept represents a functionality, for ex-
ample: c82 represents the multiply functionality. It contains {op15.2, op18.3, op2.3, op6.3, op8.2},
which are mutually substitutable operations for calculating the multiplication of two numbers.

Afterwards, we constructed the lattice of services (as objects) and these square concepts
(as attributes). The generated lattice is shown in Figure 9.4, and contains 21 concepts. By
regarding the right half of the lattice, we can notice services that can be entirely replaced by
other ones. For example: if we consider ws15, it contains the multiply functionality (being a
subconcept of c82). This service can be replaced by three other services: ws18, ws6 and ws2.

Figure 9.4: The lattice corresponding to the Calculator services set.

In the same way, we analyze the GSH calculated for SimCxt (935 ⇥ 935). We could not
take a screen shot of this GSH, because it was huge and could not fit. Although, we show the
corresponding service lattice in Figure 9.5.

117

Chapter 9. Experimentation

Figure 9.5: The lattice corresponding to the Currency services set.

118

4. Web Service Selection According to Multi- User Requirements

4 Web Service Selection According to Multi- User Requirements

In this section, we validate our final use case, which is presented in Chapter 8. We reconsider
the scenario about the abstract weather process (Figure 9.6) that we presented before. The
considered abstract weather process is supposed to provide the weather information for a given
ip address.

It orchestrates the invocation of three operations: ipToCity, cityToZipcode, and
zipcodeToWeather. The needed services are described inside an abstract WSDL file, which is
illustrated in Figure 9.7. It describes three PortTypes (services): CityServicePortType, Zipcode-
ServicePortType, and WeatherServicePortType. Each service has an expected QoS level for the
attributes availability and response time. In Figure 9.8, we can see the description specified
for the CityServicePortType. We can notice its operation getCityByIP, which is specified by it
input/output keywords list.

Figure 9.6: The abstract BPEL describing the orchestration of the services in the abstract
WSDL.

119

Chapter 9. Experimentation

Figure 9.7: The abstract WSDL describing the needed services for the scenario in 1.

4.1 Methodology

From this abstract WSDL file, the experiments are conducted on four steps, according to the
framework’s layers, as follows:

1. collecting the services: we use the set of keywords describing each operation to search
and retrieve sets of corresponding Web services. We make use of Service-Finder to collect
a set of corresponding endpoints (WSDL addresses). This engine also provides us with
values of two QoS attributes: availability (A) and response time (RT). We download the
corresponding WSDL files after omitting repeated and invalid endpoints;

2. filtering the services: in this step, we parse the WSDL files using the WSDL parser (Sec-
tion 8-2.2.2) and remove the invalid ones (Filter1). Then we calculate the compatible ones
(Filter2) using the Compatibility checker (Section 8-2.2.1);

120

4. Web Service Selection According to Multi- User Requirements

Figure 9.8: The CityServicePortType description inside the abstract WSDL.

3. calculating the composition modes and the QoS levels: using the Composability evaluator
(Section 8-2.2.3) and the QoS level calculator (Section 8-2.2.2), for the compatible sets of
services. Then generating the corresponding contexts;

4. generating the corresponding lattices using the RCA classifier (Section 8-2.2.4): by taking
the contexts formed in the previous step and integrating the QoS queries.

4.2 Validation

1. Collecting Services: We show in Table 9.5 each described operation together with its
keywords, the number of obtained endpoints, the number of retrieved WSDL files, and the sets
identifiers. In this step, we make use of the requirements analyzer and service retriever compo-
nents (Section 8-2.2.1).

121

Chapter 9. Experimentation

Table 9.5: Summary of the retrieved services.
Task Keywords #Endpoints #Services SetID
1 {ip,ipAddress}, 94 94 WS1.i

{city,cityName}
2 {city,cityName}, 768 760 WS2.j

{zip,zipcode,postal,postalcode}
3 {zip,zipcode,postal,postalcode}, 39 37 WS3.k

{weather,weatherInfo,forecast,
weatherForecast,weatherReport}

2. Filtering the Services: In Table 9.6, we can see the resulting number of filtered services
for each set.

Table 9.6: The number of filtered services for each set.
WS1.i WS2.j WS3.k

Filter1 (Valid) 94 748 37
Filter2 (Compatible) 17 96 21

3. Composability and QoS: The calculated composition modes for the compatible sets
of services as well as their QoS levels are shown in Table 9.7.

Table 9.7: Number of services per composition mode.
WS1.i’ WS2.j’ WS3.k’

FC services 12 3 12
PC services 4 89 4
AFC services 2 1 11
APC services 0 3 2

The resulting composition modes and QoS levels are organized into non-relational and re-
lational contexts, and are used to classify the services in the next step. In Table 9.8, we show
the non-relational context of services corresponding to the first required service specified by
CityServicePortType, described by their QoS levels. In Table 9.9, we show the relational con-
text representing the fully composable (FC) mode, between services of WS1 and services of
WS2.

4. RCA-Based Classification: The queries that we choose in this scenario are specified to
be Good A and Good RT levels for each task in the process. They are integrated into the contexts
formed in the previous step. We also require an FC composition mode for both (Task1,Task2)
and (Task2,Task3) couples. The generated lattices are illustrated in Figure 9.9.

These lattices are finally interpreted by the lattice interpreter (Section 8-2.3), considering
two rules:

� in each lattice, the services satisfying the corresponding query (QoS and composition)
appear in the sub-concepts of the concept where the query appears. Example: the services
in c0 (WS1.i) satisfy Query1;

� the services located closer to the bottom of a lattice offer better QoS levels than the farther
ones, for example: in the lattice (WS2.j), the service WS2.8 is better than service WS2.198

122

4. Web Service Selection According to Multi- User Requirements

WS1.i B
ad

O
ut

lie
r

A

Ve
ry

B
ad

A

B
ad

A

M
ed

iu
m

A

G
oo

d
A

Ve
ry

G
oo

d
A

G
oo

dO
ut

lie
r

A

B
ad

O
ut

lie
r

RT

Ve
ry

B
ad

RT

B
ad

RT

M
ed

iu
m

RT

G
oo

d
RT

Ve
ry

G
oo

d
RT

G
oo

dO
ut

lie
r

RT

WS1.3 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.4 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.7 ⇥ ⇥
WS1.22 ⇥ ⇥
WS1.26 ⇥ ⇥
WS1.27 ⇥ ⇥
WS1.31 ⇥ ⇥
WS1.41 ⇥ ⇥
WS1.52 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.53 ⇥ ⇥
WS1.58 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.59 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
WS1.79 ⇥ ⇥
WS1.80 ⇥ ⇥
WS1.82 ⇥ ⇥
WS1.94 ⇥ ⇥
Query1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Table 9.8: The non-relational context of WS1 services described by their QoS levels.

123

Chapter 9. Experimentation

FC
_

W
S1.i_

W
S2.j

WS2.1

WS2.2

WS2.3

WS2.4

WS2.8

WS2.9

WS2.11

WS2.12

WS2.24

WS2.26

WS2.27

WS2.28

WS2.32

WS2.35

WS2.70

WS2.71

WS2.90

WS2.92

WS2.93

WS2.97

WS2.106

WS2.127

WS2.132

WS2.134
...
...

QueryWS2.j

W
S1.3

⇥
W

S1.4
⇥

W
S1.5

⇥
W

S1.7
⇥

W
S1.22

⇥
W

S1.26
⇥

W
S1.27

⇥
W

S1.31
⇥

W
S1.41

⇥
W

S1.52
W

S1.53
⇥

W
S1.58

⇥
W

S1.59
⇥

W
S1.79

⇥
W

S1.80
⇥

W
S1.82

⇥
W

S1.94
⇥

Q
ueryW

S1.i
⇥

Table
9.9:

T
he

relationalcontext
representing

the
FC

com
position

betw
een

services
ofW

S1
and

services
ofW

S2.

124

4. Web Service Selection According to Multi- User Requirements

Figure 9.9: The concept lattices for the compatible sets of services with Good A, Good RT queries,
and FC mode.

because it has a VeryGood A (an inherited attribute). On the other hand, the services
located in a same concept have convergent QoS levels.

Following the previous rules, the lattice interpreter extracts the following services to be the
best choice regarding the specified requirements:

� {WS1.59,WS1.5,WS1.3} for Task1 because they all appear in the same concept (c0);

� {WS2.8} for Task2 because it is better than {WS2.198};

� and {WS3.23} for Task3 because it is better than {WS3.1}.

If we verify the actual services, we get the information in Table 9.10. These service lattices
offer a browsing mechanism that facilitates services selection according to user requirements. In
each lattice, services are classified by their QoS levels as well as their composition modes with
services in a following lattice. A lattice reveals two relations between the services regarding QoS:
hasSimilarQoS when services are located in a same concept and hasBetterQoS when a service is
a descendant of another service(s). Services having a hasSimilarQoS or hasBetterQoS relations
with a selected service, are considered to be its alternatives. User requirements (queries) can
be expressed as new services to be classified in the corresponding lattices. This locates the part
of the lattice that meets the user requirements and thus represent an efficient lattice navigation
mechanism. In the case where no services could be found for the specified requirements, the
query mechanism enables the user to identify the next best service. This service will have lesser

125

Chapter 9. Experimentation

Table 9.10: Information about the services satisfying the queries with the selected ones (high-
lighted).

WS Name Operation A(%) RT(ms)
1.59 Ip2LocationWebService IP2Location 100 257

(in) IP:string
(out) CITY:string,..

1.5 GeoCoder IPAddressLookup 100 328
(in) ipAddress:string
(out) City:string,..

1.3 IP2Geo ResolveIP 100 798
(in) ipAddress:string
(out) City:string,..

2.198 MediCareSupplier GetSupplierByCity 85 304
(in) City:string
(out) Zip:string,..

2.8 ZipcodeLookupService CityToLatLong 100 439
(in) city:string
(out) Zip:string,..

3.1 USWeather GetWeatherReport 85 384
(in) ZipCode:string
(out) WeatherReport:string

3.23 Weather GetCityForecastByZIP 100 237
(in) ZIP:string
(out) ForecastReturn:complex

QoS than the requested and it represents the direct ascendant of the query concept. For exam-
ple, in the third lattice of Figure 9.9, we could take WS3.2 or WS3.3 in concept c3 to be the next
best selection. They have a Medium RT and a Good A.

In this experiment, we had several functional and non-functional requirements needed to
build a simple process of three tasks as described previously. The Service-Finder enabled us
to find a total of 901 (Table 9.5) Web service addresses, among which we had to identify and
retrieve the services meeting our requirements. Using our approach, we efficiently identified
out of 901 endpoints a set of five services that best match our requirements (Table 9.10). The
total time required to extract these services is equal to 103 sec, starting from the WSDL Parser
(component C) till the end. This was calculated by NetBeans (6.9.1) on a machine equipped
with an Intel Core 2 Duo (1.80GHz) processor and a memory of (2.00 GB).

5 Summary

In this chapter, we presented a number of experiments to validate our framework. The experi-
ments have proven the effectivity of our framework for:

� associating descriptive tags to their corresponding services, which enable a quick under-
standing of a service’s functionality;

� assisting a user in selecting a needed service by its provided operations, as well as identi-
fying its potential backups;

� assisting a user in building a desired service orchestration, by selecting sets of composable
services. This assistance is based on three levels of user requirements: functionality, QoS,
and composition.

126

5. Summary

In general, we showed that our framework has assisted the construction of business processes,
by facilitating the selection of services and supporting them with backups to assure a continuous
functionality.

127

Part III

Conclusion and Perspectives

129

Chapter 10

Conclusion

Contents
1 Conclusion . 131

2 Perspectives . 134

2.1 Improving our Framework . 134

2.2 Towards Defining a Structure of a Smart Web Service Registry 135

1 Conclusion

We started this dissertation with the following question:
How can a user select a suitable service to use, according to some desired require-
ments?

As we have seen, this question imposes several other questions and issues, which we summa-
rize as follows:

� Issues related to Web service discovery:
Web service discovery consists of describing and publishing a Web service to a public
registry, to enable consumers to find it, understand its functionality, then finally select it.

Web service description issues come from the WSDL standard, which is restricted to syn-
tactic information. The only available semantic information can be extracted from the
names of each parameter, which may not always be possible because of unclear parameter
names. Inside a WSDL description, it is possible to add a textual documentation for each
element to help users understand the functionality more easily, but since it is optional, it
is often left empty.

WSDL interfaces do not provide QoS information, which is especially important with the
ever increasing number of functionally similar Web services. QoS helps determining the
usability and utility of a Web service, to decide whether to select it or not.

Web service publishing issues come from the deficiency of UDDI standard, which was pro-
posed for building Web service registries. Current service registries are embodied in Web
service search engines, which index services by the keywords located in their WSDL de-
scriptions. This does not represent an efficient mechanism, because of the lack of textual

131

Chapter 10. Conclusion

documentation inside WSDL interfaces, as we mentioned before. Using these search en-
gines, we can search for Web services by keywords, which returns a fairly large list of Web
services. Inside this returned list, a hard and time-consuming inspection for the needed
operation must be carried out by the user. This inspection may consider multiple criteria,
like the needed QoS, the composability of the selected service with a previously selected
one, or maybe the substitutability of a broken service with the selected one. No current
discovery mechanism enables the verification of such criteria, it is all left on the user’s
shoulder.

� Issues related to the dynamic nature of Web services
Dealing with Web services, either for an independent invocation or for a composition,
is threatened at any moment by failing services. Web services have a dynamic nature
coming from the unpredictable Internet nature. Thus, a broken service must be replaced
by another equivalent one to recover the missing functionality. This necessitates facing
again all the difficulties related to Web service discovery.

Our answer to this question is embodied in the framework we are proposing. This framework
can assist the construction of business processes, by facilitating the selection of real Web services
and supporting them with backups to assure a continuous functionality.

Our framework works according to four layers:

� User requirements layer: in which, we enable users to express their needed functionality
by an abstract WSDL interface (AWSDL) that contains a description of all the needed
services (several portTypes), together with the expected QoS for each service. Users can
also express a desired service orchestration by an abstract BPEL (ABPEL) file, which
describes the interaction between the services described in the AWSDL interface. These
two files are analyzed in the discovery layer.

� Discovery layer: in which, the AWSDL and BPEL files are analyzed. Then according to
the needed services (AWSDL), a set of services can be retrieved, filtered and parsed. The
services that offer the needed functionality are passed together with their information to
the classification layer, to be classified into concept lattices.

� Classification layer: in which, the retrieved functionally-compatible services together with
their QoS information are processed by FCA and RCA, then are classified into concept
lattices. A lattice is a structure that reveals relations between services according to the
considered classification criteria (keywords, functionality, QoS, and composition). It offers
a navigation facility that enables an easier straightforward selection of needed services,
in addition to identifying its potential backups (supporting service continuity). Resulting
lattices at this layer are passed to be interpreted in the selection layer.

� Selection layer: in which, the generated lattices are interpreted, in order to identify the
services that match the user requirements, together with their backups. The lattice in-
terpreter works according to a navigation by query algorithm, which we proposed for
RCA-based lattices to extract the concepts of interest. A query represents a new concept
in the lattice, and the services that offer the minimum required functionality represent the

132

1. Conclusion

concepts that are closest to the query concept, while further situated services offer extra
functionalities. In the lattice, when selecting a service, a sub-lattice that is descendant
from this service can be extracted. This sub-lattice contains the possible backups that can
replace this service to ensure a recovered functionality.

After generating the lattices, whenever new services are retrieved, they can be classified into
the existing lattices using incremental lattice generation algorithms, without regenerating the
whole lattices.

We presented a number of experiments to validate our framework. The experiments have
proven the effectivity of our framework for:

� associating descriptive tags to retrieved services to enable a quick understanding of a
service’s functionality;

� assisting a user in selecting a needed service by its provided operations, as well as identi-
fying its potential backups;

� assisting a user in building a desired service orchestration, by selecting sets of composable
services. This assistance is based on three levels of user requirements: functionality, QoS,
and composition.

In order to find our position between the works presented in Chapter 3, we reconsider the
criteria table (Table 3.1), and we integrate our work in it (Thesis GOAL), as we can see in
Table 1.

Work D
es

ig
n-

ti
m

e

R
un

-t
im

e

Se
m

an
ti

c
W

S

D
is

co
ve

ry

Fu
nc

ti
on

al
ity

C
om

po
sa

bi
lit

y

Q
oS

B
ac

ku
ps

per service global
Thesis GOAL X ⇥ ⇥ X X X X ⇥ X

We generate the corresponding lattice, shown in Figure 10.1, which clarifies our position
according to the other works. We can notice that for our fixed objectives, there is not any work
that meet them all together (no concepts below Thesis GOAL). We notice also that we still miss
supporting semantic Web services, being dynamic, and calculating a global QoS for a whole
composition. These points draw some of our future work, as we shall see in the next section.

133

Chapter 10. Conclusion

Figure 10.1: Our position in the lattice of works.

2 Perspectives

We have several perspectives for our proposed framework. We envisage first to improve the
components and the used techniques for each layer in our framework. Then, we envisage evolve
our framework towards defining a smart Web service registry for achieving an assisted WSOA.

2.1 Improving our Framework

We list below the envisaged improvements for each layer of our framework:

� User requirements layer: in our framework, we supposed that user’s functional require-
ments can be specified by an AWSDL file. Inside this AWSDL, each operation parameter
is specified by a set of equivalent keywords for its name, and its type. In future work,
we plan to simplify the user’s job, by allowing him to specify one keyword per parameter,
and enhance our similarity measure using semantics (WordNet ontology for example). We
may even extend the ABPEL to enable users of specifying the needed functionality inside
it, without having to define an AWSDL.

134

2. Perspectives

Further more, we envisage dealing with semantic Web services. Like this, a user who needs
certain services must semantically annotate his AWSDL file with an ontology, to enable a
better understanding of user functional requirements.

� Discovery layer: the first thing we would like to do is do define our own service registry,
like this, there is no need to search for services elsewhere. We plan to organize services into
categories, according to their functionality, with the help of the WordNet ontology. We
plan also to enhance our similarity measuring techniques to group services with similar
operations together. We have started to study techniques from data mining to cluster
similar signatures together, for a better retrieval of service backups.

� Classification layer: in this layer, we have to face the challenge of dynamic updating of
concept lattices, for efficiently adding, removing a service, or modifying the QoS levels.

For now, we are dealing with adding new services to the lattices without recalculating
them, using the incremental lattices building algorithms. When services disappear, it
might not be a good idea to immediately dismiss its indexing information, as services
might be temporarily unavailable (because of a crashed web server for example). We still
have to evaluate if a Web service disappearance should be handled as immediate removals
(or, maybe, as lazy removals, based on their being unavailable for too long). This dynamic
aspect is an interesting field for future research.

� Selection layer: in this layer, we proposed a lattice interpreter that works on identifying
interesting concepts, by navigating lattices with queries. We also defined several operators
for enriching the formal contexts with relational attributes. As a future work, we aim at
enable lattice querying according to several scaling operators. This way, users can express
a query like: I need services provided only by provider1, and for each service, there must
exist at least one backup, which can be fully-composable with all the services having a
very good availability.

2.2 Towards Defining a Structure of a Smart Web Service Registry

According to the experiments that we conducted and the results that we obtained, we find it
really encouraging to go forward defining a smart Web service registry. This registry will include
all the improvements that we listed above, in addition to keeping track of consumers, and mon-
itoring the services they are invoking. This enables the registry to send service status and QoS
updates for the consumers, as well as providing them with backups, upon the failure of a service
in their compositions. We also plan to store all the performed queries, with the achieved com-
positions, for avoiding the recalculations for similar lattices, as well as implementing a learning
mechanism.

This registry should also memorize the manual or automatic adaptations [88], which are nec-
essary when a broken service is replaced by another. This information may be used to optimize
future substitutions for better efficiency [89]. In [90], dynamic service generation is proposed,
which would support the continuity of service compositions.

135

Chapter 10. Conclusion

An interesting point that we can see in [9], in which, the authors propose an approach to
determine Web service substitutability and composability by observing actual executions of Web
services. The algorithm works on two phases. The first phase aligns invocations of different ser-
vices. In the second phase, input and output parameter values are compared syntactically and
matchings are deduced. Approximately, the first phase indicates composability, and the second
phase computes substitutability. This can be regarded as another point of view for supporting
the precision of Web services similarity measuring.

With the help of the previous smart registry, we are also planning to achieve dynamic com-
position and substitution, for dynamic user environments. This enables facing the dynamic
changing of Web services, like when a business provides newer services or when old services
are replaced by other ones. Like this, service processes will be able to transparently adapt to
environment changes and requirements [91] with minimal user intervention. We plan also to
enhance the specification of abstract compositions, to support the development and execution
of service composition that are able to reconfigure themselves at run-time [92, 93].

136

Bibliography

Bibliography

[1] Michael P. Papazoglou. Web Services - Principles and Technology. Prentice Hall, 2008.
(Cited on pages 1, 11 and 15.)

[2] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Mike Champion, Christopher
Ferris, and David Orchard. Web services architecture. World Wide Web Consortium, Note
NOTE-ws-arch-20040211, February 2004. (Cited on pages 1 and 12.)

[3] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design. O’Reilly,
Beijing, 2007. (Cited on pages 1, 2, 11, 12 and 18.)

[4] Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 9(1):75–81, 2005. (Cited on page 1.)

[5] Web Services Description Language (WSDL) 1.1, http://www.w3.org/tr/wsdl. (Cited on
pages 1 and 12.)

[6] UDDI Version 3.0.2, http://www.uddi.org/pubs/uddi_v3.htm. (Cited on pages 1 and 16.)

[7] Simple object access protocol (soap) - version 1.2. (Cited on pages 1, 17 and 18.)

[8] Seekda, web service search engine. (Cited on pages 4, 17 and 109.)

[9] Michael D. Ernst, Raimondas Lencevicius, and Jeff H. Perkins. Detection of web service
substitutability and composability. In WS-MaTe 2006: International Workshop on Web
Services — Modeling and Testing, pages 123–135, Palermo, Italy, June 9, 2006. (Cited on
pages 4, 29 and 136.)

[10] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services. Addison-Wesley
Professional, 2004. (Cited on page 5.)

[11] Daniel Austin, W. W. Grainger, Abbie Barbir, Christopher Ferris, and Sharad Garg. Web
services architecture requirements. W3C Working Group Note 11, W3C, Feb. 2004. (Cited
on page 12.)

[12] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. Qos computation and policing in dynamic web
service selection. In Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters, WWW Alt. ’04, pages 66–73, New York, NY, USA,
2004. ACM. (Cited on page 15.)

[13] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services composition. IEEE
Trans. Software Eng., 30(5):311–327, 2004. (Cited on pages 15, 27 and 30.)

[14] Service-finder, web service search engine. (Cited on pages 17 and 109.)

[15] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Con-
cepts, Architectures and Applications. Springer, Berlin, 2004. (Cited on page 18.)

137

Bibliography

[16] Haiyan Sun, Xiaodong Wang, Bin Zhou, and Peng Zou. Research and implementation of
dynamic web services composition. In Xingming Zhou, Stefan Jähnichen, Ming Xu, and
Jiannong Cao, editors, APPT, volume 2834 of Lecture Notes in Computer Science, pages
457–466. Springer, 2003. (Cited on pages 18, 27 and 30.)

[17] Chris Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52,
October 2003. (Cited on page 18.)

[18] Matjaz B. Juric. A hands-on introduction to bpel. (Cited on page 19.)

[19] Stephen A. White. Business Process Modeling Notation (BPMN) Version 1.0. 2004. (Cited
on page 19.)

[20] Saartje Brockmans, Michael Erdmann, and Wolfgang Schoch. Research report about cur-
rent state of the art of deliverable d4.1 - research report about current state of the art of
matchmaking algorithms. Technical report, 2008. (Cited on page 24.)

[21] Holger Lausen and Nathalie Steinmetz. Survey of current means to discover web services.
Technical report, STI Innsbruck, 08 2008. (Cited on page 24.)

[22] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. (Cited on page 24.)

[23] Christian Platzer and Schahram Dustdar. A vector space search engine for Web services.
In Web Services, 2005. ECOWS 2005. Third IEEE European Conference on, page 9 pp.,
nov. 2005. (Cited on page 24.)

[24] Yiqiao Wang and Eleni Stroulia. Semantic structure matching for assessing web-service
similarity. In Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian
Yang, editors, ICSOC, volume 2910 of Lecture Notes in Computer Science, pages 194–207.
Springer, 2003. (Cited on page 24.)

[25] Marco Crasso, Alejandro Zunino, and Marcelo Campo. Query by example for web services.
In Proceedings of the 2008 ACM symposium on Applied computing, SAC ’08, pages 2376–
2380, New York, NY, USA, 2008. ACM. (Cited on page 24.)

[26] Marco Crasso, Alejandro Zunino, and Marcelo Campo. Awsc: An approach to web ser-
vice classification based on machine learning techniques. Inteligencia Artificial, Revista
Iberoamericana de Inteligencia Artificial, 12(37):25–36, 2008. (Cited on page 24.)

[27] Andreas Heß and Nicholas Kushmerick. Learning to attach semantic metadata to web
services. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors, International
Semantic Web Conference, volume 2870 of Lecture Notes in Computer Science, pages 258–
273. Springer, 2003. (Cited on page 24.)

[28] Jiangang Ma, Yanchun Zhang, and Jing He. Efficiently finding web services using a cluster-
ing semantic approach. In Quan Z. Sheng, Ullas Nambiar, Amit P. Sheth, Biplav Srivastava,
Zakaria Maamar, and Said Elnaffar, editors, CSSSIA, volume 292 of ACM International
Conference Proceeding Series, page 5. ACM, 2008. (Cited on page 24.)

138

Bibliography

[29] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity
Search for Web Services. In VLDB, pages 372–383, 2004. (Cited on pages 24, 30, 93
and 96.)

[30] Lerina Aversano, Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, and Damiano
Distante. Using concept lattices to support service selection. Int. J. Web Service Res.,
3(4):32–51, 2006. (Cited on page 24.)

[31] Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, and Rita Scognamiglio. An
Approach to support Web Service Classification and Annotation. In EEE, pages 138–143,
2005. (Cited on page 24.)

[32] Dunlu Peng, Sheng Huang, Xiaoling Wang, and Aoying Zhou. Management and retrieval
of web services based on formal concept analysis. In CIT, pages 269–275. IEEE Computer
Society, 2005. (Cited on page 25.)

[33] Dunlu Peng, Sheng Huang, Xiaoling Wang, and Aoying Zhou. Concept-based retrieval
of alternate web services. In Lizhu Zhou, Beng Chin Ooi, and Xiaofeng Meng, editors,
DASFAA, volume 3453 of Lecture Notes in Computer Science, pages 359–371. Springer,
2005. (Cited on page 25.)

[34] Giuseppe Fenza and Sabrina Senatore. Friendly web services selection exploiting fuzzy
formal concept analysis. Soft Comput., 14(8):811–819, 2010. (Cited on page 25.)

[35] Hongliang Lai and Dexue Zhang. Concept lattices of fuzzy contexts: Formal concept analy-
sis vs. rough set theory. Int. J. Approx. Reasoning, 50(5):695–707, 2009. (Cited on page 25.)

[36] Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Diana Moreno-Garcia, and Pierre
Colomb. Heterogeneous service selection based on formal concept analysis. In SERVICES,
pages 367–374, 2010. (Cited on page 25.)

[37] Stéphanie Chollet, Vincent Lestideau, Philippe Lalanda, Pierre Colomb, and Olivier Ray-
naud. Building FCA-based Decision Trees for the Selection of Heterogeneous Services. In
Proceedings of International Conference on Services Computing - Application and Industry
Track (SCC 2011), July 2011. (Cited on page 25.)

[38] Maha Driss, Naouel Moha, Yassine Jamoussi, Jean-Marc Jézéquel, and Henda Hajjami Ben
Ghézala. A requirement-centric approach to web service modeling, discovery, and selection.
In Paul P. Maglio, Mathias Weske, Jian Yang, and Marcelo Fantinato, editors, ICSOC,
volume 6470 of Lecture Notes in Computer Science, pages 258–272, 2010. (Cited on page 25.)

[39] Shuping Ran. A model for web services discovery with qos. SIGecom Exchanges, 4(1):1–10,
2003. (Cited on page 25.)

[40] Mohamed Adel Serhani, Rachida Dssouli, Abdelhakim Hafid, and Houari A. Sahraoui. A
qos broker based architecture for efficient web services selection. In ICWS, pages 113–120.
IEEE Computer Society, 2005. (Cited on page 25.)

[41] Tao Yu and Kwei-Jay Lin. Qcws: an implementation of qos-capable multimedia web ser-
vices. Multimedia Tools Appl., 30(2):165–187, 2006. (Cited on page 25.)

139

Bibliography

[42] Tian Gramm Naumowicz, M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller.
A concept for QoS integration in web services. In Proceedings of the Fourth international
conference on Web information systems engineering workshops, WISEW’03, pages 149–155,
Washington, DC, USA, 2003. IEEE Computer Society. (Cited on page 25.)

[43] Min Tian, A. Gramm, Hartmut Ritter, and Jochen H. Schiller. Efficient selection and
monitoring of qos-aware web services with the ws-qos framework. In Web Intelligence,
pages 152–158. IEEE Computer Society, 2004. (Cited on page 25.)

[44] Wei-Tek Tsai, Raymond A. Paul, Zhibin Cao, Lian Yu, Akihiro Saimi, and Bingnan Xiao.
Verification of web services using an enhanced uddi server. In WORDS, pages 131–138.
IEEE Computer Society, 2003. (Cited on page 25.)

[45] Yamine Aït Ameur. A semantic repository for adaptive services. In SERVICES I, pages
211–218, 2009. (Cited on page 26.)

[46] Nabil Belaid. Modélisation de services et de workflows sémantiques à base d’ontologies
de services et d’indexations. Application à la modélisation géologique. PhD thesis, Ecole
Nationale Supérieure de Mécanique et d’Aérotechnique, 2011. (Cited on page 26.)

[47] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection model
for semantic web services. In 4th International Conference on Service Oriented Computing
(ICSOC), pages 390–401. Springer, 2006. (Cited on page 26.)

[48] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stollberg,
Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web service modeling ontology.
Applied Ontology, 1(1):77–106, 2005. (Cited on page 26.)

[49] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Semantic
matching of web services capabilities. In Ian Horrocks and James A. Hendler, editors,
International Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science,
pages 333–347. Springer, 2002. (Cited on page 26.)

[50] Boualem Benatallah, Mohand-Said Hacid, Alain Léger, Christophe Rey, and Farouk
Toumani. On automating web services discovery. VLDB J., 14(1):84–96, 2005. (Cited
on page 26.)

[51] Shalil Majithia, Matthew S. Shields, Ian J. Taylor, and Ian Wang. Triana: A graphical web
service composition and execution toolkit. In ICWS, pages 514–. IEEE Computer Society,
2004. (Cited on pages 26 and 30.)

[52] Jihie Kim and Yolanda Gil. Towards interactive composition of semantic web services.
National Conference on Artificial Intelligence, 2004. (Cited on pages 26, 27 and 30.)

[53] Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for web service
composition. In Proceedings of the 11th International WWW Conference (WWW2002),
Honolulu, HI, USA, 2002. (Cited on pages 26, 27 and 30.)

[54] The web services toolkit (wstk), http://www.alphaworks.ibm.com/tech/webservicestoolkit.
(Cited on pages 26 and 28.)

140

Bibliography

[55] Alberto Martínez, Marta Patiño-Martínez, Ricardo Jiménez-Peris, and Francisco Pérez-
Sorrosal. Zenflow: A visual web service composition tool for bpel4ws. Visual Languages
and Human-Centric Computing, IEEE Symposium on, 0:181–188, 2005. (Cited on page 26.)

[56] Idir Aït-Sadoune and Yamine Aït Ameur. Stepwise design of bpel web services compositions:
An event_b refinement based approach. In Roger Y. Lee, Olga Ormandjieva, Alain Abran,
and Constantinos Constantinides, editors, SERA (selected papers), volume 296 of Studies
in Computational Intelligence, pages 51–68. Springer, 2010. (Cited on page 26.)

[57] Frederico G. Alvares de Oliveira Jr. and José M. Parente de Oliveira. Qos-based approach
for dynamic web service composition. J. UCS, 17(5):712–741, 2011. (Cited on page 27.)

[58] Thomas Weise, Steffen Bleul, Diana Elena Comes, and Kurt Geihs. Different Approaches to
Semantic Web Service Composition. In Abdelhamid Mellouk, Jun Bi, Guadalupe Ortiz, Kak
Wah (Dickson) Chiu, and Manuela Popescu, editors, Proceedings of The Third International
Conference on Internet and Web Applications and Services (ICIW’08), pages 90–96. IEEE
Computer Society Press: Los Alamitos, CA, USA, 2008. (Cited on page 27.)

[59] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection with
end-to-end qos constraints. TWEB, 1(1), 2007. (Cited on pages 28 and 30.)

[60] Martin MOSER, Dusan P. JOKANOVIC, and Norio SHIRATORI. An algorithm for the
multidimensional multiple-choice knapsack problem. IEICE Trans. Fundamentals, Vol.E80-
A(No.3):582–589, March 1997. (Cited on page 28.)

[61] Rohit Aggarwal, Kunal Verma, John A. Miller, and William Milnor. Constraint driven web
service composition in meteor-s. In IEEE SCC, pages 23–30. IEEE Computer Society, 2004.
(Cited on pages 28 and 30.)

[62] Conexp, the concept explorer tool. (Cited on page 29.)

[63] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg, 1999. (Cited on page 33.)

[64] GaLicia, "galois lattice interactive constructor”, 2002. (Cited on pages 36, 105 and 117.)

[65] Erca framework for formal and relational concept analysis. (Cited on page 38.)

[66] Marianne Huchard, Mohamed Rouane Hacene, Cyril Roume, and Petko Valtchev. Rela-
tional concept discovery in structured datasets. Ann. Math. Artif. Intell., 49(1-4):39–76,
2007. (Cited on page 37.)

[67] Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing performance of algorithms for
generating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3):189–216, 2002. (Cited on
page 58.)

[68] Dean van der Merwe, Sergei A. Obiedkov, and Derrick G. Kourie. Addintent: A new
incremental algorithm for constructing concept lattices. In Peter W. Eklund, editor, ICFCA,
volume 2961 of Lecture Notes in Computer Science, pages 372–385. Springer, 2004. (Cited
on page 58.)

141

Bibliography

[69] Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings
of the International Conference on New Methods in Language Processing, Manchester, UK,
1994. (Cited on page 81.)

[70] Eibe Frank, Gordon W. Paynter, Ian H. Witten, Carl Gutwin, and Craig G. Nevill-Manning.
Domain-specific keyphrase extraction. In IJCAI ’99: Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 668–673, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc. (Cited on page 82.)

[71] Gerard Salton. Developments in automatic text retrieval. Science, 253:974–979, 1991.
(Cited on page 82.)

[72] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In IJCAI, pages 1022–1029, 1993. (Cited on page 82.)

[73] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, October 1999. (Cited on page 83.)

[74] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29(2-3):103–130, 1997. (Cited on page 83.)

[75] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, 1998. (Cited on pages 83 and 111.)

[76] Robert Godin, Guy Mineau, Rokia Missaoui, and Hafedh Mili. Méthodes de classification
conceptuelle basées sur les treillis de Galois et applications. Revue d’Intelligence Artificielle,
9(2):105–137, 1995. (Cited on page 89.)

[77] Claudio Carpineto and Giovanni Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):95–122, 1996. (Cited on page 89.)

[78] Eleni Stroulia and Yiqiao Wang. Structural and semantic matching for assessing web-service
similarity. Int. J. Cooperative Inf. Syst., 14(4):407–438, 2005. (Cited on pages 93 and 96.)

[79] Natalia Kokash. A Comparison of Web Service Interface Similarity Measures. Technical
report, University of Trento, 2006. (Cited on pages 93 and 96.)

[80] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In Craig Knoblock and Subbarao Kambham-
pati, editors, Proceedings of IJCAI-03 Workshop on Information Integration, pages 73–78,
Acapulco, Mexico, August 2003. (Cited on pages 93, 104 and 117.)

[81] Oktie Hassanzadeh. Benchmarking declarative approximate selection predicates. CoRR,
abs/0907.2471, 2009. informal publication. (Cited on pages 93 and 104.)

[82] Wayne A Larsen and JW Tukey. Variations of box plots. volume 32, pages 12–16, 1978.
(Cited on pages 105 and 147.)

[83] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In Pro-
ceedings of the 17th International Conference on Data Engineering, pages 421–430, Wash-
ington, DC, USA, 2001. IEEE Computer Society. (Cited on page 107.)

142

Bibliography

[84] Steve Jones and Gordon W. Paynter. Human evaluation of kea, an automatic keyphrasing
system. In JCDL, pages 148–156. ACM, 2001. (Cited on page 110.)

[85] Steve Jones and Gordon W. Paynter. Automatic extraction of document keyphrases for use
in digital libraries: Evaluation and applications. JASIST, 53(8):653–677, 2002. (Cited on
page 110.)

[86] Web Services Business Process Execution Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html. (Cited on page 112.)

[87] NetBeans IDE, http://www.netbeans.org/. (Cited on page 112.)

[88] MOREAU Aurélien. Mise en oeuvre automatique de processus métier dans le domaine des
architectures orientées services. PhD thesis, LIP6 - Université Pierre & Marie Curie, April
2009. (Cited on page 135.)

[89] Gabriela Arévalo, Zeina Azmeh, Marianne Huchard, Chouki Tibermacine, Christelle Ur-
tado, and Sylvain Vauttier. Component and service farms. In Eric Cariou, Laurence
Duchien, and Yves Ledru, editors, Actes des deuxièmes journées nationales du GDR Génie
de la Programmation et du Logiciel — Défis pour le Génie de la Programmation et du
Logiciel, pages 281–284, Pau, France, Mars 2010. (Cited on page 135.)

[90] Clement Jonquet and Stefano A. Cerri. The strobe model: Dynamic service generation on
the grid. Applied Artificial Intelligence, 19(9-10):967–1013, 2005. (Cited on page 135.)

[91] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Creating context-adaptive
business processes. In Paul P. Maglio, Mathias Weske, Jian Yang, and Marcelo Fantinato,
editors, ICSOC, volume 6470 of Lecture Notes in Computer Science, pages 228–242, 2010.
(Cited on page 136.)

[92] Stéphanie Chollet and Philippe Lalanda. An extensible abstract service orchestration frame-
work. In ICWS, pages 831–838. IEEE, 2009. (Cited on page 136.)

[93] Samir Dami, Jacky Estublier, and Mahfoud Amiour. Apel: A graphical yet executable
formalism for process modeling. Autom. Softw. Eng., 5(1):61–96, 1998. (Cited on page 136.)

[94] Pawan Lingras, Rui Yan, and Chad West. Comparison of conventional and rough k-means
clustering. In Guoyin Wang, Qing Liu, Yiyu Yao, and Andrzej Skowron, editors, RSFDGrC,
volume 2639 of Lecture Notes in Computer Science, pages 130–137. Springer, 2003. (Cited
on page 150.)

[95] Carlos D. Martínez-Hinarejos, Alfons Juan, and Francisco Casacuberta. Generalized k-
medians clustering for strings. In Francisco J. Perales López, Aurélio C. Campilho, Nico-
las Pérez de la Blanca, and Alberto Sanfeliu, editors, IbPRIA, volume 2652 of Lecture Notes
in Computer Science, pages 502–509. Springer, 2003. (Cited on page 150.)

143

Part IV

Appendices

145

Appendix A

BoxPlot++

1 Definition

A boxplot [82] is a statistical tool that represents graphically the distribution of a set of numerical
data. It splits a data set into quartiles by calculating five numbers:

� the median (Q2): the value separating the higher half of a sample from the lower half;

� the upper quartile (Q3): the median of the higher half of the data set;

� the lower quartile (Q1): the median of the lower half of the data set;

� the minimum value;

� and the maximum value.

The length of the box is represented by the inter quartile (IQ), which is the difference between
the upper and the lower quartiles. The inter quartile tells how spread out the "middle" values
are; it can also be used to tell when some of the other values are "too far" from the central value.
These "too far" points are called "outliers", because they "lie outside" the range in which we
expect them. An outlier is any value that lies more than one and a half times the length of the
box from either end of the box. That is, if a data point is below Q1 1.5 ⇥ IQ or above Q3 +
1.5 ⇥ IQ, it is viewed as being too far from the central values to be reasonable. In Figure A.11,
we see a graphical representation of a boxplot with its five numbers.

2 Utilization

Creating a boxplot starts by ordering the data. Then, finding the 3 medians (Q1, Q2, and Q3).
When finding a median number, if the data set has an even number of values, then the median
is the average of the two middle values. If we have a data set of an odd number of values, then
the median is the middle value.

Having the following set of numbers: {1, 1, 1, 2, 3, 4, 5, 10, 15, 54, 60, 70, 75, 88, 90, 93},
we find the following results:
median (Q2) = 12.5;
lower quartile (Q1) = 2.5;
upper quartile (Q3) = 72.5;
inter quartile (IQ) = 70;
min bound = -102.5;
max bound = 177.5.

1
Image taken from http://www.cms.murdoch.edu.au/areas/maths/statsnotes/samplestats/images/

147

Appendix A. BoxPlot++

Figure A.1: A boxplot graphical representation.

The resulting boxplot is shown in Figure A.22. Like this, the values that are higher than Q3 are
considered as high values, and they are:
{75, 88, 90, 93};
the values that are lower than Q1 are considered as low values, and they are:
{1, 1, 1, 2};
the values in the IQ range are considered to be middle values, and they are:
{3, 4, 5, 10, 15, 54, 60, 70};
there are no high outliers, because the max bound = 177.5 and all the values are lower than it.
In the same way, we find that there are no low outliers because the min bound = -102.5 and all
the values are higher than it.

By regarding the middle values set, we notice high differences between its values, like 3, 4,
5, 10, 15 and 54, 60, 70. This does not give us a precise representation of data distribution.
Therefore, in the next section, we present our proposition named BoxPlot++, which is based
on calculating distances between values and medians.

2
We used http://www.shodor.org/interactivate/activities/BoxPlot/ to generate the graphical representation

of the boxplots.

148

3. BoxPlot++

Figure A.2: The boxplot corresponding to the input data set.

3 BoxPlot++

We propose to extend the original boxplot, in order to have a more precise distribution of values,
especially the middle ones.

Our idea is to measure the distance between the data points and the clusters’ centers. We
consider a cluster’s center to be its median. Thus, we measure the distances of each point from
its two adjacent medians.

We begin the calculation by omitting the repeated values. Then, we apply the original
boxplot technique. Afterwards, we take each resulting set and calculate the distance of each
point of it from its adjacent medians.

Thus, taking the same previous example set: {1, 1, 1, 2, 3, 4, 5, 10, 15, 54, 60, 70, 75, 88,
90, 93}, we get the following results:
median (Q2) = 34.5;
lower quartile (Q1) = 4;
upper quartile (Q3) = 75;
inter quartile (IQ) = 71;
min bound = -102.5;
max bound = 181.5.
The resulting boxplot is shown in Figure A.3.

In our approach, we have added two more levels:
- lower values, which are more close to the min value than to the lower quartile;
- higher values, which are more close to the max values than to the upper quartile.
Like this, the higher values are: {88, 90, 93};
the high value: {60, 70, 75}
the low values are: {2, 3, 4, 5, 10, 15};
the lower values are: {1};

149

Appendix A. BoxPlot++

Figure A.3: The boxplot corresponding to the input data set.

the values in the IQ range are: {54};
and there are neither low outliers nor high outliers.

The tool is put for online test at the address:
http://www.lirmm.fr/~azmeh/tools/BoxPlot/BoxPlot.html

4 Related work

In the literature we find similar techniques to cluster sets of points according to center points.
We mention two of them: k-means [94] and k-medians [95].

4.1 k-means clustering

K-means aims at partitioning a set of data points into k clusters in which each point belongs to
the cluster with the nearest mean.

4.2 The k-medians clustering

k-medians clustering is a variation of k-means clustering where instead of calculating the mean
for each cluster to determine its centroid, one instead calculates the median.

The definition of k-median is as follows: Given a data set N of nodes, a distance function d :
N2 �! R, and an integer k; find a k element subset of N as medians such that sum of distances
from each node to its nearest median is minimal. The nodes that are closer to a median form a
cluster. For any node, the node is said to be assigned to its nearest median.

150

http://www.lirmm.fr/~azmeh/tools/BoxPlot/BoxPlot.html

5. Conclusion

5 Conclusion

We proposed the BoxPlot++ as an extension of Tukey’s boxplot. We improved the resulting
data values distribution by removing the repeated values and by calculating distances between
the points and the nearest median. The values in the resulting cluster show more precision than
the original boxplot approach.

151

	Introduction
	Context
	Problem Statement - Web Service Selection
	Describing User Requirements
	Web Service Discovery
	Web Service Classification
	Web Service Selection

	Contributions
	Thesis Outline

	I State of the Art
	Web Service Basics
	Introduction
	What are Web Services?
	Describing a Web Service
	Functional Properties
	Non-Functional Properties

	Discovering a Web Service
	Invoking a Web Service

	Web Service-Oriented Architectures (WSOA)
	Orchestration
	Choreography
	Business Process Execution Language (BPEL)

	Summary

	Related Work
	Introduction
	Works about Selecting an Independent Web Service
	Information Retrieval based Classification
	Concept Lattice based Classification
	QoS-based Classification
	Semantic-based Classification

	Works about Selecting Composable Web Services
	Manual Composition
	Automatic Composition

	Discussion
	Summary

	FCA and RCA Basics
	Introduction
	Formal Concept Analysis (FCA)
	Case Study
	Definitions

	Relational Concept Analysis (RCA)
	Case Study
	Definitions

	Simple and Relational Queries
	Simple queries
	Relational queries
	Lattice Navigation by Relational Queries
	A Query-Based Navigation Algorithm
	Variations about the Algorithm

	Summary

	II Contributions
	The Selection Framework
	Overview
	The Selection Framework
	User Requirements Layer
	Abstract WSDL File
	Abstract BPEL File

	Discovery Layer
	Web Service Retriever
	WSDL Parser

	Classification Layer
	Selection Layer

	Contribution Outline

	Web Service Selection by Tags
	Introduction
	The Selection Framework: Use Case 1
	Discovery Layer
	Classification Layer
	Automatic tagger
	Creation of the training corpus
	Pre-processing of the WSDL files
	Selection of the candidate tags
	Computation of the features
	Training and using the classifier
	WordNet for semantically related tags
	FCA Classifier

	Selection Layer

	Summary

	Web Service Selection by Functionality
	Introduction
	The Selection Framework: Use Case 2
	Discovery Layer
	Classification Layer
	Similarity Evaluator
	Threshold Calculator
	Scaler
	Square Concept Extractor

	Selection Layer

	Summary

	Web Service Selection According to Multi- User Requirements
	Introduction
	The Selection Framework: Use Case 3
	Discovery Layer
	Classification Layer
	Compatibility Checker
	QoS Level Calculator
	Composability Evaluator
	RCA Classifier

	Selection Layer

	Summary

	Experimentation
	Introduction
	Web Service Selection by Tags
	Methodology
	Validation

	Web Service Selection by Functionality
	Methodology
	Validation

	Web Service Selection According to Multi- User Requirements
	Methodology
	Validation

	Summary

	III Conclusion and Perspectives
	Conclusion
	Conclusion
	Perspectives
	Improving our Framework
	Towards Defining a Structure of a Smart Web Service Registry

	Bibliography

	IV Appendices
	BoxPlot++
	Definition
	Utilization
	BoxPlot++
	Related work
	k-means clustering
	The k-medians clustering

	Conclusion

