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Abstract—In this paper, we demonstrate how methods based using mechanical constraints for calibration, or for certain
on interval arithmetic and interval analysis can be used to measurement devices.
achieve numerical certi_fication of the kinematic calibre_ttion of Even in the best cases, only probabilistic results are pro-
a parallel robots. We introduce our work by describing the duced. In this paper we propose a method that giveartified
usual calibration methods and the motivations for a numerical " . §
certification. Then, we briefly present the interval methods we approximation in the sense that, for a set of measurements
used and the kinematic calibration problem. In the main part, given with attached uncertainties, we return a list of inter-
we develop our certified approach of this problem in the case of a vals for the kinematics parameters such that any solution
Gough platform, and we show with numerical examples how this . rasponding to an instance of configuration satisfying the
approach avoids wrong solutions produced by classical approach. . .
Details on implementation and performance are also given. .measurements. has to be'O”Q to thosg 'nter\(als' Th's_ method
is an new version based on interval arithmetic, using interval
|. INTRODUCTION analysis of the so-called implicit or inverse calibration method,
High accuracy of position and orientation is a characteristibe most studied method for the identification of the kinematic
feature of parallel manipulators that makes them appealinggarameters of a parallel robot [3]-[5]).
a lot of applications. However, such an accuracy relies on aExtended to a representation of the parameters in terms
robust and accurate calibration of the physical configuratia intervals — and to the associated arithmetic (Section II),
of the robot. This is a difficult task from both theoretical anthe basic system of equations for the kinematic calibration
practical point of view, even if efficiency is not critical as theof Gough platform is developed (Section IIl). Our algorithm
calibration may be performed off-line. for obtaining the certified solution of this system is described
A robot's configuration is related to kinematic parameteig detail in Section IV. A simulation (Section V) producing
of the robots through the equations of the kinematic modelertified results reveals that a least-squares method may pro-
Calibration is achieved by measuring several robot configundee a result which is not compatible with the corresponding
tions and identifying the corresponding kinematic parameterseasurement data.
For mathematical reasons, the number of equations given by
the measurements has to be at least as large as the number of
unknown parameters. Since the measurement data are usuallfiterval arithmetic introduced by Moore [6], is based on
given by a captor, it is necessary to take into account tfee representation of an uncertain variableas an interval
noise associated with this device. So in practice, the numbBer= [z,Z] representing a (possibly conservative) worst case
of equations is larger in order to reduce the sensitivity of tigstimate of the range of.
calibration to the uncertainty attached to the data. In this caseThe interval evaluation of a real-valued function

Il. INTERVAL ARITHMETIC

the system of equations to solvedser-constrained f(z1,...,z,) is an interval f(x) = f(xi,...,%,) such
The classical method to solve such an over-constrainétt
problem is a least-squares method. But the mere convergenc?(xh 2) €£(x) forall oy € x1,..., 20 € xn. (1)

of this iterative method cannot guarantee that, after calibration,
the accuracy of the robot is improved in the whole workspac€he tightest interval evaluation is the range, but any interval
In practice, post-processing is therefore necessary to validatetaining the range of a function is an interval evaluation
the results of such a calibration. Unfortunately, in the case of this function. There are numerous ways to calculate an
Gough platforms, this step is very costly [1]. interval evaluation function [7] which produce more or less
Some improvements of the least-squares method, providioggrestimation of the range; controlling the latter is the key to
a quality index for each solution, have been proposed whemaauccessful use of intervals.
noise model can be associated with the data uncertainties [2]The simplest interval evaluation is theatural evaluation
That may be done if the distribution of the measurement erriorwhich all mathematical operators in an expressionffare
is known (e.g., from the documentation of the captor). But thimply substituted by their interval equivalents; the result is
noise model may be difficult to obtain — for example whehighly dependent on the symbolic expression used. Another
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problem, we will divide it in 6 subproblems, one for each leg.
We may therefore simplify the notation in the following and
omit the index.

Less For each subproblem, we define a vector of parametets

or segments (a,b,1), a list of measurementéMy, ..., M,) with M, =

(Py, Ry, Li), and a functionf such that:

Reference Frame f(x,Mk) — HPk + Rib — aH2 _ (Lk + l)2
(0,2,y,2)
From a theoretical point of view the calibration equations
should be:
Fig. 1. Gough platform. f(% Mk) —0, fork=1,....p. ()

The solution of this system in the 7 kinematic parameters
interesting interval evaluation is theentered form(or linear a,b,l is possible if N = 7. Due to the noise in the mea-
Taylor form) defined as follow : surements associated with the captors, those equations are

fr(x) = f(z) + A(x — z) @) approximately valid only for the actual kinemgtic para_meters,
and the computed solution of (4) may be significantly different.
where A = f[z,x] is a suitablen x n interval matrix, called To reduce this problem we use more equations than the
a slope matrix. minimum required, N > 7.

In the following, we use the following notation related to To solve the over-constrained system, one typically uses
an intervalx = [z, z]: We writein f(x) for z, sup(x) for T, optimization (the analytic Jacobian is given in [4]), or lin-
mid(x) for (z + ) andrad(x) for 7 — z. earization [3], which allows to find a least-squares solution.
As we shall see, interval analysis and constraint programming

I11. KINEMATICS AND CALIBRATION
techniques offer a useful alternative to those methods.
We are studying a Gough platform as depicted in Figure 1.

This manipulator consists in two rigid bodies, thaseand IV. PROPOSEDMETHOD

the mobileplatform, connected by egs . We propose to solve the over-constrained system (4) by
The robot configuratiofiP, R) is given by a position” and using interval programming methods.

a rotation matrixR. It is associated to the length variatidn i .
of each leg measured by an “internal” sensor. The maix e assume that the uncertain coefficieffs of the equa-

is given is terms of Rodrigues parametéqs, ¢, g3), where tion (4) may take all possible values inside an interval of
1+¢ +¢+q¢)Ris variation denoted byM,, and combine these intervals into

the interval vectoM. Our goal is to determine the continuum

I+¢——dd 20 —2g 2q143 + 2¢2 : : e
( 212 + 23 1—g?+ g2 — ¢ 24205 — 21 S(M) of kinematic parameters satisfying (4),
2 =20 2eet20 1ogiota S(M) = {a|f(z, M) = 0 with My € My, k=1,...,p}.

Physically, each leg is attached to the base by a U-joint and (5)
to the platform by a ball joint, and 23 parameters are requirdd determine the se¥(M), which generally has a complicated
to fully model each leg [8]. But, as shown in [9], the principaghape, is a difficult problem. But it is possible to simplify
source of errors in positioning is due to the limited knowledgée problem by computing an enclosure of this set by a
of the centers of the joints and of the part of the legs’ lengtbox x. If the overestimation is smalk contains all relevant
which is not given by the sensors. information aboutS(M). A visualization of those sets in the
We thus use a simpler model with attachment pointsn  two-dimensional case is given in Figure 2.
the base framey; in the mobile frame, and offset lengtihs In this paper we use a Taylor expension to obtain a linear
for the ith leg. This gives 42 parameters, 7 for each leg. appoximation ofS(M). (Alternatively, it may be obtained
The inverse kinematicsnodel expresses the length of thehrough the semantics of the equations — see [10].) Then
ith leg as follows: we use linear programming to compute the extreme values
2 2 of this linear approximation. This gives a box containing
1P+ Bbi = ail]™ = (Li + L) 3) S(M). Using the quadratic approximation results from [11] it
In the case of the Gough platform, the exfmtvard kinemat- is not difficult to see that if the uncertainties in thé, is of
ics model is much harder to compute and unpracticable fire orderO(e) then the size of the resulting box is at most
calibration. O(e?)larger than the tightest possible box enclosigM ).
For p selected configurations, a measurement device (codhus, in practice, the overestimation has little effect on the
dinate measurement machinery, theodolites, ...) provides tiality of the results.
position P, and the orientatiorR,. Additionally, the internal  As the linear approximation depends on the initial estimate
sensor provides the leg lengtls ; for each configuration. used forx, it is necessary to use a fixed point algorithm to
As the legs are independent with respect to the calibratigaratively sharpen the solution set. The iteration terminates



Solution of f(x, M) for M € M . . . . .
olution off . >°r < The interval Newton method is terminated if the size of

the box is no longer substantially decreased by the interval
Newton method, which is tested by a criterion of the form
[rad(x;)[x — [[rad(x;+1) [l < A.

There are several ways to solve the linear inclusion (7),

. 7 one of which will be presented in next subsection. For details
s on properties (convergence, unicity ...) of the interval Newton
-,‘ method, the reader may consult [11]. There it is shown that,
Y ~~-~.~.,§§tofsolutionsS(M'Y in particular, no solution off'(xz, M) = 0 contained in the

initial trial box xo can be lost (i.e., lie outside somg). As

a consequence, if the intersection ©f and N;(x;,z;) is
empty for somej then, sincer;;; = 0 by (8), there was no
solution in the initial trial boxxy. Moreover, if somex;; is

Fig. 2. 2D example of the solution s&{M) in the interior ofx; then it is certain thak, (and hence all
x;) contains for everyM € M a solution of F'(z, M) = 0.
This makes the interval Newton method an excellent tool for
certified computations.

... .-~ Linear relaxation

box relaxation

X

naturally when the bounds a&f no longer improved much, i.e.,
when the maximal box width does not decrease significan%y
in some iteration step. If desired, we can get a closer approx-
imation of the solution sef(M) by bisecting the computed We have seen in the previous subsection that the heart of
box x and restart the iterative process with the two resultirtje proposed method is to solve Eq. 7. A correct presentation
boxes as initial estimates. of that problem is to find the set of solutions

While we tested several interval methods, we present here
only the interval evaluation which provided the sharpest

approximation ofS(M). It is particularly adapted to over- where A is an interval matrix and is an interval vector. To

constrained systems of equation. Howgver, since_there %retermineZ(A b) or only the tightest enclosing box is an
marny more pOSSIbIlItIeS. o exp!ore we think that an improv P-hard problém and hence expensive in higher dimensions —
analysis of the system is possible. the shape of the set can be quite complicated. But it is possible
to find an enclosure oE(A,b) by an interval vectok with
limited overestimation, provided that the intervals are narrow
We shall writeF'(x, M) for the vector valued function with enough.
components.(z, M) = f(z, My). A centered form interval  Basic interval analysis method suitable for this are precon-
extension ofF'(z, M) performed in two step gives: ditioned Gauss elimination and Krawczyk’s method (see [7],
_ _ [11]{13]). We tested an improved algorithm proposed by
f_();;(l;/[)zw_))ffigl\(/?)l\;)‘?ﬁ(’_M]&()x+ Ag?x M) (x — ) Rump [14] based on these methods and implemented in the
- ’ ’ ’ package INTLAB given under Matlab. The provided tool,

whereA andB are the natural interval extension of the idenWhile highly useful for square systems of equations, is not
tification Jacobian matri® f (z, M) /x resp.df (x, M)/OM, adapted to ovgrdetermin_ed problems: though it can solve.them,
computed from explicit expressions, and wherand M are the enplosurg is gsually inferior to the met_hod proposed in the
selected inx and inM asz = mid(x) and M = mid(M). following, which is based on a reformulation of the problem
We want to determine an enclosusefor the vectorsy (© @ linear programming problem. ,

such thatF(z, M) = 0 for some M € M. Given a trial The new method consists on two steps: In the flrst step,
enclosurex; (which is guessed fof = 0, we want to use the W€ overestimaté(A., b) by a convex polyhedron defined by
information in the centered form to reduce the radiuscgf s_calar linear mequalltles. In the second_step, we de’_cermme by
thus producing a better enclosurg, ;. Newton’s method may IN€ar programming (for example the simplex algorithm) the
be extended to the interval case [7], [11], giving a recipe Ca||é7a|n|mal and the maximal value of each component of points

the Newton operatorto construct a boxV; (z;,x;), defined N the polyhedron. This provides an encloswref 3(A, b).
as an enclosure of all vectors € x; satisfying the linear Again, results from [11] imply that the overestimation is of
inclusion higher order, and hence small, if the intervals in the entries of

A andb are narrow. To improve the quality afthe twp steps
Alx—z;) € —f(x;,M)—B(z;, M)(M—M) with A€ A. are repeated until no significant improvement is obtained.
(7 For any matrix4, (which we choose as the midpoint of
Then the interval Newton method is defined by A), we can use a Krawczyk-type decomposition

Reformulation as a linear programming problem

Y(A,b) ={z|Az =b,A € A,b € b}, 9)

A. Interval Newton Formulation of Implicit Equations

Xjt+1 = XjﬁNj(Xj,l’j). (8) Asz:(Aon)x—quon



to see that any: € X(A,b) satisfies the linear inequalites Now we simulate uniformly distributed noises associated

Ux < u, where with measurement devices. The amplitude of the errors are
U A _ [—inf((A— A)x —b) ep = +/ — 5 pm for position measurem_entL = J.r/ -5
=l_a) = sup((A - A)x —Db) pm for leg length measurement. The orientation is modeled

by a normalized vector and an angle. The error on the vector
This observation goes back to [15], and gives for narrogirection is equal ta, = +/ — 5 um and, on the angle, it is
interval coefficients a nearly optimal polyhedral enclosure @qual toe, = +/— 1073 degree. These simulations permit to
E(A,b). We therefore calbn (n = dim(x)) times a linear optain a realistic measurement vectof”. Now the interval
programming solver to solve the problems vectorM” = [M" — ¢, M" + €] contain the true measurement
M®*. Note thate is done as a function ofp, ¢, €,,€6,. The
error e, may be easily deduced from ande, to model the
T = max{xy | x | Uz < u} error associated with the 3 Rodrigues parameters.

for k = 1,....n. This algorithm produces an enclosing box V& apply our proposed algorithm to reduce the width of the

for ©(A,b), and hence can be used to define the Nevvtéwtial estimationxy. We obtainx; -see Table Il, Ill and IV.

operator, and hence the interval Newton iteration discussed-is Base attachment points [cm]
the previous subsection. x y 2

mid rad mid rad mid rad
V. APPLICATION AND SIMULATION X, || -9.6600| 0.1000] 9.0442| 0.1000] 0.0251| 0.1000
In our simulations all geometric parameters of the Left-x: || -9.6825| 0.0784 || 9.0988 | 0.0455 || 0.0041| 0.0791
Hand robot of INRIA [16] are available. We implemented X2 || -9.6842 | 0.0767 || 9.1011] 0.0433 || 0.0038 | 0.0788
in Matlab (with the optimization toolkit and the INTLAB [ xs [| -9.6904] 0.0735] 9.0978] 0.0205 [| 0.0210[ 0.1895]

z;, = min{zy |z | Uz < u},

package [14]) implicit calibration and its certification using TABLE II
the method just presented. Since our calibration method de-ComparISON OF THE RESULT OBTAINED BY INTERVAL METHOD VS
couples the problem into 6 independent leg calibrations, we LEAST-SQUARE METHOD

concentrate on the calibration of the first leg. The true values of
the kinematic parameters, denotedatdy are shown in Table I.

Attachment points [cm] Leg length Mobile attachment points [cm]
Base platform | Mobile platform | offset [cm] U v w
x Y z u v w l mid rad mid rad mid rad
-97[91]00|-30| 73| 00| 522496 xo || -3.0468| 0.1000 || 7.2122 | 0.1000 || -0.0334| 0.1000
TABLE | x1 || -3.0055| 0.0587 || 7.2937 | 0.0187 | -0.0127| 0.0793
x2 || -3.0026 | 0.0558 || 7.2946 | 0.0177 | -0.0119| 0.0786
TRUE KINEMATIC PARAMETERS OF ONE LEG

[, || -2.9943] 0.0562 ]| 7.3002] 0.0071] -0.0080] 0.0726

TABLE Il
The z* serve to construct a set of 21 configurations by ComPARISON OF THE RESULT OBTAINED BY INTERVAL METHOD VS
solving the equation (3) fol, using 21 randomly generated LEAST-SQUARE METHOD

configurations. In addition to the calculated value of the leg
length, the chosen positions and orientations simulate the
values obtained by a measurement device without errors.
The vector describing the exact measurement is denoted by Method Offset [cm]
M® = [Mg, ..., Mg]. !

The above values:® are perturbed and denoted hy X0 5; 3@76 oqugoo
to simulate an initial estimation of the kinematic parameters X1 523164 | 0.0789
given, for instance, by the robot constructor. The amplitude X2 52.3161| 0.0787
of the uniformly distributed perturbation is equal+¢/ — 0.1 xs || 52.2366] 0.1597]
cm. For the proposed certification method an initial interval TABLE IV

vectorxy is done asxg = [z" — 0.1, 2" + 0.1].
When all measured quantities are exact:
« the least-square algorithm converges accurately’to
« the certification algorithm converges to an interval vector
x* = [z — 1078, 2% + 107®]. Note that10~® is the e compare this result to the classical least-square method
A given in Section IV-A used to terminate the Newtonfa Levenberg-Marquardt algorithm provided by Matlab). To do
scheme. this, we choose randomly 1000 measurement ve¢fyrR, L]
We conclude that both methods provide the exact kinemaiiside M"™ N [M® — ¢, M + ¢] i.e. that guarantees that the
parameters when no errors are associated with measurememgasurement data are inside the range certificated by the

COMPARISON OF THE RESULT OBTAIN THOUGHT INTERVAL METHODV'S
LEAST-SQUARE METHOD



interval method and not at a distance greater thi@rnthe exact
measuremenfi/®. We obtain 1000 solutions to the implicit
calibration problem. The Figure 3 presents these observations
and compares them to the element of the interval veggor
which corresponds to the offset of the leg length.

o~
Xo

Fig. 4.  Visual comparison betweery x; and xs for mobile kinematic
35 T T T T T T parameters:, y, z

Range where _» ||

30r the solutions are

certifiated

Number of observations

2.5

.05 52.1 52.15 52.2 52.25 52.3 52.35 %
Value of the offset parameters | [cm] E 15l
% 43 boxes
Fig. 3. Observation of 1000 solutions of the offset of the leg length obtain % ; / |
for 1000 set of measurement data chosen inside a possible range of variation 2 104 boxes
E 19 boxes \
2
The maximum and the minimal values of each components 0% -~
. . . 71
of the 1000 observations permit to construct an interval vector, boxes
denoted byx,, where all least-square solutions are localized. %15 2 25 3 85 4 45 5
The Tables II, Il and IV compareg, x; andx,. Visually, Step of bisections

the Figure 4 presents this comparison for the base attachment o
point (Note that the frame is center in the middlexai). Fig. 5. Volume of the boxes at each step of the bisection process
For at least 2 kinematic parameters gnd (), the radius

of their components .incs is greater than their equivalent in,o compute the smallest box (denotedsy which contains
x;. Then, some solutions provided by the least square methgfiie 104 boxes, Tables II, 11l and IV show that the range of
(their well convergence have been checked) are outside {he variables of the improved enclosuxe is comparable to
certified enclosure of the exact set of solution provided tlgpl_ This shows that our enclosure method is indeed close to
interval method. We may conclude that those special poig§timal, and little can be gained by bisection when only the
are not correct with respect to the noise associated Wiihgesof the solution set, and not its shape, is of interest.
measurement. Their certification is not possible. Regarding the results, we may conclude that some possible
To improve our result, a possibility is to bisect each compQg|ytions provided by a least-square method do not satisfy the
nent ofx; and process the proposed algorithm on each of tagstem of equations 4 for the given range of variation of the
boxes obtained. Many rules for bisection have been tested. Weasurement data. The properties of interval arithmetic show
choose to present the case where the initial opis splitinto a1 "least-square solution” are not included in the exact set

two parts,5% away from its inferior. At each bisection stepsf solutions of the system 4 parameterized by measurements.
we test 128 boxes; many of these are eliminated by simple

evaluation using Equation 6 or the proposed algorithm. The VI. CONCLUSION

initial box for the next step of bisection is the largest box In this article we presented a method based on interval anal-

obtained in the previous step. This process is repeatet’for ysis that provides a numerically certified result to kinematic

away from the superior limits the largest box. This ensurealibration problem of Gough platform.

that the boundary ok; is filtered with priority. Even if some further work may have to be done to improve
After 4 steps (on superior and inferior bound), the set difie interval methods we used, the main contribution of this

calibration solutions is described by the union of 104 boxesork is to provide the first certified method for this problem

Figure 5 shows that the total volume of these boxes decreaaad to show that usual methods may produce unrealistic

to a limit. The area of the solution is greatly improved. But ifesults.
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