
Automatic proving in Coq

Yves Bertot

April 15, 2008

Yves Bertot Automatic proving in Coq

Combining tactics

I Then: “;” (apply the same tactic on all generated subgoals)
I example: intros a b H; split; elim H; intros H H2; assumption

I Orelse: “||”
I example: intros a b H; elim H; intros H’;

(left || right); exact H’

I span: “;[. . . |. . .]”

I example: intros a b H; elim H;
[intros H’; right; exact H’ | intros H’; left; exact H’]

I Neutral elements: idtac, fail.

I Repetition: repeat

Yves Bertot Automatic proving in Coq

Automatic proofs by simple repetition

I Remember: le n : ∀n, n ≤ n
le S : ∀n, n ≤ S m

I Prove goals of the form S (. . . (S a)) = S (. . . (s a))

I repeat(apply le n || apply le S)

Yves Bertot Automatic proving in Coq

Automatic use of collections of theorems

I The tactic auto can be fine-tuned,

I This tactic repeatedly tries theorems taken from a database,

I Depth of repetition is limited drastically (default is 5 or 6),

I You add elements in databases by Hint Resolve thm : db.,

I You direct auto to use a given database db by typing auto
with db,

I You change the depth by adding a number argument as in
auto 20 with db,

I The tactic trivial is auto which refuses to use theorems with
more than one premise.

Yves Bertot Automatic proving in Coq

Repeated use of rewriting theorems

I A tactic autorewrite repeats rewriting with collections of
theorems,

I Example:
plus assoc : forall n m p : nat, n + (m + p) = n + m + p
Hint Rewrite plus assoc : assoc db.
Lemma ex autorw : ∀x y z t, x+((y+z)+t) = (x+y)+(z+t).
intros x y z t.
===============
x + (y + z + t) = x + y + (z + t)
autorewrite with assoc db.
===============
x + y + z + t = x + y + z + t
trivial.
Qed.

Yves Bertot Automatic proving in Coq

Tactics for propositional logic

I The tactic intuition does more than auto, as it breaks the
hypotheses down,

I The tactic intuition can be fine-tuned by writing an extra
tactic expression behind,

I By default intuition calls auto with *

I Example:
Lemma ex intuition :
∀A B x, 0 = S 0 \/ A /\ B → A /\ x ≤ x + x.
intuition (discriminate || auto with arith).
Qed.

Yves Bertot Automatic proving in Coq

Tactics for numbers

I ring will solve goals of the form e1 = e2,
I if the two expressions are equal polynomials,

I ring simplify will only simplify the equality,
I omega will solve goals containing comparisons between

expressions,
I if the members of all comparisons are linear formulas

I More powerful tactics are available with extra packages.

I ring and ring simplify can be adapted to new ring structures.

Yves Bertot Automatic proving in Coq

Defining new tactics

I Ltac easy compare := repeat(apply le n || le S).

I Defined tactics can take arguments,

I Ltac case eq f :=
generalize (refl equal f); pattern f at -1; case f.

Yves Bertot Automatic proving in Coq

Defining new tactics

I Ltac easy compare := repeat(apply le n || le S).

I Defined tactics can take arguments,

I Ltac case eq f :=
generalize (refl equal f); pattern f at -1; case f.

Yves Bertot Automatic proving in Coq

Adapting to the goal

I Pattern matching in tactics
match goal with

H : ?x = ?y |- ?x = ?z =>
transitivity y;[exact H | idtac] end.

I You can also have pattern matching on expressions,
I Pattern-matching is not “functional programming” like,

I Patterns don’t need to be constructors,
I Patterns don’t need to be linear,
I Pattern-matching backtracks upon failure.

Yves Bertot Automatic proving in Coq

Example of user-defined tactic

Ltac num eq list :=
match goal with
|- ?a::?b = ?c::?d =>
let H := fresh in
assert (H: a=c);[try ring; try omega |

try rewrite H; clear H;
assert (H : b = d);[apply refl equal || eq list |

try rewrite H; apply refl equal]]
end.

I This tactic will address goals of the form
a1::a2::a3::. . . = b1::b2::b3::. . .
and decompose it in goals
a1=b1 a2=b2 3=b3 . . .

Yves Bertot Automatic proving in Coq

