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Limits of structural recursion

I Structural recursion on one argument is restrictive,
I Functions that are total, but not structural recursive are

frequent,
I merge (for merge sort), quicksort
I gcd,

I Structural recursion imposes the choice of data-structure,
I factorial on Z, Q
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Example of merge sort

I merge (a::l1) (b::l2) =
if le lt dec a b then a::merge l1 (b::l2)
else b::merge (a::l1) l2

merge nil l2 = l2
merge l1 nil = l1

I When a ≤ b, only the first argument decreases

I When b < a, only the second argument decreases

I The sum of length of the lists decreases by one at each
recursive call!
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Example of gcd

I gcd a b = if a = b then a else if a < b then gcd a (b-a)
else gcd (a-b) b

I This algorithm is guaranteed to terminate only if a and b are
positive

I The sum of the two arguments decreases at each recursive
call,

I The decrease is non-zero, but we can’t know by how much.

Yves Bertot Well-founded induction



bounded recursion

I Add an artificial argument to count what decreases,

I Return a dummy value when the artificial argument reaches 0,

I Ensure the artificial argument has a good initial value.
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bounded recursion for merge sort

I Fixpoint bmerge (l1 l2 : list nat)(n:nat){struct n} : list nat :=
match n with

0 => nil
| S p =>

match l1, l2 with
(a::l1), (b::l2) =>
if le dec a b then a::bmerge l1 (b::l2) p
else b::bmerge (a::l1) l2

| nil, l2 => l2
| l1, nil => l1
end

end.
Definition merge (l1 l2 : list nat) :=
bmerge l1 l2 (length l1+length l2).
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Reasoning on bounded merge

I Impose conditions on the bound to avoid the degenerate case,

I Example for merge
Lemma merge sorted :
∀n l1 l2, length l1 + length l2 = n →

sorted l1 → sorted l2 → sorted (merge l1 l2 n).

I Perform proofs by induction on the bound,
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Drawbacks of this approach

I The artificial argument is a nuisance,
I The code developed in Coq is also meant to be transformed

into software
I Argument kept in derived code,
I Computation of the intial value may take time.
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Well-founded induction

I Support direct encoding of terminating sequences,

I Allow functions where recursive calls follow terminating
sequences.
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Terminating relations

I Given a relation R, an element x is accessible, if there is no
infinite sequence xn such that:

I x0=x
I ∀i, R xi+1 xi

I Actually x is accessible if and only if all its R-predecessors are,
Inductive Acc (A:Type)(R:A→A→Prop) : A→Prop :=
Acc intro : ∀x, (∀y, R y x → Acc A R y) → Acc A R x.

I A relation is well-founded when all elements are accessible.
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Well-founded relations

I A Coq library makes it possible to construct well-founded
relations,

I The order lt is well-founded,

I The order Zwf ≡ fun a x y:Z, a ≤ y /\ x < y is well-founded,

I Composition with a function preserves well-foundedness,

I Inclusion preserves well-foundedness,

I Lexical ordering preserves well-foundedness,

I Sometimes, one needs to prove well-foundedness by going
back to accessibility.
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Well-founded recursion

I A definition f x = E has well-founded recursion for R when f
only appears in E applied to expressions e such that R e x.

I Expressed with types, for f: A → B
F : ∀x:A, (∀y:A, R y x → B) → B
f x = F x f

I More generally, with dependent types, for f : ∀x:A, B x
F : ∀x:A, (∀y:A, R y x → B y) → B x
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Well-founded recursion: the Fix construct

I Fix maps any F to the corresponding f
Fix : ∀(A : Type) (R : A → A → Prop), well founded R →

∀P : A → Type,
(∀x : A, (∀y : A, R y x → P y) → P x) →
∀x : A, P x

I Good to choose a dependent type for P
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Example for merge

I Input type : list nat*list nat,

I measure : m ≡ fun a => length (fst a) + length (snd a)

I Relation : R a b ≡ m a < m b

I output specification:
Q a l ≡
permutation l (fst a++snd a) /\
sorted (fst a) → sorted (snd a) → sorted l}

I output type : P a ≡ {l:list nat | Q a l}
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Well-founded recursion for merge (continued)

mergeF x f ≡
match x return P x with

(a::l1,b::l2) =>
match le lt dec a b with

left ab =>
let (l, lp) := f (l1, b::l2) (dec1 a l1 b l2) in
exist (Q (a::l1,b::l2)) (a::l) (rp1 a l1 b l2 l ab lp)

| right ba =>
let (l, lp) := f (a::l1, l2) (dec2 a l1 b l2) in
exist (Q (a::l1,b::l2)) (b::l) (rp2 a l1 b l2 ba lp)

end.
| (nil, l2) => exist (Q (nil, l2)) l2 (rp3 l2)
| (l1, nil) => exist (Q (l1, nil)) l1 (rp4 l1)
end.
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Well-founded recursion for merge (continued)

I Lemma dec1 : ∀a l1 b l2, m (l1, b::l2) < m (a::l1, b::l2).

I Lemma rp1 : ∀a l1 b l2 l, a ≤ b →
Q (l1, b::l2) l → Q (a::l1, b::l2) (a::l)
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Well-founded recursion for merge (continued)

I Definition merge = Fix (Wf nat.well founded ltof m)
mergeF

I Almost no need to do proofs about this code: information in
the type.

I If behavior must be analyzed, use theorem Fix eq.
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The Function command

Function merge (p:list nat * list nat) {measure m} : list nat :=
match p with (a::l1, b::l2) =>
if le lt dec a b then a::merge (l1,b::l2) else b::merge(a::l1, l2)
| (nil, l2) => l2
| (l1, nil) => l1
end.

I The command produces goals, which correspond to dec1 and
dec2 of the previous slide,

I The correctness with respect to sorting and permutation is
not proved yet,

I There is a specific induction principle for the function (too
verbose to show here, but very useful for the proofs) (make a
demo).

Yves Bertot Well-founded induction


