
Dependent inductive types and logical
connectives

Yves Bertot

April 15, 2008

Yves Bertot Dependent inductive types and logical connectives



Flashback: inductive datatypes

I Monomorphic: only define a single type,

I Each contructor gives a way to build elements in the type,

I Arguments in the same type are allowed for the constructors,

I Example:
Inductive tree : Type := L : tree | B : tree → tree → tree.

I Alternative notation
Inductive tree : Type := L | B (t1 t2 : tree).

I Generalize to parameterized types, where the parameter does
not change.
Inductive list (A:Type) : Type :=

nil : list A | cons : A → list A → list A.

Yves Bertot Dependent inductive types and logical connectives



Flashback: inductive datatypes

I Monomorphic: only define a single type,

I Each contructor gives a way to build elements in the type,

I Arguments in the same type are allowed for the constructors,

I Example:
Inductive tree : Type := L : tree | B : tree → tree → tree.

I Alternative notation
Inductive tree : Type := L | B (t1 t2 : tree).

I Generalize to parameterized types, where the parameter does
not change.
Inductive list (A:Type) : Type :=

nil : list A | cons : A → list A → list A.

Yves Bertot Dependent inductive types and logical connectives



Families of datatypes

I constructors may have arguments in other types of the same
family,

I Known example vectors:
Inductive vector (A:Type) : nat → Type :=

VNil : vector A 0
| VCons : ∀n : nat, A → vector A n → vector A (S n).

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).

vector cases :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).
vector cases :

∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).
vector cases :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,

P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).
vector cases :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →

(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).
vector cases :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →

∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Case-by-case reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → vector A n → vector A (S n).
vector cases :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Induction reasoning for a family of inductive types

Inductive vector (A:Type) : nat → Type :=
VNil : vector A 0

| VCons : ∀n : nat, A → list A → list A.
vector ind :
∀A : Type ∀P : ∀n : nat, vector n A → Prop,
P 0 (VNil A) →
(∀(n:nat) (a:A) (v:vector n), P n v →P (S n) (Vcons A n a v)) →
∀(n:nat) (v:vector A n), P n v

Yves Bertot Dependent inductive types and logical connectives



Curry Howard Isomorphism on Inductive Families

I For vectors, for every n in nat, the type vector A n contains at
least one element,

I Why not design inductive families where only some indices
have an inhabited type in the family,

I Example
Inductive ev : nat → Type :=

ev0 : ev 0 | ev2 : ∀n, ev n → ev (S (S n)).

I The constructors make it possible to build elements in ev 0, ev
2, ev 4, . . .

I To prove that ev 1 is not inhabited, we need an induction
principle.

Yves Bertot Dependent inductive types and logical connectives



Induction principle for ev

I Induction principle
ev ind: ∀P: nat → Prop,
P 0 ev0 → (∀(n:nat) (e:ev n), P n e → P (S (S n)) (ev2 n e))
→ ∀(n:nat) (e:ev n), P n (ev n)

I Let’s prove that ev 1 is empty.
Lemma ex ev1 : ∀(n:nat) (e:ev n), n <> 1.

intros n e; elim e.

I At this point, try to apply ev ind, with its 5th argument
matching e,

I P is chosen so that P n e ≡ n <> 1.
===================
0 <> 1
discriminate.

Yves Bertot Dependent inductive types and logical connectives



Induction principle for ev

I Induction principle
ev ind: ∀P: nat → Prop,
P 0 ev0 → (∀(n:nat) (e:ev n), P n e → P (S (S n)) (ev2 n e))
→ ∀(n:nat) (e:ev n), P n (ev n)

I Let’s prove that ev 1 is empty.
Lemma ex ev1 : ∀(n:nat) (e:ev n), n <> 1.
intros n e; elim e.

I At this point, try to apply ev ind, with its 5th argument
matching e,

I P is chosen so that P n e ≡ n <> 1.
===================
0 <> 1
discriminate.

Yves Bertot Dependent inductive types and logical connectives



ev 1 is not inhabited

I Second subgoal:
===================
∀n’, ev n’ → n’ <> 1 → S (S n’) <> 1

intros n’ ; discriminate. Qed.

I Exercice, prove that ∀x, ev x → ∃ y, x = y+y

Yves Bertot Dependent inductive types and logical connectives



ev 1 is not inhabited

I Second subgoal:
===================
∀n’, ev n’ → n’ <> 1 → S (S n’) <> 1
intros n’ ; discriminate. Qed.

I Exercice, prove that ∀x, ev x → ∃ y, x = y+y

Yves Bertot Dependent inductive types and logical connectives



ev 1 is not inhabited

I Second subgoal:
===================
∀n’, ev n’ → n’ <> 1 → S (S n’) <> 1
intros n’ ; discriminate. Qed.

I Exercice, prove that ∀x, ev x → ∃ y, x = y+y

Yves Bertot Dependent inductive types and logical connectives



Inductive predicates

I Make a systematic use of inductive families where all
members may not be inhabited,

I Declare explicitely that elements are irrelevant,

I Adapt the induction principle.

I Inductive even : nat → Prop :=
even0 : even 0

| even2 : ∀n:nat, even n → even (S (S n)).

I Simpler induction principle:
∀P: n → Prop,
P 0 →
(∀n, even n → P n → P (S (S n))) →
∀n:nat, even n → P n

Yves Bertot Dependent inductive types and logical connectives



Inductive predicates

I Make a systematic use of inductive families where all
members may not be inhabited,

I Declare explicitely that elements are irrelevant,

I Adapt the induction principle.

I Inductive even : nat → Prop :=
even0 : even 0

| even2 : ∀n:nat, even n → even (S (S n)).

I Simpler induction principle:
∀P: n → Prop,
P 0 →
(∀n, even n → P n → P (S (S n))) →
∀n:nat, even n → P n

Yves Bertot Dependent inductive types and logical connectives



Designing inductive predicates

I Always remember that the constructors should state theorems
that you want to be true,

I Do not forget that the arrow is not a “rewriting” step,

I Always test that you can prove a few basic facts.

Yves Bertot Dependent inductive types and logical connectives



Example of wrong design

I What happens with the following definition:
Inductive wev : nat → Prop :=
wev0 : wev 0
| wev2 : ∀n, wev (S (S n)) → wev n.

I Why would you write this? To reduce the problem of proving
that a large number is even to a simpler problem?

I Remember that the proof process reads implications backward.

I Here you would never be able to prove wev 2,

I Exercise: prove ˜wev 2.

I Exercise: define divides inductively, prove th1 and th2 from
the first lecture.

Yves Bertot Dependent inductive types and logical connectives



Choosing proofs by induction

I When proving a property on an object that satisfies an
inductive predicate,

I Two solutions
I Either prove by induction on the object (if possible),
I Or prove by induction on the inductive predicate.

Yves Bertot Dependent inductive types and logical connectives



Example of wrong choice

I Lemma even plus : forall x y, even x → even y → even (x+y).
intros x; elim x.
intros y evy; exact evy.

I The first case was easy!

==========
∀n, (∀y, even n → even y → even (n+y)) →
∀y, even (S n) → even y → even((S n)+y)

I Here even (S n) cannot be used to fill the premise of the
induction hypothesis.

Yves Bertot Dependent inductive types and logical connectives



Example of wrong choice

I Lemma even plus : forall x y, even x → even y → even (x+y).
intros x; elim x.
intros y evy; exact evy.

I The first case was easy!
==========
∀n, (∀y, even n → even y → even (n+y)) →
∀y, even (S n) → even y → even((S n)+y)

I Here even (S n) cannot be used to fill the premise of the
induction hypothesis.

Yves Bertot Dependent inductive types and logical connectives



Example of good choice

I Lemma even plus : forall x y, even x → even y → even (x+y).
intros x y evx evy; elim evx.
evy : even y
==========
even (0 + y)

exact evy.

I The first case is also easy!
==========
∀n, even n → even (n+y) → even (S (S n) + y)
intros n evny; simpl.

I Force addition to compute,
==========
even (S (S (n + y)))
apply even2; exact evny.
Qed.

Yves Bertot Dependent inductive types and logical connectives



Example of good choice

I Lemma even plus : forall x y, even x → even y → even (x+y).
intros x y evx evy; elim evx.
evy : even y
==========
even (0 + y)
exact evy.

I The first case is also easy!

==========
∀n, even n → even (n+y) → even (S (S n) + y)
intros n evny; simpl.

I Force addition to compute,
==========
even (S (S (n + y)))
apply even2; exact evny.
Qed.

Yves Bertot Dependent inductive types and logical connectives



Example of good choice

I Lemma even plus : forall x y, even x → even y → even (x+y).
intros x y evx evy; elim evx.
evy : even y
==========
even (0 + y)
exact evy.

I The first case is also easy!
==========
∀n, even n → even (n+y) → even (S (S n) + y)
intros n evny; simpl.

I Force addition to compute,
==========
even (S (S (n + y)))
apply even2; exact evny.
Qed.

Yves Bertot Dependent inductive types and logical connectives



Inversion

I Some instances of an inductive predicate can be proved by a
single constructor,

I for instance even (S x) can only be proved by even2,

I In this case, the premises of this constructor must hold,
I for even, if we know even (S (S x)) we can deduce even x

I In general, this means some implications can be read the
other way round,

I This is done by a tactic called inversion.

Yves Bertot Dependent inductive types and logical connectives



Things that can be described using Inductive predicates

I order relations
Inductive le (n:nat) : nat → Prop :=

le n : le n n | le S : ∀m, le n m → le n (S m).

I Partial functions, viewed as a relation
Inductive rsyracuse : nat → nat → Prop :=

ps 1 : rsyracuse 1 0
| rs p : ∀x n, rsyracuse x n → rsyracuse (2*x) (n+1)
| rs o : ∀x n, ˜even x → rsyracuse (3*x+1) n →

rsyracuse x (n+1).

I Also many-to-many relations,

I Very useful for programming language semantics.

Yves Bertot Dependent inductive types and logical connectives



Logical connectives as Inductive predicates

I Conjunction and Disjunction
Inductive and (A B:Prop) : Prop :=

conj : A → B → and A B.

and ind: ∀A B P:Prop,(A → B → P) → A /\ B → P

Inductive or (A B:Prop) : Prop :=

or introl : A → or A B
| or intror : B → or A B.
or ind: ∀A B P:Prop, (A → P) → (B → P) → A \/ B → P

I The tactic elim uses and ind and or ind,

I The tactic case or destruct use a more primitive but
equivalent mechanism (pattern-matching).

Yves Bertot Dependent inductive types and logical connectives



Logical connectives as Inductive predicates

I Conjunction and Disjunction
Inductive and (A B:Prop) : Prop :=

conj : A → B → and A B.
and ind: ∀A B P:Prop,

(A → B → P) → A /\ B → P

Inductive or (A B:Prop) : Prop :=

or introl : A → or A B
| or intror : B → or A B.
or ind: ∀A B P:Prop, (A → P) → (B → P) → A \/ B → P

I The tactic elim uses and ind and or ind,

I The tactic case or destruct use a more primitive but
equivalent mechanism (pattern-matching).

Yves Bertot Dependent inductive types and logical connectives



Logical connectives as Inductive predicates

I Conjunction and Disjunction
Inductive and (A B:Prop) : Prop :=

conj : A → B → and A B.
and ind: ∀A B P:Prop,(A → B → P)

→ A /\ B → P

Inductive or (A B:Prop) : Prop :=

or introl : A → or A B
| or intror : B → or A B.
or ind: ∀A B P:Prop, (A → P) → (B → P) → A \/ B → P

I The tactic elim uses and ind and or ind,

I The tactic case or destruct use a more primitive but
equivalent mechanism (pattern-matching).

Yves Bertot Dependent inductive types and logical connectives



Logical connectives as Inductive predicates

I Conjunction and Disjunction
Inductive and (A B:Prop) : Prop :=

conj : A → B → and A B.
and ind: ∀A B P:Prop,(A → B → P) → A /\ B → P

Inductive or (A B:Prop) : Prop :=

or introl : A → or A B
| or intror : B → or A B.

or ind: ∀A B P:Prop, (A → P) → (B → P) → A \/ B → P

I The tactic elim uses and ind and or ind,

I The tactic case or destruct use a more primitive but
equivalent mechanism (pattern-matching).

Yves Bertot Dependent inductive types and logical connectives



Logical connectives as Inductive predicates

I Conjunction and Disjunction
Inductive and (A B:Prop) : Prop :=

conj : A → B → and A B.
and ind: ∀A B P:Prop,(A → B → P) → A /\ B → P

Inductive or (A B:Prop) : Prop :=

or introl : A → or A B
| or intror : B → or A B.
or ind: ∀A B P:Prop, (A → P) → (B → P) → A \/ B → P

I The tactic elim uses and ind and or ind,

I The tactic case or destruct use a more primitive but
equivalent mechanism (pattern-matching).

Yves Bertot Dependent inductive types and logical connectives



Equality as an inductive predicate

I Inductive eq (A : Type) (x : A) : A → Prop :=
refl equal : eq A x x.

eq ind: ∀(A:Type) (x:A) (P : A → Prop),
P x → ∀y:A, x = y → P y

I The tactic elim applies eq ind,

I In practice, we start with a goal of the form P y, and we end
up with a goal of the form P x,

I Instances of y have been replaced by instances of x: rewriting
to the left,

I The tactic rewrite ← uses eq ind, rewrite → uses a symmetric
eq ind r.

Yves Bertot Dependent inductive types and logical connectives



Equality as an inductive predicate

I Inductive eq (A : Type) (x : A) : A → Prop :=
refl equal : eq A x x.

eq ind: ∀(A:Type) (x:A) (P : A → Prop),

P x → ∀y:A, x = y → P y

I The tactic elim applies eq ind,

I In practice, we start with a goal of the form P y, and we end
up with a goal of the form P x,

I Instances of y have been replaced by instances of x: rewriting
to the left,

I The tactic rewrite ← uses eq ind, rewrite → uses a symmetric
eq ind r.

Yves Bertot Dependent inductive types and logical connectives



Equality as an inductive predicate

I Inductive eq (A : Type) (x : A) : A → Prop :=
refl equal : eq A x x.

eq ind: ∀(A:Type) (x:A) (P : A → Prop),
P x

→ ∀y:A, x = y → P y

I The tactic elim applies eq ind,

I In practice, we start with a goal of the form P y, and we end
up with a goal of the form P x,

I Instances of y have been replaced by instances of x: rewriting
to the left,

I The tactic rewrite ← uses eq ind, rewrite → uses a symmetric
eq ind r.

Yves Bertot Dependent inductive types and logical connectives



Equality as an inductive predicate

I Inductive eq (A : Type) (x : A) : A → Prop :=
refl equal : eq A x x.

eq ind: ∀(A:Type) (x:A) (P : A → Prop),
P x → ∀y:A, x = y → P y

I The tactic elim applies eq ind,

I In practice, we start with a goal of the form P y, and we end
up with a goal of the form P x,

I Instances of y have been replaced by instances of x: rewriting
to the left,

I The tactic rewrite ← uses eq ind, rewrite → uses a symmetric
eq ind r.

Yves Bertot Dependent inductive types and logical connectives



Equality as an inductive predicate

I Inductive eq (A : Type) (x : A) : A → Prop :=
refl equal : eq A x x.

eq ind: ∀(A:Type) (x:A) (P : A → Prop),
P x → ∀y:A, x = y → P y

I The tactic elim applies eq ind,

I In practice, we start with a goal of the form P y, and we end
up with a goal of the form P x,

I Instances of y have been replaced by instances of x: rewriting
to the left,

I The tactic rewrite ← uses eq ind, rewrite → uses a symmetric
eq ind r.

Yves Bertot Dependent inductive types and logical connectives



Existential quantification as an inductive predicate

I Inductive ex (A : Prop)(P : A → Prop) : Prop :=
ex intro : ∀x, P x → ex A P.

ex ind : ∀(A : Type)(P : A → Prop)(Q:Prop),
(∀x :A, P x → Q) → ex A P → Q

I The tactic elim uses ex ind,

I Using elim produces an arbitrary element that satisfies the
property,

I The notation exists x:A, P stands for ex A (fun x:A => P),

I In this course, I usually write ∃ x:A, P.

Yves Bertot Dependent inductive types and logical connectives



Existential quantification as an inductive predicate

I Inductive ex (A : Prop)(P : A → Prop) : Prop :=
ex intro : ∀x, P x → ex A P.

ex ind : ∀(A : Type)(P : A → Prop)(Q:Prop),

(∀x :A, P x → Q) → ex A P → Q

I The tactic elim uses ex ind,

I Using elim produces an arbitrary element that satisfies the
property,

I The notation exists x:A, P stands for ex A (fun x:A => P),

I In this course, I usually write ∃ x:A, P.

Yves Bertot Dependent inductive types and logical connectives



Existential quantification as an inductive predicate

I Inductive ex (A : Prop)(P : A → Prop) : Prop :=
ex intro : ∀x, P x → ex A P.

ex ind : ∀(A : Type)(P : A → Prop)(Q:Prop),
(∀x :A, P x → Q) → ex A P → Q

I The tactic elim uses ex ind,

I Using elim produces an arbitrary element that satisfies the
property,

I The notation exists x:A, P stands for ex A (fun x:A => P),

I In this course, I usually write ∃ x:A, P.

Yves Bertot Dependent inductive types and logical connectives



Existential quantification as an inductive predicate

I Inductive ex (A : Prop)(P : A → Prop) : Prop :=
ex intro : ∀x, P x → ex A P.

ex ind : ∀(A : Type)(P : A → Prop)(Q:Prop),
(∀x :A, P x → Q) → ex A P → Q

I The tactic elim uses ex ind,

I Using elim produces an arbitrary element that satisfies the
property,

I The notation exists x:A, P stands for ex A (fun x:A => P),

I In this course, I usually write ∃ x:A, P.

Yves Bertot Dependent inductive types and logical connectives



Tactics elim, destruct, intro on inductive types

I The tactic elim produces hypotheses,

I You usually need intro right away,

I The tactic destruct combines several elim then intros together.

I The tactic intro with a pattern also combines several elim and
intro,

I The idea is to follow the structure of terms.

Yves Bertot Dependent inductive types and logical connectives



Example of destructuring intro

I Lemma exdi : forall P Q R, P /\ (Q \/ (∃ x:nat, R x)) →
(P /\ Q) \/(exists x:nat, P /\ R x).

intros P Q R [hP [hQ | [w hR]]].
hP : P
hQ : Q
==================
P /\ Q \/ ∃ x : nat, P /\ R x
left; split; [exact hP | exact hQ].
hP : P
w : nat
hR : R w
==================
P /\ Q \/ ∃ x : nat, P /\ R x
right; exists w; split;[exact hP | exact hR]. Qed.

Yves Bertot Dependent inductive types and logical connectives


