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basic use of the Coq system

v

In Coq, you can play with simple values and functions.

v

The basic command is called Check, to verify if an expression
is well-formed and learn what is its type.

Check 3. 3 : nat
Check plus. plus : nat — nat — nat
Check plus34. 3 + 4 : nat

v

v

v

Yves Bertot Introduction to dependent types in Coq



Building your own function

» Check fun x:nat => 3 + x.
fun x:nat => 3 4+ x : nat — nat
» use type inference when possible,
Check fun x => 3 + x.
fun x:nat => 3 + x : nat — nat
» Check fun (x:nat)(y:bool) => if y then x else 3.
fun (x : nat) (y : bool) => if y then x else 3
: nat — bool — nat
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Applying functions

» Check (fun x=>3 + x) 4
(fun (x : nat) => 3 4+ x) 4 : nat

» You can also force functions to compute
’Eval compute in ‘ (funx=>3 +x) 4
=7 : nat
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Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,
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Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.
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Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

» Using the forall-elimination rule: ifVx : A, P and e has type
A, then we can deduce P[x\e],

» The forall elimination rule transforms any proof of Vx : A, P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.
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Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

» Using the forall-elimination rule: ifVx : A, P and e has type
A, then we can deduce P[x\e],

» The forall elimination rule transforms any proof of Vx : A, P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

» When considering total functions, we also have the reverse:

» any function of type A — B can be used to prove A = B,
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And for universal formulas?

» Simple types, as found in Ocaml or Haskell are not enough,

» The rest of this lecture is about new constructs for universal
quantification.

» In the next slides, blue will be use for types.
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The Curry-Howard Isomorphism

Accept the existence of a type Prop whose elements are types,
All elements of Prop are types of proofs,

Thus if A and B are types of of proofs, then

>

>

>

» A — B is also a type of proof,

» Next, accept that a type of proofs is a “proposition”,
>

A proposition holds if it contains a proof.
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Arrows in the Curry-Howard Isomorphims

» In this frame, assume A, B, and C are propositions,

» They are propositions,

» A function of type A — B maps any proof of A to a proof of
B,

It represents a proof of A = B.

for some formulas, we can build function of that type directly,
When you do this, you do give a proof!

Example 1: fun xA =>x: A — A
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Arrows in the Curry-Howard Isomorphims

» In this frame, assume A, B, and C are propositions,

» They are propositions,

» A function of type A — B maps any proof of A to a proof of
B,

It represents a proof of A = B.

for some formulas, we can build function of that type directly,
When you do this, you do give a proof!

Example 1: fun xA =>x: A — A

vV vVv.v.v Yy

Example 2:
fun (f A— B — C) (x: B) (y:A) =>fyx
(A-B—-C)—-(B—-A-=CQ
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Various kinds of logics

» Can all usual tautologies be proved with pure functions?
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Various kinds of logics

» Can all usual tautologies be proved with pure functions?
» No.
» Peirce's Formula: (A — B) — A) — A

A|lB|A—-~B|(A—=B)—A|(A—=B)—=A)—A
T T T T T
T|F F T T
FIT F F T
FIF| T F T
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Various kinds of logics

» Can all usual tautologies be proved with pure functions?
» No.
» Peirce's Formula: (A — B) — A) — A

A|lB|A—-~B|(A—=B)—A|(A—=B)—=A)—A
T T T T T
T|F F T T
FIT F F T
FIF| T F T

» This cannot be proved by a pure function,

» To have full classical propositional logic, you have to add the
excluded-middle axiom: VP.PV =P

» People often don't: you can do a lot without axioms.
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Back to universal quantification

» We will introduce families of types,

» We will introduce function that produce results in these
families,
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Indexed types

» Consider families of types B; (i € A), where each member of a
family is annoted with an index 1/,
» Assume the existence of a type of types: Type,
» Assume the existence of a type of indices A,
» The family of indexed type can be described by a function B
whose type is A — Type.
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Dependent products

» Consider a family of types B : A — Type,

» Consider a function that takes as input an element x of A and
guarantees that it always return an element of type B(x),

» The type system is extended so that this function is
well-typed, the notation for its type is forall x:A, B x,

» The name forall is intuitively acceptable: whenever we have
an x in A, we know we have a value in B(x).
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Why is it called a dependent product?

» A dependent product is a generalization of a cartesian
product,

» A cartesian product has the form A; x Ao,

» An cartesian product iterated n times is A; X ... X A,

> It can also be written lNc 1., Aj,

» We see the use of a family A;,

» Given an element of I'I,E{l .nyAi, we are sure to have an

element of A; for every i

» This is like the dependent product type of the previous frame.
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Dependent products in formulas

Represent formulas in the predicate calculus,
Assume even : nat — Prop,
Assume divides : nat — nat — Prop

vV v vy

Assume there exists a theorem:
thl: ¥xy, even x — divides x y — even y

> and a theorem:
th2: Vx y, divides x (x * y)
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Building functions with a dependent product type

» Any function whose output type depends on the input value.

» Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x — even x

» Check fun (x:nat) => fun (h: even x) => h.
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Building functions with a dependent product type

» Any function whose output type depends on the input value.

» Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x — even x

» Check fun (x:nat) => fun (h: even x) => h.
fun (x:nat) (h: even x) => h: Vx: nat, even x — even x
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Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)
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Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)

» Check fun x (h: even x) => thl x x h | (th2 x x) |.
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Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)

» Check fun x (h: even x) => thl x x h | (th2 x x) |.

fun (x : nat) (h : even x) => thl x x h | (th2 x x)

: Vx:nat, even x — even (x * x)
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Defining new constants

Learn some more of the syntax of Coq:
» Definition name : type := value.
» Definition name := value.

» Definition name (x : type) := value.
This is equivalent to
Definition name := fun x : type => value.
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Defining your own indexed type

» We have played with indexed types as if they existed,

» Can we produce some?
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Defining your own indexed type

» We have played with indexed types as if they existed,
» Can we produce some?

» You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=
VP : nat — Prop, (Vy, P(2*y)) — P x.
» This was used a lot in the early days of Coq, (replaced by
inductive types),

» How do you define divides in the same style?
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Defining your own indexed type

» We have played with indexed types as if they existed,
» Can we produce some?

» You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=
VP : nat — Prop, (Vy, P(2*y)) — P x.
» This was used a lot in the early days of Coq, (replaced by
inductive types),

» How do you define divides in the same style?
Definition divides (x y:nat) : Prop :=
forall P : nat — nat — Prop,
(forall z t:nat, P z (z*t)) — P x y.
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Logic and reasoning in Coq

» Conjunction, disjunction, equality, existential quantification,
negation.

» Proof technology: Goals and tactics.
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Conjunction

» A function and :Prop — Prop — Prop,

» A notation A/\B=and AB
» Two basic theorems to construct and consume conjunctions

» conj: VA B:Prop, A— B —A/\B
» and.ind : VA B P:Prop, (A—B —-P)—=A/\B—P
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Disjunction

» A function or :Prop — Prop — Prop,

» A notation A\/ B =orAB
» Three basic theorems to construct and consume disjunctions

» or_introl : VA B:Prop, A— A\/B
» or_intror : VA B:Prop, B— A\/ B
» or_ind : VA B P:Prop, (A—-P)—-(B—P)—=A/\N\B—P
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Equality

» A function eq : YA:Type, A — A — Prop,

» A notationx =y =eq _XxYy

» Two basic theorems to construct and consume equalities
» refl_equal : V(A : Type) (x : A), x =X,

> eq-ind :
V(A : Type) (x: A) (P: A — Prop),Px—x=y— Py
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Existential quantification

» A function ex : V(A:Type), (A — Prop) — Prop,
» A notation exists x : A, P = ex A (fun x : A =>P),

» Two basic theorems to construct and consume existential
quantifications
» ex.intro : V(A : Type) (P : A — Prop) (x: A), Px — ex P
» ex.ind : V(A : Type) (P : A — Prop) (Q : Prop),
(W : A Px—Q)—exP—Q
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Contradiction and negation

» A value False : Prop
» A basic theorem to use contradiction
» False_ind : VP : Prop, False — P

» A function not = fun A => False,
» A notation "A = not A
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Example of proof: the hard way

Definition thl (x y : nat) (h : even x) (hd : divides x y) : eveny :=
hd (fun z t => even z — even t)
(fun (zt : nat) (h': even z)
(P : nat — Prop) (hp : forall y' : nat, P (2 *y")) =>
h" (fun z : nat => P (z * t))
(fun z' : nat =>
eq-ind (2 * (z' *t)) (fun n: nat => P n)
(hp (z' *t)) (2* 2" * t) (mult_assoc 2 z' t))) h.

» Too hard to build by hand (/ didn't).

» A lot of data is redundant and should be computed for us.
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Goal directed proofs and tactics

» Propose a statement,

» Apply commands called tactics that build the proof term from
the outside, with holes inside,

» Fill the holes progresssively,

» Mix with direct constructions of terms.

» In practice: each commands transforms a goal into a simpler
goal,

» Goals contain two parts

1. An enumeration of all the bound variables that are available
for use,
2. A description of the expected type for the current hole.
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Example proof by tactics

» Lemma exl : VP:Prop, P — P.

VP:Prop, P — P
Proof: 71

» intros P H.
P : Prop

VP:Prop, P — P
Proof: fun (P : Prop) (H: P)=>71
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Tactics

| — v [N | N
hypothesis H | apply H | apply H case H case H
elim H elim H
destruct H | destruct H
goal intros H' | intros x split left
right
5 — =
hypothesis H case H rewrite — H case H
elim H rewrite — H
destruct H
goal exists e reflexivity intros H'
» exact H, assumption when the goal is available from the

context,
» unfold name to unfold definitions,
» assert (H : formula) to propose an intermediate step.



Demonstration
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