Introduction to dependent types in Coq

Yves Bertot

October 24, 2008

basic use of the Coq system

- In Coq, you can play with simple values and functions.
- The basic command is called Check, to verify if an expression is well-formed and learn what is its type.
- Check 3. 3 : nat
- Check plus. plus : nat \rightarrow nat \rightarrow nat
- Check plus 3 4. $3+4$: nat

Building your own function

- Check fun x :nat $=>3+\mathrm{x}$. fun x :nat $=>3+x$: nat \rightarrow nat
- use type inference when possible, Check fun $x=>3+x$. fun x :nat $=>3+x$: nat \rightarrow nat
- Check fun (x :nat)(y:bool) $=>$ if y then x else 3 . fun (x : nat) $(y$: bool) $)=>$ if y then x else 3
$:$ nat \rightarrow bool \rightarrow nat

Applying functions

- Check (fun $x=>3+x) 4$ (fun (x : nat) $=>3+x$) 4 : nat
- You can also force functions to compute Eval compute in (fun $x=>3+x$) 4
$=7$: nat

Proofs as functions, functions as proofs

- Using the Modus-Ponens rule: if " A implies B " and " A " both hold, then we can deduce " B ",

Proofs as functions, functions as proofs

- Using the Modus-Ponens rule: if " A implies B " and " A " both hold, then we can deduce " B ",
- The Moduls-Ponens rule transforms any proof of $A \Rightarrow B$ into a function mapping (the type of) proofs of A to (the type of) proofs of B, Try reading without the text in parentheses.

Proofs as functions, functions as proofs

- Using the Modus-Ponens rule: if "A implies B " and " A " both hold, then we can deduce " B ",
- The Moduls-Ponens rule transforms any proof of $A \Rightarrow B$ into a function mapping (the type of) proofs of A to (the type of) proofs of B, Try reading without the text in parentheses.
- Using the forall-elimination rule: if $\forall x: A, P$ and e has type A, then we can deduce $P[x \backslash e]$,
- The forall elimination rule transforms any proof of $\forall x: A, P$ into a function mapping any element e of A to a proof of $P[x \backslash e], P$ where x is replaced by e.

Proofs as functions, functions as proofs

- Using the Modus-Ponens rule: if " A implies B " and " A " both hold, then we can deduce " B ",
- The Moduls-Ponens rule transforms any proof of $A \Rightarrow B$ into a function mapping (the type of) proofs of A to (the type of) proofs of B, Try reading without the text in parentheses.
- Using the forall-elimination rule: if $\forall x: A, P$ and e has type A, then we can deduce $P[x \backslash e]$,
- The forall elimination rule transforms any proof of $\forall x: A, P$ into a function mapping any element e of A to a proof of $P[x \backslash e], P$ where x is replaced by e.
- When considering total functions, we also have the reverse:
- any function of type $A \rightarrow B$ can be used to prove $A \Rightarrow B$,

And for universal formulas?

- Simple types, as found in Ocaml or Haskell are not enough,
- The rest of this lecture is about new constructs for universal quantification.
- In the next slides, blue will be use for types.

The Curry-Howard Isomorphism

- Accept the existence of a type Prop whose elements are types,
- All elements of Prop are types of proofs,
- Thus if A and B are types of of proofs, then
- $A \rightarrow B$ is also a type of proof,
- Next, accept that a type of proofs is a "proposition",
- A proposition holds if it contains a proof.

Arrows in the Curry-Howard Isomorphims

- In this frame, assume A, B, and C are propositions,
- They are propositions,
- A function of type $A \rightarrow B$ maps any proof of A to a proof of B,
- It represents a proof of $A \Rightarrow B$.
- for some formulas, we can build function of that type directly,
- When you do this, you do give a proof!
- Example 1: fun x:A $=>x: A \rightarrow A$

Arrows in the Curry-Howard Isomorphims

- In this frame, assume A, B, and C are propositions,
- They are propositions,
- A function of type $A \rightarrow B$ maps any proof of A to a proof of B,
- It represents a proof of $A \Rightarrow B$.
- for some formulas, we can build function of that type directly,
- When you do this, you do give a proof!
- Example 1: fun $\mathrm{x}: \mathrm{A}=>\mathrm{x}: \mathrm{A} \rightarrow \mathrm{A}$
- Example 2:

$$
\begin{aligned}
& \text { fun (f: } A \rightarrow B \rightarrow C)(x: B)(y: A)=>f y x \\
& \quad:(A \rightarrow B \rightarrow C) \rightarrow(B \rightarrow A \rightarrow C)
\end{aligned}
$$

Various kinds of logics

- Can all usual tautologies be proved with pure functions?

Various kinds of logics

- Can all usual tautologies be proved with pure functions?
- No.
- Peirce's Formula: $((A \rightarrow B) \rightarrow A) \rightarrow A$

A	B	$\mathrm{A} \rightarrow \mathrm{B}$	$(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A}$	$((\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A}) \rightarrow \mathrm{A}$
T	T	T	T	T
T	F	F	T	T
F	T	F	F	T
F	F	T	F	T

Various kinds of logics

- Can all usual tautologies be proved with pure functions?
- No.
- Peirce's Formula: $((A \rightarrow B) \rightarrow A) \rightarrow A$

A	B	$\mathrm{A} \rightarrow \mathrm{B}$	$(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A}$	$((\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A}) \rightarrow \mathrm{A}$
T	T	T	T	T
T	F	F	T	T
F	T	F	F	T
F	F	T	F	T

- This cannot be proved by a pure function,
- To have full classical propositional logic, you have to add the excluded-middle axiom: $\forall P . P \vee \neg P$
- People often don't: you can do a lot without axioms.

Back to universal quantification

- We will introduce families of types,
- We will introduce function that produce results in these families,

Indexed types

- Consider families of types $B_{i}(i \in A)$, where each member of a family is annoted with an index i,
- Assume the existence of a type of types: Type,
- Assume the existence of a type of indices A,
- The family of indexed type can be described by a function B whose type is $A \rightarrow$ Type.

Dependent products

- Consider a family of types B:A Type,
- Consider a function that takes as input an element x of A and guarantees that it always return an element of type $B(x)$,
- The type system is extended so that this function is well-typed, the notation for its type is forall $x: A, B \times$,
- The name forall is intuitively acceptable: whenever we have an x in A, we know we have a value in $B(x)$.

Why is it called a dependent product?

- A dependent product is a generalization of a cartesian product,
- A cartesian product has the form $\mathrm{A}_{1} \times \mathrm{A}_{2}$,
- An cartesian product iterated n times is $A_{1} \times \ldots \times A_{n}$
- It can also be written $\Pi_{i \in\{1 \cdots n\}} \mathrm{A}_{i}$,
- We see the use of a family A_{i},
- Given an element of $\Pi_{i \in\{1 \cdots n\}} A_{i}$, we are sure to have an element of A_{i} for every i
- This is like the dependent product type of the previous frame.

Dependent products in formulas

- Represent formulas in the predicate calculus,
- Assume even : nat \rightarrow Prop,
- Assume divides : nat \rightarrow nat \rightarrow Prop
- Assume there exists a theorem:
th1: $\forall \mathrm{x} \mathrm{y}$, even $\mathrm{x} \rightarrow$ divides $\mathrm{x} \mathrm{y} \rightarrow$ even y
- and a theorem:
th2: $\forall x y$, divides $x\left(x^{*} y\right)$

Building functions with a dependent product type

- Any function whose output type depends on the input value.
- Simple example: in a context where x has type nat.
\Rightarrow fun (h: even x) \Rightarrow h: even $x \rightarrow$ even x
- Check fun (x :nat) $\Rightarrow>$ fun (h : even x) $\Rightarrow \mathrm{h}$.

Building functions with a dependent product type

- Any function whose output type depends on the input value.
- Simple example: in a context where x has type nat. \Rightarrow fun (h: even x) \Rightarrow h: even $x \rightarrow$ even x
- Check fun (x :nat) $\Rightarrow>$ fun (h : even x) $\Rightarrow \mathrm{h}$. fun (x:nat) (h: even x) $\Rightarrow>h$: $\forall x$: nat, even $x \rightarrow$ even x

Building functions with a dependent product type (2)

- More elaborate example: recall th1: $\forall x \mathrm{y}$, even $\mathrm{x} \rightarrow$ divides $\mathrm{x} \mathrm{y} \rightarrow$ even y th2: $\forall x y$, divides $x\left(x^{*} y\right)$
- In a context where x :nat, th2 $x \mathrm{x}$: divides $\mathrm{x} \times$
- Check fun $\mathrm{x}=>$ th2 $\times \mathrm{x}$.

Building functions with a dependent product type (2)

- More elaborate example: recall th1: $\forall x \mathrm{y}$, even $\mathrm{x} \rightarrow$ divides $\mathrm{x} \mathrm{y} \rightarrow$ even y th2: $\forall x y$, divides $x\left(x^{*} y\right)$
- In a context where x :nat, th2 $\times x$: divides $x \times$
- Check fun $x=>$ th2 $\times x$. fun (x : nat) \Rightarrow th2 $\times x$: $\forall x$: nat, divides $x\left(x^{*} x\right)$

Building functions with a dependent product type (2)

- More elaborate example: recall th1: $\forall x y$, even $x \rightarrow$ divides $x y \rightarrow$ even y th2: $\forall x y$, divides $x\left(x^{*} y\right)$
- In a context where x :nat, th2 $\times x$: divides $x \times$
- Check fun $x=$ th2 $\times x$. fun (x : nat) \Rightarrow th2 $\times x$: $\forall x$: nat, divides $x\left(x^{*} x\right)$
- Check fun $x(h:$ even $x)=>$ th $1 \times x h($ th2 $\times x)$.

Building functions with a dependent product type (2)

- More elaborate example: recall th1: $\forall x y$, even $x \rightarrow$ divides $x y \rightarrow$ even y th2: $\forall x y$, divides $x\left(x^{*} y\right)$
- In a context where x :nat, th2 $\times x$: divides $x \times$
- Check fun $x=>$ th2 $\times x$. fun (x : nat) \Rightarrow th2 $\times x$: $\forall x$: nat, divides $x\left(x^{*} x\right)$
- Check fun $x(h$: even $x) \Rightarrow$ th $1 \times x$ (th2 $\times x)$. fun (x : nat) $(\mathrm{h}:$: even x$)=>$ th1 $\times \mathrm{x}$ (th2 $\times \mathrm{x})$
$: \forall x:$ nat, even $x \rightarrow$ even $\left(x^{*} x\right)$

Defining new constants

Learn some more of the syntax of Coq:

- Definition name : type $:=$ value.
- Definition name := value.
- Definition name (x : type) $:=$ value.

This is equivalent to
Definition name $:=$ fun x : type $=>$ value.

Defining your own indexed type

- We have played with indexed types as if they existed,
- Can we produce some?

Defining your own indexed type

- We have played with indexed types as if they existed,
- Can we produce some?
- You can define a proposition by quantifying over all propositions:
Definition even (x:nat) : Prop :=

$$
\forall \mathrm{P}: \text { nat } \rightarrow \text { Prop, }\left(\forall \mathrm{y}, \mathrm{P}\left(2^{*} \mathrm{y}\right)\right) \rightarrow \mathrm{P} \times .
$$

- This was used a lot in the early days of Coq, (replaced by inductive types),
- How do you define divides in the same style?

Defining your own indexed type

- We have played with indexed types as if they existed,
- Can we produce some?
- You can define a proposition by quantifying over all propositions:
Definition even (x:nat) : Prop :=

$$
\forall \mathrm{P}: \text { nat } \rightarrow \text { Prop, }\left(\forall \mathrm{y}, \mathrm{P}\left(2^{*} \mathrm{y}\right)\right) \rightarrow \mathrm{P} \times .
$$

- This was used a lot in the early days of Coq, (replaced by inductive types),
- How do you define divides in the same style? Definition divides (x y:nat) : Prop :=

$$
\begin{aligned}
& \text { forall } P: \text { nat } \rightarrow \text { nat } \rightarrow \text { Prop, } \\
& \qquad\left(\text { forall } z \text { t:nat, } P z\left(z^{*} t\right)\right) \rightarrow P \times y .
\end{aligned}
$$

Logic and reasoning in Coq

- Conjunction, disjunction, equality, existential quantification, negation.
- Proof technology: Goals and tactics.

Conjunction

- A function and : Prop \rightarrow Prop \rightarrow Prop,
- A notation $A / \triangle B \equiv$ and $A B$
- Two basic theorems to construct and consume conjunctions
- conj : $\forall \mathrm{A}$ B:Prop, $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{A} / \backslash \mathrm{B}$
- and_ind: $\forall \mathrm{A} B$ P:Prop, $(\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{P}) \rightarrow \mathrm{A} / \triangle \mathrm{B} \rightarrow \mathrm{P}$

Disjunction

- A function or : Prop \rightarrow Prop \rightarrow Prop,
- A notation $A \backslash B \equiv$ or $A B$
- Three basic theorems to construct and consume disjunctions
- or_introl: $\forall \mathrm{A}$ B:Prop, $\mathrm{A} \rightarrow \mathrm{A} \backslash / \mathrm{B}$
- or_intror: $\forall \mathrm{A}$ B:Prop, $\mathrm{B} \rightarrow \mathrm{A} \backslash / \mathrm{B}$
- or_ind: $\forall A B$ P:Prop, $(A \rightarrow P) \rightarrow(B \rightarrow P) \rightarrow A / X B P$

Equality

- A function eq: $\forall \mathrm{A}:$ Type, $\mathrm{A} \rightarrow \mathrm{A} \rightarrow$ Prop,
- A notation $x=y \equiv$ eq - $x y$
- Two basic theorems to construct and consume equalities
- refl_equal : \forall (A : Type) ($\mathrm{x}: \mathrm{A}$), $\mathrm{x}=\mathrm{x}$,
- eq_ind:

$$
\forall(A: \text { Type })(x: A)(P: A \rightarrow \text { Prop), } P x \rightarrow x=y \rightarrow P y
$$

Existential quantification

- A function ex: \forall (A:Type), ($\mathrm{A} \rightarrow$ Prop $) \rightarrow$ Prop,
- A notation exists x: A, $P \equiv$ ex A (fun $x: A \Rightarrow P$),
- Two basic theorems to construct and consume existential quantifications
- ex_intro: $\forall(\mathrm{A}:$ Type $)(\mathrm{P}: \mathrm{A} \rightarrow$ Prop) $(\mathrm{x}: \mathrm{A}), \mathrm{P} x \rightarrow$ ex P
- ex_ind : $\forall(\mathrm{A}:$ Type) ($\mathrm{P}: \mathrm{A} \rightarrow$ Prop) (Q : Prop),

$$
(\forall x: A, P x \rightarrow Q) \rightarrow \text { ex } P \rightarrow Q
$$

Contradiction and negation

- A value False: Prop
- A basic theorem to use contradiction
- False_ind: $\forall \mathrm{P}$: Prop, False $\rightarrow \mathrm{P}$
- A function not $=$ fun $A=>$ False,
- A notation ${ }^{\sim} \mathrm{A} \equiv \operatorname{not} \mathrm{A}$

Example of proof: the hard way

Definition th1 (x y : nat) (h: even x) (hd: divides x y) : even $\mathrm{y}:=$ hd (fun z t => even $z \rightarrow$ even $t)$

```
(fun (z t : nat) (h' : even z)
    (P : nat }->\mathrm{ Prop) (hp : forall y' : nat, P (2 * y')) =>
    h' (fun z : nat => P (z * t))
    (fun z' : nat =>
    eq_ind (2 * (z'* t)) (fun n : nat => P n)
        (hp (z'* t)) (2 * z'* t) (mult_assoc 2 z' t))) h.
```

- Too hard to build by hand (I didn't).
- A lot of data is redundant and should be computed for us.

Goal directed proofs and tactics

- Propose a statement,
- Apply commands called tactics that build the proof term from the outside, with holes inside,
- Fill the holes progresssively,
- Mix with direct constructions of terms.
- In practice: each commands transforms a goal into a simpler goal,
- Goals contain two parts

1. An enumeration of all the bound variables that are available for use,
2. A description of the expected type for the current hole.

Example proof by tactics

- Lemma ex1: $\forall \mathrm{P}:$ Prop, $\mathrm{P} \rightarrow \mathrm{P}$.
$===========$
$\forall \mathrm{P}$: Prop, $\mathrm{P} \rightarrow \mathrm{P}$
Proof: ?1
- intros PH.

P: Prop
H: P
$============$
$\forall \mathrm{P}$:Prop, $\mathrm{P} \rightarrow \mathrm{P}$
Proof: fun (P : Prop) (H:P) => ?1

Tactics

	\rightarrow	\forall			\/
hypothesis H	apply H	apply H	case H elim H destruct H		$\begin{gathered} \hline \hline \text { case } \mathrm{H} \\ \text { elim } \mathrm{H} \\ \text { destruct } \mathrm{H} \end{gathered}$
goal	intros H^{\prime}	intros X	split		left right
	\exists	$=$			
hypothesis H	case H elim H destruct H	$\begin{aligned} & \hline \text { rewrite } \rightarrow \mathrm{H} \\ & \text { rewrite } \rightarrow \mathrm{H} \end{aligned}$		case H	
goal	exists e	reflexivity		intros H^{\prime}	

- exact H , assumption when the goal is available from the context,
- unfold name to unfold definitions,
- assert (H : formula) to propose an intermediate step.

Demonstration

