
Introduction to dependent types in Coq

Yves Bertot

October 24, 2008

Yves Bertot Introduction to dependent types in Coq



basic use of the Coq system

I In Coq, you can play with simple values and functions.

I The basic command is called Check, to verify if an expression
is well-formed and learn what is its type.

I Check 3. 3 : nat

I Check plus. plus : nat → nat → nat

I Check plus 3 4. 3 + 4 : nat

Yves Bertot Introduction to dependent types in Coq



Building your own function

I Check fun x:nat => 3 + x.
fun x:nat => 3 + x : nat → nat

I use type inference when possible,
Check fun x => 3 + x.
fun x:nat => 3 + x : nat → nat

I Check fun (x:nat)(y:bool) => if y then x else 3.
fun (x : nat) (y : bool) => if y then x else 3

: nat → bool → nat

Yves Bertot Introduction to dependent types in Coq



Applying functions

I Check (fun x => 3 + x) 4
(fun (x : nat) => 3 + x) 4 : nat

I You can also force functions to compute
Eval compute in (fun x => 3 + x) 4
= 7 : nat

Yves Bertot Introduction to dependent types in Coq



Proofs as functions, functions as proofs

I Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

I The Moduls-Ponens rule transforms any proof of A ⇒ B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

I Using the forall-elimination rule: if ∀x : A,P and e has type
A, then we can deduce P[x\e],

I The forall elimination rule transforms any proof of ∀x : A,P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

I When considering total functions, we also have the reverse:

I any function of type A → B can be used to prove A ⇒ B,

Yves Bertot Introduction to dependent types in Coq



Proofs as functions, functions as proofs

I Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

I The Moduls-Ponens rule transforms any proof of A ⇒ B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

I Using the forall-elimination rule: if ∀x : A,P and e has type
A, then we can deduce P[x\e],

I The forall elimination rule transforms any proof of ∀x : A,P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

I When considering total functions, we also have the reverse:

I any function of type A → B can be used to prove A ⇒ B,

Yves Bertot Introduction to dependent types in Coq



Proofs as functions, functions as proofs

I Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

I The Moduls-Ponens rule transforms any proof of A ⇒ B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

I Using the forall-elimination rule: if ∀x : A,P and e has type
A, then we can deduce P[x\e],

I The forall elimination rule transforms any proof of ∀x : A,P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

I When considering total functions, we also have the reverse:

I any function of type A → B can be used to prove A ⇒ B,

Yves Bertot Introduction to dependent types in Coq



Proofs as functions, functions as proofs

I Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

I The Moduls-Ponens rule transforms any proof of A ⇒ B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

I Using the forall-elimination rule: if ∀x : A,P and e has type
A, then we can deduce P[x\e],

I The forall elimination rule transforms any proof of ∀x : A,P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

I When considering total functions, we also have the reverse:

I any function of type A → B can be used to prove A ⇒ B,

Yves Bertot Introduction to dependent types in Coq



And for universal formulas?

I Simple types, as found in Ocaml or Haskell are not enough,

I The rest of this lecture is about new constructs for universal
quantification.

I In the next slides, blue will be use for types.

Yves Bertot Introduction to dependent types in Coq



The Curry-Howard Isomorphism

I Accept the existence of a type Prop whose elements are types,

I All elements of Prop are types of proofs,

I Thus if A and B are types of of proofs, then

I A → B is also a type of proof,

I Next, accept that a type of proofs is a “proposition”,

I A proposition holds if it contains a proof.

Yves Bertot Introduction to dependent types in Coq



Arrows in the Curry-Howard Isomorphims

I In this frame, assume A, B, and C are propositions,

I They are propositions,

I A function of type A → B maps any proof of A to a proof of
B,

I It represents a proof of A ⇒ B.

I for some formulas, we can build function of that type directly,

I When you do this, you do give a proof!

I Example 1: fun x:A => x : A → A

I Example 2:
fun (f: A → B → C) (x: B) (y:A) => f y x

: (A → B → C) → (B → A → C)

Yves Bertot Introduction to dependent types in Coq



Arrows in the Curry-Howard Isomorphims

I In this frame, assume A, B, and C are propositions,

I They are propositions,

I A function of type A → B maps any proof of A to a proof of
B,

I It represents a proof of A ⇒ B.

I for some formulas, we can build function of that type directly,

I When you do this, you do give a proof!

I Example 1: fun x:A => x : A → A

I Example 2:
fun (f: A → B → C) (x: B) (y:A) => f y x

: (A → B → C) → (B → A → C)

Yves Bertot Introduction to dependent types in Coq



Various kinds of logics

I Can all usual tautologies be proved with pure functions?

I No.

I Peirce’s Formula: ((A → B) → A) → A

A B A→ B (A→ B)→ A ((A → B) → A) → A

T T T T T
T F F T T
F T F F T
F F T F T

I This cannot be proved by a pure function,

I To have full classical propositional logic, you have to add the
excluded-middle axiom: ∀P.P ∨ ¬P

I People often don’t: you can do a lot without axioms.

Yves Bertot Introduction to dependent types in Coq



Various kinds of logics

I Can all usual tautologies be proved with pure functions?

I No.

I Peirce’s Formula: ((A → B) → A) → A

A B A→ B (A→ B)→ A ((A → B) → A) → A

T T T T T
T F F T T
F T F F T
F F T F T

I This cannot be proved by a pure function,

I To have full classical propositional logic, you have to add the
excluded-middle axiom: ∀P.P ∨ ¬P

I People often don’t: you can do a lot without axioms.

Yves Bertot Introduction to dependent types in Coq



Various kinds of logics

I Can all usual tautologies be proved with pure functions?

I No.

I Peirce’s Formula: ((A → B) → A) → A

A B A→ B (A→ B)→ A ((A → B) → A) → A

T T T T T
T F F T T
F T F F T
F F T F T

I This cannot be proved by a pure function,

I To have full classical propositional logic, you have to add the
excluded-middle axiom: ∀P.P ∨ ¬P

I People often don’t: you can do a lot without axioms.

Yves Bertot Introduction to dependent types in Coq



Back to universal quantification

I We will introduce families of types,

I We will introduce function that produce results in these
families,

Yves Bertot Introduction to dependent types in Coq



Indexed types

I Consider families of types Bi (i ∈ A), where each member of a
family is annoted with an index i ,

I Assume the existence of a type of types: Type,
I Assume the existence of a type of indices A,
I The family of indexed type can be described by a function B

whose type is A → Type.

Yves Bertot Introduction to dependent types in Coq



Dependent products

I Consider a family of types B : A → Type,

I Consider a function that takes as input an element x of A and
guarantees that it always return an element of type B(x),

I The type system is extended so that this function is
well-typed, the notation for its type is forall x:A, B x,

I The name forall is intuitively acceptable: whenever we have
an x in A, we know we have a value in B(x).

Yves Bertot Introduction to dependent types in Coq



Why is it called a dependent product?

I A dependent product is a generalization of a cartesian
product,

I A cartesian product has the form A1 × A2,

I An cartesian product iterated n times is A1 × . . .× An

I It can also be written Πi∈{1···n}Ai ,

I We see the use of a family Ai ,

I Given an element of Πi∈{1···n}Ai , we are sure to have an
element of Ai for every i

I This is like the dependent product type of the previous frame.

Yves Bertot Introduction to dependent types in Coq



Dependent products in formulas

I Represent formulas in the predicate calculus,

I Assume even : nat → Prop,

I Assume divides : nat → nat → Prop

I Assume there exists a theorem:
th1: ∀x y, even x → divides x y → even y

I and a theorem:
th2: ∀x y, divides x (x * y)

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type

I Any function whose output type depends on the input value.

I Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x → even x

I Check fun (x:nat) => fun (h: even x) => h.

fun (x:nat) (h: even x) => h: ∀x: nat, even x → even x

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type

I Any function whose output type depends on the input value.

I Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x → even x

I Check fun (x:nat) => fun (h: even x) => h.
fun (x:nat) (h: even x) => h: ∀x: nat, even x → even x

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type (2)

I More elaborate example: recall
th1: ∀x y, even x → divides x y → even y
th2: ∀x y, divides x (x * y)

I In a context where x:nat, th2 x x : divides x x

I Check fun x => th2 x x .

fun (x : nat) => th2 x x : ∀x : nat, divides x (x * x)

I Check fun x (h: even x) => th1 x x h (th2 x x) .

fun (x : nat) (h : even x) => th1 x x h (th2 x x)

: ∀x:nat, even x → even (x * x)

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type (2)

I More elaborate example: recall
th1: ∀x y, even x → divides x y → even y
th2: ∀x y, divides x (x * y)

I In a context where x:nat, th2 x x : divides x x

I Check fun x => th2 x x .

fun (x : nat) => th2 x x : ∀x : nat, divides x (x * x)

I Check fun x (h: even x) => th1 x x h (th2 x x) .

fun (x : nat) (h : even x) => th1 x x h (th2 x x)

: ∀x:nat, even x → even (x * x)

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type (2)

I More elaborate example: recall
th1: ∀x y, even x → divides x y → even y
th2: ∀x y, divides x (x * y)

I In a context where x:nat, th2 x x : divides x x

I Check fun x => th2 x x .

fun (x : nat) => th2 x x : ∀x : nat, divides x (x * x)

I Check fun x (h: even x) => th1 x x h (th2 x x) .

fun (x : nat) (h : even x) => th1 x x h (th2 x x)

: ∀x:nat, even x → even (x * x)

Yves Bertot Introduction to dependent types in Coq



Building functions with a dependent product type (2)

I More elaborate example: recall
th1: ∀x y, even x → divides x y → even y
th2: ∀x y, divides x (x * y)

I In a context where x:nat, th2 x x : divides x x

I Check fun x => th2 x x .

fun (x : nat) => th2 x x : ∀x : nat, divides x (x * x)

I Check fun x (h: even x) => th1 x x h (th2 x x) .

fun (x : nat) (h : even x) => th1 x x h (th2 x x)

: ∀x:nat, even x → even (x * x)

Yves Bertot Introduction to dependent types in Coq



Defining new constants

Learn some more of the syntax of Coq:

I Definition name : type := value.

I Definition name := value.

I Definition name (x : type) := value.
This is equivalent to
Definition name := fun x : type => value.

Yves Bertot Introduction to dependent types in Coq



Defining your own indexed type

I We have played with indexed types as if they existed,

I Can we produce some?

I You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=

∀P : nat → Prop, (∀y, P(2*y)) → P x.

I This was used a lot in the early days of Coq, (replaced by
inductive types),

I How do you define divides in the same style?
Definition divides (x y:nat) : Prop :=

forall P : nat → nat → Prop,
(forall z t:nat, P z (z*t)) → P x y.

Yves Bertot Introduction to dependent types in Coq



Defining your own indexed type

I We have played with indexed types as if they existed,

I Can we produce some?

I You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=

∀P : nat → Prop, (∀y, P(2*y)) → P x.

I This was used a lot in the early days of Coq, (replaced by
inductive types),

I How do you define divides in the same style?

Definition divides (x y:nat) : Prop :=
forall P : nat → nat → Prop,

(forall z t:nat, P z (z*t)) → P x y.

Yves Bertot Introduction to dependent types in Coq



Defining your own indexed type

I We have played with indexed types as if they existed,

I Can we produce some?

I You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=

∀P : nat → Prop, (∀y, P(2*y)) → P x.

I This was used a lot in the early days of Coq, (replaced by
inductive types),

I How do you define divides in the same style?
Definition divides (x y:nat) : Prop :=

forall P : nat → nat → Prop,
(forall z t:nat, P z (z*t)) → P x y.

Yves Bertot Introduction to dependent types in Coq



Logic and reasoning in Coq

I Conjunction, disjunction, equality, existential quantification,
negation.

I Proof technology: Goals and tactics.

Yves Bertot Introduction to dependent types in Coq



Conjunction

I A function and :Prop → Prop → Prop,

I A notation A /\ B ≡ and A B
I Two basic theorems to construct and consume conjunctions

I conj : ∀A B:Prop, A → B → A /\ B
I and ind : ∀A B P:Prop, (A → B → P) → A /\ B → P

Yves Bertot Introduction to dependent types in Coq



Disjunction

I A function or :Prop → Prop → Prop,

I A notation A \/ B ≡ or A B
I Three basic theorems to construct and consume disjunctions

I or introl : ∀A B:Prop, A → A \/ B
I or intror : ∀A B:Prop, B → A \/ B
I or ind : ∀A B P:Prop, (A → P) → (B → P) → A /\ B → P

Yves Bertot Introduction to dependent types in Coq



Equality

I A function eq : ∀A:Type, A → A → Prop,

I A notation x = y ≡ eq x y
I Two basic theorems to construct and consume equalities

I refl equal : ∀(A : Type) (x : A), x = x,
I eq ind :
∀(A : Type) (x : A) (P : A → Prop), P x → x = y → P y

Yves Bertot Introduction to dependent types in Coq



Existential quantification

I A function ex : ∀(A:Type), (A → Prop) → Prop,

I A notation exists x : A, P ≡ ex A (fun x : A => P),
I Two basic theorems to construct and consume existential

quantifications
I ex intro : ∀(A : Type) (P : A → Prop) (x : A), P x → ex P
I ex ind : ∀(A : Type) (P : A → Prop) (Q : Prop),

(∀x : A, P x → Q) → ex P → Q

Yves Bertot Introduction to dependent types in Coq



Contradiction and negation

I A value False : Prop
I A basic theorem to use contradiction

I False ind : ∀P : Prop, False → P

I A function not = fun A => False,

I A notation ˜A ≡ not A

Yves Bertot Introduction to dependent types in Coq



Example of proof: the hard way

Definition th1 (x y : nat) (h : even x) (hd : divides x y) : even y :=
hd (fun z t => even z → even t)

(fun (z t : nat) (h’ : even z)
(P : nat → Prop) (hp : forall y’ : nat, P (2 * y’)) =>

h’ (fun z : nat => P (z * t))
(fun z’ : nat =>
eq ind (2 * (z’ * t)) (fun n : nat => P n)

(hp (z’ * t)) (2 * z’ * t) (mult assoc 2 z’ t))) h.

I Too hard to build by hand (I didn’t).

I A lot of data is redundant and should be computed for us.

Yves Bertot Introduction to dependent types in Coq



Goal directed proofs and tactics

I Propose a statement,

I Apply commands called tactics that build the proof term from
the outside, with holes inside,

I Fill the holes progresssively,

I Mix with direct constructions of terms.

I In practice: each commands transforms a goal into a simpler
goal,

I Goals contain two parts

1. An enumeration of all the bound variables that are available
for use,

2. A description of the expected type for the current hole.

Yves Bertot Introduction to dependent types in Coq



Example proof by tactics

I Lemma ex1 : ∀P:Prop, P → P.
============
∀P:Prop, P → P
Proof: ?1

I intros P H.
P : Prop
H : P
============
∀P:Prop, P → P
Proof: fun (P : Prop) (H : P) => ?1

Yves Bertot Introduction to dependent types in Coq



Tactics

→ ∀ /\ \/

hypothesis H apply H apply H case H case H
elim H elim H

destruct H destruct H

goal intros H’ intros x split left
right

∃ = ˜

hypothesis H case H rewrite → H case H
elim H rewrite → H

destruct H

goal exists e reflexivity intros H’

I exact H, assumption when the goal is available from the
context,

I unfold name to unfold definitions,

I assert (H : formula) to propose an intermediate step.

Yves Bertot Introduction to dependent types in Coq



Demonstration

Yves Bertot Introduction to dependent types in Coq


