Introduction to dependent types in Coq

Yves Bertot

October 24, 2008

Yves Bertot Introduction to dependent types in Coq

basic use of the Coq system

v

In Coq, you can play with simple values and functions.

v

The basic command is called Check, to verify if an expression
is well-formed and learn what is its type.

Check 3. 3 : nat
Check plus. plus : nat — nat — nat
Check plus34. 3 + 4 : nat

v

v

v

Yves Bertot Introduction to dependent types in Coq

Building your own function

» Check fun x:nat => 3 + x.
fun x:nat => 3 4+ x : nat — nat
» use type inference when possible,
Check fun x => 3 + x.
fun x:nat => 3 + x : nat — nat
» Check fun (x:nat)(y:bool) => if y then x else 3.
fun (x : nat) (y : bool) => if y then x else 3
: nat — bool — nat

Yves Bertot Introduction to dependent types in Coq

Applying functions

» Check (fun x=>3 + x) 4
(fun (x : nat) => 3 4+ x) 4 : nat

» You can also force functions to compute
’Eval compute in ‘ (funx=>3 +x) 4
=7 : nat

Yves Bertot Introduction to dependent types in Coq

Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

Yves Bertot Introduction to dependent types in Coq

Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

Yves Bertot Introduction to dependent types in Coq

Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

» Using the forall-elimination rule: ifVx : A, P and e has type
A, then we can deduce P[x\e],

» The forall elimination rule transforms any proof of Vx : A, P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

Yves Bertot Introduction to dependent types in Coq

Proofs as functions, functions as proofs

» Using the Modus-Ponens rule: if “A implies B” and “A” both
hold, then we can deduce “B”,

» The Moduls-Ponens rule transforms any proof of A = B into
a function mapping (the type of) proofs of A to (the type of)
proofs of B, Try reading without the text in parentheses.

» Using the forall-elimination rule: ifVx : A, P and e has type
A, then we can deduce P[x\e],

» The forall elimination rule transforms any proof of Vx : A, P
into a function mapping any element e of A to a proof of
P[x\e], P where x is replaced by e.

» When considering total functions, we also have the reverse:

» any function of type A — B can be used to prove A = B,

Yves Bertot Introduction to dependent types in Coq

And for universal formulas?

» Simple types, as found in Ocaml or Haskell are not enough,

» The rest of this lecture is about new constructs for universal
quantification.

» In the next slides, blue will be use for types.

Yves Bertot Introduction to dependent types in Coq

The Curry-Howard Isomorphism

Accept the existence of a type Prop whose elements are types,
All elements of Prop are types of proofs,

Thus if A and B are types of of proofs, then

>

>

>

» A — B is also a type of proof,

» Next, accept that a type of proofs is a “proposition”,
>

A proposition holds if it contains a proof.

Yves Bertot Introduction to dependent types in Coq

Arrows in the Curry-Howard Isomorphims

» In this frame, assume A, B, and C are propositions,

» They are propositions,

» A function of type A — B maps any proof of A to a proof of
B,

It represents a proof of A = B.

for some formulas, we can build function of that type directly,
When you do this, you do give a proof!

Example 1: fun xA =>x: A — A

Yves Bertot Introduction to dependent types in Coq

Arrows in the Curry-Howard Isomorphims

» In this frame, assume A, B, and C are propositions,

» They are propositions,

» A function of type A — B maps any proof of A to a proof of
B,

It represents a proof of A = B.

for some formulas, we can build function of that type directly,
When you do this, you do give a proof!

Example 1: fun xA =>x: A — A

vV vVv.v.v Yy

Example 2:
fun (f A— B — C) (x: B) (y:A) =>fyx
(A-B—-C)—-(B—-A-=CQ

Yves Bertot Introduction to dependent types in Coq

Various kinds of logics

» Can all usual tautologies be proved with pure functions?

Yves Bertot Introduction to dependent types in Coq

Various kinds of logics

» Can all usual tautologies be proved with pure functions?
» No.
» Peirce's Formula: (A — B) — A) — A

A|lB|A—-~B|(A—=B)—A|(A—=B)—=A)—A
T T T T T
T|F F T T
FIT F F T
FIF| T F T

Yves Bertot Introduction to dependent types in Coq

Various kinds of logics

» Can all usual tautologies be proved with pure functions?
» No.
» Peirce's Formula: (A — B) — A) — A

A|lB|A—-~B|(A—=B)—A|(A—=B)—=A)—A
T T T T T
T|F F T T
FIT F F T
FIF| T F T

» This cannot be proved by a pure function,

» To have full classical propositional logic, you have to add the
excluded-middle axiom: VP.PV =P

» People often don't: you can do a lot without axioms.

Yves Bertot Introduction to dependent types in Coq

Back to universal quantification

» We will introduce families of types,

» We will introduce function that produce results in these
families,

Yves Bertot Introduction to dependent types in Coq

Indexed types

» Consider families of types B; (i € A), where each member of a
family is annoted with an index 1/,
» Assume the existence of a type of types: Type,
» Assume the existence of a type of indices A,
» The family of indexed type can be described by a function B
whose type is A — Type.

Yves Bertot Introduction to dependent types in Coq

Dependent products

» Consider a family of types B : A — Type,

» Consider a function that takes as input an element x of A and
guarantees that it always return an element of type B(x),

» The type system is extended so that this function is
well-typed, the notation for its type is forall x:A, B x,

» The name forall is intuitively acceptable: whenever we have
an x in A, we know we have a value in B(x).

Yves Bertot Introduction to dependent types in Coq

Why is it called a dependent product?

» A dependent product is a generalization of a cartesian
product,

» A cartesian product has the form A; x Ao,

» An cartesian product iterated n times is A; X ... X A,

> It can also be written lNc 1., Aj,

» We see the use of a family A;,

» Given an element of I'I,E{l .nyAi, we are sure to have an

element of A; for every i

» This is like the dependent product type of the previous frame.

Yves Bertot Introduction to dependent types in Coq

Dependent products in formulas

Represent formulas in the predicate calculus,
Assume even : nat — Prop,
Assume divides : nat — nat — Prop

vV v vy

Assume there exists a theorem:
thl: ¥xy, even x — divides x y — even y

> and a theorem:
th2: Vx y, divides x (x * y)

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type

» Any function whose output type depends on the input value.

» Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x — even x

» Check fun (x:nat) => fun (h: even x) => h.

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type

» Any function whose output type depends on the input value.

» Simple example: in a context where x has type nat.
=> fun (h: even x) => h: even x — even x

» Check fun (x:nat) => fun (h: even x) => h.
fun (x:nat) (h: even x) => h: Vx: nat, even x — even x

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)

» Check fun x (h: even x) => thl x x h | (th2 x x) |.

Yves Bertot Introduction to dependent types in Coq

Building functions with a dependent product type (2)

» More elaborate example: recall
thl: ¥xy, even x — divides x y — eveny
th2: ¥x vy, divides x (x * y)

» In a context where x:nat, : divides x x

» Check fun x => .

fun (x : nat) => | th2 x x| Vx : nat, divides x (x * x)

» Check fun x (h: even x) => thl x x h | (th2 x x) |.

fun (x : nat) (h : even x) => thl x x h | (th2 x x)

: Vx:nat, even x — even (x * x)

Yves Bertot Introduction to dependent types in Coq

Defining new constants

Learn some more of the syntax of Coq:
» Definition name : type := value.
» Definition name := value.

» Definition name (x : type) := value.
This is equivalent to
Definition name := fun x : type => value.

Yves Bertot Introduction to dependent types in Coq

Defining your own indexed type

» We have played with indexed types as if they existed,

» Can we produce some?

Yves Bertot Introduction to dependent types in Coq

Defining your own indexed type

» We have played with indexed types as if they existed,
» Can we produce some?

» You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=
VP : nat — Prop, (Vy, P(2*y)) — P x.
» This was used a lot in the early days of Coq, (replaced by
inductive types),

» How do you define divides in the same style?

Yves Bertot Introduction to dependent types in Coq

Defining your own indexed type

» We have played with indexed types as if they existed,
» Can we produce some?

» You can define a proposition by quantifying over all
propositions:
Definition even (x:nat) : Prop :=
VP : nat — Prop, (Vy, P(2*y)) — P x.
» This was used a lot in the early days of Coq, (replaced by
inductive types),

» How do you define divides in the same style?
Definition divides (x y:nat) : Prop :=
forall P : nat — nat — Prop,
(forall z t:nat, P z (z*t)) — P x y.

Yves Bertot Introduction to dependent types in Coq

Logic and reasoning in Coq

» Conjunction, disjunction, equality, existential quantification,
negation.

» Proof technology: Goals and tactics.

Yves Bertot Introduction to dependent types in Coq

Conjunction

» A function and :Prop — Prop — Prop,

» A notation A/\B=and AB
» Two basic theorems to construct and consume conjunctions

» conj: VA B:Prop, A— B —A/\B
» and.ind : VA B P:Prop, (A—B —-P)—=A/\B—P

Yves Bertot Introduction to dependent types in Coq

Disjunction

» A function or :Prop — Prop — Prop,

» A notation A\/ B =orAB
» Three basic theorems to construct and consume disjunctions

» or_introl : VA B:Prop, A— A\/B
» or_intror : VA B:Prop, B— A\/ B
» or_ind : VA B P:Prop, (A—-P)—-(B—P)—=A/\N\B—P

Yves Bertot Introduction to dependent types in Coq

Equality

» A function eq : YA:Type, A — A — Prop,

» A notationx =y =eq _XxYy

» Two basic theorems to construct and consume equalities
» refl_equal : V(A : Type) (x : A), x =X,

> eq-ind :
V(A : Type) (x: A) (P: A — Prop),Px—x=y— Py

Yves Bertot Introduction to dependent types in Coq

Existential quantification

» A function ex : V(A:Type), (A — Prop) — Prop,
» A notation exists x : A, P = ex A (fun x : A =>P),

» Two basic theorems to construct and consume existential
quantifications
» ex.intro : V(A : Type) (P : A — Prop) (x: A), Px — ex P
» ex.ind : V(A : Type) (P : A — Prop) (Q : Prop),
(W : A Px—Q)—exP—Q

Yves Bertot Introduction to dependent types in Coq

Contradiction and negation

» A value False : Prop
» A basic theorem to use contradiction
» False_ind : VP : Prop, False — P

» A function not = fun A => False,
» A notation "A = not A

Yves Bertot Introduction to dependent types in Coq

Example of proof: the hard way

Definition thl (x y : nat) (h : even x) (hd : divides x y) : eveny :=
hd (fun z t => even z — even t)
(fun (zt : nat) (h': even z)
(P : nat — Prop) (hp : forall y' : nat, P (2 *y")) =>
h" (fun z : nat => P (z * t))
(fun z' : nat =>
eq-ind (2 * (z' *t)) (fun n: nat => P n)
(hp (z' *t)) (2* 2" * t) (mult_assoc 2 z' t))) h.

» Too hard to build by hand (/ didn't).

» A lot of data is redundant and should be computed for us.

Yves Bertot Introduction to dependent types in Coq

Goal directed proofs and tactics

» Propose a statement,

» Apply commands called tactics that build the proof term from
the outside, with holes inside,

» Fill the holes progresssively,

» Mix with direct constructions of terms.

» In practice: each commands transforms a goal into a simpler
goal,

» Goals contain two parts

1. An enumeration of all the bound variables that are available
for use,
2. A description of the expected type for the current hole.

Yves Bertot Introduction to dependent types in Coq

Example proof by tactics

» Lemma exl : VP:Prop, P — P.

VP:Prop, P — P
Proof: 71

» intros P H.
P : Prop

VP:Prop, P — P
Proof: fun (P : Prop) (H: P)=>71

Yves Bertot Introduction to dependent types in Coq

Tactics

| — v [N | N
hypothesis H | apply H | apply H case H case H
elim H elim H
destruct H | destruct H
goal intros H' | intros x split left
right
5 — =
hypothesis H case H rewrite — H case H
elim H rewrite — H
destruct H
goal exists e reflexivity intros H'
» exact H, assumption when the goal is available from the

context,
» unfold name to unfold definitions,
» assert (H : formula) to propose an intermediate step.

Demonstration

Yves Bertot Introduction to dependent types in Coq

