
Towards general coinduction

Yves Bertot

November 2010



Introduction

I A recapitulation on guarded co-recursion
I What would be general co-recursion?

I Mixing co-recursion with well-founded induction

I Mixing co-recursion with “size-preserving” higher-order
polymorphism



Inroducing co-inductive types

I Introduce the constructors as in inductive types
I Authorize co-recursive definitions

I Only to produce elements in co-inductive types
I Authorize only recursive calls in precise locations

under constructors, no other function application

I No check on the arguments

I co-recursive functions applied to arguments are not redexes

I Redexes are observations of co-recursive values



An example

sieve (p:rs) = p:sieve [r | r <- rs, r ’rem’ p /= 0]

primes = sieve [2 ..]

Simple Haskell program, manipulating lists

I All lists in this program are infinite

I There is a lot to prove about this program!



Example in Coq

Require Import Stream List Bool Arith ZArith.

Open Scope Z_scope.

CoInductive Stream (A : Type) : Type :=

Cons (x : Z)(tl : stream).

Infix "::" := Cons.

Notation "stream" := (Stream Z).

CoFixpoint ns n := n::ns (n+1).

Fixpoint take n (s : stream) :=

match n with O => nil

| S p => let (a,x’) := s in (a::take p x’)%list

end.



Filtering

CoFixpoint filter (p : Z -> bool) (s : stream) :=

let (x, s’) := s in

if p x then x::filter p s’ else filter p s’.

I This is rejected
I Every recursive call of filter should be under a constructor

I It should produce

I filter is a partial function



Refreshing the old heavy solution

I Characterize the domain on which filter works

I Explicit that filtering works on this domain
I Fix the relation between successive elements

I Use a co-inductive predicate

I Fix the predicate
I Express that the relation eventually imposes success for the

predicate
I Use well-foundedness



Details

CoInductive ct (R : Z -> Z -> Prop) : stream -> Prop :=

Cct : forall x y s, R x y -> ct R (y::s) ->

ct R (x::y::s).

Section filter.

Variable R : Z -> Z -> Prop.

Variable p: Z -> Prop.

Hypothesis wf :

well_founded (fun y x, R x y /\ p x = false).



Explaining the details

I The predicate ct expresses that a given relation holds
between successive elements in a stream

I Filter works if hypothesis wf is satisfied

I Much simpler than in Bertot2005



More details

Definition sr (s’ s:stream) : Prop :=

R (hd s) (hd s’) /\ p (hd s) = false.

Lemma swf : well_founded sr. Proof. ... Qed.

Definition dec_ct (s : stream) (h : ct R s) :

{x : Z & {s’ | (p x = false -> sr s’ s) /\ ct R s’}}.
...

Defined.

I sr and swf lift the “well-foundedness” statement to streams

I dec ct does pattern matching and information for recursion



Horror movie

Definition filterb :

forall s (h : ct R s), Z * {s’ | ct R s’} :=

Fix swf (fun s => ct R s -> Z * {s’ | ct R s’})
(fun s fb h =>

let (x, (s’, (h1, h2))) := dec_ct s h in

match sumbool_of_bool (p x) with

left hp => (x, exist (fun s’ => ct R s’) s’ h2)

| right hp => fb s’ (h1 hp) h2

end).

I The use of fb stands for the recursive call

I Returns the first satisfying element and the rest of stream



Wrapup

CoFixpoint filter (s : stream) (h : ct R s) : stream :=

let (x, (s’, q)) := filterb s h in x::filter s’ q.

I Note that p and R are fixed for the last 5 slides

I Then prove that the result satisfies the right properties.



Connectedness

Lemma filter_ct :

forall R1 R2 : Z -> Z -> Prop,

(forall x y z, R1 x y -> p y = false ->

R2 y z -> R2 x z) ->

(forall x y, p y = true -> R1 x y -> R2 x y) ->

forall s (h : ct R s) x,

R1 x (hd s) -> ct R1 s -> ct R2 (x::filter s h).

I Need an extension of Fix eq (Bertot&Balaa2000,
Paulin-Mohring)

I Support for partial functions
I Also expressed as functions of several arguments

I An “induction theorem” for the filter function



A general approach to well-founded co-induction

I That the input is a stream does not play a role
I Generalization in Bertot&Komendantskaya08

I Also for trees



Lighter version

Fixpoint filter1 (p:Z -> bool)(s:stream)(m:nat) :=

let (a,tl) := s in if p a then (a,tl) else

match m with O => (a,tl) | S m’ => filter1 p tl m’ end.

CoFixpoint filterp (p:Z -> bool) (s:stream) :=

let (a,tl) := s in

if p a then a::filterp p tl

else

let (a’,tl’) := filter1 p tl (Zabs_nat a) in

a’::filterp p tl’.

I Just use a numeric counter, big enough?



The Sieve function

CoFixpoint sieve (s : stream) : stream :=

let (x, s’) := s in

x::sieve (filterp (fun y => Zgt_bool (y mod x) 0) s’).

Eval vm_compute in take 10 (sieve (ns 2)).

= 2::3::5::7::11::13::17::19::23::29::nil

: list Z

I The counter is big enough by “Bertrand, Chebyshev”

I No need for proofs in the definition

I Proving that the stream contains only prime numbers requires
inclusion of the Chebyshev result (done by L. Théry in 2003)



Other banned corecursion

fib = 0 :: 1 :: (zipWith nat nat plus (tl fib) fib)

fib = 0 :: zipWith nat nat plus fib (1::fib)

I “Productive equations”

I Unguarded for syntactic reasons: tl, zipWith

I Computation of value at rank n + 2 only needs values at rank
n + 1 and n

I Suggests taking an inductive approach, again



Transforming Corecursive functions

I if f represents s, then

I λx .if x = 0 then a else f (x − 1) represents a :: s
I f 0 represents hd s,
I λx . f (x + 1) represents tls

I On functions from nat, zipWith op f g is simply
representable by λx . op (f x) (g x)

I Cleanup is required: replace comparison to 0 with match,
successor-predecessor, etc...

I Checking guardedness on recursive functions is stronger



Example

Fixpoint fibf (n : nat) : Z ;=

if beq_nat n 0 then 0

else if beq_nat (n-1) 0 then 1

else fibf ((n-2) + 1) + fibf (n - 2).



Example

Fixpoint fibf (n : nat) : Z ;=

match n with

| 0 => 0

| S p => if beq_nat p 0 then 1

else fibf ((p-1) + 1) + fibf (p - 1)

end.



Example

Fixpoint fibf (n : nat) : Z ;=

match n with

| 0 => 0

| S 0 => 1

|S (S p) => fibf (S p) + fibf p

end.



Example

Fixpoint fibf (n : nat) : Z ;=

match n with

| 0 => 0

| S 0 => 1

| S (S p as q) => fibf q + fibf p

end.

CoFixpoint repr (f:nat->Z) : stream :=

f 0%nat :: repr (fun n => f (n+1)%nat).

Definition fib := repr fibf.



Mixed inductive and co-inductive types

I Proposed by Altenkirch and Danielsson,
I Promised as a feature of Agda

I Mark fields of constructors as potentially infinite

I Similar to lazy types of Ocaml
I Programming includes “delay” and “force” primitives

I potentially infinite data is encapsulated in a delay construct
I Values can only be retrieved after forcing the computation



Mixed induction and co-induction for the fib problem

I Design ad-hoc co-inductive types, with special constructors to
represent function calls

I Trees with connected functions must be well-founded

I Infinite trees with Well-founded patches
I Write an interpreter to consume the well-founded patches

I Terminating recursion requiring induction

I Easy to describe in Altenkirch&Danielsson’s language
I Use inductive predicates in Coq

I Absence of infinite trees of “function calls”



Example of fibonacci and zipWith

CoInductive zstream : Type :=

cstr (x : Z) (s : zstream) | zipPlus (s1 s2 : zstream).

Inductive zf : zstream -> Prop :=

cz1 : forall x s, zf (cstr x s)

| cz3 : forall s1 s2, zf s1 -> zf s2 ->

zf (zipPlus s1 s2).

I zf expresses the absence of infinite branches from the root

I Capability to produce one value



Correct trees

CoInductive zr : zstream -> Prop :=

cs1 : forall x s, zr s -> zr (cstr x s)

| cs2 : forall s1 s2, zr s1 -> zr s2 -> zf s1 -> zf s2 ->

zr (zipPlus s1 s2).

I zr expresses zf is always satisfied

I Guarantees productivity forever



Computing a value and the remaining stream

Definition ex_zip1 : forall s, zf s -> Z * zstream.

...

I ad-hoc recursion on the proof of zf s
I cf. Coq’Art, chap. 15, sect. 4

I Easier to define as a proof

I Inversion lemmas require special care

Definition qex_zip1 s (h : zr s) : Z * {s’ | zr s’}.



Removal of all zips

CoFixpoint ztostream (s:zstream) (h:zr s) : Stream Z :=

let (x, (s’, hs’)) := qex_zip1 s h in

x::ztostream s’ hs’.

I Lazy computation, but no true re-use



Instanciation on fib

CoFixpoint fib : zstream :=

cstr 0 (zipPlus fib (cstr 1 fib)).

I Easy to prove zf fib

I Coinductive proof for zr fib, piece of cake

I Then apply ztostream to obtain a regular stream

I If all proofs are made transparent, this can be computed



Conclusion

I All parts of this talk have mixed induction and co-induction

I mixed induction and co-induction à la Altenkirch&Danielsson
should be added to Coq

I The definition relying on tl should also be amenable

I Models based on co-inductive data-type plus inductive
predicate provide a justification

I But mixed induction and co-induction still lack efficiency


	co-recursion through higher-order functions
	Simulating Altenkirch&Danielsson datatypes

