
Arithmetic-Geometric Means for π
A formal study

Yves Bertot

February 2014

Objectives

I Already studied computations of pi through roots of cos,
arctan, Archimedes

I Follow an exam from the French national selection exams for
math teachers (5 hour exam, graduate level)

I Going further into mathematics (calculus, mainly),

I New aspects: more difficulties around derivatives and
integration

I Use of square roots in computation

I Test the capabilities of Coq as a programming language

The context

I The arithmetic geometric mean algorithm
I Take arbitrary a and b positive real numbers,
I Set a0 = a, b0 = b,
I Set an+1 = an + bn

2 and bn+1 =
√
anbn,

I Properties:
I 0 < n⇒ bn < an
I an and bn converge fast towards a value M(a, b)

a b

0 1 .5
1 0.75 070. . .
2 0.7285 0.7282
3 0.72839552 0.72839550
4 0.7283955155234534 0.7283955155234533

Derivatives of arithmetic geometric mean

I Consider the case a0 = 1 b0 = x ,

I Specialize to fn(x) = an(1, x),

I fn converges uniformly towards f (x) = M(1, x),

I the function f is derivable with the property:

π = 2
√

2
f 3(1√

2
)

f ′(1√
2

)
= 2
√

2 lim
n→∞

b2n

(
1, 1√

2

)
an
(

1, 1√
2

)
a′n

(
1, 1√

2

)
I This property is established by studying elliptic curves

Algorithm for π (one variant)

I yn(x) =
an(x)
bn(x)

zn(x) =
b′n(x)
a′n(x)

I yn+1(x) =
1 + yn(x)

2
√
yn(x)

zn+1(x) =
1 + yn(x)zn(x)

(1 + zn(x))
√
yn(x)

I y0(1√
2

) =
√

2 z1(1√
2

) =
√√

2

I π0 = 2 +
√

2 πn+1 = πn

1 + yn+1(
1√
2

)

1 + zn+1(
1√
2

)

I for 1 ≤ n 0 ≤ πn+1 − π ≤ 4π0
5002

n

Formalization context

I Started with Coq’s standard library
I Important tactic: psatzl (F. Besson)

I Not using the sos extension: trouble installing csdp

I Switch to Coquelicot (Boldo, Lelay, Melquiond)
I Drawback: unstable library
I Drawback: result more complex to distribute
I Advantage: using others’ work
I Advantage: More regular collections of theorems

General purpose contributions

I A variable change theorem for Riemann integrals
I Improper integrals in the style of Coq’s standard library

I A function is up infinite integrable if
∫ b

a
f (x)dx has a

limit when b grows to ∞
I upInt f a h is the value (h is the proof)
I the same for down infinite integrable and

infinite integrable
I General theorems: Chasles, linearity, improper integral of x−k ,

bounds, extensionality

I A study of arcsinh

I Dini : every increasing sequence of continuous functions
converging pointwise to a continous function converges
uniformly,

Example lemma: variable change in integrals

Lemma RiemannInt_variable_change : (* standard *)

forall f g g’ a b (ab : a <= b)

(h : Riemann_integrable

(fun x => g’ x * f (g x)) a b)

(h’ : Riemann_integrable f (g a) (g b)),

(forall x, a <= x <= b -> is_derive g x (g’ x)) ->

(forall x, a <= x <= b -> g a <= g x <= g b) ->

(forall x, g a <= x <= g b -> continuity_pt f x) ->

(forall x, a <= x <= b -> continuity_pt g’ x) ->

RiemannInt h = RiemannInt h’.

Note that the type of h and h’ is used to know what is computed
in RiemannInt

Definition of arithmetic geometric mean sequence

I a simple recursive function returning a pair of values

Fixpoint ag (a b : R) (n : nat) :=

match n with

0%nat => (a, b)

| S p => let (a_p, b_p) := ag a b p in

((a_p + b_p)/2, sqrt(a_p * b_p))

end.

I Proofs that the two sequences are monotonous and converge
are easy.

Link to elliptic integrals

I Elliptic integrals come in the form of

I (a, b) =

∫ ∞
0

dt√
(t2 + a2)(t2 + b2)

I Proved equality :

I (a, b) = I (
a + b

2
,
√
ab)

I and also

I (a, b) =

∫ π
2

0

dx√
a2 cos2 x + b2 sin2 x

I proofs using ε reasoning: show that the difference is smaller
than any positive ε

I Both proofs rely on variable changes, need 300 and 200 lines
of proof.

Commuting derivation and integrals

I Important contribution from the coquelicot library

d
∫ v
u f (w , t)dt

dw
(x) =

∫ v

u

df (w , t)

dw
(x)dt

(under the right conditions for f around x)

I Used to show that I (a, b) = π
2M(a, b)

I This is a formula for computing elliptic integrals when π is
known (attributed to Gauß)

Behavior for (1, b) and b close to 0

I Through another variable change we have:∫ ∞
0

dt√
(t2 + 1)(t2 + b2)

= 2

∫ √b
0

dt√
(t2 + 1)(t2 + b2)∫ √b

0

dt√
(t2 + 1)(t2 + b2)

∼ arcsinh(
√

(b)) for b → 0+

I by direct reasoning on agm we have:

2nf

(√
an(1, x)2 − bn(1, x)2

an(1, x)

)
=

f (
√

1− x2)

f (x)

Link to derivatives

f (x) ∼ −π
2ln(x)

for x → 0+

I With equivalences and equalities from the previous slides

lim
n→∞

2−nln

(
an(1, x)√

an(1, x)2 − bn(1, x)2

)
=
π

2

f (x)

f (
√

1− x2)

I Studying separately the derivatives of the left hand side and
deriving directly the right-hand-side

f 2(x)

x(1− x2)
=
π

2

f ′(x)f (
√

1− x2)− −x√
1−x2 f (x)f ′(

√
(1− x2))

f 2(
√

1− x2)

Main derivative formula

I at x = 1√
2

the last formula simplifies greatly into:

π = 2
√

2
f 3(1√

2
)

f ′(1√
2

)

I To compute the ratio, we can compute approximations of f
and f ′ as approximated by an(1, x) and bn(1, x) and their
derivatives

I More efficient to work with yn = an
bn

and zn =
b′n
a′n

I Use the Dini theorem to express that an converges uniformly
towards f .

Abstract description

Fixpoint agmpi n :=

match n with

0%nat => (2 + sqrt 2)

| S p => agmpi p * (1 + y_ n (/sqrt 2))

/ (1 + z_ n (/sqrt 2))

end.

Concretely computing a large number of decimals

I Computing with large integers
I To compute at precision 1

p , multiply all values by p

I Théry et al. provide numbers as binary trees whose leaves are
31bit words,

I Still not comparable to GMP : no arrays, more memory
consumption

I Fast square roots re-implemented by Théry from previous
work by Zimmermann, Magaud, & B.

I Fast execution provided by Dénès’ native computation.
I just-in-time compilation and execution directly inside Coq

I Work yet to be completed: formal proofs about error
composition

Fixed precision computation

Definition hp1 :=

(*some large integer*) (2 ^ precision)%bigZ.

Definition invhp x := (hp1 * hp1 / x)%bigZ.

Definition sqrthp x := BigZ.sqrt (x * hp1).

Definition mulhp x y := ((x * y) / hp1)%bigZ.

Definition addhp x y := (x + y)%bigZ.

Notation "x + y" := (addhp x y) : hp_scope.

Notation "x * y" := (mulhp x y) : hp_scope.

Notation "x / y" := (mulhp x (invhp y)) : hp_scope.

Delimit Scope hp_scope with H.

Concrete implementation of algorithm

Fixpoint agmpi n :=

match n with

0%nat => ((hp2 + (sqrthp hp2))%H, y1, z1)

| S p =>

let ’(pip, yn, zn) := agmpi p in

let sy := sqrthp yn in

let zn1 := (hp1 + zn)%H in

((pip * ((hp1 + yn)%H / zn1)%H)%H,

((hp1 + yn)%H / (hp2 * sy)%H)%H,

((hp1 + (yn * zn)%H)%H / (zn1 * sy)%H)%H)

end.

Error analysis

I

0 ≤ πn − π ≤
4π0

5002n

I Square root and division computations on integers
I rounding by default (towards 0)

√
x − e < sqrt(x) ≤

√
x

x

y
− e <

x

y
≤ x

y

I A theorem to control error propagation

e <
e ′

3
∧ | yn −yn| < e ′ ⇒ |

1 + yn

2 sqrt(yn)
−1 + yn

2
√
yn
| < e ′

Several attempt for error estimation in yn

I First attempts looking like naive interval arithmetics
I with bisection

I Last attempt using derivative and mean value theorem
I error cancellation improves as yn gets closer to 1

I derivative of
1 + y

2
√
y

is
y − 1

4y
√
y

I So if error on yn is within a few ulp, the error on yn+1 will
stay the same

To be continued

I Need the same kind of error control for zn
I Need to propagate the errors trough the repeated

multiplications

I Maybe replace square root with one rounding up

Running the program

I Write (in Coq) a program enumerating the digits

I Write (in Ocaml) the printing of the digits

Packaging the function call

Inductive bin := L (x : Z) | N (t1 t2 : bin).

Fixpoint ntb (x:bigZ) (n : nat) (b : bigZ) :=

match n with

O => L (BigZ.to_Z x)

| S p => let (y, z) := BigZ.div_eucl x (10 ^ b) in

N (ntb y p (BigZ.div b 2)) (ntb z p (BigZ.div b 2))

end.

Definition digits rank :=

let hp1 := (10 ^ (2 ^ bigZ_of_nat rank))%bigZ in

let hp2 := (hp1 + hp1)%bigZ in

ntb (pi hp1 hp2 rank) rank

(2 ^ bigZ_of_nat (pred rank))%bigZ.

Extraction "pi.ml" digits.

Lessons learned

I Corpus of known facts is really growing

I Navigating libraries, ssrflect, Coq standard library,
coquelicot, Need for streamlining

I Reflexions on more advanced tactics
I Automatic proofs of positivity for simple expressions
I Automatic proofs of derivability, continuity

I Extracted code may be less efficient than code inside Coq

I Hope to continue the efforts towards an imperative
implementation

