Arithmetic-Geometric Means for π A formal study

Yves Bertot

February 2014

Objectives

- ► Already studied computations of *pi* through roots of cos, arctan, Archimedes
- Follow an exam from the French national selection exams for math teachers (5 hour exam, graduate level)
- Going further into mathematics (calculus, mainly),
- New aspects: more difficulties around derivatives and integration
- Use of square roots in computation
- Test the capabilities of Coq as a programming language

The context

- The arithmetic geometric mean algorithm
 - ► Take arbitrary *a* and *b* positive real numbers,
 - ▶ Set $a_0 = a$, $b_0 = b$,
 - $\blacktriangleright \text{ Set } a_{n+1} = \frac{a_n + b_n}{2} \text{ and } b_{n+1} = \sqrt{a_n b_n},$
- Properties:
 - $ightharpoonup 0 < n \Rightarrow b_n < a_n$
 - $ightharpoonup a_n$ and b_n converge fast towards a value M(a,b)

	а	b
0	1	.5
1	0.75	070
2	0.7285	0.7282
3	0.72839552	0.72839550
4	0.7283955155234534	0.7283955155234533

Derivatives of arithmetic geometric mean

- ▶ Consider the case $a_0 = 1$ $b_0 = x$,
- Specialize to $f_n(x) = a_n(1, x)$,
- f_n converges uniformly towards f(x) = M(1, x),
- ▶ the function *f* is derivable with the property:

$$\pi = 2\sqrt{2} \frac{f^{3}(\frac{1}{\sqrt{2}})}{f'(\frac{1}{\sqrt{2}})} = 2\sqrt{2} \lim_{n \to \infty} \frac{b_{n}^{2}(1, \frac{1}{\sqrt{2}}) a_{n}(1, \frac{1}{\sqrt{2}})}{a'_{n}(1, \frac{1}{\sqrt{2}})}$$

▶ This property is established by studying *elliptic curves*

Algorithm for π (one variant)

$$y_n(x) = \frac{a_n(x)}{b_n(x)} \qquad z_n(x) = \frac{b'_n(x)}{a'_n(x)}$$

$$y_{n+1}(x) = \frac{1 + y_n(x)}{2\sqrt{y_n(x)}} \qquad z_{n+1}(x) = \frac{1 + y_n(x)z_n(x)}{(1 + z_n(x))\sqrt{y_n(x)}}$$

•
$$y_0(\frac{1}{\sqrt{2}}) = \sqrt{2}$$
 $z_1(\frac{1}{\sqrt{2}}) = \sqrt{\sqrt{2}}$

$$\pi_0 = 2 + \sqrt{2} \qquad \pi_{n+1} = \pi_n \frac{1 + y_{n+1}(\frac{1}{\sqrt{2}})}{1 + z_{n+1}(\frac{1}{\sqrt{2}})}$$

• for
$$1 \le n \ 0 \le \pi_{n+1} - \pi \le \frac{4\pi_0}{500^{2^n}}$$

Formalization context

- Started with Coq's standard library
- Important tactic: psatzl (F. Besson)
 - Not using the sos extension: trouble installing csdp
- Switch to Coquelicot (Boldo, Lelay, Melquiond)
 - Drawback: unstable library
 - ▶ Drawback: result more complex to distribute
 - Advantage: using others' work
 - Advantage: More regular collections of theorems

General purpose contributions

- ▶ A variable change theorem for Riemann integrals
- ▶ Improper integrals in the style of Coq's standard library
 - A function is up_infinite_integrable if $\int_a^b f(x)dx$ has a limit when b grows to ∞
 - upInt f a h is the value (h is the proof)
 - the same for down_infinite_integrable and infinite_integrable
 - ▶ General theorems: *Chasles*, linearity, improper integral of x^{-k} , bounds, extensionality
- A study of arcsinh
- Dini: every increasing sequence of continuous functions converging pointwise to a continuous function converges uniformly,

Example lemma: variable change in integrals

Note that the type of h and h' is used to know what is computed in RiemannInt

Definition of arithmetic geometric mean sequence

a simple recursive function returning a pair of values

Proofs that the two sequences are monotonous and converge are easy.

Link to elliptic integrals

Elliptic integrals come in the form of

$$I(a,b) = \int_0^\infty \frac{\mathrm{d}t}{\sqrt{(t^2 + a^2)(t^2 + b^2)}}$$

▶ Proved equality :

$$I(a,b)=I(\frac{a+b}{2},\sqrt{ab})$$

and also

$$I(a,b) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{a^2 \cos^2 x + b^2 \sin^2 x}}$$

- \blacktriangleright proofs using ε reasoning: show that the difference is smaller than any positive ε
- ▶ Both proofs rely on variable changes, need 300 and 200 lines of proof.

Commuting derivation and integrals

Important contribution from the coquelicot library

$$\frac{\mathrm{d}\int_{u}^{v} f(w,t) \mathrm{d}t}{\mathrm{d}w}(x) = \int_{u}^{v} \frac{\mathrm{d}f(w,t)}{\mathrm{d}w}(x) \mathrm{d}t$$

(under the right conditions for f around x)

- ▶ Used to show that $I(a,b) = \frac{\pi}{2M(a,b)}$
- ▶ This is a formula for computing elliptic integrals when π is known (attributed to Gauß)

Behavior for (1, b) and b close to 0

► Through another variable change we have:

$$\int_0^\infty \frac{\mathrm{d}t}{\sqrt{(t^2+1)(t^2+b^2)}} = 2 \int_0^{\sqrt{b}} \frac{\mathrm{d}t}{\sqrt{(t^2+1)(t^2+b^2)}}$$
$$\int_0^{\sqrt{b}} \frac{\mathrm{d}t}{\sqrt{(t^2+1)(t^2+b^2)}} \sim \operatorname{arcsinh}(\sqrt(b)) \quad \text{for } b \to 0^+$$

by direct reasoning on agm we have:

$$2^{n} f\left(\frac{\sqrt{a_{n}(1,x)^{2}-b_{n}(1,x)^{2}}}{a_{n}(1,x)}\right) = \frac{f(\sqrt{1-x^{2}})}{f(x)}$$

Link to derivatives

$$f(x) \sim \frac{-\pi}{2ln(x)}$$
 for $x \to 0^+$

With equivalences and equalities from the previous slides

$$\lim_{n \to \infty} 2^{-n} \ln \left(\frac{a_n(1, x)}{\sqrt{a_n(1, x)^2 - b_n(1, x)^2}} \right) = \frac{\pi}{2} \frac{f(x)}{f(\sqrt{1 - x^2})}$$

 Studying separately the derivatives of the left hand side and deriving directly the right-hand-side

$$\frac{f^2(x)}{x(1-x^2)} = \frac{\pi}{2} \frac{f'(x)f(\sqrt{1-x^2}) - \frac{-x}{\sqrt{1-x^2}}f(x)f'(\sqrt{1-x^2})}{f^2(\sqrt{1-x^2})}$$

Main derivative formula

▶ at $x = \frac{1}{\sqrt{2}}$ the last formula simplifies greatly into:

$$\pi = 2\sqrt{2} \frac{f^3(\frac{1}{\sqrt{2}})}{f'(\frac{1}{\sqrt{2}})}$$

- ▶ To compute the ratio, we can compute approximations of f and f' as approximated by $a_n(1,x)$ and $b_n(1,x)$ and their derivatives
- More efficient to work with $y_n = \frac{a_n}{b_n}$ and $z_n = \frac{b'_n}{a'_n}$
- ▶ Use the Dini theorem to express that a_n converges uniformly towards f.

Abstract description

Concretely computing a large number of decimals

- Computing with large integers
 - ► To compute at precision $\frac{1}{p}$, multiply all values by p
- ► Théry et al. provide numbers as binary trees whose leaves are 31bit words,
 - Still not comparable to GMP : no arrays, more memory consumption
- Fast square roots re-implemented by Théry from previous work by Zimmermann, Magaud, & B.
- ► Fast execution provided by Dénès' native computation.
 - just-in-time compilation and execution directly inside Coq
- Work yet to be completed: formal proofs about error composition

Fixed precision computation

```
Definition hp1 :=
  (*some large integer*) (2 ^ precision)%bigZ.
Definition in vhp x := (hp1 * hp1 / x)\%bigZ.
Definition sqrthp x := BigZ.sqrt (x * hp1).
Definition mulhp x y := ((x * y) / hp1)\%bigZ.
Definition addhp x y := (x + y)\%bigZ.
Notation "x + y" := (addhp x y) : hp_scope.
Notation "x * y" := (mulhp x y) : hp_scope.
Notation "x / y" := (\text{mulhp x (invhp y)}) : \text{hp\_scope}.
Delimit Scope hp_scope with H.
```

Concrete implementation of algorithm

```
Fixpoint agmpi n :=
  match n with
    0\%nat => ((hp2 + (sqrthp hp2))%H, y1, z1)
  | S p =>
    let '(pip, yn, zn) := agmpi p in
    let sy := sqrthp yn in
    let zn1 := (hp1 + zn)\%H in
      ((pip * ((hp1 + yn))H / zn1))H)H,
       ((hp1 + yn)%H / (hp2 * sy)%H)%H,
       ((hp1 + (yn * zn)\%H)\%H / (zn1 * sy)\%H)\%H)
end.
```

Error analysis

•

$$0 \le \pi_n - \pi \le \frac{4\pi_0}{500^{2^n}}$$

- Square root and division computations on integers
 - rounding by default (towards 0)

$$\sqrt{x} - e < \left| \operatorname{sqrt}(x) \right| \le \sqrt{x}$$

$$\frac{x}{y} - e < \left| \frac{x}{y} \right| \le \frac{x}{y}$$

 $\frac{1}{y} - \epsilon < \left[\frac{1}{y}\right] \le \frac{1}{y}$

A theorem to control error propagation

$$e < rac{e'}{3} \wedge |y_n| - y_n| < e' \Rightarrow | \frac{1 + |y_n|}{2|\operatorname{sqrt}(|y_n|)|} - \frac{1 + y_n}{2\sqrt{y_n}} | < e'$$

Several attempt for error estimation in y_n

- First attempts looking like naive interval arithmetics
 - with bisection
- Last attempt using derivative and mean value theorem
 - error cancellation improves as y_n gets closer to 1
 - derivative of $\frac{1+y}{2\sqrt{y}}$ is $\frac{y-1}{4y\sqrt{y}}$
- So if error on y_n is within a few ulp, the error on y_{n+1} will stay the same

To be continued

- ▶ Need the same kind of error control for z_n
- Need to propagate the errors trough the repeated multiplications
- Maybe replace square root with one rounding up

Running the program

- ▶ Write (in Coq) a program enumerating the digits
- ▶ Write (in Ocaml) the printing of the digits

Packaging the function call

```
Inductive bin := L(x : Z) | N(t1 t2 : bin).
Fixpoint ntb (x:bigZ) (n : nat) (b : bigZ) :=
match n with
  0 \Rightarrow L (BigZ.to_Z x)
| S p \Rightarrow let (y, z) := BigZ.div_eucl x (10 ^ b) in
 N (ntb y p (BigZ.div b 2)) (ntb z p (BigZ.div b 2))
end.
Definition digits rank :=
let hp1 := (10 ^ (2 ^ bigZ_of_nat rank))%bigZ in
let hp2 := (hp1 + hp1)\%bigZ in
ntb (pi hp1 hp2 rank) rank
   (2 ^ bigZ_of_nat (pred rank))%bigZ.
```

Extraction "pi.ml" digits.

Lessons learned

- Corpus of known facts is really growing
- Navigating libraries, ssrflect, Coq standard library, coquelicot, Need for streamlining
- Reflexions on more advanced tactics
 - Automatic proofs of positivity for simple expressions
 - Automatic proofs of derivability, continuity
- Extracted code may be less efficient than code inside Coq
- Hope to continue the efforts towards an imperative implementation