
Coq: a technical introduction

Yves Bertot

May 2015



Basic idea : Proofs as programs

1. A proof of A ⇒ B is a processor that produces proofs of B
I if given proofs of A as input

2. A proof of ∀x : nat,B(x) is a processor that produces proofs
of B(1), B(2)

I It is how you construct these proofs

I It is how you use them



Propositions as types

I Overload notation A -> B
I type of functions from type A to B
I proposition A implies B
I Variant 1 is like programs in C
I Variant 2 is exotic for programmers

I Build up from implication and universal quantification: other
connectives (first solution, but not the one in Coq)

Definition and1 (A B : Prop) :=

forall C : Prop, (A -> B -> C) -> C.



Programs: functions

I In theory, you can define a programming language with only
one-argument functions

I Beware of notations
I fun x : T => e

functions don’t necessarily have a name!
But Coq makes it possible to name terms
Sometimes the type T is omitted (syntax : fun x => e)

I f e
when applying functions: no parentheses

I Example:
(fun f => fun x => f (f x))

(fun x => fun y => y)

I Theoretical background: in Church’s papers (ca. 1940)
keyword fun was λ, symbol => was a period.



Deeper foundation : pure λ-calculus

I Not enough time for this but, if interested
http:

//www-sop.inria.fr/members/Yves.Bertot/misc/lambda.ml

Shows a 250 lines program (in ocaml) which implements
lambda-calculus and performs a few computations

http://www-sop.inria.fr/members/Yves.Bertot/misc/lambda.ml
http://www-sop.inria.fr/members/Yves.Bertot/misc/lambda.ml


Programs as proofs

I Challenge: make basic proofs about the “and” connective as
given in previous slide



Inventing new types

Aggregating data and providing alternatives

I Illustration using pre-existing types A, B, C

I Inductive test1 := ct1 (x : A) (y : B)

| ct2 (z : C).

I If ea : A and eb : B, then
ct1 ea eb has type test1

I if e : test1, then you should consider it can have the form
ct1 e1 e2 or the form ct2 e3

I Programming construct:
match e with

ct1 a b => E

| ct2 c => F

end



Example new type

Inductive nat := O | S (n : nat).

I Use the term S (S (S O)) to represent 3

I Do not represent negative integers

I No bounds
I Pattern-matching gives two features

I perform different actions for expressions O and S x
I give access to sub-term x

I This type as inherent recursion
I safe recursive programming

I numerical notation is programmed layer



Example new type: lists

Inductive list (A : Type) :=

| nil

| cons (a : A) (l : list A).

Check cons 1 (cons 2 (cons 3 nil)).

I beware of notation cons 3 nil : two arguments

I In principle, nil takes a type as first argument
cons takes a type t, a value in t, a value in the type list t

I Implicit arguments: easier to write, not easy for beginners



Coq as a programming language

I Programming with lists of natural number, you can already
represent many programs

I For some applications, Coq datatype are just as good as others
example : a C compiler

I You can also write programs that perform proofs for you



Goal directed proof

I Given a proposition, how do you build a proof?

I top-down construction of proof

I Programs with holes, Each hole has an associated proposition.

I Example: attempt to prove B

I There exists a theorem th that proves A -> B

I One possibility is th ?1

I But now you have to find a proof of A



Goal directed proof (2)

I Attempt to prove A -> B

I One possibilty is fun h : A => ?2

I But now you have to find a proof of B (allowed to use h)

I Goals : a context and a conclusion

I Operations of this slide and previous slide are performed by
tactics

I Demo time



Proving programs

I Confront a program with a specification
I A specification is like a test suite

I When testing, sometimes write a function that tests outputs
I pick a few sample of possible inputs, run the program and test

outputs

I A proof is often the same except:
I cover all possible inputs
I Even if input set is infinite (thanks to induction)



Coq : an international success

I Not described all powerful features
I Separate compilation
I Higher-order reasoning
I Dependent types
I Generation of executable programs

I Major examples
I Compiler correctness proofs
I Security proofs
I Cryptography (probabilistic reasoning)
I Numerical approximations
I Pure mathematics



Coq maturity

I Two awards in 2013-2014,

I Open source, hosted on inria.gforge.fr, mirrored on github

I One (American) company in Germany has 9 developers on
Coq

I Airbus might be interested in using a Coq derived product
(CompCert)

I One French company used Coq for 5-10 years but practically
stopped.

I Maybe a dozen researchers at Microsoft are using Coq

I Bug tracking, tar balls, available on http://coq.inria.fr

I Development in Ocaml mainly by researchers and PhD
students

I Traditionally difficult to integrate engineers

http://coq.inria.fr

