
Proof by Pointing

?

Yves Bertot

1

Gilles Kahn

1

Laurent Th�ery

2

1

INRIA Sophia-Antipolis

B.P. 93, F-06902 Sophia Antipolis Cedex, France

fYves.Bertot,Gilles.Kahng@sophia.inria.fr

2

University of Cambridge, Computer Laboratory

New Museums Site, Pembroke Street,

Cambridge CB2 3QG, England

Laurent.Thery@cl.cam.ac.uk

Abstract. This paper presents a principle for using locations in logical

expressions to guide the process of building proofs. Using a sequent-

style presentation of theorem provers, we annotate the inference rules

to specify an algorithm that associates the construction of a proof tree

to a location within a goal sequent. This principle provides a natural

and e�ective use of the mouse in the user-interface of computer proof

assistants. The implementation of the algorithm in a variety of theorem

provers is discussed.

1 Introduction

A number of very powerful and elegant computer programs to assist in making

formal proofs have been developed in the last decade. These systems include

ever more sophisticated automatic proof tactics. Nevertheless, proofs that can

be carried out without any user directions are the exception rather than the rule.

In this paper, we present a general principle called proof by pointing that allows

the user to guide precisely the proof process with the mouse of his workstation.

This idea is widely applicable and has been implemented by the authors in user-

interfaces for several proof development systems: Amy Felty's Theorem Prover

[Felty89], Coq [Coq91], HOL [HOL88], and Isabelle [Isa90].

The paper is organized as follows: �rst, we give an example of the kind of

interaction that results from adopting our principle. Then the second section de-

scribes rigorously the principle, its logical foundations and simple consequences.

The third section examines potential di�culties encountered when implement-

ing the idea in a variety of proof assistants. Finally, the last section discusses

possible extensions.

An Example

In contrast with symbolic algebra systems such as MAPLE [Maple] or Mathe-

matica [Matica] that operate as symbolic desk calculators, proof development

?

This work was supported in part by the \Types for Proofs and Programs" Esprit

Basic Research Action, by SERC grant GR/G 33837 and a grant from DSTO

Australia.

systems usually work in a mode where the user sets a goal and attacks it in

a backward-chaining (or goal-directed) manner: the user tries to eliminate one

of several pending subgoals by applying a theorem that matches it. In case of

success, the goal is removed from the list of pending subgoals and new subgoals,

that correspond to verifying that the theorem's hypotheses hold, are added to

the list of subgoals. Of course, the user may follow a strategy that does not lead

to a proof, and need to backtrack and attempt an alternative proof.

With standard user-interfaces, the user issues commands to perform such

actions. These commands may be typed by hand or constructed using a struc-

tured editor as in [TBK92] or [Nuprl86]. The idea in proof by pointing is that the

mere gesture of pointing at a subexpression in a subgoal is enough to synthesize

appropriate commands for the system.

Consider for example the following formula in �rst order logic, where a and b

are individuals and p and q are predicate symbols, and assume that it is entered

as goal G

0

:

(G

0

) (p(a) _ q(b)) ^ (8x p(x) � q(x)) � (9x q(x))

Formula G

0

can be paraphrased in english: if we know that either p is veri�ed

for a or q is veri�ed for b and that p implies q, then there exists an x for which

property q is veri�ed.

The proof of this fact examines the two cases involved in the formula

p(a) _ q(b). In the case where p(a) holds, we use the fact 8x p(x) � q(x) to

deduce q(a). Then a is a witness to prove 9x q(x) in that case. In the second

case q(b) holds, so the witness b is directly available. We will tell the computer

exactly this using only the mouse.

Starting from G

0

, to steer the computer toward the proof, the user points

to subformula p(a) with the mouse. As it occurs within expression p(a) _ q(b),

this indicates interest in a case analysis. The proof state changes to include two

new subgoals G

1

and G

2

:

(G

1

) p(a); p(a) _ q(b); (p(a) _ q(b)) ^ (8x p(x) � q(x)) ` 9x q(x)

(G

2

) q(b); p(a) _ q(b); (p(a) _ q(b)) ^ (8x p(x) � q(x)) ` 9x q(x)

In our notation, the turnstile symbol ` separates the local assumptions from the

conclusion in a subgoal, and assumptions are separated by commas. Naturally,

assumptions that are local to a subgoal can only be used to prove this subgoal's

conclusion.

The user is free to carry on working with subgoal G

1

or G

2

, although G

1

should be emphasized since p(a) rather than q(b) was pointed at initially. In G

1

,

since p(a) and 8x p(x) � q(x) hold one can deduce q(a). This inference step is

requested by pointing at subexpression p(x) in G

1

, meaning prove an instance of

p(x) and deduce the corresponding instance of q(x). In the proof state, subgoal

G

1

is replaced by G

3

:

(G

3

) q(a); p(a); p(a) _ q(b); (p(a) _ q(b)) ^ (8x p(x) � q(x)) ` 9x q(x)

Now subgoal G

3

can easily be dealt with. The fact q(a) appears in the

assumptions and we need to prove 9x q(x). The user simply selects q(x) behind

the existential quanti�er in G

3

with the intended meaning there is a witness

for x in the assumptions of this goal that allows one to prove q(x). Subgoal G

3

vanishes and only G

2

remains. Subgoal G

2

is handled in an identical fashion and

vanishes as well. As no subgoals remain to be proved, the result is established.

The entire interaction took place without any need for typing commands. This

is not to say that all commands may be eliminated when using a proof assistant,

but rather that they are unnecessary for many boring logical tasks.

The meaning of mouse designation is not ad hoc. It is entirely determined

by the precise shape of the formulas we are trying to prove. The intuition is as

follows. In goal G

0

, expression p(a) is designated by a �rst mouse click. Precisely,

this expression occurs, starting from the top of G

0

:

i) to the left of an implication symbol (denoted by �),

ii) to the left of a conjunction symbol (denoted by ^),

iii) to the left of a disjunction symbol (denoted by _).

When pointing at p(a), each one of these facts is exploited in turn:

i) the antecedent of the implication is added as an assumption,

ii) the left part of the conjunction is extracted and added as an assumption,

iii) two subgoals corresponding to the two cases in the disjunction are created,

with either disjunct as additional assumption; the goal created by the left

disjunct is emphasized.

The second mouse click is simpler to explain. In goal G

1

, the user points at

expression p(x). This expression occurs in an assumption and:

i) to the right of a conjunction symbol,

ii) within a universally quanti�ed expression,

iii) to the left of an implication symbol.

As a consequence, pointing at p(x) directs the computer to:

i) extract the right conjunct,

ii) �nd a proof of p(x) for some x,

iii) add a new assumption q(x) for the same x, creating G

3

.

The last two mouse clicks are even simpler. In goals G

3

, and similarly in goal

G

2

, the user points at q(x) in the conclusion of the goal, within the existentially

quanti�ed formula. In both cases, the system looks through the assumptions to

see if an instance of q(x) is directly provable. In both cases it is successful, so

the goals are eliminated.

After this intuitive presentation, the meaning of mouse clicks will now be

described formally, taking all usual logical connectives into account.

2 The proof by pointing algorithm

To specify rigorously the pointing algorithm, we use Gentzen's presentation of

logical deduction [Szabo69] in Sequent Calculus. In this formalism, propositions

are represented by sequents, composed of a list of assumptions (this list is also

called a context) separated by a turnstile symbol, `, from the conclusion. The

context may be empty. Legitimate inferences are speci�ed by rules. A rule has two

parts separated by an horizontal bar: a list of sequents, the rule's premises, and

a single sequent, the rule's conclusion. A partial proof is a tree-like composition

of instances of the inference rules. When a sequent is of the form � ` A where

A occurs in � , it can be closed and this fact is represented by drawing an

horizontal bar above the sequent. A proof is a partial proof where all leaves

are closed sequents. To start with, we limit ourselves to the standard logical

connectives ^, _, �, 8, and 9 and take the familiar inference rules given on

Figure 1. The process of building a proof in a goal-directed fashion is formalized

as follows: starting from the proposition to prove, either it is possible to close

it, or one picks an inference rule whose conclusion matches the proposition, and

then reiterates the process non-deterministically on the premises of the rule after

appropriate instantiation. At any time during this process, the unclosed leaves

of the partial proof tree are the pending goals of the proof. Hence the proof is

�nished when there are no pending goals left.

^ left :

A;B ;A ^B ; � ` C

A ^B ; � ` C

^ right :

� ` A � ` B

� ` A ^B

_ left :

A;A _B ; � ` C B ;A _B ; � ` C

A _B ; � ` C

_ right :

� ` A

� ` A _B

� ` B

� ` A _B

� left :

A � B ;� ` A B ;A � B ; � ` C

A � B; � ` C

� right :

A; � ` B

� ` A � B

8 left :

A[xne];8x A;� ` C

8x A; � ` C

8 right :

� ` A[xnc]

� ` 8x A

9 left :

A[xnc];9x A; � ` C

9x A; � ` C

9 right :

� ` A[xne]

� ` 9x A

Fig. 1. Rules for the basic logical connectives

To construct the proof incrementally, the user is allowed to select a subex-

pression occurring in an arbitrary pending goal. The result of this action is:

i) possibly nothing,

ii) possibly the growth of the proof tree above the goal containing the selected

subexpression; in that case, a residual subexpression is selected in a pend-

ing goal.

The proof by pointing algorithm de�nes how the partial proof tree grows as

a result of a selection, and the position of the residual selection. Obviously when

selecting an expression in a given goal, we mean to work on that goal. Intuitively,

when selecting a subexpression � deeply inside the goal, we want to somehow

bring � to the surface, and leave a residual selection showing where � is now.

The de�nition of the proof by pointing algorithm is by induction on the depth

at which the selected subexpression can be found within a goal.

2.1 Selecting a subterm at depth 1

In a sequent, we de�ne the subterms at depth 1 as the conclusion and all as-

sumptions. Selecting such terms is taken to mean that a closure involving the

subterm should be attempted. For example, assume we have the following goal:

p(a); p(b); : : : ` p(b)

Selecting the �rst instance of p(b) (an assumption)

p(a); p(b); : : : ` p(b)

or the last instance (the conclusion)

p(a); p(b); : : : ` p(b)

closes the sequent and leaves the residual selection unde�ned:

p(a); p(b); : : : ` p(b)

Selecting an assumption that doesn't match the conclusion such as p(a) simply

leaves the goal unchanged and the residual selection on the selected assumption.

2.2 Selecting a subterm at depth n, where n > 1

Subterms located at depth n, where n > 1, are the descendants of the top logical

connective of either the conclusion or some assumption. The rules of Figure 1 are

partitioned into right and left rules. We take selecting in the conclusion of a goal

to mean that we begin to grow the proof tree using a right rule, and selecting in

an assumption that we start with a left rule. Now if the top logical connective

is � we use the �-right (resp. the �-left) rule. In the case of a conclusion that is

a disjunction (_ right) we pick the �rst rule if the selection is to the left of the

connective, the second one if it is to the right.

We rewrite the rules of Figure 1 in a more appropriate manner on Figure 2.

A box around a subexpression means that the selection is inside that box. The

box in a rule's conclusion means that the rule is applicable only if the selection

is inside. A box in a rule's premises tells where the residual selection is after one

^ left

1

:

A ;B ;A ^B ; � ` C

A ^B ; � ` C

^ right

1

:

� ` A � ` B

� ` A ^B

^ left

2

:

A; B ;A ^B ; � ` C

A ^ B ; � ` C

^ right

2

:

� ` A � ` B

� ` A ^ B

_ left

1

:

A ;A _B ; � ` C B ;A _ B ;� ` C

A _B ; � ` C

_ right

1

:

� ` A

� ` A _B

_ left

2

:

A;A _ B ;� ` C B ;A _B ; � ` C

A _ B ; � ` C

_ right

2

:

� ` B

� ` A _ B

� left

1

:

A � B ; � ` A B ;A � B ; � ` C

A � B ; � ` C

� right

1

:

A ; � ` B

� ` A � B

� left

2

:

A � B ; � ` A B ;A � B ; � ` C

A � B ; � ` C

� right

2

:

A;� ` B

� ` A � B

8 left :

A[xne] ;8x A;� ` C

8x A ; � ` C

8 right :

� ` A[xnc]

� ` 8x A

9 left :

A[xnc] ;9x A;� ` C

9x A ; � ` C

9 right :

� ` A[xne]

� ` 9x A

Fig. 2. Rules with selection propagation

elementary step. Notice that we have now systematically two left and two right

rules for each binary connective.

We can make the following two remarks on the location of the selection after

one inference rule on Figure 2 has been used to grow the proof tree:

1. the residual of the initial selection is unique,

2. if the selection was located at depth n, its residual is located at depth n�1.

From the �rst remark, we deduce that we can apply recursively the proof by

pointing algorithm to the residual of the initial selection after using one inference

rule. The second remark proves that this process terminates. More precisely, the

process terminates on an attempt at closure. If this attempt succeeds, there will

be no residual selection. If it fails, the selection will denote the residual of the

initial selection after using n� 1 inference rules and occur at depth 1. In other

words, we have been successful in obtaining a goal where this expression is at

the surface, that is at depth one.

2.3 Examples

We follow the algorithm on a number of small, but revealing, examples. The

selection is underlined and we use an arrow! to indicate the next goal generated

by the algorithm, when it is unique.

Goal: (p(a) ^ p(b)) ^ p(c) ` p(b).

Proof: click on p(b) in the assumption.

(p(a) ^ p(b)) ^ p(c) ` p(b) ! p(a) ^ p(b); p(c); (p(a)^ p(b)) ^ p(c) ` p(b)

! p(a); p(b); p(a) ^ p(b); p(c); (p(a)^ p(b)) ^ p(c) ` p(b)

! p(a); p(b); p(a)^ p(b); p(c); (p(a)^ p(b)) ^ p(c) ` p(b)

Goal: a _ b ` b _ a.

Proof: clicking to the left on a, the goal a _ b ` b _ a generates two cases:

a; a_ b ` b _ a

b; a_ b ` b _ a

The �rst goal contains the selection. It is proved by clicking on a in the conclu-

sion. The second goal is resolved similarly by clicking on b in the conclusion. The

proof has been done with three mouse clicks. Clicking initially in the conclusion

is a dead-end.

Goal: ` p(a) � p(a).

Proof: click on either instance of p(a). For example, clicking on the left gives:

` p(a) � p(a) ! p(a) ` p(a) ! p(a) ` p(a)

Goal: ` a � (b � (a ^ b)).

Proof: seeing the outermost a, one wants to click on the innermost one:

` a � (b � (a ^ b)) ! a ` b � (a ^ b) ! b; a ` a ^ b

Here we get two goals (by ^ right

1

):

b; a ` a

b; a ` b

The algorithm closes the �rst one and stops for lack of a residual selection,

leaving the user with the second goal. Clicking on the conclusion b �nishes the

proof, which needed two clicks.

Goal: ` a � ((a � b) � b)

Proof: this proposition is proved with two clicks, either in a forwards style

(building up new facts from the hypotheses) or in a backwards style (coming

back from the goal to prove). Backwards, one points at the leftmost b.

` a � ((a � b) � b) ! a ` (a � b) � b ! a � b; a ` b

Here the algorithm produces two goals and solves the second one:

a � b; a ` a

b; a � b; a ` b

The user closes the �rst goal trivially.

Noticing the outer a, the user could have used the forwards style and clicked

on the inner a :

` a � ((a � b) � b) ! a ` (a � b) � b ! a � b; a ` b

Again the algorithm produces two goals and solves the �rst one:

a � b; a ` a

b; a � b; a ` b

The user closes the second goal trivially.

To use rules 8 left and 9 right, we postulate the existence of an additional

mechanism that supplies appropriate terms. This can be achieved either by

querying the user or by providing logical variables and an extension of the clo-

sure rule. deciding which approach to use is orthogonal to the proof by pointing

algorithm; we present both in the next section.

Goal: p(a) ^ (8x p(x) � q(x)) ` q(a).

Proof: here again we can do it forwards, clicking on p(x) because we know p(a)

or backwards, clicking on q(x) because we want to prove q(a). Clicking on p(x):

p(a) ^ (8x p(x) � q(x)) ` q(a)

! p(a); 8x p(x) � q(x); p(a) ^ (8x p(x) � q(x)) ` q(a)

! p(a) � q(a); p(a); 8x p(x) � q(x); p(a) ^ 8x p(x) � q(x) ` q(a)

Here, the algorithm generates two goals;

p(a) � q(a); p(a); 8x p(x) � q(x); p(a)^ 8x p(x) � q(x) ` p(a)

q(a); p(a) � q(a); p(a); 8x p(x) � q(x); p(a) ^ 8x p(x) � q(x) ` q(a)

The �rst one is closed automatically, and the second one is closed with one

additional click.

As a �nal example, let us come back to the proof given in the introduction:

Goal: ` (p(a) _ q(b)) ^ (8x p(x) � q(x)) � 9x q(x)

Proof: The user's �rst selection is on p(a), to produce the case analysis.

` (p(a) _ q(b)) ^ (8x p(x) � q(x)) � 9x q(x)

! (p(a) _ q(b)) ^ (8x p(x) � q(x)) ` 9x q(x)

! p(a) _ q(b); (8x p(x) � q(x)); (p(a) _ q(b)) ^ (8x p(x) � q(x)) ` 9x q(x)

There the proof splits in two subgoals, as intended:

p(a); (p(a) _ q(b)); (8x p(x) � q(x)); (p(a) _ q(b) ^ (8x p(x) � q(x)) ` 9x q(x)

q(b); (p(a) _ q(b)); (8x p(x) � q(x)); (p(a) _ q(b) ^ (8x p(x) � q(x)) ` 9x q(x)

The second subgoal is proved by a single click on q(x) in the conclusion. To

prove the �rst subgoal, one clicks on the �rst occurrence of p(x) just as in the

previous example, and then on q(x) in the conclusion.

2.4 Intuitionistic negation

Extending proof by pointing to encompass intuitionistic negation is straightfor-

ward. The language of logical formulae is extended with the nullary symbol ? to

mean false and the unary negation symbol :. Formula :A is synonymous with

A � ?. The extension is done in two steps:

i) First, the closure rule is extended to sequents where ? occurs as an assump-

tion:

? ; � ` C ! ?; � ` C

ii) Two rules that are immediate consequences of the de�nition of : are added:

: left :

:A;� ` A

: A ;� ` C

: right :

A ;� ` ?

� ` : A

These rules have the good properties of the rules of Figure 2 with respect to proof

by pointing. The �rst rule is included for completeness because in practice, it is

rarely used.

Let us play with a few examples:

Goal: ` x � ::x

Proof: Clicking on the rightmost x proves this proposition.

` x � ::x ! x ` ::x ! :x; x ` ? ! :x; x ` x ! :x; x ` x

Goal: ` (x _ :y) ^ y � x

Proof: We click on the leftmost x to distinguish two cases

` (x _ :y) ^ y � x ! (x _ :y) ^ y ` x ! x _ :y; y; (x _ :y) ^ y ` x

We are left with the two goals:

x; x_ :y; y; (x _ :y) ^ y ` x

:y; x _ :y; y; (x _ :y) ^ y ` x

The �rst goal is closed automatically. In the second goal, we see both y and :y

in the assumptions, and express this with one click inside :y:

:y; x _ :y; y; (x _ :y) ^ y ` x ! :y; x_ :y; y; (x _ :y) ^ y ` y

! :y; x _:y; y; (x _ :y) ^ y ` y

Goal: ` ::(x_ :x)

Proof: surprisingly, this fact is proved with two judiciously placed clicks.

` ::(x _ :x) ! :(x _ :x) ` ? ! :(x _ :x) ` x _ :x ! :(x _ :x) ` :x

! x;:(x_ :x) ` ?

The process stops, and we click now on the second occurrence of x to reveal a

contradiction:

x;:(x_:x) ` ? ! x;:(x_:x) ` x_:x ! x;:(x_:x) ` x ! x;:(x_ :x) ` x

2.5 Classical negation

Following Gentzen [Szabo69], we introduce classical negation with a meta mech-

anism, (implemented by a button in the interface for example) that asks the user

for a formula A and adds the formula A _ :A to the hypotheses of the current

goal. Alternatively, but in the same spirit, we can keep the following higher order

theorem in the environment:

excluded middle : 8P: P _ :P

and invoke it using the general mechanism described in the next section.

2.6 Theorems

In any serious proof, one reuses one or more theorems, i.e. results that have been

proved earlier. One can use the mouse to invoke theorems in a manner that is

consistent with proof by pointing. Assume there is currently a goal where the

selection resides, and somewhere a list of theorem statements

3

containing the

desired theorem ` T . The idea is to click within T directly. If the goal was

� ` B

it becomes

�; T ` B

The validity of this inference is an immediate consequence of the cut rule:

cut :

� ` A �;A ` B

� ` B

Consider the example:

Goal: ` ::x � x

Proof: invoke excluded middle : 8P: P _ :P for x. We get immediately two

cases:

x ` ::x � x

:x ` ::x � x

The �rst case is solved by clicking on the rightmost x, and in the second case

clicking on the inner :x makes a contradiction apparent.

3

How this list is created is interesting per se, but immaterial here.

2.7 Correctness and completeness

Proof by pointing is correct in a given logic as soon as the rules of Figure 1 are

provable in that logic. The rules are a close variant of familiar systems, such

as system IS used in [Sundholm83]. Thus, proof by pointing is correct in any

logic that is an extension of intuitionistic logic. This category encompasses most

practical logics.

Proof by pointing is complete if it makes it possible to prove all formulas

that are provable with other interfaces. Here again, completeness will depend on

the logic implemented by the proof system. A su�cient condition to obtain this

property is to have completeness when clicking only at depth 1 and 2. This is a

cramped style of proof, but it makes all proofs possible.

To keep the spirit of proof by pointing, we suggest the following principle.

Let e be an expression occurrence at depth n and call thread of e the list of

occurrences at depth 1; 2; : : : ; n containing e. There should be no di�erence for

the user between clicking directly on e or stepping leisurely through the thread

of e.

The issue of completeness will arise again in the paper in section 4. To make

proofs less cumbersome, we will want to dispose of certain assumptions. In doing

so, one must be careful not to sacri�ce completeness.

3 Implementation

Proof by pointing has been implemented for several proof assistants: Felty's the-

orem prover [Felty89], Coq [Coq91], HOL[HOL88] and Isabelle [Isa90]. We used

the Centaur system [Centaur93] as a toolkit for building interfaces, mostly for

the ability to point at a subexpression with the mouse. As a matter of principle,

we tried not to modify the proof engines at all. This is easier if the user is al-

lowed to program his own proof tactics. This section discusses a number of little

di�culties and the solutions we propose.

3.1 Basic tactics

The implementation attempts to follow exactly the description of the previous

section. The �rst question then is to identify the commands that implement the

inference rules of Figure 1. Most proof systems provide the ingredients to do

that, but sometimes a tactic may be eager to perform several steps at once. For

example, the Coq system provides an Apply command for eliminating implica-

tions. Given an assumption H of the form A � (B � C), the tactic Apply H

succeeds only if the goal's conclusion matches C. Then it performs a closure and

two � left

2

, creating two goals with conclusion A and B respectively. In most

cases, this tactic is very e�ective for a human user with a conventional interface.

But it is partial to backwards reasoning and it does not allow us to implement

the � left rules correctly. A more atomic Use tactic was added to Coq to solve

the di�culty.

The tactics for the 9 right and 8 left rules raise another problem. When

implementing these rules the expression e that appears in the new subgoal has

to be provided. Some proof engines require this term as an argument of the

tactic and we then have to provide interface tools to supply this argument.

Other systems introduce an unknown, basically a logical variable, that can be

instantiated later.

This mechanism is particularly useful in the context of an extension of the

closure rule. When the selection points to an assumption, we might ask for it

to be uni�ed with the goal's conclusion, i.e. to compute the instantiation of the

unknowns that will allow one to use the closure rule. Similarly, if the selection

points at the goal's conclusion, we may search for an assumption that uni�es

with it. The problem with applying this method systematically is that there

may be several assumptions that match di�erently the goal. An arbitrary choice

may preclude proving another goal.

3.2 Management of the selection

The next issue has to do with managing the selection. It is not immediately

obvious how to do this because proof assistants do not have this notion and we

certainly don't want to modify their private data structures.

All systems have means to perform logical operations in a goal's conclusion.

They vary much more in their ways of acting on assumptions. In Coq, assump-

tions are named and very easy to handle. In other systems, one may refer to as-

sumptions by rank or by content. Referring to an assumption by content means

that the whole text of the assumption will occur as an argument in a command.

This is safe, but commands may become huge, slowing down execution. Refer-

ring to assumptions by rank makes for shorter commands but it is less robust.

For example, in Isabelle we had to use predictable but undocumented features

of the system to implement properly the selection management.

After applying the basic tactics, we must indicate where the selection has

propagated. If we have control over naming assumptions as in Coq, this is very

easy to implement. In the cases where we use rank or content to refer to assump-

tions, there is an alternative solution. The idea is to single out, in the rules of

Figure 2, the parameter that contains the residual selection. This could be done

with a three-place sequent � ` A : C where A is the distinguished assumption.

In fact, this three-place sequent can be coded with the existing two-place sequent

as � ` A � C. The rules of Figure 2 have been rewritten on Figure 3 using that

encoding.

The proof by pointing algorithm works now as follows:

Step 1. If the initial selection is inside an assumption, then move this assumption

to the distinguished position in the conclusion with the rule � right

�1

:

� right

�1

:

� ` A � B

A ;� ` B

^ left

1

:

B ;A ^B ; � ` A � C

� ` A ^B � C

^ right

1

:

� ` A � ` B

� ` A ^B

^ left

2

:

A;A ^B ; � ` B � C

� ` A ^ B � C

^ right

2

:

� ` A � ` B

� ` A ^ B

_ left

1

:

A _B ; � ` A � C B ;A _B ; � ` C

� ` A _B � C

_ right

1

:

� ` A

� ` A _B

_ left

2

:

A;A _B ; � ` C A _ B ;� ` B � C

� ` A _ B � C

_ right

2

:

� ` B

� ` A _ B

� left

1

:

A � B ; � ` A B ;A � B ; � ` C

� ` (A � B) � C

� left

2

:

A � B ; � ` A A � B ; � ` B � C

� ` (A � B) � C

� right

2

:

A; � ` B

� ` A � B

8 left :

8x A;� ` A[xne] � C

� ` 8x A � C

8 right :

� ` A[xnc]

� ` 8x A

9 left :

9x A;� ` A[xnc] � C

� ` 9x A � C

9 right :

� ` A[xne]

� ` 9x A

: left :

:A;� ` A

� ` : A � C

: right :

� ` A � ?

� ` : A

Fig. 3. Modi�ed rules for selection propagation

Step 2. Use the rules of Figure 3. The rules work on a goal's conclusion and

keep the selection in the conclusion. When they are not applicable any longer,

either (i) the selection is on the whole conclusion, or (ii) the conclusion is of

the form A � B and the selection is on A exactly.

Step 3. In case (i) try closure as usual, in case (ii) apply � right

1

and then

attempt closure.

The rules of Figure 3 are unambiguous because � right

1

, which would con
ict

with all the left rules, has been removed. Rule � right

1

is only applied at Step 3

in the algorithm.

The correctness of the rules of Figure 3 is immediate because they have been

obtained from the rules of Figure 2 using � right

�1

, which is a derived rule as

soon as the cut rule is in the system. For intuitionistic negation, one simply uses

the de�nition of :A as A � ? to obtain two rules that �t very well with the rest

of the system.

3.3 Compound tactics

When selecting an expression at a depth greater than 1, we have to combine

basic tactics into a compound one. For this, we use the proof assistant's tacticals

[Paulson87]. The principal problem is to direct the choice of the goal to attack

next, and it is solved di�erently if di�erent tacticals are available. In the ideal

situation, there exists a THENL tactical [Paulson87]. In systems like HOL, Coq

or Felty's theorem prover, tactics are functions that take a subgoal as argument

and return a list of subgoals. The THENL tactical enables composing tactics in the

following manner: assume that we attack subgoal � with tactic t, which gives

rise to new sub-goals �

1

, : : : , �

n

and that for every i, we attack sub-goal �

i

with

tactic t

i

, which gives rise to new sub-goals �

1

i

, : : : , �

p

i

i

. The tactic expression

t THENL [t

1

;: : :;t

n

] denotes the compound tactic that attacks subgoal � and

produces the subgoals �

1

1

, : : : , �

p

1

1

, : : : ,�

1

n

, : : : �

p

n

n

.

For example, suppose that the user selects expression B in the following

sub-goal:

� ` A ^ (B _ C)

This results in performing two basic tactics: �rst applying rule ^ right

2

, then

applying _ right

1

on the second of the resulting subgoals. The tactic to generate

is simply the following one:

^ right

2

THENL [do-nothing ;_ right

1

]

The two goals that would be generated by the �rst basic tactic alone are � ` A

and � ` B _ C and the goals generated by the complete tactic are � ` A and

� ` B.

In most proof development systems, the THENL tactical is already present or is

easily implemented.A notable exception is the Isabelle system, where the current

state of an incomplete proof is represented as a theorem whose hypotheses are

the remaining subgoals. Tactics basically are functions that map the state (a

theorem) to a new theorem. In this setting, there is no clear notion of what new

subgoals have been generated from old ones, and the THENL tactical loses a lot

of its meaning. However, some tactics take a rank n as argument, specifying

that these tactics work on the n

th

sub-goal. The system provides a simple THEN

tactical, that permits chaining tactics, independently of the subgoal they are

working on: if t

1

and t

2

are two tactics that take rank arguments, the expression

(t

1

n) THEN (t

2

p) denotes performing t

2

after t

1

but the programmer must

take care of the relation between ranks n and p to make sure that t

2

works on

a sub-goal generated by t

1

.

For example, suppose again that subgoal n is the formula � ` A^(B_C) and

that the user selects expression B. The compound tactic to use is the following

one:

(^ right

2

n) THEN (_right

1

n+ 1)

Note that the correct index had to be computed for the second basic step of the

tactic.

3.4 Synthesizing the command from the graphic selection

The last point to discuss is the method for generating a compound tactic from

a graphic selection. Indeed, proof by pointing is of little use if the operation

of selecting a subterm is cumbersome. The ideal solution is to use a �nger or

a mouse to select a subterm. This implies that the interface component keeps

track of the underlying term structure of the formulas being displayed. In our

experiments, we have built user-interfaces following the methodology advocated

in [TBK92]. The interface is a separate process that knows about the syntactic

structure of logical expressions and is able to get at a subexpression with a

single click and to construct an abstract selection describing the location of this

subexpression relative to the complete goal where it occurs.

There are now two situations: either (i) the proof assistant has a �xed set

of tactics or (ii) it has a provision for de�ning new tactics. In case (i), the

interface generates the appropriate command line. This has the advantage that

the command is readable. On the negative side, this command is possibly very

large.

If the proof assistant provides for user-de�ned tactics, then it is better to

de�ne a new tactic finger tac that takes directly an abstract selection as ar-

gument and performs the relevant combination of basic tactics. The script of

the proof will now contain a single call to finger tac with a somewhat opaque

looking argument. On the positive side, finger tac is entirely implemented in

the proof assistant.

To represent an abstract selection, the standard solution is to use a list of

integers that describes the path from the root of the goal to the selected subterm.

This solution has the drawback that it depends on the internal representation of

terms and that the generated commands contain absolutely obscure sequences

of integers. An alternative is to have a specialized, still more abstract notion of

path for our application. First, we consider that all connectives ^, _, �, 8 and 9

are binary, independently of the actual representation of these terms in the proof

assistant. So for the term (B _ C) � A, the path to C is denoted [1;2] Then

we include additional information as in [Boudol85] by pre�xing the integers with

the name of the appropriate connective. In our previous example, the path to C

becomes [(� 1);(_ 2)]. In this way, the notion of path is independent and of

the exact abstract syntax used by the interface, and of the exact abstract syntax

used by the proof assistant.

4 Extensions

Using extensively proof by pointing with various proof systems suggests many

extensions to this paradigm.While these extensions do not necessarily fall in line

with the formal foundations of the principle and the requirement of complete-

ness, they help in making a more user-friendly interface to those systems. The

extensions are only sketched here, because clearly more experience is needed.

4.1 Reducing the number of assumptions

In Figure 1, all left rules tend to add a new assumption in the context for at

least one of the new subgoals, while no right rule removes any assumption from

it. In long proofs, relevant assumptions tend to get hidden among many useless

assumptions.

An alternative set of rules, given in Figure 4, attacks this problem by con-

suming assumptions as they are being used. Practically, this ensures that the

number of assumptions will not grow, but some formulas are not provable any

longer. One solution is to use both behaviors, associating each one to a di�erent

button of the mouse.

^ left :

A;B ; � ` C

A ^B ; � ` C

^ right :

� ` A � ` B

� ` A ^B

_ left :

A; � ` C B ; � ` C

A _B ; � ` C

_ right :

� ` A

� ` A _B

� ` B

� ` A _B

� left :

� ` A B ; � ` C

A � B; � ` C

� right :

A;� ` B

� ` A � B

8 left :

A[xne];� ` C

8x A; � ` C

8 right :

� ` A[xnc]

� ` 8x A

9 left :

A[xnc];� ` C

9x A;� ` C

9 right :

� ` A[xne]

� ` 9x A

Fig. 4. Linear rules for the logical connectives

A better solution consists in tracking more carefully where the consumed as-

sumptions come from, so as to consume them only when they can be regenerated

from the context if necessary.

4.2 Induction

In many theories, such as Peano arithmetic, proving universally quanti�ed for-

mulas is not done exclusively with the 8 right rule, but also with induction rules

like the following one:

� ` P (0) P (n); � ` P (n+ 1)

� ` 8 n : int P (n)

When selecting inside a universally quanti�ed formula, we mean to use the

8 right rule. To obtain the induction rule, one idea is to select the typed bound

variable, as shown. Since this expression has no subterms, the induction rule is

terminal, i.e. it is the last one in a thread. There is no obvious choice for the

propagation of the selection at this moment. Grouping together a number of

universally quanti�ed variables under the umbrella of a single 8 might give a

simple way to ask for several simultaneous recursions.

4.3 Equality

Equality has a special status in mathematics. Many operator de�nitions and

properties are given using equality and replacing equals for equals is a pervasive

form of reasoning. Many theorems have the form of a universally quanti�ed

implication, whose conclusion is an equality. When using such a theorem, one

would like to have more than one selection: one to tell where in the current

goal it is wished to apply it, one to tell whether to use the equality from left to

right or from right to left. Several computer algebra ([Bonadio89, Paracomp88])

systems have begun experimenting with this type of ideas whose validity must

be assessed.

4.4 Point and Shoot

The idea of proof by pointing is to bring a selected subexpression to the surface

and then try �nishing the proof of the resulting goal by a closure. This may fail,

but most proof assistants provide a collection of tactics that work on subexpres-

sions at the surface. As a result, users eventually end up alternating between

proof by pointing to bring subexpressions of interest to the surface and applying

regular tactics that manipulate these subexpressions.

We propose to integrate seamlessly both actions by providing users with the

possibility to combine in a single command the selection of a subexpression and

the choice of a tactic to manipulate this subexpression. With this new paradigm,

nicknamed point and shoot, we preserve the full power of both approaches and

really reduce the number of user interactions. Note that proof by pointing as

presented in this paper is now a special case of point and shoot where the tactic

to apply only performs closures.

Revisiting the problem of invoking induction rules, it seems more elegant

to handle this using the point and shoot paradigm together with tactics that

are specialized in inductive reasoning, rather than invent an ad hoc meaning

for selecting the bound variable in a universally quanti�ed formula. We have

implemented point and shoot for Coq.

4.5 Finding other Domains of Application

This paper shows that the idea of using the mouse to guide computer activity is

well understood in the realm of proofs and simple logics. It is reasonable to look

for possible extensions. There are two obvious extension directions:

1. Extending to other logics, either more elaborate ones like temporal or modal

logic, or more restrictive ones like linear logic. Obviously, the notion of focus

used in this paper does not depend too closely on the exact set of rules used

in the logic.

2. Extending to other behaviors than strict goal directed proof. There are ob-

vious similarities with tools like window inference [Grundy91] that aim at

supporting deduction through formula or program transformation.

5 Conclusion

In our experiments with proof assistants, we have noticed that similar proofs

done in di�erent systems seem quite di�erent due to speci�c features of these

systems: syntax of the logical language, nomenclature of the theorems, structure

of the command language. This diversity increases, for no valid reason, the dif-

�culty of learning how to use a new proof assistant. Proof by pointing provides

a uniform approach for the basic and frequent logical manipulations. Proving

simple propositions tends to become identical in HOL, Isabelle and Coq. For

example, the fact proved in the introduction requires similar sequences of selec-

tions in all systems. Di�erences between proof assistants are then concentrated

on more important issues.

The rules on Figure 1 represent very elementary manipulations in comparison

to what we use in every day mathematics. For example, representing ^ and _ as

binary connectives makes accessing an element in a disjunction or a conjunction

non-atomic and dependent on the exact structure of terms. In an assumption

such as A ^ B ^ C, to access A (or C depending on the associativity of ^)

requires two eliminations of an ^ operator, i.e., two applications of the ^ left

rules. Similarly, if we have two assumptions p(a) and 8x p(x) � q(x), deducing

q(a) which is intuitively an atomic operation requires an explicit application

of several rules. The proof by pointing mechanism restores this natural idea of

atomicity.

Another advantage of proof by pointing is that it accomodates without need

for any particular mental process both a forwards and a backwards style. Work-

ing in assumptions or in the conclusion leads to two di�erent styles of proof

usually called forwards and backwards. The forwards style consists in starting

from what we know, to reach what we want to prove. In backwards style, we start

from what we want to prove, determine what we need to infer it and so on recur-

sively. The backwards style tends to be privileged by proof development systems,

but humans, and computer algebra systems use the forwards style constantly as

well. With proof by pointing, the user makes no permanent commitment to one

style or the other. Every mouse selection gives an opportunity for a change in

direction.

Acknowledgments The phrase \proof by pointing" comes from [Ritchie88],

where it is limited to pointing at expressions at depth 1 and 2. The authors

want to thank A. Felty for making initial experiments feasible with her proof

assistant, and P. Anderson for help in improving this paper.

References

[Bonadio89] A. Bonadio, E. Warren. Theorist Reference Manual, Prescience Corp. 814

Castro St. San Francisco, 1989

[Boudol85] G. Boudol \Computational semantics of term rewriting systems", in Alge-

braic Methods in Semantics, M. Nivat, J. C. Reynolds eds., Cambridge University

Press, 1985.

[Centaur93] \The Centaur 1.3 Manual", I. Jacobs, ed., available from INRIA-Sophia-

Antipolis, January 1993.

[Coq91] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B. Werner, The

Coq Proof Assistant User's Guide, INRIA Technical Report no. 134, December

1991.

[Felty89] A. Felty, Specifying and Implementing Theorem Provers in a Higher-Order

Logic Programming Language, PhD Thesis, University of Pennsylvania, August

1989.

[Grundy91] J. Grundy, \Window Inference in the HOL System", in Proceeding of the

1991 International Workshop on the HOL Theorem Proving System and its Ap-

plications, M. Archer, J. J. Joyce, K. N. Levitt, P. J. Windley, eds., IEEE Com-

puter Society Press, 1991.

[HOL88] M.J.C. Gordon, \HOL: A Proof Generating System for Higher-Order Logic",

in VLSI Speci�cation, Veri�cation and Synthesis, G. Birtwistle, P. A. Subrah-

manyam, eds., Kluwer Academic Publishers, 1988.

[Isa90] L.C. Paulson, \Isabelle: The next 700 theorem provers", in Logic and Computer

Science, P. Odifreddi, ed., pp. 361{386, Academic Press, 1990.

[Maple] B. W. Char et al., MAPLE : reference manual : 5th edition, Springer-Verlag,

1992.

[Nuprl86] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,

R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T.

Sasaki, J.T.Smith, Implementing Mathematics with the Nuprl Proof Development

System Prentice-Hall, 1986.

[Paracomp88] Paracomp Inc. Milo User's Guide, 123 Townsend St., Suite 310, San

Francisco, 1988.

[Paulson87] L. Paulson, Logic and computation : interactive proof with Cambridge

LCF, Cambridge University Press, 1987.

[Sundholm83] G. Sundholm, \Systems of Deduction", in Handbook of Philosophical

Logic, Vol. I, D. Gabbay and F. Guenthner, eds., pp. 133{188, D. Reidel Pub-

lishing Company, 1983

[Ritchie88] B. Ritchie, The design and implementation of an interactive proof editor,

PhD Thesis, University of Edinburgh, Nov. 1988. G. Sundholm, \Systems of

Deduction", in Handbook of Philosophical Logic, Vol. I, D. Gabbay, F. Guenthner,

eds., D. Reidel Publishing Company, 1983.

[Szabo69] M.E. Szabo, G. Gentzen, The Collected papers of Gerhard Gentzen, North-

Holland, 1969.

[TBK92] L. Th�ery, Y. Bertot, G. Kahn, \Real Theorem Provers Deserve Real User-

Interfaces", in Proceedings of the Fifth ACM SIGSOFT Symposium on Soft-

ware Development Environments, Tyson's Corner, Va, USA, Software Engineer-

ing Notes, Vol. 17, no. 5, ACM Press, 1992.

[Matica] S. Wolfram, Mathematica : a system for doing mathematics by computer,

Addison-Wesley, 1988.

This article was processed using the L

a

T

E

X macro package with LLNCS style

