Lambda-calculus and types

Yves Bertot

May 2015

In these course notes, we review several aspects of A-calculus and typing in func-
tional languages. This knowledge makes it easier to understand functional programming
languages such as Lisp, ML [13], Ocaml [16], and proof system like Coq [5] or Agda [11].

Paradoxically, we start with a reduced model of programming language without types,
then we show several extensions of this language with type notions. In particular, we
show how types can be used to represent logical formulas and typed terms can be used
to represent proofs.

One of the most difficult points of this course is the introduction of dependent types,
which make it possible to define functions whose type expresses very precisely the ex-
pected properties of inputs and the guaranteed properties of outputs. A type system with
dependent types makes it possible to construct programs for which many programming
errors can be detected at compile time. Seen as a tool to reason logically, such a type
system can be used to construct tools for the verification of proofs on a computer, like
the Coq system. Since we are describing together a programming language and a logical
system, we obtain a tool with which we can prove the absence of certain classes of errors.

1 A quick overview of pure lambda-calculus

Studying A-calculus makes it easy to understand on a minimal language some theoretical
concepts that will also be relevant to richer languages. For example, we can reason
ont the problem of terminating programs, equivalence between two programs, and on
the relations between programing and logic. This language is the simplest example of
a functional programing language and most of our studies will naturally translate to
other functional languages (ML, Haskell, Scheme). A-calculus also makes it possible to
understand what happens in procedure calls and in recursion, even for non functional
programming languages like C or Java.

1.1 Syntax

The syntax of A-calculus is usually given by stating that it is the set of expressions e
obtained in the following fashion:
ex=Ar.e|ee|x

More precisely, we usually start by supposing the existence of an infinite set V' whose
elements are called variables, noted x, vy, ..., x;, y;, f, g and the set of A-terms is built
up progressively in the following fashion:

1. If x is a variable and e is a A-term, then Az. e is also a A-term. Such a term is called
an abstraction. Intuitively, Ax. e represents the function that takes x as input and
returns the value e.

2. If e; and ey are two A-terms, then ejes (the two terms side by side), is a A-term.
Such a term is called an application. Intuitively, this application represents the
function e; applied to the argument e,.

3. If x is a variable, then it is also a A-term.

Parentheses can be added in the text of a A term to make it easier to read. One notable
difference with usual mathematic practice is that we don’t necessarily write parentheses
around the arguments of a function (especially if the argument is a single variable).

Here are a few examples of A terms that are frequently used:

Ax. T (This one is often called I),
ANy, x (K),

Ao, (z) (a),

Az, Ay. Az.((z 2)(y z)) (S),

O AL (F(((@2) D)) A (F(52)£)) - (Yr)

Az Ay. (xy).

Intuitively an abstraction describes a function : Ax. e represents the function that
maps x to e. Thus the terms described in the previous paragraph are simple functions: [
is the identity function, K represents a function that takes as input a value and returns a
constant function, Delta is not easy to understand as a mathematical function: it receives
a function as argument and applies it to itself. The argument must at the same time be
a function and a piece of data.

Having functions that receive functions as arguments is not so uncommon in computer
science. For instance, a compiler or an operating system receive programs as arguments.
Applying a function to itself also happens, for instance when using a compiler to compile
itself.

1.2 «a-equivalence, free and bound variables

In the term Ax. e the variable x can of course appear in e. We can replace x with another
variable y, under the condition that all occurrences of x are replaced by y, and under the
condition that y did not appear previously in e. The new expression represents the same
function. We say in this case that the two expressions are a-equivalent. For the major
part of this paper, discussions will be made modulo a-equivalence, in other terms, two
a-equivalent terms will usually be considered equal.

The a-equivalence relation is an equivalence and a congruence®.

Here are a few examples and counter examples of a-equivalent pairs:

1. Az, A\y. y, \y. Azx. x, and Ax. A\z. x are a-equivalent.

2. Az. (x y) and \y. (y y) are not a-equivalent.

'two terms that differ only by a subterm being replaced by an a-equivalent term are also a-equivalent.

The abstraction construct is a binding construct, the instances of x that appear in the
term Ax. e are bound to this abstraction. It is possible to change the name of all the
bound occurrences at the same time as the one introduced by the abstraction.

On the other hand, some variables occuring in an expression may be related to no
binding abstraction. These variables are called free. Intuitively, a variable x occuring in
a term is free only if it is part of no expression of the form Az.---. The notion of free
variable is stable modulo a-equivalence.

For instance, the variable y is free in the terms Az. z y, Az. y, Az. y (A\y. y), and
Az. (Ay. y) y (for the last example, it is the last occurrence of y that is free).

Exercices

1. What are the a-equivalence classes among the following terms: A\x. xr y, \r. = z,
M.y z, Me.zz, Xz zy, Mo fuy, A f, Ay Axe vy, Az Ay y 2.

2. Find an a-equivalent term where each binder introduces a variable with a different
name:

Az, ((z (Ay. z y))(Az. 2))(\y. y)

1.3 Application

Application represents the application of a function to an argument. It is written by
placing the function on the left of the argument, with enough space so that the function
and the argument can be distinguished.

A-calculus provides only one kind, there is no need for a specific construct to express
the application of a function to several arguments, because this can be described using
application to one argument in a simple way. The trick is to have functions whose returned
value is a function, which can in turn be applied to another argument.

For instance, we shall see later that we can “model” an addition function in pure
A-calculus. It is a function of one argument that returns another function. Adding two
arguments x and y can be written the following way:

(plus) y

The function plus x is an offset-by-z function: it expects an input n and it returns x +n.
For instance, we can write the function that computes the double of a number in the
following way:

Az.((plus x) x)

In what follows, we will avoid the excessive use of parenthesis by considering that it not
necessary to use parentheses when a function meant as a several argument functions is
applied to several arguments. The doubling function is written in the following way:

Ax. plus x© x

The fact that we refrain from using parentheses in this case does not mean that application
is associative. When parentheses appear on the right, they are usually meaningful. The
following expression has a very different meaning:

Az. plus (z x)

3

In this expression, (x x) means: apply x to itself, and plus (z x) expects (z x) to compute
a number which is given as first argument to plus.

So the take-home message is that you should not put parentheses just to group the
arguments of a function accepting several arguments: it makes it believe that the first
argument is actually a function applied to the other arguments.

Concerning notations, we will also note with a single A functions of several arguments,
so that Azyz. e is used instead of Ax. \y. A\z. e. We will also avoid placing parentheses
around the body of an abstraction, considering that this body extends as far as possible.
thus the following term

(Az.(plus = z))(plus y y)

will be written more succinctly

(Az. plus x x)(plus y y).

This term actually computes four times y.

1.4 Substitution

It is possible to replace all the occurrences of a free variable by a A-term, but one should be
careful to make sure that this operation is stable modulo a-equivalence. More precisely,
we note e[e’/x] the term obtained by replacing all free occrrences of by €’ in e, making
sure that all free occurrence of a variable in €’ are still free in the final term. One approach
is to perform two steps:

1. First construct a term €” that is a-equivalent to e, but where no binding abstraction
uses x or any of the free variables in ¢/,

2. Then replace all occurrence of z by ¢’ in €”, with no need to pay attention to binders.

It is also possible to describe recursively the substitution operation using the following
equations:

o xle/z] =¢,
o yle'/a] =y, ify # =,

e e2)[e'/x] = eq[€'/x] ex]e’ /],

)
Ay. e)le’/z] = Ay.(e[e'/x]), if y is not free in €/,
o (\y. e)le//z] = Az.((e[z/y])[€'/x]), if z is not free in e and ¢’

The last equation can also be applied when the previous two can, but one should use the
other two when possible. Using the last equation when the others can also be applied
simply produces an a-equivalent term with more bound variables whose name changes.

1.5 Execution in the \-calculus

A-calculus commes with a notion called -reduction based on substitution. The intuition
is that every function applied to an argument can be unrolled. This behavious is simply
written in the followin fashion, using the relation ~»:

(Az. €) € ~ el /]

Every instance of the left member is called a S-redex, or more simply a redex. This rule
can be used on all possible instances in a term, wherever they are located in the term.
In the study of A-calculus, it is customary to consider chains of elementary reduction,
sometimes called derivations, or even reductions. We shal note —* the derivation relation.
A term that contains no redex is called a normal form. We shall say that a term has a
normal form when there exists a derivation starting in this term and leading to a normal
form.
Here are a few examples of reductions:

o (Az\y.) \x. x) 2z~ Ay Az, x) z ~ . x,

o Kz(y 2) = (Avy. 2)2(y 2) ~ (\y. 2) (y 2) ~ z,

SKK = (Aryz. z z(y 2)) KK~ (Ayz. Kz(y 2)) K~ (Ayz. 2) K~ Az, 2 =1

AA= (M. zz) A~ A A~ AA, the term AA is often called €.

Yo~ Aff (Yo f) =" A (fF (Y7 f))~ .
e KIQO~KIQ~ ..,

e KIQ "L

These examples show that there exist terms without a normal form and that there also
exist terms having a normal form, but which can also be the starting point of an infinite
derivation.

A-calculus contains enough primitives to represent the usual constructs needed for
programming. For instance, we can adopt a convention to represent natural numbers, n

being represented by
n times

-~

Ma. f(--(f 2)---).

Addition add and multiplication mult can then be represented by the following functions:
amnfz. m f(n f z) Amn. m (n f) x.
Boolean values true and false can be represented by the expressions
Ary. x Azry. vy,
The conditional construct if-then-else can be represented by

Abzxy. bz y.

The pair of two expressions can be represented by the following term:
Az. z e es,

and the functions m; and pis that take a pair as argument and return respectively the
first and second component of this pair can be written:

Ac. ¢ Axy. x Ac. ¢ Axy. y.

The function pred that returns the predecessor of a natural number (or 0 if the input is
already 0) can be written in the following manner:

An. m(n (Aez. z (mg ¢)(plus 1 (my ¢)))Az. 2 0 0).
The function eq0 that tests whether an integer is 0 can be written:
An. n (Azx. false) true.

We have shown how to represent the data-type of natural numbers, with the usual op-
erations and and a test function. In a similar way, one could describe the data-type of
lists, with projections to get the first element of a list, the remainder of this list, and a
test function to check whether a list is empty.

Even more generally, we can also produce recursive functions. The recursive functions
that satisfies the equation f = = e (f and x are free in e) can be represented by the
expression:

YrAfz. e.

This gives enough expressive power to represent the factorial function by the following
text:
YrAfa.if (eq0 x) 1 (mult x (pred x)).

This expressive power is strong enough that we can claim A-calculus to be a programming
language.

2 Simply typed A-calculus

As a programming language, A-calculus has several drawbacks. The first drawback is that
it is too easy to make programming mistakes. The second drawback is that this language
does not use efficiently the data-structures already provided by computers, like numbers.

We shall now describe how A-calculus was extended to add a notion of types to
functions. Types make it possible to express what is the expected input data for each
function and to express what is the expected data returned by each computation. This
makes it possible to reduce the errors that can be made while programming and to include
efficient operations on the data-types that are natively provided by the computer. We
shall also see that in some contexts, types make it possible to guarantee that computations
always terminate.

2.1 A language of types

Let’s assume the existence of set P of names for primitive types. For instance, P can con-
tain types int, bool, float. We consider the type language constructed in the following
manner:

e Every primitive type from P is a type in T,
e if £, and 2 are two types, then t; * ¢, is a type,
e if t; and £2 are two types, then t; — t5 is a type.

Types of the form t¢; * t, are used to describe the type of pairs, we shall use the notation
(e1,e2) to describe the construction of a pair. The types of the form t; — ¢y are used
to describe the type of functions that take an argument of type t; and return a value of
type to.

For instance, the type int * int represents the type of pairs of integer values, while
the type int — int represents the type of functions that take an integer as argument
and return an integer. A function with two integer arguments and returning an integer
can either be described as a function that takes a single argument of type pair of integers
and returns an integers, or as a function that takes a single integer as input and returns
another function that takes an integer as input and returns an integer. These two types
are distinct, but a function named curry,, , can help going from one form to the other.
Its type has the following shape:

((int % int) — int) — (int — (int — int))

In functional programming it is customary to define functions of several arguments with-
out using pairs. One obtains function whose type is made of a longue sequence of arrows.
The custom is to not print the parentheses when they occur on the right. Thus, the type
of curry,,, is better written in the following fashion:

((int * int) — int) — int — int — int

2.2 Annotating A-terms with types

We shall now concentrate on a variant of A-calculus where each function defined using
the abstraction construct contains type information on the expected type of arguments.
Expressions of this variant have the following shape:

ex=ua| (e,e) | Ax:t.e|e ey | fst| snd

In practice, it is useful to determine the type of expressions in this language, but to be able
to do that, we need to know the types of all free variables. This information is collected
in a context, a sequence of pairs combining a variable name and the corresponding type.
These contexts will be noted with the variable I', the empty context will be noted (), and
the context I' to which one adds the pair asociating the variable x and the type t will be
noted I', z : ¢.

It is customary to describe typing rules using the style of inference rules already used
in logic and proof theory. To describe how one can decide whether a typed A-term is well
formed, one uses the following seven rules:

Ex:t T Fy

— (1
F,x:tl—a::t() MNy:tkhax:t

I‘I—elztl Fl_egitg(?))
['F (eg,e9) 1t xty
Dz:tke:t
. 4
Fl—Ax:t.e:t—)t'<>
ke :t—t I'Fey:t
Pkejey:t

DEfst:ty sty =t (6) I'Esnd:t; xty — 1o 0
When typing rules are presented in this manner, it is also possible to describe the whole
typing process for a complete expression as a big figure, which we call a derivation tree.
For instance, checking the type of \f : int*int — int.Az : int.\y : int. f(x,y) can
be represented by the following derivation.

(2)

(5)

I'---,z:int F z : int (1)
2 1
o) W
: 5 2 int y:int gy : int 5
[,---F f:int * int —>int() [,---F(z,y) : int x int (3)

[, f:int x int — int,z : int,y : int - f(z,y)
[, f:int * int — int,2 : int - Ay : int. f(x,y) : int — int
[, f:int xint — int - Az : int. Ay : int. f(z,y) : int — int — int (
I' FAf:int*int — int. Az : int.\y : int. f(z,y)
: (int % int — int) — int — int — int

2.3 Logical uses of types

The expressions of the type language can be read as if they were logical formulas: primitive
types from P are propositional variables, the arrow type can be read as an implication and
cartesian product (the type of pairs) as a conjunct. For instance, the logical proposition if
the sentence “A and B” is true then the sentence “B and A” is true too will be represented
by the following type:

Ax B — BxA.

This way of reading types as logical formulas is justified by an extra remark: if there
exist an expression with the type ¢ in the empty context, then this logical formula is a
tautology (this formula is always true). In this case, the type is called inhabited, and any
term in this type describes a proof of the corresponding logical formula. Moreover, when
clearing the A-terms that appear in a typing derivation and when consider the contexts
appearing in each context simply as propositional variables assumed to be true, what
one obtains is simply a proof from sequent calculus, a language invented to study proof
theory in the first half of the XXth century.

For instance, the type A x B — B x A is inhabited by the following term:
Az Ax B, (snd x, fst x)

it is this use of types as logical formulas that provides the foundations of proofs systems
in type theory like Coq [5]. The correspondence between types and logical formulas
on one side and functional programs and proofs on the other side is often called the
Curry-Howard correspondence?.

All inhabited types are tautological formulas, but not all logical tautologies are in-
habited types. For instance, it is well known that the following formula can be verified
by a method of truth tables but there is no A-term with this type in an empty context
(this formulas is called Peirce’s formula):

(A= B)— A) — A

The difference between formulas provable using typed A-calculus and formulas provable
using truth tables is known as the difference between intuitionistic and classical logic.
The main difference revolves around the law of excluded middle, which simply expresses
that every formula is either true or false.

Exercices

3. Build a proof ol A+ B - C) - (B - A— (),
4. Build a proof of A— B — C) - A*x B — C,

5. Build a proof of ((((A — B) — A) — A) — B) — B, Please note that this formula
is very close to Peirce’s law.

2.4 Typed reduction

To describe computation in typed A-calculus, we simply use A-term reduction as in un-
typed A-calculus, using S-reduction. An important property of reduction is a stability
property: when reducing a A\-term, the type is preserved. This can be proved by induction
on the size of expressions. This theorem is also called the “subject-reduction theorem.”

We shall not give all the details of this proof. but only mention two lemmas.

First if e; has the type ¢t — ¢’ and reduces in €| with the same type, then the expression
ey ez is also well typed if and only €] es is well-typed.

Second if e; has the type ¢ in the context I',x : ¢ and if e; has the ¢ in the context
I, then the expression (Az : t. e1)es is well typed and has the type ¢ in the context
I'. It remains to verify that e;[es/z] is well typed in the context I', which holds for the
following two reasons:

1. In ey[ey/z] the variable 2 does not appear anymore, and therefore the declaration
x : t is not necessary to verify that the expression is well typed,

2. the variable of type = of type t is replaced everywhere by an expression ey of type
t.

2or isomorphism

2.5 Reduction termination

If we observe the rule 5 which describes how the application of a function is typed, one
can see that the type of the function is a term that is strictly larger than the type of
the argument. For this reason, it is not possible that an expression of the form z x is
well-typed. the expression A = Az. z x is not typable, and so neither the expression
Q = AA, nor the expression Y = (Azz. z(z z z))\zz. (2 z x). These expression, which
we saw in the section on pure A-calculus, are involved in infinite derivations, but they are
not typable. This just an instance of a very important theorem: all typable expressions in
simply typed \-calculus are strongly normalizing. In other words, all derivations involving
typed A-terms are finite. A proof of this theorem can be found in [7|, a generalization
can also be found in [9].

Having eliminated causes for non-termination may seem a great progress, but in doing
so we also loose the possibility to define recursive functions. A first solution is to re-
introduce recursion while preserving typing by adding a constant Y in the language with
an extra reduction rule:

Y f~ fY)

To preserve typing and typing stability (the subject reduction theorem), Y must have a
function type of the form 6 — 1 for some 6 and . According to the right hand side, the
argument must be a function, so we must have § = o0 — ¢’. Last, to ensure the type of
Y f is the same as the type of f (Y f) it is necessary o’ = ¢ and then o = 1. Altogether
Y must have the type (t — t) — ¢, for any type t.

For instance, when working in the following context:
[, plus, sub, mult : int — int — int,le: int — int — bool,

if : bool — int — int — int

We can define the factorial function, in a well-typed manner, by using the same approach
as in pure A-calculus. We first devise a functional factF of type

(factF : (int — int) — (int — int) — (int — int)
and defined in the following manner:
factF = \f :int — int. Az : int. if(le 0) 1 (mult = (f (sub z 1)))
The factorial function is then the following value:
fact =Y factF.

The operator Y makes it possible to bring general recursion back in the language, but it
also restores the posibility for programs to loop for ever. This approach with a fix-point
operator can model what happens in most typed functional programming languages,
including ML, OCaml, and Haskell.

2.6 Recursive types and structural recursion

Another approach to introduce recursion, but which preserves the property that compu-
tations always terminate is to introduce data structures representing trees of finite height

10

and recursive functions that compute on these trees by authorizing recursive calls only
on immediate sub-trees of the argument at each step of recursion. In other words, we
introduce at the same time the recursive data-type and a function that describes recur-
sive computation only for this type. The constraints that recursive calls are restricted to
immediate sub-trees can be expressed using types.

As a first illustration, we study an example drawn from Go6del’s system T, as presented
in |7]. The type of natural numbers can be described as a data structure named nat with
three constants O:nat, S:nat — nat, and rec_nat. The first two constants are used
to represent numbers as data. The constant 0 represents 0 and when x represents the
number n, then S x represents n+1. Thus, in the extended programming language, there
are numbers, but 3 is never written, one write S (S (S 0)) instead.

The constant rec_nat is used to describe all kinds of functions of type nat — ¢ for an
arbitrary type t. Instead of having just one type, it has any type of the following shape?:

rec_nat:t— (nat — ¢ —t) — nat — t.
The constant rec_nat must also come with the following reduction rules:
rec_nat:t— (nat - ¢ —t) — nat — t.

The constant rec_nat makes it possible to construct the usual functions of arithmetic,
while preserving the property that computations always terminate. The expression
rec_nat v f x which appears on the right-hand side of the second reduction rule corre-
sponds to the only authorized recursive call, and this recursive call happens on a sub-term
of the argument on the left-hand side of the rule, S . Thus, when a function defined
with the help of rec_nat computes on a number n, it can proceed recursively only on
n — 1, then n — 2, et this necessarily stops when reach 0. Moreover, there is a guarantee
that every normal form of type nat in the empty context is solely composed of a finite
amount of applications of S, ultimately to 0.
For instance, addition can be represented by the following function:

Ar y. rec_naty (Apr.Sr) x.

Indeed, when adding 0 to y, the result is y and if one adds S p to y, the result must be
S (p+y)

The constants S and 0 are called the constructors of this type nat and we shall call
rec_nat the recursor associated to this type.

We can construct other types with recursion. Each time, it is enough to provide
a collection of constructors, which are always functions whose result type is the data
type being defined, or constants in this type. The arguments of the constructors can
be in any existing type or in the type that is being defined (and in this case, the type
exhibits recursion). The recursor is a function with n + 1 arguments when the type has
n constructors. The n first arguments correspond to a case-by-case analysis of values in
this type. The first argument explains what should happen when the argument to the
recursive function is obtained with the first constructor. In each case, if the constructor

3We already experimented with this kind schematic type when observing the constant Y in a previous
section.

11

has k arguments, among which [are in the recursive type itself, the function given for this
case is a function with k + [arguments. For instance, the second constructor of nat has
one argument, among which one is in nat. The expected type for the second argument
of rec_nat is the type for a function with two arguments. In each case, the [extra
arguments correspond to the values of recursive calls on the sub-terms in the recursive
type. In the case of nat, this is illustrated by the right-hand side of the second reduction
rule:
rec_nat vy f (Sn)~ fn (rec_nat vy f n)

In this reduction rule (rec_nat v 0 (f n)) represents the recursive call.
For another illustration, let’s consider a type of binary trees, which we call bin, with
two constructors leaf and node, which have the following types:

1. leaf : bin,

2. node : nat — bin — bin — bin.

Since this types has two constructors, the recursor rec_bin has three arguments. The
first one is a constant like leaf, le second one is a function with 5 arguments, because
node has three arguments, among which 2 are in the type bin. The two extra arguments
correspond to results of recursive calls on the sub-terms of type bin. The type of rec_bin
is as follows:

rec_bin:t— (nat — bin -t — bin -t —) — bin — ¢
and the reductions rules are as follows:
rec _binwv f leaf ~ v

rec_binv f (node n t; to) ~ fnt; (rec _binwv f t;) ts (rec_bin v f t)

Intuitively, this describes recursive functions where recursive calls are only allowed on
immediate sub-trees of a binary tree. These sub-trees are necessarily smaller than the
initial tree, this ensures that the computations will always terminate. This approach of
recursion where recursive calls are only allowed on direct subterms is called structural
recursion.

For instance, we can describe the function that adds all the numbers in a binary tree
in the following manner:

rec_bin 0 (An:int,¢; : bin, vy : int, ¢y : bin, vy : int.(plus n(plus vy vs)))

There is a correspondence between the recursive functions that can be defined using the
recursor associated to a recursive type and the recursive functions that can be defined
using OCaml or Haskell thanks to the pattern matching capabilities. For instance, bin
would be defined in OCaml in the following manner:

type bin = Leaf | Node of nat*bin¥bin

A function g defined as ¢ = rec_bin v f would be defined in OCaml in the following
manner:

let rec g x = match x with
Leaf -> v
| Node n t1 t2 -> £ n t1 (g t1) t2 (g t2)

12

3 Type inference

3.1 Untyped abstraction

Strongly typed programming gives trongs guarantees that programs behave as intended,
but the necessity to provide types for all bound variables is a heavy borden. To ease this
burden, we can extend the language with an untyped abstraction construct A\z. e and
give it the following typing rule: for every typest and t' if e has the type t' in the context
[x :t then Ax. e has the type t — t'. In fact, we generalize for abstraction a facility that
we already exploited for the pair projectors fst and snd, for the fixpoint operator Y, and
for the recursors associated to recursive types.

When considering an expression containing several untyped abstractions, it is neces-
sary to choose for each of these abstractions a type that makes the whole expression well-
typed. A solution is to rely on a unification algorihm, after having given to each bound
variable a variable type. The program that checks whether an expression is well-typed
should replace the operation of checking whether two types are equal by the operation of
adding an equality constraint in the set of constraints maintained by the unification algo-
rithm. Of course, one should also give a variable type to all occurrences of polymorphic
constants. For instance, every occurrence of fst is given a type T x Ty — 17, whereT}
and Ty are fresh variables. The same is done with snd and Y if this constant is part
of the language. Then, the type verification is performed as usual, except that each the
verification of each function application imposes a constraint, because it is necessary to
verify that the input type of the function and the type of the argument are equal.

To illustrate this, we consider the expression Ax.plus x x. The first step is to add a
type variable for the type of x and we actually verify that the expression \z : T, plus x x
is well-typed in the context where plus has the type int — int — int.

1. the algorithm starts with an empty list of constraints,
2. plus has the type int — int — int.
3. x has the T in the context --- .z : T,

4. the aplication plus z is well typed if int = T, this constraint is added to the set of
constraints. Moreover, plus x has the type int — int,

5. the application plus x x = (plus x) x is well type if z if the constraint int = T is
satisfied. Moreover, this expression has the type int. Altogether, we have the set
of constraints int = 7', int = T". The solution of this set of constraints is obvious,

6. the expression A\x. plus x = has the type int — int.

The solution of all constraints relies on a unification algorithm, already known in
computer-based proofs. For instance, unification algorithms are used in the definition of
Prolog.

13

3.2 Polymorphic typing

With a value of type ¢t and a function of type ¢t — t, it is sometimes needed to apply this
function twice on this value, something that can be represented by the following A-term:

Av f. f(f v)

This function always work in the same manner, whatever the type t. It would be useful
to be able to apply this function in two different places, one where the type t would
instantiate on int, for instance, and one where it would instantiate on bool. Here is an
illustration of an expression where this would happen:

Ac.(Ag.A\b : bool, fi : bool — bool,n : int, fo : int — int.c (g b f1) (g n fo))
Mo f.f(f v).

This expression is not well typed, because one of the uses of g imposes that the type
of v should be bool, while the other use imposes that the type of v should be int. Here,
strict typing appears to impose code duplication.

To solve this problem, we shall generalize the solution we already used for fst, snd,
or Y. Instead of expressing that the function Av f. f(f v) should have a unique type
T — (T' - T) — T for a given T, we want to express that this function has the type
t — (t = t) — t for any type t. Thus, some functions can have a type that is universally
quantified. Such a type is called a polymorphic type.

We will introduce a new language construct, which is used explicitely to introduce a
sub-term that has a polymorphic type. This new construct has the following syntax:

let z =cin ¢
Operationally, the meaning of this expression is the meaning of a redex:
let z=cine ~ (A\z. €)e

However, for typing purposes, polymorphic typing can be expressed with the following
rule:
F'Fe:0 TkFeéle/x]:t
F'kletx=eine :t

To verify that an expression let x = e in €’ is well typed in a context I', this rule says that
one must verify if e is well-typed in this context, and then one should verify if each of the
uses of e is well-typed in the context provided by €', each instance independently from
the others. This typing rule performs the code duplication for its own typing purposes,
thus avoiding that programmers need to do it.

This typing algorithm is not very efficient, because it relies on a substitution that may
imply an excessive increase in the size of the term whose types should be verified. In [6],

there is a more efficient algorithm, which is also detailed in G. Dowek’s course?.

4 Dependent types

Type theory becomes really complex when one adds dependent types, which make it
possible to consider type families, indexed by data. With this extension of typed \-
calculus, it will be possible to express that some functions can be applied only on those

‘https://who.rocq.inria.fr/Gilles.Dowek/Cours/T1lp/

14

arguments that satisfy certain properties. For instance, the function that fetches the
element of rank n of a list can be designed in such a way that it can only be used
for functions whose length is larger than n. Type theories with dependent types exist
since the 1970s [7, 10] and may have been experimented with even earlier in the work of
De Bruijn.

4.1 More syntax

The first stage to introduce dependent types is to make it possible to define functions
that take values as arguments and return types. For these functions, the output type
is a type of type. We shall give a different name to these kinds of types, they will be
called sorts: a sort will be a type whose elements are types. In these course notes, we
will suppose that there exists a sort Type. We will describe a type family indexed by
elements in a type A by a function of type A — Type.

When f : A — Type is a type family, we may want to consider functions that take
as input elements x in A and produce as outputs elements of the type f z for each x.
The notation based on arrows is not adapted for this need: we need to give a name to
the argument, even when simply describing the type of this function, because we need
this name to express what is the output type. Researchers introduced a new notation. A
popular choice is the notation of indexed product: Ilz A. f z.

This notation can be explained intuitively: the cartesian product A; x A, of two
types contains pairs where each provides one value of type A; and one value of type A,.
The two values have different types. But a pair can also be viewed as a function with
inputs in {1,2}: when the input is 1 the output is the first component of type A;, when
the input is 2 the output is the second component of type As. The notation of indexed
product generalizes in a simple manner this view of cartesian products. A function of
type Ilx : A. f x makes it possible to obtain values of type f a forall possible ways of
choosing a in A, in the same manner as a cartesian product indexed by A.

4.2 Extended typing rules

When there are dependent types, the rules for typing A-abstractions and applications
must be modified to take into account the fact that a function may return a value whose
type depends on the argument. The new typing rules take the following form:
Dx:tke:t
FFXz:te: Mzt t
Pkey: Mzttt I'keg:t
['Feyeq:t'ex/x]

In fact, the notation A — B can still be used when the type is not really dependent, i.e.,
as a shorthand for the type Ilz : A. B when x does not appear in B.

4.3 Logical point of view

In this section, we consider only a type theory that enjoys the property of terminat-
ing computations (possibly with recursive types and associated recursors, but without a
general fixpoint operator like Y').

15

When using dependent types for logical purposes, it is practical to introduce a second
sort, which will be used explicitely to describe logical formulas. In the Coq system, this
second sort is called Prop.

In the first section, we saw that type variables correspond to propositional variables.
When propositions are indexed by elements of type A, they become predicates on this
type. For instance, let’s consider the predicate P : A — Prop: for two different values
x and y of type A, we shall have two distinct types P x and P y, where one may be
inhabited while the other is not, which means that we have two logical formulas, one of
which is provable and the other is not.

To find a meaning to the new construction of dependent product, we should remember
that all functions that we consider terminate. The following property is then guaranteed:
if f has the type Ilx : A. P x then for every element x of A, the function f will produce
an element f x which is in type P z. In other words, P x is always inhabited, always
provable. Thus, the dependent product can be read as universal quantification. In what
follows, I will often use the notation Vx : A, P x instead of Ilx : A, P x when P has the
type A — Prop.

Expressions whose type is a logical formula are theorems. The typed calculus makes
it possible to compose these expressions to obtain new theorems.

For instance, in some context we may have a predicate even and two constants even0
and even?2 that have the following types:

even0 : even O

even2 : Vz:nat.even z — even(S (S z))

The term even2 (S (S 0)) (even2 0 even0) is a proof of the proposition
even (S (S (S (80)))).

In other words it is a proof that 4 is even.

4.4 Dependent types and recursive types

Recursive types can also be defined in a manner that produces type families. For instance,
data lists can be parameterized by the type of the elements. In this case, one obtains a
type family represented by a function 1ist : Type — Type. To construct an element
in one of the types of this family, one may choose to construct an empty list or to add
an element to an existing list. Even for an empty list, it is necessary to choose the
type of elements to know in which type of lists this empty list will exist. Therefore,
the constructor for empty lists is not a constant but a function that takes a type A as
argument and returns an element in type list A:

nil:VA:Type.list A

To add an element in an existing list, it is necessary to know what is the type A, take an
element in A, and take a list whose elements are in A. The constructor has a type with
the following form:

cons : VA : Type.A — list A — list A

16

If one wants to define a recursive function with a dependent type Ilz : nat, A n with
the recursor rec_nat, we must adapt the type of this recursor for this need. It is necessary
that the value for 0 is in the type A 0. and the function that computes the value for
S x must return a value in A (S z) while potentially using a value for the recursive call
that should be in type A x. All this is expressed by assigning the following type to the
constant rec_nat:

rec_nat :IIA:nat — Type.A 0 — (IIn:nat.An — A (Sn)) = [In:nat.An

When reading the type of rec_nat as a logical formula, we discover that this type is a
well-known logical formula. It is the induction principle that we can use to prove formulas
about natural numbers. Replacing A by a predicate P, this reads as: forall predicate P,
if P is satisfied in 0, and for every n P n implies P (n + 1), then P is satisfied for all
natural numbers:

VP :nat — Prop.P 0 — (Vz:nat.P n — P (Sn)) — Vx :nat.P n

There are many other interactions between dependent types and recursive types. In par-
ticular, dependent types make it possible to extend the notion of recursive function beyond
structural recursion, while maintaining the important property that all computations ter-
minate. A good way to study these interactions is to experiment with systems based on
type theory, like the Coq system [5], or Agda [11].

5 Further reading

These notes only give an overview of what can be done with type theory. There are several
books that provide a deeper study. Pure \-calculus is studied intensively in [1], which is the
major reference on the topic. Several programming languages are derived from \-calculus
[3, 16, 15]. Many proof systems use A-calculus and types in various form [8, 14, 4, 12].
One of the most advanced systems based on type theory is the Coq system, for which we
wrote a book [2].

References

[1] Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics. Studies in
Logic. North-Holland, 198}.

[2] Ywves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

[3] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Déveleoppement
d’applications avec Objective Caml. O’Reilly and associates, 2000.

[4] Robert Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harber, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T.
Sasaki, and S. F. Smith. Implementing mathematics with the Nuprl proof develop-
ment system. Prentice-Hall, 1986.

17

[5] Coq development team. The Coq Proof Assistant Reference Manual, version 8.4,
2012. http://coq. inria. fr.

[6] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
ninth ACM symposium on Principles of Programming Languages, pages 207-212.
ACM, 1982.

[7] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types. Cambridge
Unwversity Press, 1989.

[8] Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL : a theorem
proving environment for higher-order logic. Cambridge University Press, 1993.

[9] Jean-Louis Krivine. Lambda Calcul, types et modeéles. Masson, 1990.
[10] Per Martin-Ldf. Intuitionistic type theories. Bibliopolis, 198/.

[11] Ulf Norell. Dependently typed programming in agda. In Revised Lectures from 6th
Int. School on Advanced Functional Programming, AFP 2008, volume 5832 of Lect.
Notes in Comput. Sci. Springer, 2009.

[12] Lawrence C. Paulson. Logic and computation, Interactive proof with Cambridge
LCF. Cambridge University Press, 1987.

[18] Lawrence C. Paulson. ML for the working programmer. Cambridge University Press,
1991.

[14] Lawrence C. Paulson and Tobias Nipkow. Isabelle : a generic theorem prover, volume
828 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[15] Simon Thompson. Haskell, the craft of functional programming. Addison- Wesley,
1996.

[16] Pierre Weis and Xavier Leroy. Le Langage Caml. Dunod, 1999.

18

